Fauna of India

PROTOZOA
EIMERIIDAE

By
A. K. MANDAL
In this book the author has included 277 species spread over 11 genera of the Family Eimeriidae and made an attempt to provide the up to date information keeping in mind the consequent changes in the concept of taxonomy of the group due to electron microscopic studies. Apart from the taxonomic treatment provided herein, special attention has been paid as these parasites are of veterinary importance and as such a chapter on Eimeriids of poultry and farm animals of India has been added along with a discussion on host-parasite relationship.

The host-parasite index and *vice versa* as appended at the end has become the special attraction to the workers dealing with the group. The glossary of the technical terms used has been added as additional information which are very much useful to the beginners.
FAUNA OF INDIA
AND
THE ADJACENT COUNTRIES

PROTOZOA
SPOROZOA . EUCOCCIDIIDA
EIMERIIDAE

By
A. K. MANDAL
Zoological Survey of India
Calcutta-700 053

Edited by the Director, Zoological Survey of India
1987
EDITOR'S PREFACE

Since the publication of the Fauna of British India, Protozoa: Sporozoa written by Bhatia (1936), in which the present family Eimeriidae was included, a considerable amount of work has been done on this group. With the advancement of knowledge, specially due to electron microscopic studies, taxonomic concepts of these parasites have considerably changed. While Bhatia (1936) could include 6 genera and 33 species of Eimeriidae in his fauna, the present volume deals with 11 genera and 277 species of this family, most of which have been available to the author for study as a part of his own collection of three decades or collection of different experts of the field, lying in different Universities and Institutions.

It is now worth while to write a separate fauna of the family Eimeriidae alone not only due to addition of many more species from this country and considerable change in taxonomic concepts but also due to immense veterinary importance of this group as a causative agent of the disease 'Coccidiosis'. Keeping this in mind the author, apart from taxonomic dealings of the group has given special emphasis to deal with the Eimeriids of poultry and farm animals of India in a separate chapter of the volume. This will be very much useful for the veterinarians and medical personnel as well as for those who intend to work in this particular field.

In the present volume the author has covered up to date information on the group and given adequate weightage to the ultrastructural observations to cope up with the recent taxonomic concepts of these parasites. He has also made critical taxonomic assessment of each species wherever necessary. It is hoped that this book will provide a handy tool not only to the specialists and research workers but also to the veterinarians and academicians for multifaceted studies of this group.

6th July, 1987
Zoological Survey of India
Calcutta-700 020

B. S. LAMBA
Acting Director
AUTHOR'S PREFACE

When I began writing the Fauna of India on the family Eimeriidae of the Indian subcontinent, three monumental works on Sporozoa were already available. One was by Bhatia, 'The Fauna of British India', Protozoa: Sporozoa (1938), the second, a classical book by Pellerdy on 'Coccidia and Coccidiosis' (first edition, 1965), and the third was 'The Coccidian Parasites of Rodents' by Levine and Ivens (1965). My own work on 'Coccidia of Indian Vertebrates' was ready by 1967, but it came out only in 1976.

More than three decades have elapsed since Bhatia's work was published, and in the meantime about 200 species and additional information have been added to this family from the Indian subcontinent. Pellerdy's (1965) book appeared to have omitted a number of eimeriids occurring in the Indian Region, and in Levine and Ivens' monograph on the Coccidia of Rodents only two species then known from India were included. Mandal's work on the Coccidia of Indian Vertebrates dealt with 92 species examined by him and a few by others, covering 125 species in all.

When a substantial part of the present work was already completed another monumental work, 'The Coccidian Parasites of Ruminants' by Levine and Ivens (1970) was published. Subsequently the thoroughly revised edition of Pellerdy's book came out in 1974. Though these classical works were matchless in covering the Coccidian parasites of the world, yet both these publications were restricted in their contents and scope. Meanwhile, a monograph on 'The Coccida and Coccidiosis of Poultry and Farm animals of India', covering over over 54 species of veterinary importance was published by me in 1980.

All the previous publications were devoted to particular fields of interests with specific application due to which the details in many cases were either entirely lacking or incomplete, and since some new taxa have been added to this family it was decided to complete the present work.

The end-product of my labour in this volume provides an up to date and comprehensive account of each species of Indian eimeriid known so far, occurring in different group of hosts and their inter-relationship.

In addition, a critical assessment of the taxonomy of this group along with a key to each taxon has been provided. I hope this book
will be useful to all working in this field. Every endeavour has been made to keep the text as succinct as possible. However, constructive criticism will be highly appreciated.

I express my indebtedness to Dr. B. K. Tikader, former Director, Zoological Survey of India, for being kind enough to entrust me with the stupendous task of writing the fauna volume. But for his constant persuasion, encouragement and ever extended facilities to me this work would not have been completed.

My thanks are due to Dr. B. Dasgupta, Principal, Darjeeling Government College, Darjeeling, West Bengal and Dr. A. Choudhury, Professor of Zoology, Calcutta University for many helpful suggestions.

Dr. T. N. Ghosh, Professor of Protozoology, School of Tropical Medicine, Calcutta, in spite of his preoccupation, gave many patient hearings and wise counsels, which I sought on innumerable occasions at various stages of completion.

I am thankful to Dr. S. S. Ahluwalia, Professor of Parasitology, Dr. P. P. S. Chauhan, Research Officer, Mathura Veterinary College, Mathura, United Province and Dr. B. B. Bhatia, Professor of Parasitology Panth Nagar University, United Province for their kind help in number of ways and liberally agreed to incorporate some of their published photographs in this book.

Some publishers, duly cited in the text, have given their kind consent to reproduce few photographs/diagrams in this volume, I am also thankful to them.

Dr. B. S. Gill, Punjab Agricultural University, Ludhiana, Dr. C. C. N. Murthi, Professor of Zoology, Andhra University, Waltair, Andhra Pradesh and R. Krishnamurthy, Reader in Zoology, Marathwada University, Aurangabad, Maharstra provided the relevant literature and materials at my disposal during the preparation of this work, my sincere thanks are due to all of them.

I express my deep sense of gratitude to Dr. N. D. Levine, College of Veterinary Medicine, University of Illinois, Urbana, U. S. A. for his help whenever approached and to Dr. B. Biswas, Emeritus Scientist, Zoological Survey of India, for many valuable suggestions.

My grateful thanks are due to my colleagues Dr. A. K. Das, for going through the manuscript and offering many useful suggestions,
Dr. A. Bhattacharjee and Sri K. N. Nair for their keen interest in my work, Sri P. K. Das, Sri R. K. Ghosh and Sri S. S. Saha for identifying the hosts.

My thanks are also due to Dr. A. K. Ghosh, Deputy Director, Zoological Survey of India for his kind help in finalising this work.

Lastly, I would like to thank Sri N. C. Sarkar of this department who assisted me in a number of ways, Sri Sitaram Mandal, Artist for drawing the diagrams of this volume and Sri F. N. Murmu and also Sri Ranajit Banerjee, L. D. C., for painstakingly typing the manuscript.

A. K. Mandal
CONTENTS

<p>| I. Preface | ... |
| II. Introduction | ... | 1 |
| III. Historical review | ... | 2 |
| IV. General morphology and ultrastructure | ... | 6 |
| V. Life-cycle | ... | 10 |
| VI. Eimeriids of poultry and domestic livestock | ... | 13 |
| VII. Host-parasite relationship | ... | 29 |
| VIII. Phylogeny | ... | 33 |
| IX. Systematic classification | ... | 34 |
| X. Genera of the family along with the number of species recorded from Indian subcontinent | ... | 37 |
| XI. Systematic account | ... | 38 |
| Family Eimeriidae (Minchin, 1903) | ... | 38 |
| Key to the genera | ... | 38 |
| (i) Genus Tyzzeria Allen, 1936 | ... | 38 |
| A. Parasites of birds | ... | 39 |
| Key to the species | ... | 39 |
| 1. Tyzzeria alleni | ... | 39 |
| 2. Tyzzeria chenicusae | ... | 39 |
| 3. Tyzzeria pellerdyi | ... | 40 |
| (ii) Genus Caryospora Leger, 1904 | ... | 41 |
| A. Parasites of reptiles | ... | 41 |
| Key to the species | ... | 41 |
| 4. Caryospora gekkonis | ... | 41 |
| 5. Caryospora bengalensis | ... | 42 |
| (iii) Genus Isospora Schneider, 1881 | ... | 43 |
| A. Parasites of amphibia | ... | 44 |
| Key to the species | ... | 44 |
| 6. Isospora stomaticae | ... | 44 |
| 7. Isospora wenyoni | ... | 45 |
| B. Parasites of reptiles | ... | 47 |
| Key to the species | ... | 47 |
| 8. Isospora calotesi | ... | 47 |
| 9. Isospora dirumpens | ... | 48 |
| 10. Isospora knowlesi | ... | 49 |
| 11. Isospora minuta | ... | 50 |</p>
<table>
<thead>
<tr>
<th></th>
<th>Isospora rayi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>C. Parasites of birds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Key to the species</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Isospora bengalensis</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Isospora bellericae</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Isospora capistrata</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Isospora ceylonensis</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Isospora cheeli</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Isospora choudari</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Isospora concinnus</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Isospora corviae</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Isospora emberizae</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Isospora garrulae</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Isospora garrulusae</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Isospora ginginiana</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Isospora ginginiana tristis</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Isospora graculi</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Isospora gypsi</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Isospora koreani</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Isospora lacazei</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Isospora lonchurae</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Isospora malabaricae</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Isospora mandari</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Isospora mayuri</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Isospora magalaimae</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Isospora melopusittacusi</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Isospora muniae</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Isospora parus</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Isospora psittaculce</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Isospora pycnonotae</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Isospora rajuli</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Isospora scicercusae</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Isospora sturniae</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Isospora temenuchii</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Isospora upupae</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Isospora zosterois</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Isospora sp.</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Isospora sp.</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Isospora sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parasites of mammals</td>
<td>Pages</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Key to the species</td>
<td>91</td>
</tr>
<tr>
<td>49.</td>
<td>Isospora aurangabadensis</td>
<td>92</td>
</tr>
<tr>
<td>50.</td>
<td>Isospora belli</td>
<td>93</td>
</tr>
<tr>
<td>51.</td>
<td>Isospora bigemina</td>
<td>94</td>
</tr>
<tr>
<td>52.</td>
<td>Isospora buriatica</td>
<td>95</td>
</tr>
<tr>
<td>53.</td>
<td>Isospora canis</td>
<td>96</td>
</tr>
<tr>
<td>54.</td>
<td>Isospora dubeyi</td>
<td>96</td>
</tr>
<tr>
<td>55.</td>
<td>Isospora felina</td>
<td>97</td>
</tr>
<tr>
<td>56.</td>
<td>Isospora felis</td>
<td>98</td>
</tr>
<tr>
<td>57.</td>
<td>Isospora garnhami</td>
<td>99</td>
</tr>
<tr>
<td>58.</td>
<td>Isospora hippopotami</td>
<td>100</td>
</tr>
<tr>
<td>59.</td>
<td>Isospora hoarei</td>
<td>101</td>
</tr>
<tr>
<td>60.</td>
<td>Isospora hominis</td>
<td>102</td>
</tr>
<tr>
<td>61.</td>
<td>Isospora krishnamurthyi</td>
<td>104</td>
</tr>
<tr>
<td>62.</td>
<td>Isospora leonina</td>
<td>105</td>
</tr>
<tr>
<td>63.</td>
<td>Isospora leopardi</td>
<td>106</td>
</tr>
<tr>
<td>64.</td>
<td>Isospora levinei</td>
<td>107</td>
</tr>
<tr>
<td>65.</td>
<td>Isospora mohini</td>
<td>108</td>
</tr>
<tr>
<td>66.</td>
<td>Isospora nandankanani</td>
<td>109</td>
</tr>
<tr>
<td>67.</td>
<td>Isospora pantheri</td>
<td>109</td>
</tr>
<tr>
<td>68.</td>
<td>Isospora pardusi</td>
<td>110</td>
</tr>
<tr>
<td>69.</td>
<td>Isospora rivolta</td>
<td>111</td>
</tr>
<tr>
<td>70.</td>
<td>Isospora suis</td>
<td>112</td>
</tr>
<tr>
<td>71.</td>
<td>Isospora tropicalis</td>
<td>114</td>
</tr>
<tr>
<td>72.</td>
<td>Isospora ursi</td>
<td>115</td>
</tr>
<tr>
<td>73.</td>
<td>Isospora sp.</td>
<td>116</td>
</tr>
<tr>
<td>74.</td>
<td>Isospora sp.</td>
<td>117</td>
</tr>
<tr>
<td>75.</td>
<td>Isospora sp.</td>
<td>117</td>
</tr>
<tr>
<td>76.</td>
<td>Isospora sp.</td>
<td>118</td>
</tr>
<tr>
<td>(iv)</td>
<td>Genus Dorisa Levine, 1980</td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>Parasites of birds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Key to the species</td>
<td>118</td>
</tr>
<tr>
<td>77.</td>
<td>Dorisa aethopsaris</td>
<td>118</td>
</tr>
<tr>
<td>78.</td>
<td>Dorisa chakravartyi</td>
<td>119</td>
</tr>
<tr>
<td>79.</td>
<td>Dorisa harenii</td>
<td>120</td>
</tr>
<tr>
<td>80.</td>
<td>Dorisa mandali</td>
<td>122</td>
</tr>
<tr>
<td>81.</td>
<td>Dorisa passeris</td>
<td>122</td>
</tr>
<tr>
<td>82.</td>
<td>Dorisa vagabundae</td>
<td>123</td>
</tr>
</tbody>
</table>
B. Parasites of mammals

83. *Dorisa harpia* ...

(v) Genus *Sivatoshella* Ray and Sarkar, 1967 ...

A. Parasites of Birds

84. *Sivatoshella lonchurae* ...

(vi) Genus *Eimeria* Schneider, 1875 ...

PARASITES OF INVERTEBRATE

A. Parasite of Centepede ...

85. *Eimeria mecistophori* ...

B. Parasite of Insect ...

86. *Eimeria sp.* ...

PARASITES OF VERTEBRATE

C. Parasites of fishes ...

Key to the species ...

87. *Eimeria ambassi* ...

88. *Eimeria harpodoni* ...

89. *Eimeria glossogobii* ...

90. *Eimeria notopteri* ...

91. *Eimeria southwelli* ...

92. *Eimeria zygaenae* ...

93. *Eimeria sp.* ...

94. *Eimeria sp.* ...

95. *Eimeria sp.* ...

96. *Eimeria sp.* ...

97. *Eimeria sp.* ...

98. *Eimeria sp.* ...

99. *Eimeria sp.* ...

100. *Eimeria sp.* ...

D. Parasites of amphibia ...

Key to the species ...

101. *Eimeria cyanophlyctis* ...

102. *Eimeria himalayana* ...

103. *Eimeria laminata* ...

E. Parasites of reptiles ...

Key to the species ...

104. *Eimeria bongaonensis* ...

105. *Eimeria fibrilosa* ...

106. *Eimeria flaviviridis* ...

107. *Eimeria gupti* ...

108. *Eimeria hemidactyli* ...
<table>
<thead>
<tr>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>109. Eimeria irregularis</td>
</tr>
<tr>
<td>110. Eimeria innominata</td>
</tr>
<tr>
<td>111. Eimeria koormae</td>
</tr>
<tr>
<td>112. Eimeria kermoganti</td>
</tr>
<tr>
<td>113. Eimeria knowlesi</td>
</tr>
<tr>
<td>114. Eimeria legari</td>
</tr>
<tr>
<td>115. Eimeria minetti</td>
</tr>
<tr>
<td>116. Eimeria najae</td>
</tr>
<tr>
<td>117. Eimeria piscatori</td>
</tr>
<tr>
<td>118. Eimeria stolatae</td>
</tr>
<tr>
<td>119. Eimeria trionyxae</td>
</tr>
<tr>
<td>120. Eimeria triangularis</td>
</tr>
<tr>
<td>121. Eimeria varani</td>
</tr>
<tr>
<td>122. Eimeria acervulina</td>
</tr>
<tr>
<td>123. Eimeria adenoides</td>
</tr>
<tr>
<td>124. Eimeria alectorae</td>
</tr>
<tr>
<td>125. Eimeria anatis</td>
</tr>
<tr>
<td>126. Eimeria barbeta</td>
</tr>
<tr>
<td>127. Eimeria bateri</td>
</tr>
<tr>
<td>128. Eimeria battakhi</td>
</tr>
<tr>
<td>129. Eimeria bazei</td>
</tr>
<tr>
<td>130. Eimeria bhutanensis</td>
</tr>
<tr>
<td>131. Eimeria brunetti</td>
</tr>
<tr>
<td>132. Eimeria charadarii</td>
</tr>
<tr>
<td>133. Eimeria chaudari</td>
</tr>
<tr>
<td>134. Eimeria columbae</td>
</tr>
<tr>
<td>135. Eimeria columbarum</td>
</tr>
<tr>
<td>136. Eimeria coturnicis</td>
</tr>
<tr>
<td>137. Eimeria dauki</td>
</tr>
<tr>
<td>138. Eimeria dispersa</td>
</tr>
<tr>
<td>139. Eimeria dubeyi</td>
</tr>
<tr>
<td>140. Eimeria francolini</td>
</tr>
<tr>
<td>141. Eimeria gallinagoi</td>
</tr>
<tr>
<td>142. Eimeria gallopavonis</td>
</tr>
<tr>
<td>143. Eimeria gennaeuscus</td>
</tr>
<tr>
<td>144. Eimeria gorakhpurensis</td>
</tr>
<tr>
<td>145. Eimeria grusi</td>
</tr>
</tbody>
</table>

F. Parasites of birds

Key to the species ... 159
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>146.</td>
<td>Eimeria hagani</td>
</tr>
<tr>
<td>147.</td>
<td>Eimeria innocua</td>
</tr>
<tr>
<td>148.</td>
<td>Eimeria kapotei</td>
</tr>
<tr>
<td>149.</td>
<td>Eimeria labbeana</td>
</tr>
<tr>
<td>150.</td>
<td>Eimeria lophurae</td>
</tr>
<tr>
<td>151.</td>
<td>Eimeria lucknowensis</td>
</tr>
<tr>
<td>152.</td>
<td>Eimeria malaccae</td>
</tr>
<tr>
<td>153.</td>
<td>Eimeria mandali</td>
</tr>
<tr>
<td>154.</td>
<td>Eimeria maxima</td>
</tr>
<tr>
<td>155.</td>
<td>Eimeria mayuri</td>
</tr>
<tr>
<td>156.</td>
<td>Eimeria meleagridis</td>
</tr>
<tr>
<td>157.</td>
<td>Eimeria meleagrititis</td>
</tr>
<tr>
<td>158.</td>
<td>Eimeria mits</td>
</tr>
<tr>
<td>159.</td>
<td>Eimeria mivati</td>
</tr>
<tr>
<td>160.</td>
<td>Eimeria necatrix</td>
</tr>
<tr>
<td>161.</td>
<td>Eimeria numenii</td>
</tr>
<tr>
<td>162.</td>
<td>Eimeria patnaiki</td>
</tr>
<tr>
<td>163.</td>
<td>Eimeria pavonina</td>
</tr>
<tr>
<td>164.</td>
<td>Eimeria pavonis</td>
</tr>
<tr>
<td>165.</td>
<td>Eimeia picta</td>
</tr>
<tr>
<td>166.</td>
<td>Eimeria praecox</td>
</tr>
<tr>
<td>167.</td>
<td>Eimeria roscoviensis pluvialina</td>
</tr>
<tr>
<td>168.</td>
<td>Eimeria sphenocercae</td>
</tr>
<tr>
<td>169.</td>
<td>Eimeria teetari</td>
</tr>
<tr>
<td>170.</td>
<td>Eimeria tenella</td>
</tr>
<tr>
<td>171.</td>
<td>Eimeria tropicalis</td>
</tr>
<tr>
<td>172.</td>
<td>Eimeria vanelli</td>
</tr>
<tr>
<td>173.</td>
<td>Eimeria vanmurghavi</td>
</tr>
<tr>
<td>174.</td>
<td>Eimeria sp.</td>
</tr>
<tr>
<td>G.</td>
<td>Parasites of mammals</td>
</tr>
<tr>
<td></td>
<td>Key to the species</td>
</tr>
<tr>
<td>175.</td>
<td>Eimeria ahsata</td>
</tr>
<tr>
<td>176.</td>
<td>Eimeria ailuri</td>
</tr>
<tr>
<td>177.</td>
<td>Eimeria alabamensis</td>
</tr>
<tr>
<td>178.</td>
<td>Eimeria andamanensis</td>
</tr>
<tr>
<td>179.</td>
<td>Eimeria antilocervi</td>
</tr>
<tr>
<td>180.</td>
<td>Eimeria arloingi</td>
</tr>
<tr>
<td>181.</td>
<td>Eimeria auburnensis</td>
</tr>
<tr>
<td>182.</td>
<td>Eimeria aurei</td>
</tr>
</tbody>
</table>

Pages
223. Eimeria matsubayashii
224. Eimeria media
225. Eimeria minima
226. Eimeria mrigai
227. Eimeria nagpurensis
228. Eimeria neodebliecki
229. Eimeria neoleporis
230. Eimeria newali
231. Eimeria nilgai
232. Eimeria ninakholuyakimovi
233. Eimeria nycticebi
234. Eimeria oryctolagi
235. Eimeria ovina
236. Eimeria ovoidalis
237. Eimeria pandei
238. Eimeria parahi
239. Eimeria parva
240. Eimeria pellita
241. Eimeria perforans
242. Eimeria perminuta
243. Eimeria perminuta mathurai
244. Eimeria petauristae
245. Eimeria polita
246. Eimeria porci
247. Eimeria punjabensis
248. Eimeria rajasthani
249. Eimeria ramgai
250. Eimeria robertsoni
251. Eimeria ruficaudati
252. Eimeria sardari
253. Eimeria sardiniae
254. Eimeria scabra
255. Eimeria spinosa
256. Eimeria stiedai
257. Eimeria subspherica
258. Eimeria suncus
259. Eimeria sylvilagi
260. Eimeria tirupatiensis
261. Eimeria tragocameli
262. Eimeria tuberculata
Pages

263. *Eimeria wassilewskyi* ... 335
264. *Eimeria wyomingensis* ... 336
265. *Eimeria yakimovi* ... 337
365. *Eimeria zuernii* ... 338
267. *Eimeria* sp. ... 341
(vii) Genus *Wenyonella* Hoare, 1933 ... 341
 A. Parasites of birds ... 341
 Key to the species ... 341
268. *Wenyonella anatis* ... 342
269. *Wenyonella bahli* ... 343
270. *Wenyonella columbae* ... 344
271. *Wenyonella gagari* ... 345
272. *Wenyonella gallinae* ... 345
273. *Wenyonella mackinoni* ... 346
274. *Wenyonella pellerdyi* ... 347
 B. Parasite of mammal ... 347
275. *Wenyonella hoarei* ... 347
(viii) Genus *Octosporella* Ray and Raghavachari, 1942 349
 A. Parasite of reptiles ... 349
276. *Octosporella mabuiae* ... 349
(ix) Genus *Pythonella* Ray and Das Gupta, 1937 ... 349
 A. Parasite of reptiles ... 350
277. *Pythonella bengalensis* ... 350
XII. Host-Parasite Index ... 350
XIII. Parasite-Host Index ... 363
XIV. Reference ... 389
XV. Glossary ... 447
XVI. Subject Index ... 449
Errata
II. Introduction

The members of the family Eimeriidae are known to a very large number of protozoologists, veterinarians and medical men, as they are one of the causative agents of a dreadful disease, coccidiosis, in poultry, cattle, sheep and goats. Investigations on these parasites were started in the Indian subcontinent in the early part of the twentieth century. Many new forms have been discovered and some new information have been added on the old ones, particularly those occurring in vertebrate hosts of economic importance (Mandal, 1980).

In total, more than 250 species are known so far from the Indian subcontinent, including Nepal, Sikkim, Bhutan, Bangladesh, Pakistan and Sri Lanka.

While reviewing each species, the morphology of the oocyst has been given in the beginning followed by the type host and type locality along with the developmental stages wherever available. Generally the original morphological description of each species has been retained as such with slight modifications in the terminology to bring uniformity, except for 92 species which have been redescribed by the present author earlier.

Synonymies have been given under each species along with the references for all the records from the Indian subcontinent. The localities of the species described from Zoo specimens have been given at the location of the Zoos unless the actual locality of the host is known.

A basic pattern of life-cycle, a general historical review, phylogeny of the family Eimeriidae and its systematic position have been given separately. In the systematic account, the various taxonomic categories have been defined from family to generic level and under each genus, the parasites have been dealt with host-groupwise e.g. fish, amphibian, reptile, bird and mammal. A key to the species has been given according to the group of host in which they occur. The generic key has also been provided.

Almost equal importance has been given to the parasites of systematically lower orders of animals in relation to the higher groups like the birds and mammals of economic importance. However, a chapter dealing with the eimerids of poultry and domestic livestock has been added to cover mostly the veterinary aspects of those parasites. A host-parasite index and a parasite-host index have also been appended.

With the advancement of knowledge due to electron microscopy, the systematics of Coccidia, particularly of the family Eimeriidae, appears
to have become somewhat confusing. Even the group like Toxoplasma has extended its arm to enter into this family. However, the group of parasites dealt with here is the Coccidian parasites where the male and female gametes are dissimilar and their development takes place independently, and the male gametocyte produces many microgametes.

III. Historical Review

The Eimeriids have been considered as a subject of active investigation mainly because they produce a dreadful disease coccidiosis which leads to heavy loss in the poultry, cattle, sheep and goats. They belong to the order Eucoccidiida with 3 suborders Adelina, Eimeriina and Haemosporina. The parasites belonging to the family Eimeriidae comes under suborder Eimeriina. A large number of species have so far been described since after the first one was seen by Leeuwenhoek in 1674. Hake (1839) published the earliest account of a coccidian oocyst of *Eimeria stiedai* from rabbit's liver, but did not interpret it as of parasitic origin. Kloss (1855) described an organism now regarded as *Klossia helicina* from the renal organ of the snail. Eimer (1870) made important investigations on the parasites of the gut and the liver of various animals including man, which have been referred to the genera *Eimeria* and *Isospora* by many successive workers. However, many contributions have been made by different authors from abroad of which monumental works of Dobell (1922a, b), Becker (1934, 1956), Levine (1963, 1974), Horton-Smith and Long (1963), Levine and Ivens (1965a, 1970), Todd and Hammond (1971), Cheissin (1972) Hammond and Long (1973) and Pellerdy (1974) Svanbeav (1977) are worthy to mention.

This study was undertaken in this country by the end of the last century. Since then India has been the field of active investigation of many workers resulting the description or reports of 9 genera of the family Eimeriidae out of total 15 genera known so far with nearly 250 species.

In India, only one species of this family has been reported from an invertebrate host (Narashimamurti, 1976), but a considerable amount of work has been done on the parasites of vertebrate hosts and it will be convenient to review the work by dealing with the various groups one by one.

Pisces

The presence of eimeriids in Indian fishes was noted for the first time by Halawani (1930a, b) who described a species of *Eimeria* from the
devil fish, *Aetobatis narinari*. Satna and Bana (1935a) observed *E. harpodoni* in the Bombay duck. A species of *Eimeria* was also described by Chakrabarty and Kar (1944c) after obtaining the specimen from *Notopterus notopterus*. Mandal and Chakrabarty (1965) recorded *E. zygaenae* from a hammer-headed shark collected from Digha, West Bengal. Patnaik and Acharjya (1972) described a species of *Eimeria* from *Barbus ambassis*.

AMPHIBIA

Ray (1935) and Ray and Dasgupta (1935b) described two species of this parasite from the common Indian toad, *Bufo melanostictus*. Ray and Misra (1942) recorded a species of *Eimeria* from Himalayan toad. Two more species of coccidia were also recovered by Chakravarty and Kar (1944d, 1952) from toads and frogs.

REPTILIA

Setna and Bana (1935b), described a species of *Eimeria* from a lizard. Subsequently, Knowles and Dasgupta (1935), Ray and Dasgupta (1935c) and Bhatia (1936, 1938) described a few more species. The work on ophidian coccidia in India was initiated by Mitra and Dasgupta (1937a) who reported a species of *Isospora* from an Indian Cobra. Ray and Dasgupta (1936a, b; 1937b, d) described two species of *Eimeria* from the snake and a genus *Pythonella* from an Indian Python. Some species of parasites were described by Dasgupta (1938a, b) and Chakravarty and Kar (1943) from turtles and tortoises. Ray and Raghavachari (1942) described the genus *Octosporella* and Ray, Raghavachari and Sapre (1942) described a species of *Eimeria* from a lizard, *Mabuia* sp. A report on the occurrence of *Caryospora gekkonis* from a wall lizard was made by Chakravarty and Kar (1947b). The presence of *Isospora dirumpens* from a snake, *Natrix platyceps* was also noted by Ray and Singh (1948). While working at Shillong, Mandal (1966b) described *Isospora rayi* from a lizard *Ptyctolimus* sp. and Mandal and Nair (1973a) recorded a species of *Eimeria* from another lizard of the Andaman Islands. While working at Mathura, Bhatia and Chauhan (1972) described a species of *Eimeria* from *Varanus monitor*.

AVES

In India a considerable amount of work has been done on avian eimeriids. Mitra and Dasgupta (1937b) described a species of *Eimeria* from the pigeon and Naik (1937) observed coccidiosis in the crow.
Kar (1944a) reported *E. barbeta* from the blue-throated barbet. Chakravarty and Kar (1944a, b) described a number of these parasites from avian hosts. A species of *Tyzzeria* was recorded from the cotton teal by Chakravarty and Basu (1947). Observations on coccidia and coccidiosis of domestic fowl were made by a number of workers like Ray (1945a), Gill (1954a, c and 1955), Gill and Ray (1957), Nath *et al.* (1960) and Bhatia and Pande (1968a, b, c).

The coccidian parasites of hill birds were studied by Ray (1952a) and Ray *et al.* (1952a, b). Some birds from Alipore Zoological Garden were examined by Ray and Hiregaudar (1959), who described some species of coccidia. Malhotra and Ray (1961) and Chatterjee and Ray (1969) recorded a few parasites from the domestic pigeon of Calcutta. Coccidia and coccidiosis of domestic ducks were also studied by a number of workers like Dubey and Pande (1963b and d), Pande and Bhatia and Srivastava (1965), Sarkar and Ray (1968) and Bhatia (1968b).

A species of *Doristella* (= *Dorisa*) was described by Mandal and Chakravarty (1963) from Indian tree pie. This genus is now treated as the genus *Dorisa*. As Levine (1980) has erected the genus *Dorisa* for the genus *Doristella* occurring in vertebrates due to the possession of definite oocystic wall. Mandal and Chakravarty (1964) recorded some avian coccidia belonging to the genus *Isospora*. Mandal (1965a) described five species of *Eimeria* with a sub-species of *E. roscoviensis* from avian hosts. Banik and Ray (1961, 1964) described *E. pavonina* and *E. mandali* from Indian peacock. *E. cristata* and *E. pavonina* were also described by Patnaik (1965b) from Indian peacock which were synonymised with *E. pavonis* Mandal (1965), and *E. patnaiki* Ray (1966) respectively. Bhatia and Pande (1966c) described *E. mayauri* from the peacock. The same authors (1968d) experimentally inoculated it into baby pea fowl and found it to be pathogenic. In 1962 Banik and Ray described a species of *Isospora* from a crane. Bhatia, Pandey and Pande (1966) reported *E. teetari* from Indian patridges. Bhatia and Pande (1965, 1966b and 1967c) recovered some avian coccidia after examining the hosts from Mathura. Ray and Sarkar (1967a, b, 1968) described some species of coccidia, including *Doristella chakravartyi* and *D. mandali* (= *Dorisa chakravartyi* and *Dorisa mandali*) and a genus *Sivatoshella* from some passarine birds. Turkey coccidia have been studied in India by Gill (1954b) and Bhatia (1968a). The latter (1971a) discussed some problems of poultry coccidiosis in India. Pande, Bhatia, Chauhan and Garg (1970) reported some avian and mammalian coccidia from the Lucknow Zoo. Mandal (1971) elucidated the occurrence and distribution of avian coccidia. Bhatia, Chauhan, Arora and Agarwal
EIMERIIDAE 5

(1972) observed some species from the Delhi Zoo and the same authors (1973) discussed the species in mammals and birds of both these zoological gardens.

MAMMALIA

The mammalian coccidia were not studied in India until Cooper (1924) reported bovine coccidiosis. The same author (1926a, b and 1927) along with Gulati (1926), Naik (1927) and Sen (1932) contributed much in the field. Knowles and Dasgupta (1931, 1934) reported coccidial infection in the mongoose and domestic cat. Ray and Dasgupta (1935a, 1937a) described a species of Wenyonella from an Indian squirrel. Aiyar (1937a, b) reported coccidiosis in the domestic dog. Dasgupta (1934) and Mukherjee (1948) observed human coccidiosis. Kar (1943) reported coccidian parasites from goats and Ray (1952b, 1961) from sheep and goats. Coccidia and coccidiosis of sheep and goats were described in detail by Shah (1963 and 1965) and Shah and Joshi (1963). Biswal (1948) ranked coccidiosis first among epizootics of buffalo. A detailed account of bovine coccidiosis was given by Rao (1952), Rao and Hiregaudar (1954a), Hiregaudar (1956a), (equine coccidia, 1956b) Rao and Bhatawadaker (1959), Gill (1960a, 1968), Ray and Mandal (1961), Gill, Chhabra and Lall (1963), Patnaik (1965c) and Patnaik and Pande (1965a), Bhatia (1971b). Bhatia and Pande (1967b), Pande et al. (1968), Bhatia et al. (1968, 1971) and Pande et al. (1971). Coccidiosis in domestic ruminants in India was discussed by Pande et al. (1968, 1971) and considered one of the major problems. The coccidian parasites of the domestic pig in India was reported for the first time by Ahluwalia (1959) and reviewed by Gill (1960b), Mishra (1967a, b) and Srivastava and Shah (1968). Contributions to the knowledge of carnivore coccidia were made by Mandal and Ray (1960), Dubey (1963a, b), Dubey and Pande (1963a and c), Ray and Banik (1965c), Mukherjee and Krassner (1965), Patnaik and Ray (1965). Some species of coccidian parasites from Indian camels were described by Dubey and Pande (1963c, and 1964a). The coccidia of lagomorphs were studied by Kar (1947, 1949) and Gill and Ray (1960) and of rodents by Ray and Singh (1949, 1950), and Ray, Banik and Mukherjee (1965). Coccidia of bats remain unexplored in India until the work of Mandal and Nair (1973b), who described a species of Eimeria from a bat, Taphozous melanopogon. A species of Eimeria from the Indian black buck, Antelope cervicapra was described by Pande et al. (1972). Mandal and Nair (1974) found E. wassilewskyi Rastegaieff in the spotted deer of the Andaman Islands.
IV. General Morphology and Ultrastructure

Morphology: A brief account on the general organisation and structure of the organisms belonging to the family Eimeriidae is given below. This will give a general idea of the group and explain the technical terms used in describing them.

All the members of this family are obligatory parasites. The transfer of parasites from one host to another is effected by means of oocysts (Fig. 1) which may exist independently and can be defined as resistant seed-like bodies protected by a capsule containing one or more sporocysts or sporozoites inside. The oocysts are charged with overcoming the difficulties outside until they enter again into the body of another suitable host. Once the oocyst gets entrance into the body of the new host, the sporozoites are liberated and initiate the infection. The method of infection is contaminative.

The food materials which these organisms take from the host may be present in dissolved cytoplasm, tissue fluid, body fluid or in the digested food material from the alimentary canal of the host. The intracellular forms appear to ingest material from the parasitophorous vacuole by pinocytosis.

This family has representatives in almost every group of animals.
Some of them are not pathogenic, while others may cause more or less pathogenic symptoms or even death.

In the life-cycle (Fig. 2) of the members of the family Eimeriidae, the starting point may be considered as *sporozoite* which has a sickle-shaped or fusiform body. After being set free in the body of the new host the sporozoites nourish themselves and grow at the expense of the host. This is the trophic phase and the organism during this phase is described as the trophozoite; it absorbs nourishment in the fluid state. There is evidence that the host cell cytoplasm may be ingested through the cytostome of the trophozoite. Sometimes the food vacuole is surrounded by a unit membrane frequently located near the cytostome. The trophozoite is known as a *schizont* when it is about to reproduce asexually. Such divisionary process is termed *schizogony* and the products of division are called *merozoites*. Some of the merozoites become *gametocytes*, differentiate into *macro* and *microgametocytes* which ultimately give rise to *macro* and *microgametes* respectively. This process is called *gametogony*. The sexual reproduction initiates with the union of anisogametes. The fusion of two gametes results in the formation of a *zygote*, which secretes a distinct membrane around itself, becoming a passive spherical body known as *oocyst* which is the resistant stage, and can survive for a long period outside the host and is regarded as the transmissive phase. Cellular division of
the protoplasm within the oocyst gives rise to the formation of number of sporoblasts each of which becomes a sporocyst. The sporocyst develops a small or large number of minute germs or sporozoites within it. The sporozoites are infective bodies and start the cycle again. During excystation, the Steida body of the sporocyst disappears in some cases or sometimes a portion of it remains. The sporozoite becomes active and leaves cyst after the removal of the substeidal body.

Ultrastructure:

Sporozoites (Fig. 3) of the members of the family Eimeriidae are fusiform and situated within a parasitophorous vacuole which is formed after their entry into the host cells. Ultrastructural study reveals that they are surrounded by a pellicular complex consisting of an outer membrane or plasmalemma, inner membrane complex and a row of sub-pellicular microtubules. The outer membrane is about 90 Å thick while the inner membrane complex is 150 Å thick. In many parasites this complex appears as two membranes in close apposition. Varying numbers of microtubules radiate from the most distal polar ring and extend posteriorly as far as the nucleus.

Usually near the anterior end of the nucleus there is a cytostome which may be functional as in *Eimeria ninakohlyakimovae*. The anterior end of the sporozoite is nipple-like and demarcated by two electron-dense polar rings. There is a hollow, truncated cone-shaped structure within the anterior end of the sporozoite. This is termed as conoid, the wall of which consists of spirally arranged fibrillar structures. In addition to these, rhoptries are present in the anterior region and micronemes are found in the anterior and middle portions of the sporozoites. Rhoptries are generally two in number among the species of *Eimeria* while micronemes are numerous.

Merozoites of the *Eimeriidae* are have the same shape and location as the sporozoites. They are generally smaller. But ultrastructurally, merozoites closely resemble sporozoites excepting for some minor points. For example, (i) in merozoites some of the microtubules reach to the posterior end of the parasite and (ii) the merozoites of some Coccidia (viz. *E. dinophili*, *E. bovis* and *E. stiedai*) have only one polar ring in each.

The gametocytes of eimeriids are also found within a parasitophorous vacuole. They are surrounded by a membrane originating from the host cell. The pellicle of the gametocyte of *Eimeria* usually consists of two membranes excepting in a few species in which it appears as a single
membrane. The outer membrane is termed plasmalemma. The inner membrane appears to be composed of two closely apposed unit membranes excepting in some species in which it appears to be interrupted.

Fig. 3. Schematic diagram of Sporozoite / merozoite of an Emeriid observed under EM

In the macrogametocytes of some Eimeria species there are some intravacuolar tubules extending from the pellicle to the membrane of the parasitophorous vacuole. Some workers think that these vacuoles help in the transportation of material between the parasite and the host-cell. Few cytostomes are also present along the pellicles of the gametocytes.

There are many wall-forming bodies in macrogametocyte which help in the formation of the oocyst wall. These bodies are of two
types, one is homogenously osmiophilic and located beneath the pellicle, while the other is sponge-like usually located more centrally, and associated with endoplasmic reticulum or the Golgi complex. The macrogametocyte nucleus is single and relatively large, usually with a compact nucleolus.

The mature microgametocyte has many peripherally located nuclei which lack nucleolus. Of course, a nucleolus is visible in immature microgametocyte. During gametogenesis the axonemes of the microgamete are apparently formed from the centrioles which lie near the nucleus. With the outward growth of the axoneme the plasmalemma of the microgametocyte starts invaginating around its anterior portion. By that time a condensed portion of the nucleus and an elongated mitochondrion move into the developing microgamete. The basal bodies of the axoneme lie near the anterior end of the microgamete whereas the mitochondrion and the nucleus lie posterior to the basal bodies. The microgamete when completely formed may be having two or three flagella, depending on the species of Eimeria.

V. LIFE-CYCLE

In the life-cycle of the members of the family Eimeriidae a regular alternation of sexual and asexual generations (Fig. 2) takes place in a single host. This can be divided into merogony (=schizogony), gametogony and sporogony. The infection generally initiates directly with swallowing of the mature oocyst by the host and the liberation of sporozoites inside the intestine.

The sporozoites from the oocyst reach the epithelial cells of the intestinal tract, become round and grow larger to form trophozoites which ultimately give rise to schizonts. The schizonts multiply by repeated nuclear division with the accumulation of cytoplasm to produce merozoites; this process is called merogony.

The number of merozoites varies with the species. They are elongated spindle-shaped, motile bodies; they penetrate the adjacent epithelial cells and then round off to form second stage schizonts which ultimately form second stage merozoites. The number of schizogonic generations is considered to be important criteria for differentiating certain species (Pellerdy, 1974).

Generally the merozoites of the last schizogonic cycle develop into male and female gametes in the newly invaded host cells to initiate the sexual developmental cycle (gametogony). The female gametocyte
accumulates food substances and then mature; the female stage is called a macrogamete. The nucleus of the male gametocyte multiplies by mitotic division and gives rise to motile microgametes which fertilise the macrogametes to form the zygotes. A wall develops around each and oocyst is formed. Just after liberation from the host's faeces each oocyst contains a single cell known as sporont which undergoes reduction division to form sporoblasts and a residual mass. Each sporoblast usually secretes a sporocystic membrane to form a sporocyst. The sporozoites develop inside by a process called sporogony.

Therefore, it is evident that all the stages of the life-cycle of this parasite are haploid except for the zygote.

![Fig. 4. Life cycle of Eimeria tenella (After Levine, 1961)](image)

Sometimes sporocysts are not produced and sporozoites are formed directly inside the oocyst e. g. *Tyzzeria*.

A typical life-cycle of the member of the family Eimeriidae is that of *Eimeria tenella*, which is found in the caeca of the chicken (Fig. 4). It was first worked out by Tyzzer (1929). The oocysts are passed in the faeces. When eaten by a chicken, the wall on the oocyst breaks and the sporozoites enter the cells of the intestinal epithelium. They develop along the basement membrane and pass through it into
the lamina propria of the intestine. They are engulfed by macrophages and carried by them to the glands of Liberkuhn. Finally they leave the macrophases and enter the epithelial cells of the gland; where they are generally found below the host cell nuclei. In the glandular epithelial cells, each sporozoite rounds up and forms a first generation schizont which ultimately forms a large number of merozoites by schizogony. They are liberated into the lumen of the caecum about 2-3 days after infection. The merozoites then enter new host cells, round up and form second generation schizonts. These schizonts lie above the host cell nucleus. The merozoites ultimately form second generation merozoites by multiple fission. They appear 5 days after the date of infection. A few of them enter new cells and round up to form third generation schizonts, which led beneath the host cell nuclei. These schizonts produce third generation merozoites.

Most of the second generation merozoites after invading new host cells turn into female gametes or macrogametes. Some of the merozoites become male gametocytes which ultimately give rise to a large number of biflagellated microgametes. They burst out and fertilize the macrogametes. Both macro and micro gametocytes lie below the host cell nuclei. The zygote then forms a wall around itself. Levine (1961) stated that the formation of this wall marks the transition of a fertilized macrogamete into an oocyst. The oocysts come out from the host cells, enter the intestinal lumen and pass out into the faeces. The prepatent (pre—before, patent—exposed, manifest) period, i.e. from the time of infection to the appearance of the first oocysts into the faeces, is 7 days. The oocysts are discharged for a number of days and then disappear. The period from the appearance of the first oocyst in the faeces till the disappearance of the same is called the patent period. In E. tenella, 3 generations of merozoites are produced. However, Tyzzer's findings have been reviewed by workers like Scholtyscek (1953) Greven (1953), Pattillo (1959), who concluded that there is a little alternation of main principles in the endogenous development of the species.

The localization of some tissue stages of certain species at some particular region of the intestinal tract has been noted by a number of workers (see Hammond and Long, 1973 and Pellerdy, 1974.) This specific localization is sometimes considered to be taxonomically important in differentiating the species. For instance, the giant schizont of E. girruthi has been detected in the abomesum of sheep by Bhatia and Pande (1966a) in India and by many others abroad in
different ovine and bovine groups of animals. The oocystic stage of this parasite is still unknown. Bhatia and Pandey (1968) noticed globidial schizont containing more than one type of merozoite in the abomasum of goat. One of the forms was recognised as a stage in the life-cycle of E. christenseni. Bhatia and Pandey (1967a) also observed megaloschizonts in the mesenteric lymph nodes of a kid and stated that the coccidian infection had involved lymph nodes because they attacked endothelial cells, transported through lymph vessels outside the intestinal tract. Levine (1961) observed endogenous stages of E. truncata in the epithelial cell of the kidney tubules. McCully et al. (1970) detected E. neitzi in the endometrium of uterus. Lee and Long (1972) saw second generation schizonts of E. tenella and E. necatrix in connective tissue cells between the intestinal glands.

VI. EIMERIIDS OF POULTRY AND DOMESTIC LIVESTOCK

The coccidiosis, a disease caused by this parasite poses a great problem in farm animals and poultry. It is responsible for both morbidity and mortality. Coccidial infections are easily acquired in poultry and livestock and the parasite has a direct life-cycle inside the host. Moreover, unhygienic and insanitary conditions accelerate the spread of this disease. The young animals in a flock or herd generally suffer most, the older animals sometimes have clinical symptoms and act simply as carriers; but in chronic cases, they become emaciated, causing a decrease in overall production. Coccidiosis may cause inflammation, oedema, loss of weight, emaciation, haemorrhage, anaemia and death. Sometimes it has been reported that there are alterations in blood sugar values and liver glycogen. This disease also causes reduced milk yield and inferior wool fibres. 'Coccidiosis' with clinical symptoms is to be distinguished from 'coccidiasis' which is an asymptomatic condition and is found in all age groups of various hosts. In order to make the things more clear, Levine (1961, 1973) stated that after recovery from a coccidial infection an animal becomes relatively immune to reinfection with the same species. But this immunity may not be so solid as to prevent reinfection with the same species completely, causing low grade infection. Of course, low grade infection is extremely common, i.e., the animals have 'coccidiasis' rather than 'coccidiosis'.

Both these conditions are equally important for adopting control measures. Sometimes it is very difficult to diagnose the disease. Mere presence of oocysts in the faeces of an animal, even for
highly pathogenic species of coccidia, does not necessarily mean that the animals have clinical coccidiosis (Levine, 1961, 1973). On the other hand, coccidia may cause severe symptoms and even death in their earlier phase of life before any oocysts have been produced. The only authentic way of diagnosing coccidiosis is to find lesions containing coccidia at necropsy. The characteristic endogenous stages located in smears or by histological examination should also be taken into consideration for confirming coccidiosis.

Nowadays various types of sulpha drugs and other chemical compounds are used both prophylactically and therapeutically. P. P. Levine (1939) first introduced sulphanilamide as anticoccidial drug and Herrick and Holmes (1936) found that sulphar as an effective drug. Many drugs like the derivatives of phenylarsenic acid, diphenylmethane, diphenyldisulphide, nitrofuran, triazine, carbanilide, imidazole and benzamide are used as coccidiostats. However, Levine (1961, 1973) stated 'No drug would be effective if used after the appearance of symptoms of the disease'. He further suggested that most of the drugs are prophylactic and must be administered at the time of exposure or soon thereafter in order to be effective.

The real effective therapy depends upon correct time at which the remedies exert their optimal effect against the endogenous phase of the different species of coccidia. Treatment of the disease depends somehow destroying on the endogenous stages particularly during the asexual phase. If the disease is not controlled after repeated infections, therapeutic measures alone may not check the outbreaks.

Before adopting any control measure one should be aware of different types of coccidia and coccidiosis caused by them in various livestock and poultry. They are treated below groupwise, along with the symptoms.

Sheep and Goats

So far, 16 species of *Eimeria* have been reported from sheep and goats and some of them are interchangeable to some extent in between these two hosts. However, in a personal communication Levine (1981) stated that the parasites of sheep are distinct from those of goats. In India, 10 species of *Eimeria* viz., *E. arloingi*, *E. intricata*, *E. crandallis*, *E. ahsata*, *E. faurei*, *E. minakholyakimovae*, *E. parva*, *E. granulosa*, *E. christenseni* and *E. tirupatiensis* have been reported, of which the last two are recorded only from goat. Single infection is rare. The symptoms of disease initiate with the discharge of foul-smelling diarr-
EIMERIIDAE

Hoeric stools with or without streaks of blood. It may persist for more than a week and sometimes be preceded by heavy constipation.

Severe abdominal pain, anaemia, inappetence unthriftiness, loss of weight and sometimes paralysis also appear in coccidiosis. In acute cases, the entire small intestine is thickened, congested, oedematous and even haemorrhagic. Well-developed mature schizonts (pin-point to

- Fig. 5. Photomicrograph of a mature giant schizont in the mucosa of small intestine of sheep.

pin-head size white cysts) are found scattered throughout the small intestine. These are sometimes regarded as developing and mature giant schizonts (Fig. 5). White or greyish white papillomataus areas throughout the length of the small intestine are also seen due to the aggregation of gametocytes and developing oocysts (Fig. 6). Bhatia and Pande (1966a) observed these bodies in the caecum of a sheep and concluded that this stage is more pathogenic than the sexual phase. It
Fig. 6. Piece of small intestine showing gametocystic patches.

Fig. 7. Photomicrograph of abomasal giant or globoidal schizont in the mucosa of abomasum of sheep.
leads to the destruction of villi, and areas of the small intestine became oedematous and thickened. These cystic bodies are also frequently marked in the mucosa of the abomasum. These are considered abomesal giant or globidial schizonts (Fig. 7). In acute cases of coccidiosis in goat, Bhatia and Pande (1967a) observed giant schizonts in the enlarged mesenteric lymph nodes (Fig. 8). A heavy concentration of male and female gametocytes along with oocysts at different developmental stages

Fig. 8. Photomicrograph of giant schizont in the mesenteric lymph node of a kid.

is found in the enlarged epithelial cells of the villi superficially and deep inside the crypts (Fig. 9). Developing and mature multinucleate giant schizont with a thick wall filled with hundreds to thousand of elongated merozoites of different shape and size have been reported. Such giant schizonts have also been noticed in different parts of the mesenteric lymph nodes. Matta and Pande (1966) observed globidial schizonts in the abomesum of sheep. In addition, various histopathological pictures in sheep and goats from our country may be seen on Pande, Singh and Kala (1964), Pande et al. (1964, 1966, 1967), Pande and Bhatia (1966), Bhatia and Pande (1964, 1966d, 1969) and Bhatia and Pandey (1968). Workers like Sharma (1951-52), Munjrekar (1954), Ray 1961, Shah 1963, Sivdas et al. (1965), Misra and Goutam (1970), and Bali (1972) and
Rama, Singh and Singha (1977) made contributions on the coccidiosis of sheep and goats in our country. Though the actual loss due to coccidiosis has not been estimated, a high percentage of the population of sheep and goats, particularly the younger ones, die every year due to this disease. (Figs 5-13 are due to courtesy of Prof. B. B. Bhatia)

Fig. 9. Photomicrograph showing heavy congregation of gametocytes and oocysts in the small intestine of sheep.

has not been estimated, a high percentage of the population of sheep and goats, particularly the younger ones, die every year due to this disease. (Figs 5-13 are due to courtesy of Prof. B. B. Bhatia)

Cattle

Coccidiosis in cattle causes a heavy economic loss in our country. In India, outbreaks of red dysentery in dairy cattle due to bovine and bubaline coccidiosis have been reported from time to time. The mortality or morbidity is frequently high. Coccidiosis is predominant in calves particularly less than one year of age. Adults are practically symptomless although they carry coccidia and pass oocysts continuously.
More than 15 species (Pellerdy, 1965) of Eimeria and one species of Isospora are found in cattle, of which Indian buffalo and cattle harbour 13 species of Eimeria. They are *E. auburnensis*, *E. bovis*, *E. ellipsoidalis*, *E. zuernii*, *E. subspherica*, *E. cylindrica*, *E. canadensis*, *E. bareillyi*, *E. pellita*, *E. wyomingensis*, *E. alabamensis*, *E. bukidnonensis* and *E. brasiliensis*. The last 3 species occur less frequently than the other (Bhatia, Pande, Chauhan and Arora, 1968). A foul smelling, reddish diarrhoeic stool due to haemorrhage in the intestine is generally found in acute cases. Sometimes the stool may be just soft or watery. The victims occasionally recover but there may be a sudden flare up of the symptoms associated with recurrent diarrhoea, anorexia, tenesmus, inability to rise on the legs, debility, fever etc. Acutely infected young calves die within a few days, particularly when the stools have a large amount of blood.

Lesions

1. White pin-point to pin-head sized bodies lying superficially or deep in the mucosa of small intestine are developing and mature giant schizonts (Fig. 10).

2. Irregularly margined but milky white superficial areas about 1-2 mm in diameter are immature and mature large epithelial schizonts (Fig. 11).

3. Slightly raised and small whitish, oedematous patches are collections of gametocytes and small epithelial schizonts (Fig. 12).

4. Congested and oedematous areas with granular feature from aggregations of minute white structures are the immature and mature microgametocytes of *E. auburnensis*.

5. Slightly raised, whitish, opalescent areas 3-6 mm in diameter, with a congested periphery are gametocytes and oocysts of *E. bareillyi* (Fig. 13).

Pellerdy (1974) said that bovine coccidiosis has three periods (i) the first one lasts for 5-7 days and is characterised by debility, diarrhoea, with few oocysts and reduced milk production; (ii) the second period also has the same duration; it is characterised by anorexia, a raised respiration rate, loss of weight with no milk and clots of blood with mucus in the fluid faeces, partial paralysis of the anal sphincter usually in a wide open condition; (iii) the duration of the third period varies to some extent. During this period the victim is unable to stand, cannot take food and water and often has more or less extensive transverse haemorrhagic streaks on the exposed rectal mucosa which
can be seen through the permanently opened anus, mortality rate is fairly high. We know less about the pathogenic action of *Eimeria* other than *E. bovis, E. zuernii, E. auburnensis, E. ellipsoidalis, E. bukidnensis* and *E. alabamensis* in cattle from abroad. In our country, various endogenous stages of bubaline and bovine coccidia were described by Bhatia and Pande (1967b), Pande *et al.* (1968, 1971) and

![Photomicrograph showing giant schizont in the small intestine of cattle.](image)

Fig. 10. Photomicrograph showing giant schizont in the small intestine of cattle.

Bhatia *et al.* (1971) particularly for *E. bareillyi* from *Bubalus bubalis*. Authors like Cooper (1924, 1926a, b, 1927), Biswal (1948), Gill (1956a) and Bhatia *et al.* (1972) reported various incidences of bovine and bubaline coccidiosis from our country. Recently, Shastri *et al.* (1973) noted that the inoculation of 50,000 to 100,000 oocysts of *E. bareillyi* produced clinical disease while feeding 300,000 oocysts caused remarkable illness and death. The same authors (1974) recorded that the
Fig. 11. Photomicrograph showing developing and mature giant schizonts.

Fig. 12. Photomicrograph of gametocyte and small epithelial schizont in the mucosa of small intestine.
Fig. 13. Photomicrograph showing gametocytes and oocysts of *E. bareillyi*

infection due to *E. bareillyi* leads to diarrhoea and noted 20% mortality in buffalo calves. The pathogenicity of this species has also been noted by Shastri and Krishnamurthi (1975). The mesenteric blood vessels are distended and tortuous, with a swollen intestinal wall and accumulation of fluid in the intestine. Circular growths of 2-6 mm in diameter have also been observed in the mucosa of the jejunum (Pande, Bhatia and Chauhan, 1971 and Pande, Bhatia, Chauhan and Garg, 1971).

Swine

Pellerdy (1974) listed 10 species of *Eimeria* and 3 species of *Isospora* in pigs. Vetterling (1965) believed that there are 8 valid species of *Eimeria* and 2 of *Isospora* in domestic pig. The first report of swine coccidiosis in India was that of Ahluwalia (1959) who found *E. debliecki* in pigs slaughtered at Aligarh, U. P. Subsequently, 7 species of *Eimeria* and 1 of *Isospora* were recorded from Indian pigs by Srivastav and Shah (1968) and Mishra (1967a, b). An *Isospora* sp. was also been reported from the domestic pig from our country. The present author
(1980) also detected 6 species of *Eimeria* viz., *E. debliecki*, *E. scabra*, *E. spinosa*, *E. perminuta*, *I. suis* and *E. neodebliecki* in pigs of a few slaughter houses and piggeries visited by him. Nevertheless, swine coccidia in our country has been paid to little attention. The information regarding coccidiosis given below is based mainly on the findings of foreign workers. Coccidiosis causes a mild catorrhal-inflammation of the mucous membranes, mainly of the small intestine. In acute infections, there is severe haemorrhagic enteritis and the epithelium is desquamated from the tips of villi. Wiesenhuter (1962a) and Boch and Wiesenhuter (1963) found inflammatory lesions in the small intestine of the domestic pig.

Recently Upadhyay and Ahluwalia (1976a) studied *E. debliecki*, *E. neodebliecki*, *E. perminuta* and *I. suis*, and found four types of schizonts in the different parts of the intestine of pigs. But were not able to find any stages in sections of the stomach, caecum, colon and mesenteric lymph glands.

Upadhyay and Ahluwalia (1977a) also reported *E. debliecki*, *E. neodebliecki* and *E. perminuta* from swine. They (1976) found that Amprolsol was very effective in swine coccidiosis if administered after the 2nd day of infection, particularly with these species.

Upadhyay and Ahluwalia (1978a) infected the pig experimentally with *E. debliecki*, *E. neodebliecki*, *E. perminuta* and *I. suis*; detected micro and macro-gametocytes in the small intestine but could not find any specific differences among these developmental stages. The same authors (1978b) could not detect any marked lesion in the intestine and observed only mild pathogenicity in the experimental hosts.

Domestic Chicken

According to Pellerdy (1974) nine valid species of *Eimeria*, two species of *Isospora* and one species of *Wenyonella* occur in the domestic fowl. The nine species of *Eimeria*, one of *Isospora* and one of *Wenyonella* have been reported from India. Of these, six species of *Eimeria* viz., *E. tenella*, *E. necatrix*, *E. brunetti*, *E. mivati*, *E. acervulina* and *E. maxima* are pathogenic.

Amongst them, *E. necatrix*, *E. maxima*, *E. acervulina* and *E. mivati* affect the small intestine, causing intestinal coccidiosis; *E. tenella* infects the caeca, causing caecal coccidiosis; *E. brunetti* is found in the rectum and colon producing rectal coccidiosis. The gametocytic stages of *E. necatrix* in the caeca also add to the severity of the
Mishra, Enigk and Dey Hazra (1976), working with SEM on the pathogenesis of *E. necatrix*, stated that a gross change in the

Fig. 14. Photomicrograph showing the disquamation of Epithelial cells due to *E. necatrix* infection as observed under SEM (After Mishra, Enigk and Dey Hazra, 1976).

A and B. Villi of jejunum of uninfected chicken. Note the columnar cells inside the villi in fig. A ; C. jejunum of 4 day infected chicken with heavy haemorrhage and ruptured villi ; D. large hole at the top of the villi with loose epithelial cells ; E. Tip of villi showing shedding of the epithelial cells ; F and G. Tip of villi with intracellular stages of the parasite ; H. Free merozoites in the lumen of jejunum.
jejenum is clear from 3rd day after infection in chicken. Desqua-
mation of the epithelial cells with varying degree of disruption has
been noticed (fig. 14). The crypts of the villi become filled with
blood cells. The villi are stumpy, with blunt tips sometimes marked
with heavy bleeding. The holes have been observed at the tips of the
villi, sometimes with shedding of blood from the holes. Merozoites
may enter the epithelial cells. Occasional liberation of numerous
merozoites from the epithelium has also been noticed. The schizonts
and gametocytes could not be differentiated within the epithelial
cells and were all considered developing stages. The intra-cellular
forms are oval or round and their surfaces are rough with very small
projections as seen under SEM. The lesions due to coccidiosis in
poultry frequently are the result of mixed infections. Sometimes
specific differentiation by examination of gross lesions becomes difficult
due to their severity and character. In infections with *E. acervulina*, a
well-marked thickening with extreme reddening due to the concen-
tration of gametocytes and oocysts (Fig. 15) is found on the duodenal
mucosa. In *E. maxima* infections the thickening of the mucosa,
particularly in the upper half of the small intestine, with almost
orange-coloured intestinal contents and streaks of blood has been

Fig. 15. Photomicrograph showing gametocyte, and oocysts with well marked
thickening in duodenal mucosa due to *E. acervulina* infection.
associated with heavy concentrations of micro-and macro gametocytes (Fig. 16). An infection with *E. necatrix*, milkwhite spots of small areas or pin-points due to deep seated aggregations of colonies of asexual stages on the serosal surface of the small intestine with increase of eosinophyl (Fig. 17) have also been reported. In *E. tenella* infections a severe congestion due to aggregation of mature schizonts (Fig. 18) was noted with greatly enlarged caeca (Fig. 19) containing mass of dark red or dark brown core. The wall of the caecum becomes almost membranous and the domestic fowl later dies. The droppings of ailing chicks often contain blood or mucus or both. (Figs. 15-19 are due to courtesy of Prof. B. B. Bhatia)

In the deep-litter system, this disease is very common. It causes a high mortality amongst chicks. The proliferation of the disease takes place due to damages or lickages of the deep litter houses. Hens also are affected by this disease. The best way to prevent it is to keep the floor dry with good ventilation and adequate space for each bird.

Authors like Gill and Ray (1957), Gill (1955, 1956b, 1958), Sharma and Reid (1962), Gill *et al.* (1962, 1963a, b), Das (1963), Prasad (1963),
Fig. 17. Photomicrograph showing developing and mature schizonts of *E. necatrix* in the small intestine.

Fig. 18. Photomicrograph showing aggregation of mature schizont of *E. tenella*.

Domestic Turkey

Seven species of *Eimeria*, viz., *E. meleagris*, *E. meleagrimitis*, *E. gallopavonis*, *E. adenoeodes*, *E. dispersa*, *E. innocua* and *E. subrotunda*, one species of *Isospora*, viz., *I. heissini* are found in domestic turkey (Pellerdy, 1974). Of these, six species of *Eimeria* (except *E. subrotunda*) have been reported from Indian domestic turkeys. Different species of the above mentioned parasites attack different parts of the large and small intestines of the host. In general, there is a catarrhal inflammation occasionally with haemorrhage. There may be caseous-mucinous flakes floating in the lumen; the intestinal contents may be rusty reddish. There may be distention of the caeca and rectum with generalised thickening of their walls.
The relationship between the host and parasite is used on the mode of association of a particular parasite with the particular host. Various interactions on the part of the host and the parasite play an important role for the growth and multiplication of the parasite as well as the survival of the host. A balance is normally maintained between the two so that neither host nor parasite hampers the interest of the other. This reciprocal relationship between them depends upon the mode of invasion, infection and development of a parasite. The initial outcome of this association leads to host-specificity—the affinity of a particular parasite for a particular host.

Host Specificity

As a rule coccidian parasites are strictly host specific. Several experiments hitherto conducted, reveal that the species of the genus *Eimeria* are stenoxenous. Levine and Ivens (1965a) concluded from cross infection studies on rodents that though the cross infection was possible between the members of a host genus, the same was not be possible at the intergeneric level. It has also been found that *Isospora cantis* of the dog cannot be transmitted to the domestic cat; simultaneously *I. felis*, a cat coccidium cannot be transmitted to dog (Nemésere, 1960); Levine and Ivens, 1965b). *I rivolta* from dog cannot be transmitted to the cat (Mahrt, 1966) and *vice versa* (Dubey et al. 1970). Ray and Mandal (1961, 62) failed to transmit *E. ovoidalis* of the buffalo to the cowcalf. Though a number of species of *Eimeria* are shared by bovine and bubaline group. Subramanian and Jha (1966) were successfully able to transmit *E. faurei* and *E. ninakohlyakimovae* from the goat to lambs.

E. tenella is common in the caecum of domestic chicken, *Gallus gallus*. It does not complete its life-cycle in hosts of several phylogenetically related genera of fowl (Vetterling, 1976).

As a whole, most of these parasites are limited to a narrow host species range and have an affinity for a particular organ system, portion of the system, specific type of cell and sometimes a particular location within the cells. Their host specificity or host restriction depends upon the compatibility between the host and parasite (Levine, 1972). Some intracellular parasites are capable of modulating the host cell metabolism, creating a favourable enviroments for themselves. This is an example of the ability of the parasite to adapt (Beyer, 1974).
With the improved knowledge of fine structure of this group, the problems of host specificity and the host-parasite relationship have been visualised to a great extent.

It has been observed that the intracellular developmental stages of these parasites lie within the host cell in a vacuolar space known as parasitophorous vacuole (Scholtyseck and Piekarski, 1965; Hammond, Scholtyseck and Minar, 1967). The cytoplasmic membrane of the host cell bordering the vacuole is often smooth but sometimes has numerous fine folds or villus-like structure extending into the vacuole. These intravacuolar folds are disconnected from the host cell membrane and disintegrate to form a particular material which is taken by the parasite. These folds may also assist in the transport of nutrient materials from the host cell to the parasite. In this regard the contributions made by Sheffield and Hammond (1966); Scholtyseck, Volkmann and Hammond (1966), Hammond, Scholtyseck and Chobotar (1967); Colley (1968); Andreassen and Bahrke (1968) and Scholtyseck (1968) deserve mention.

The exact mechanism of the intake of food materials by these parasites is not clearly known (Hammond, 1970) and the factors affecting susceptibility of hosts to these coccidian parasites are incompletely understood. However, it has been observed that a higher rate of metabolism occurs in parasitised or neighbouring cells followed by an increase in their mitochondria (Scholtyseck, 1963).

Injurious Effects of Parasites

Though a condition of equilibrium is maintained between the host and the parasite, the parasite may cause some injurious effect on its host.

The injurious effects inflicted by these parasites are detectable microscopically in the epithelial or other cells where the parasite occurs. Most of the coccidia are intracytoplasmic and a few are intranuclear e.g. *E. alabamensis* in cattle; *E. ranarum* and *Isospora lieberkuenhi* in frogs, *E. salamandra* in salamanders etc. Initially the affected host-cell and its nucleus undergo hypertrophy; this is followed by an immediate increase in metabolic and defence activities. Nutrients are derived from the cell, particularly the nucleus. The parasitized cell and its nucleus increase in size to accommodate the developing parasite, leading to displacement of the nucleus and destruction of the cell.
In the life-cycle stages of different species of coccidia of the genera *Eimeria*, *Isospora*, *Wenyonella* and *Tyzzeria* in different groups of vertebrates, the asexual stage (the schizont), usually develops in group or as a colony at different depths of the mucous membrane.

These developmental stages produce superficial erosion or desquamation of the villar tips or of the complete villi with partial or complete sloughing of the mucous membrane. Deep-seated colonies of schizonts cause damage of blood vessels of the submucosa resulting in haemorrhage. Scattered gametocytic stages or oocysts cause less damage than those developing in colonies or as plaques.

In addition to mechanical injury, toxic effects due to metabolic products may also occur. However, only experimental demonstration of toxins liberated by these coccidians would prove this assumption.

The haemorrhagic inflammatory changes found in chickens infected with *E. tenella* are due to the toxicity of the second schizogonic stages and their metabolic products (Scholtyseck, 1956). In *E. tenella* infection, Gill and Ray (1954 a, b, c) and Ray and Gill (1955) said that the lesions of the caecal tissue were purely mechanical for the first 3 days. On maturation of the second generation schizonts, merozoites were liberated, producing a large amount of mucopolysaccharides which appear to act as heparin-like substances (anticoagulant) stimulating the formation of a large number of mast cells.

The sporozoites and immature schizonts are capable of ingesting host cell cytoplasm. In the *in vitro* cultivation of *E. tenella*, no indication of utilising the cell DNA precursor pool has been observed although there may be DNA synthesis in developing schizonts during the asexual generation (Ouellette et al. 1973).

In some species, particularly in the genus *Eimeria*, there is a definite number of schizogonic generations, e.g. *E. bovis* has two and *E. nieschulzi* has four (Hammond and Long, 1973), hence the infection is regarded as self-limiting. It has been observed that activation of the arrested endogenous stages of *E. zuernii* may lead to coccidiosis in cattle (Marquardt, 1976).

However, the developmental cycle of an organism is closely programmed and is not readily diverted from attaining its goal (Fairbairn, 1970). The sequential changes likely to occur within a host, appear to be predetermined in the life-cycle of a coccidian.

The pathobiological outcome is dependent on various factors of both the parasite and the host, e.g., age of both parasite and host species,
size and location of the parasites inside the host cells and parasite's developmental stage.

The association or the injurious effect ultimately lead to immunity to the particular disease caused by the parasite.

IMMUNE RESPONSE

Immunity for protecting the host develops after the initial sub-clinical infection. It is specific for the species of a coccidian to which the animal is exposed. Several attempts have been made to immunize animals against the infection. Bachman (1930a, b) attempted to immunize rabbits with a suspension of dried, pulverized oocysts of *E. stiedai*, but did not succeed. Becker (1935) failed to immunize rats, fed ground oocysts and infected intestine. Rose (1961, 1963) and Horton-Smith *et al.* (1963) also failed to immunize rabbits against *E. stiedai* with antigen prepared from bile duct exudate along with a mixture of schizonts and gametocytes, as did so also *E. tenella* in fowl. Lowder (1966) immunized calves against *E. bovis* infection by oral inoculation but failed by intravenous inoculation of a soluble extract of disrupted oocysts.

There are number of records of immunity production after irradiation of oocysts and subsequent inoculation of the host (Fitzgerald 1965, 1968, Kheysin, 1972 and Reid, 1975), but none was completely successful.

Edgar (1958) developed a method of immunization of chickens by inoculating a mixture of oocysts of all the eight species of coccidia during first week of life. It produced light infections, with the production of a small number of oocysts.

Augustin and Ridges (1963) were able to produce a high degree of immunity with a sublethal dose of *E. meleagrimitis* in the turkey. Long and Rose (1965) attempted immunization, both active and passive, of chickens infected with the sporozoites of *E. tenella* by the intravenous inoculation. A high degree of protection developed when immune serum (globulin) was inoculated 4½ hrs. prior to the inoculation of sporozoites. Little or no protection was observed when immune serum was introduced 19 hrs. after the sporozoite injection. These observations indicate that serum antibodies are effective *in vitro* or *in vivo* if the invasive stages come in contact with the antibody. However, when the parasites have already invaded the epithelium of the intestine, the circulating antibody become
ineffective. Rose (1967a, b & c) studies cross immunity between *E. tenella* and *E. necatrix* and found that the immunity was species-specific. Lumsden (1967) summarised the various types of antibody production by coccidia along with that of other protozoan parasites.

The immunization of one species of coccidia gives little cross-immunity. Only in a few cases are the humoral antibodies effective against merozoites *in vitro* which prove to be ineffective in *in vivo* (Marquardt, 1970).

Upadhyay and Ahluwalia (1976b) observed that in case of mixed infection in pigs, no immunity was developed initially, when the host became resistant to challenge after second infection.

Coccidians are able to impart immunity in varying grades. A single dose of *E. maxima* produces immunity in the domestic fowl whereas several doses of *E. acervulina* fail to do so (Ruff and Reid, 1977). Kennith *et al.* (1977) cited many works reporting humoral antibodies to coccidia in calves, rabbits and mice. However blood or serum from immune hosts failed to produce any response when inoculated into susceptible hosts. Both humoral and cellular immunity play an important role in immunity to coccidiosis. Protection by cells or cell fractions has given very satisfactory results in rat coccidia (Rommel and Heydorn 1971, Liburd *et al.* 1973). The cellular factor is held responsible for immunity to coccidiosis in *E. stiedai* infection (Klesius *et al.* 1973) and *E. tenella* in chicken (Leathem and Burns 1967). Infection of partially immunized hosts acts as a boosting antigenic stimulus in the life-cycle of a parasite (Rose, 1973). The antibodies found in the alimentary canal (copro-antibodies) may be important for immunological defence against infection with intestinal coccidia.

The participation of cellular and/or humoral immunity in the development of coccidial immunity still remains far from clear. The interactions that occur therein are not known to a greater extent.

Finally, it can be concluded that the parasite survives at the expense of its host while causing no deaths. In order to fulfil this objective some biological, physiological and immunological factors play a vital role.

VIII. Phylogeny

It is now customary to believe that gregarines are the basal stock in the Sporozoa from which the Coccidia have evolved. According to Baker (1969), this evolution has proceeded to a single main line as sarcomastigophora-gregarina-coccidia-Eimeriina. He also reviewed the evolution of the different groups of Protozoa earlier (1965).
Kudo (1966) thought that the Sporozoa as a whole have a polyphyletic origin. The presence of flagellated microgametes in coccidia indicates that this group as a whole might have originated from the gregarine *Selenococcidium*.

The parasites which restrict themselves to the gut or cells of the alimentary canal of one host (homoxenous), invertebrate or vertebrate, to complete their life-cycle are regarded as the earliest representatives of the group. Some of the vertebrate parasites go deeper into the host cell and a few adapt further by invading the blood and spending part of their life-cycle into the circulation. These parasites can be treated as specialised ones with a tendency to acquire a heteroxenous life-cycle, in which both invertebrate and vertebrate hosts are essential. Sometimes, of course, the invertebrate hosts act only as transmitters.

While reviewing the localization of tissue stages of the parasites at different regions, Hammond and Long (1973) stated that the occurrence of a portion of the life-cycle in cells other than those of the epithelial surface of the intestine may indicate that the species in question is at a more advanced evolutionary stage than those which live in cells at the surface.

Scholtyseck (1974) stated that the proto coccidia without schizogony can be treated at the original subgroup of the coccidia. The schizogregarines and the schizococcidia came later in evolution.

In the family Eimeriidae, most of the genera require only one host to complete their life-cycle. They live in the epithelial cells of the intestine of the vertebrate, discharge their oocysts outside the host, and the sporogony takes place with the formation of sporozoites. New infections occur when the new hosts ingest oocysts.

IX. Systematic Classification

The family Eimeriidae includes the organisms generally known as coccidian parasites. The systematic classification of coccidian parasites, started in the early part of the present century and was based generally on morphological features; sometimes biological characteristics were also considered. Authors like Minchin (1912), Reichenow (1921b, 1929) and Wenyon (1926) classified the coccidian on the basis of the biological phenomena observed during development. Schneider (1881), Doflein (1916), Pinto (1928) and Hoare (1933) grouped these parasites according to the number of sporocysts or sporozoites formed after sporulation. Hoare (1933) divided the suborder Eimeriidea into 2 families Selenococcidiidae and Eimeriidae and
divided the Eimeriidae into 6 subfamilies. The criteria mentioned above were followed by most workers for higher taxa like families or genera, but for differentiation of species, the morphological characteristics of oocysts were mainly considered. Bhatia (1938) treated the coccidia as order with Adeledea and Eimeriidea as suborders and included the families Selenococcidae and Eimeriidae in the latter. He divided the family Eimeriidae into 7 subfamilies based on Hoare (1933) and provided keys to the subfamilies and genera. He (1949, 1957) also gave more importance on the periodic system of homologous genera in classifying the family Eimeriidae. Hall (1953) treated these parasites as subclass Coccidia with Adeleida and Eimeriida as 2 suborders and recognised 6 families under the later including the family Eimeriidae. Levine (1961) placed the family Eimeriidae under order Eucoccidiiorida and suborder Eimeriorina and defined them as: “Members of this family have a single host. Schizogony and gametogony take place within the host cells, and sporogony ordinarily occurs outside the hosts’ body”. He also followed Hoare (1933) diagrammed the mathematical division into genera of the family Eimeriidae.

Pellerdy (1963) in his ‘Katalog der Eimeriidea’ accepted the four families Selenococcidiidae, Eimeriidae, Aggregatidae and Dobellidae and placed 17 genera in the family Eimeriidae. In the scheme proposed by a committee of the Society of Protozoologists, Honigberg et al. (1964) classified the subphylum Sporozoa with the coccidia as one of the sub-classes, which contained the orders Protococcidiida and Eucoccidiida. The suborders Adeliina, Eimeriina and Haemosporina were placed under the Eucoccidiida.

However, Poljanskij and Cheissin (1965), while revising Dogeil’s General Protozoology placed the suborder Eimeriidea under the order Coccidiida in the subclass Coccidia (= Coccidiomorpha). In a discussion on the classification of Protozoa (Second International Conference on Protozoology held in London (1966) Cheissin stated “In my opinion it would be the most correct to divide the subclass Coccidia into three orders Protococcida, Adeleida and Coccidiida but not into two: Protococcida and Eucoccida”, while reviewing the systematic classification of the Coccidia, Pellerdy (1965) placed Eimeriidae under suborder Eimeriidea with another two families Selenococcidiidae and Dobelliidae. In his monograph ‘Coccidia and Coccidiosis’ he used 8 subfamilies under the family Eimeriidae based on the classification established by Hoare (1933).

Kudo (1966) placed the family Eimeriidae under order Coccidia and suborder Eimeriina with the families Selenococcidiidae, Aggregatidae
mandal : fauna of India : protozoa

and Dobellidae. Baker (1969) adopted the revised classification of Honigberg et al. (1964) and considered the higher taxa, i.e., sub­families and genera of the suborder Eimeriina, to be thought by Pellerdy (1965). The same authors further stated, “The classification of the family Eimeriidae is much disputed and the version of Pellerdy (1965) is probably too artificial”

In his “Supplementum of the “Katalog der Eimertidea”, Pellerdy (1969) excluded the family Dobelliiidae and incorporated all its genera into the family Aggregatidae. The number of genera in the family Eimeriidae included by both Kudo (1966) and Pellerdy (1963, 1969) were almost same except for the genera Octosporella, Pythonella, Yaki­movella, Hoarella and Sivatoshella. Of course, the last two genera were recently described and perhaps due to this they could not incorporate them into their books. At any rate, Pellerdy (1969) included 19 genera in the family Eimeriidae in his supplementum this has with seven sub-families viz. Cryptosporidiinae, Caryosporinae, Cyclosporinae, Eimeriinae, Yakimovellinae, Phytonellinae and Barrouxiinae. Cheissin / Kheysin (1972) in his “Life-cycle of Coccidia in domestic animals” [Translated from Russian by F. K. (Jr.) Plous and edited by K. S. (Jr.) Todd], classified the group as order Coccidiida and suborder Eimeriidea with the four families Selenococcidiidae, Eimeriidae, Lankesterellidae and Aggregatidae. Levine (1973a, b) used the families Sarcocystidae, Lankesterellidae and Eimeriidae and included the genus Toxoplasma under the Sarcocystidae; Lankesterella under Lankesterellidae, Cryptosporidium, under Cryptosporidiidae, and 14 genera viz. Eimeria, Isospora, Barrouxia, Caryospora, Cyclospora, Dorisiella, Tyzzeria, Wenyonella, Mantonella, Octosporella, Sivatoshella, Yakimovella, Hoarella and Pythonella under the family Eimeriidae. The same author (1980) erected the genus Dorisa with the type species hoarei (Yakimoff and Gousseff, 1933) and placed under the family Eimeriidae after differentiating from the genus Dorisiella. Ray (1930) on the basis of their occurrence in vertebrate or invertebrate hosts, though both are having disporocystic octozoic oocyst. The organisms invading the vertebrate hosts have been brought under the genus Dorisa and those occurring in invertebrates have been retained under the genus Dorisiella. Moreover, the former has a definite oocystic wall whereas the later bears the discernable oocystic wall. This proporsition has now been widely accepted and also followed in the present context. Scholtyseck (1974) thought that Toxoplasma should be put in a subfamily of the Eimeriidae and the Haemosporidia were a suborder of the Schizococcidia. Frenkel
Eimeriidae (1977) gave more stress to the life-cycle in classifying this group and proposed that the homoxenous species of the genus *Isospora* with disporocystic oocysts and tetrazoic sporocysts having a Stieda body could be placed under the family Eimeriidae and the cyst forming genera namely *Cystoisospora*, *Toxoplasma* and *Sarcocystis* without a Stieda body in the sporocyst would be included under the family Sarcocystidae. Levine *et al.* (1980) considered the Sporozoa a class under the phylum Apicomplexa, the Coccidia as subclass in which the three orders Agamococcidiida, Protococcidiida and Eucoccidiida were erected with three (Adelina, Eimeriina and Haemosporina) suborders under the later order. The adeline group was distinguished by the fact that males and females develop in association with each other (syzygy as in gregarines). Most of them live in red or white blood cells and sometimes in the other vertebrate cells. The Eimeriina distinguished from the adelines by the absence of syzygy; the family Eimeriidae occurs here. The Haemosporina are obligate intracellular parasites and have two hosts; a vertebrate, in which asexual reproduction or schizogony occurs and in invertebrate in which sexual reproduction occurs. However, the family Eimeriidae can be defined as the group of organisms whose macro and micro-gametocytes develop independently, whose microgametocytes produce many gametes, and which have an oocyst without any attachment organelle, formed from a pair of anisogametes with a variable number of sporocysts containing one to many sporozoites. They are monoxenous and inhabit the cells of vertebrates though some are found in deeper tissues a few occur in molluscs, arthropods and other invertebrates. The microgamete having two or three flagella.

X. Genera of the Family Eimeriidae Along with the Number of Species in Each Host Group from Indian Subcontinent

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the genus</th>
<th>Number of Sporocysts present</th>
<th>Number of Sporozoites present</th>
<th>Centipedes</th>
<th>Insects</th>
<th>Pisces</th>
<th>Amphibia</th>
<th>Reptiles</th>
<th>Aves</th>
<th>Mammalia</th>
<th>(Number of Species)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Eimeria</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>3</td>
<td>18</td>
<td>53</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Isospora</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>36</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Caryospora</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Dorisa</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Tyzzeria</td>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Wenyonella</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Octosporella</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Sivatoshella</td>
<td>2</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Pythonella</td>
<td>16</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Number of species mentioned includes the undetermined species.
Macro and micro-gametocytes develop independently and micro-gametocyte produces many gametes. The oocyst formed from a pair of anisogametes has 0, 1, 2 or many sporozoites. Oocyst is devoid of any attachment organelle. Development (schizogony/merogony) within the host cell and sporogony outside the host. Monoxenous, microgamete having two or three flagella.

Type genus: Eimeria Schneider, 1875.

Type host: Mus musculus, Rodentia, Muridae

Key to the genera of the family Eimeriidae

1. Oocyst with sporocyst ... 2
 Oocyst without sporocyst 3
2. Oocyst with one sporocyst ... 4
 Oocyst with more than one sporocyst 5
3. Sporocyst with 4 sporozoites ... 6
 Sporocyst with 8 sporozoites 7
4. Oocyst with 2 sporocysts ... 8
 Oocyst with 4 sporocysts 9
 Oocyst with 8 sporocysts ... 10
 Oocyst with 16 sporocysts ... 11
 Oocyst with more than 16 sporocysts 12
5. Each sporocyst with 2 sporozoites ... 13
 Each sporocyst with 4 sporozoites ... 14
 Each sporocyst with 8 sporozoites ... 15
 Each sporocyst with 16 sporozoites ... 16
6. Species occurring in invertebrate hosts ... 17
 Species occurring in vertebrate hosts ... 18
7. Each sporocyst with 2 sporozoites ... 19
 Each sporocyst with 4 sporozoites 20
 Each sporocyst with 8 sporozoites ... 21
 Each sporocyst with 16 sporozoites ... 22
8. Each sporocyst with 2 sporozoites ... 23
 Each sporocyst with 4 sporozoites ... 24
 Each sporocyst with more than 2 sporozoites 25
9. Each sporocyst with 2 sporozoites 26
 Each sporocyst with 4 sporozoites ...

(i) Genus Tyzzeria Allen, 1936

 Oocyst having eight naked sporozoites; without any sporocyst.

Type host: Anas domestica, Aves: Anseriformes

Three species of this genus have been reported only from birds so far within our limit.
KEY TO THE SPECIES

A. Oocyst oval (1)
 (1) Size of oocyst 14.48-17.3 \(\mu m \) by 9.63-11.5 \(\mu m \)
 Oocyst not oval (1) (ii)
 (i) Oocyst broadly cylindrical, size of oocyst
 20.4-27.0 \(\mu m \) by 14.0-20.0 \(\mu m \) ...
 T. chenicusae
 (ii) Oocyst subspherical to ovoidal, size of oocyst
 11.0-16.0 \(\mu m \) by 6.0-11.0 \(\mu m \) ...
 T. pellerdyi

1. Tyzzeria alieni Chakravarty and Basu

 1974. Tyzzeria alieni Chakrabarty and Basu, emended., Pellerdy, Coccidia and

 Description: Oocysts oval, immature one is completely filled up
 with the zygotic mass consisting of a large number of refractile granules.
 Micropyle present, oocystic residuum absent. Oocyst measures 14.4-
 17.3 \(\mu m \) in length with a mean of 16.5 and 9.6-11.5 \(\mu m \) in width with
 a mean of 10.5 \(\mu m \). The shape index is 1.56. The residual mass is
 6.4 \(\mu m \) in diameter. Sporozoites are spherical in shape in early stages
 and later on become elongated each having a rounded posterior and
 pointed anterior ends. It measures 5.5-6.8 \(\mu m \) with centrally placed
 spherical nucleus measuring about 2.4 \(\mu m \) in diameter.

 Sporulation time: 24-36 hours.

 Type host: Cotton Teal, Nettapus coromandelianus Gmelin.

 Other hosts: None.

 Distribution: Bidyadhari Spill area, Mohis Bathan, 24-Parganas,
 West Bengal.

 Endogenous stages: Unknown.

 Types: Not known.

2. Tyzzeria chenicusae Ray and Sarkar

 1967. Tyzzeria chenicusae Ray and Sarkar, J. Protozool., 14, 27 (Suppl.).

 Description: Oocyst broadly cylindrical, measuring 20.4-27.6 \(\mu m \)
 in length and 14.0-20.4 \(\mu m \) in width (average 24.84 \(\times \) 16.8 \(\mu m \)). The
 shape index 1.5. Micropyle absent, outer wall thick and the inner
 one is thin. The sporozoites are clubshaped, each measuring 13.2 \(\mu m \)
in length and 4.2 μm in width. They are usually arranged in a circular fashion around a granular mass of residual body, placed towards the broader pole of the sporozoites.

Sporulation time: 3-5 days.

Type host: Cotton Teal, Chenicus (=Nettapus) coromandelianus Gmelin.

Other hosts: Unknown.

Distribution: Basirhat, 24-Parganas, West Bengal.

Endogenous stages: Development is completed within 6 days. No detailed account on the endogenous developmental stages are published but some have been mentioned in the D. Phil. Thesis (A.C.S.).

Types: Not known.

3. Tyzzeria pellerdyi Bhatia and Pande
(Fig. 20)

Description: Oocyst subspherical to ovoidal in shape, measuring 11.0-16.0 μm in length with a mean of 13.0 μm and 8.0-11.0 μm in width with a mean of 10.0 μm. The oocystic wall smooth and colourless of 0.5-0.7 μm in thickness. Micropyle and micropylar cap absent.

Fig. 20. Mature Oocyst of Tyzzeria pellerdyi.
Sporont coarsely granular, almost filling the oocyst; oocystic residuum 4.0-5.0 \(\mu m \) in diameter, compact, central or polar, darkly granular with different sized globules. Polar granules absent. Sporozoites banana-shaped, each measuring 8.0-10.0 \(\mu m \) in length with a mean of 8.5 \(\mu m \) and 1.7-2.2 \(\mu m \) in width with mean of 2.0 \(\mu m \), with centrally placed nucleus and a prominent globule at the broader end—the other end being tapering.

Sporulation time: Unknown.

Type host: Gadwall, *Anas strepera* Linn.

Other hosts: (1) White-eyed Pochard, *Aythya nyrioca* (Giild.)
(2) Wild goose, *Anser indicus* (Latham) possibly from Mathura, Uttar Pradesh.

Distribution: Gorakhpur, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Mathura Veterinary College, Mathura, Uttar Pradesh.

Remarks: Bhatia (1968) may be consulted for the hosts record.

(ii) **Genus Caryospora** Leger, 1904

Single sporocyst inside the oocyst, with eight sporozoites.

Type host: *Verpia aspis*, Reptilia: Ophidia.

Represented by two species, occurring in reptile.

Parasites of Reptiles

Key to the species

1. Oocyst spherical
 (i) Sporocyst spherical ... *C. gekkonis*
 (ii) Sporocyst pear-shaped ... *C. bengalensis*

4. **Caryospora gekkonis** Chakravarty and Kar
 (Fig. 21)

Description: Oocyst spherical, measuring 18.5-20.8 \(\mu m \) in diameter.
with a mean of 19.7 \(\mu \text{m} \), double walled, inner wall being 1.1 \(\mu \text{m} \) in thickness; no oocystic residuum; micropyle present. Sporocyst single, almost spherical, thin-walled and measures 10.5-12.5 \(\mu \text{m} \) with a mean of 11.5 \(\mu \text{m} \) in diameter. A blunt knob like refractile part is drawn out from one end. Sporocystic residuum scattered as diffuse residual mass. The sporozoites are 8 in number, almost spherical in shape and each measures 2.5 \(\mu \text{m} \) in diameter.

Sporulation time: 30-50 hours.

Type host: Takhak or Indian gekko, *Gekko gecko* (Linn.)

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Remarks: Mandal (1976) redescribed this species.

Types: Likely to be present in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

5. **Caryospora bengalensis** Mandal

(Fig. 22)

Description: The oocysts are spherical in shape each measuring 20 \(\mu \text{m} \)-22.5 \(\mu \text{m} \) in diameter with a mean of 21.5 \(\mu \text{m} \). The shape index is 1.07. The oocystic wall consists of double layers, appears very thin and with slight pressure it ruptures. A micropyle is visible on the wall.
of the oocyst but devoid of any oocystic residuum. The cytoplasm of
the oocyst is centrally placed and appears like a globular mass. Only
one double-layered pear-shaped sporocyst, measuring 18 μm-20 μm in
length with a mean of 19 μm and 12 μm-14 μm in width with a mean
of 13.5 μm is seen inside the oocyst after development. The shape
index of the sporocyst is 1.4. At the pointed end of the sporocyst a

![Fig. 22. A, immature and B, mature oocysts of *Caryospora bengalensis.*](image)

stieda body with a shiny plug is found in the preparation. Sporocystic
residuum is globular with many variable sized refractile granules
scattered throughout. Eight bean-shaped sporozoites are seen, each
measuring 10 μm-12 μm length with a mean of 11.00 μm and 2.5 μm in
at its broadest width, with a centrally placed nucleus.

Sporulation time: 50-72 hours at room temperature 30°C-35°C.

Type host: Common water snake, *Enhydris enhydris* (Schneider).

Other hosts: Unknown.

Distribution: Chakdah, Nadia, West Bengal.

Endogenous stages: Unknown.

Types: In the National Collection of Zoological Survey of India,
Registration No. Pt 1842.

(iii) **Genus Isospora** Schneider, 1881

1870. *Gregarina* Eimer (partim), *Uber die ei-und Kugelormigen spegenannnten Psorosper-\mien der Wirbeltiere.* Wurzburg, p. ? Type species: ?

1881. *Isospora* Schneider, *Archs. zool. exp. ge’n.*, 9 : 387. Type species: *rara*
Schneider.

Sporocysts two in number inside the oocyst, each with four sporozoites.

Type host: Limax cinereoniger ; Limax griseus. Mollusca: Gastropoda.

In total 64 species are known; two from amphibia, five from reptile, 33 from bird and 24 from mammal. In addition, three *Isospora* sp. from bird and four from mammal have been reported.

(A) **Parasities of Amphibia**

Key to the species

(A) Oocyst sub-cylindrical
 (i) size of oocyst 15.3-20.5 by 13.5-15.5 μm ...
 I. wenyoni

(B) Oocyst broadly oval
 (ii) size of oocyst 24.5-26.5 by 15.5-19.5 μm
 I. stomaticae

6. *Isospora stomaticae* Chakravarty and Kar

(Fig. 23)

*Description: Oocyst oval or spherical, double layered, both the walls are very thin and without any residuum and micropyle. Oocyst measures 24.5-26.5 μm in length with a mean of 25.5 μm and 15.5-19.5 μm in width with a mean of 17.5 μm. The shade index is 1.5. The globular and refractile zygotic mass measures 20.4 μm in diameter. The sporocysts are egg-shaped, each with a thin sporocystic membrane and knob like structure at the anterior end (stieda body). The sporocyst measures 15.5-17.5 μm in length with a mean of 16.5 μm and 10.5-11.5 μm in width with a mean of 10.9 μm. The sporocystic residuum present as granular mass. The shape index is 1.5. Sporozoite elongated, measuring 12.5-14.8 μm in length and 2.5-4.5 μm in width with one of
the end narrower than the other. Nucleus is centrally placed and oval in shape.

Sporulation time: 48-60 hours.

Type host: Marbled Toad, *Bufo stomaticus* Lutken.

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: In the epithelial cells of the small intestine spherical schizonts are found, each measuring 6.6 μm by 3.2 μm. The mature schizont bears 8-12 elongated merozoites, each measures 6.6 μm by 3.2 μm. The microgametocyte measures 17.1-19.3 μm by 8.6-12.8 μm in size and each microgamete measures 3.2-4.3 μm long. Macrogametocytes are round or oval each produces an oval macrogamete measuring 15 μm in diameter. The macrogamete is provided with granular cytoplasm with a conspicuous nucleus.

Remarks: Pellerdy (1974) has made a comment that specific name should be spelt as *'stomatici'* and not *'stomaticae'* which is correct as per rule. Mandal (1976) collected the Topotype and redescribed the species.

Types: Likely to be present in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

7. **Isospora wenyonii** Ray and Das Gupta

(Fig. 24)

Description: Oocyst subcylindrical, double layered with thick inner layer. It measures 15.3-20.5 μm in length with a mean of 17.5 μm and...
13.5-15.5 μm in width with a mean of 14.5 μm. The shape index is 1.2. Cytoplasm compact and refractile. Oocystic residuum present and micropyle absent. Sporocyst is oval at immature stage and becomes naviculoid afterwards. It measures 10.0-13.5 μm in length with a mean of 11.8 μm and 7.5 μm -9.5 μm in width with a mean of 8.5 μm. The shape index is 1.3. Sporocystic residuum present as compact mass. Sporozoite elongated tapering at one end. The nucleus is situated at the posterior end.

Fig. 24. A, immature and B, mature oocysts of *Isospora wenyoni*.

Sporulation time: 60-70 hours.

Type host: Indian common Toad, *Bufo melanostictus* Schneider.

Other hosts: (1) Indian Bull frog, *Rana tigrina* Daudin.
(2) Paddy-field frog, *Rana limnocharis* Wiegmann.

Distribution: Calcutta, West Bengal.

Endogenous stages: In the epithelial cells of small intestine the early schizonts are found, each measuring 10 μm by 3 μm in size. Mature schizont measures 20-25 μm in diameter. Eight to twelve merozoites, each measuring 12 μm in length and 5 μm in width at its broadest diameter, are present inside the mature schizont. The microgamete measures 2.4 μm by 1.5 μm and provided with a residuum within the microgametocyte. The macrogamete measures 16-20 μm by 11-14 μm in size each is provided with a distinct nucleus.

Types: Lying in the collections of Protozoology Laboratory, Dept. of Zoology, Calcutta University.

Remarks: Bhatia (1938), Chakravarty and Kar (1952) and Mandal (1976) may be consulted for the hosts records and emended description of the species.
8. *Isospora calotesi* Bhatia

(Fig. 25)

Description: Both unsporulated and sporulated oocysts are usually spherical or subspherical in shape each is provided with double-layer and a micropyle but without any oocystic residuum. The oocyst measures 25.0-37.0 μm with a mean of 32.5 μm. The sporocysts are elliptical in shape, with a small knob at the anterior end (Stieda body) and round posterior end. In some cases the posterior end abruptly tapers to a blunt point. The sporocystic residual body is aggregated together into an irregular mass. The sporocyst measures 12.5-17.5 μm in length with a mean of 14.5 μm and 9.5-10.5 μm in width with a mean of 9.8 μm. The shape index is 1.5. The sporozoites are irregularly arranged and elongated in shape with one of the ends pointed and other
rounded. The spherical nucleus is situated at the centre. It measures 12.00 μm in length and 2.5 μm in width.

Sporulation time: 48 to 60 hours.

Type host: Garden lizard, *Calotes versicolor* (Daudin).

Other hosts: From the type host.

Distribution: Bombay, Maharashtra; Calcutta, West Bengal.

Endogenous stages: The endogenous stages are found in the intestinal epithelium. The schizonts are round each measuring 22 μm by 17 μm produce two type of merozoites. Small merozoites are vermiform in shape. Sometimes schizonts with large merozoites along with central residud bodies have also been observed by Chakravarty and Kar, 1947. They have also observed with some other schizonts with 100 merozoites. The gametocytes develop within the epithelial cells.

Types: Likely to be present in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

Remarks: All that is known regarding this species are from the work of Chakravarty and Kar, 1947. The detail morphology of the oocyst can be had from Mandal (1976).

9. **Isospora dirumpens** Hoare

Description: The thin-walled unraptured oocyst measures 15.2-16.8 μm in length and 9.6-11.2 μm in width containing mature spores. Sporulation occurs inside the host tissues and generally free sporocysts are available in the faeces. These are ellipsoidal in shape, have well developed yellowish walls and show no evidence whatever of structure at the pole. The sporocyst measures 10.4-11.2 μm in length and 8-9 μm in width or 7.5-10.5 μm by 6-9 μm. The sporozoite elongated with one end tapering and 7 μm long. It lies at random around an inner residual body represented by coarse irregular shaped granules. No other residual body is present.

Type host: Puff Adder, *Bitis arietans*.

Other hosts: Grass snake, *Natrix platyceps* (Blyth).

Distribution: Uganda, Africa; Mukteswar, Uttar Pradesh.

Endogenous stages: Endogenous development takes place in the small intestine. Gametogonic stages are found in the sub-epithelial and
intraepithelial layers (Hoare, 1933). Ray and Singh (1948) reported this species from Grass Snake, *Natrix platycepes*.

Types: Not known.

10. *Isospora knowlesi* Ray and Das Gupta

(Fig. 26)

Description: Spherical oocyst with double layer of 1.5 μm thickness. The outer one being thinner than the thick inner one. The oocyst measures 17.5-23.14 μm in diameter with a mean of 21.7 μm. The refractile and granular cytoplasm measures 15.5-17.3 μm in diameter. Oocystic residuum and micropyle absent. Sporocyst ellipsoidal, measuring 12.0-15.5 μm in length with a mean of 14.3 μm and 7.3-10.5 μm in width with a mean of 8.5 μm. The shape index is 1.7. Sporozoite elongated tapering at one end, measuring 10.5-12.5 μm in length.

Sporulation time: 4-5 days.

Type host: House lizard, *Hemidactylus flaviviridis* (Ruppell).

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Sporozoites penetrate the intestinal epithelial cells and lie within the parasitophorous vacuoles. The schizonts are...
surrounded by the host cells in a ring like fashion. Mature schizonts produce merozoites each measures 8.2 μm by 2 μm with a small karyosome. The mature micragametocyte develops microgametes each measuring 4-5 μm in length, and carrying two flagella.

Types: Not known.

Remarks: The describer could only come across few schizogonic stages in the intestine and presumed that the process of schizogony might have taken place rapidly. Mandal (1976) redescribed the species.

11. *Isospora minuta* Mitra and Das Gupta

(Fig. 27)

Description: Oocyst cylindrical, with a thin single membrane. It measures 14.5-16.5 μm in length with a mean of 15.5 μm and 6.8-8.5 μm in width with a mean of 7.7 μm. The shape index is 2.01. No oocystic residuum or any micropyle is seen. The sporocyst spherical in shape measuring 6.5-9.9 μm in diameter with a mean of 7.7 μm. Sporocystic residuum present as compact mass. The sporozoites are elongated tapering at one end measuring 3.5-4.6 μm in length.

Sporulation time: 50—72 hours.

Type host: Cobra, *Naja naja* Linn.

Other hosts: From the type host and The King Cobra, *N. hanah* (Linn.)

Distribution: Calcutta, West Bengal; Shillong, Meghalaya.
Endogenous stages: Unknown.

Types: Not known.

Remarks: Das Gupta (1938) described the species in details followed by Bhatia (1938) and Mandal (1976).

12. Isospora rayi Mandal

(Fig. 28)

Description: Immature oocyst spherical in shape with double envelop, the outer wall thin and membraneous while the inner one is thick, yellowish red in normal light, measures 1.00-1.50 μm in thickness; centrally placed spherical cytoplasm measures 20.0-20.8 μm in diameter and appears as beaded, refringent, refractile globules. Mature oocyst measures 25.5-27.4 μm in diameter with a mean of 26.3 μm, oocystic residuum and micropyle absent. Sporocyst naviculoid in shape, tapering at both ends, measuring 14.5-16.3 μm in length and 9.15-10.5 μm in breadth with a mean of 15.4 μm by 9.75 μm and the shape index is 1.5. Blackish sporocystic residuum is visible as shiny globular materials and scattered irregularly inside the sporocyst. Bean-shaped sporozoite measures 7.5-8.15 μm in length with a mean of 7.9 μm, nucleus is situated at the middle of each sporozoite and appears as a refractile area.

Sporulation time: 50—60 hours.

Type host: Garden Lizard, Ptyctolaemus sp.

Other hosts: Unknown.
Distribution: Shillong, Meghalaya.

Endogenous stages: Unknown.

Types: Likely to be present in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

(C) Parasites of Birds

Key to the species

1. Sporocyst pear-shaped
 (A) Wall of the oocyst showed a bulbous thickening I. bellericae

2. Sporocyst ovoid, oval or ellipsoidal
 (A) Oocyst subspherical
 (i) Size of the oocyst above 20 μm
 (ii) Size of the oocyst below 20 μm
 (a) Size of sporocyst 15-17×10-12 μm
 (b) Size of sporocyst 14-16×9-10 μm
 (i) Sporozoite having one refractyle globule ...
 (ii) Sporozoite having two refractyle globule
 (a) Size of sporozoites 10-14×3-5 μm ...
 (b) Size of Sporozoite 11.97×2.66 μm ...
 (B) Oocyst spherical
 (i) Size of oocyst 24.4-28.4 μm ...
 (C) Oocyst spherical to subspherical
 (a) Size of sporocyst 16-18×10-12 μm with sporozoites 12-12.4 μm in length ...
 (b) Size of sporocyst 16-22×9-12 μm with sporozoites 13.3-16 μm in length ...
 (c) Size of sporocyst 11-16×7-11 μm with sporozoites 12-13.3 μm in length ...
 (D) Oocyst oval
 (i) Size of oocyst over 27 μm ...
 (ii) Size of oocyst below 27 μm ...
 (a) Double layered outer thin
 (b) Double layered uniformly thick

3. Sporocyst pyriform or spindle-shaped ...
 (A) Oocyst with residuum
 (i) Oocyst spherical or subspherical
 (a) Size of oocyst 22-28 μm ...
 (b) Size of oocyst 15-22 μm
 (i) Length of sporocyst above 12.00 μm ...
 (ii) Length of sporocyst below 12.00 μm ...
 (B) Oocyst oval or ovoid
 (a) Size of oocyst above 23.00 μm×20.00 μm ...
 (i) Length of sporozoites above 10 μm ...
 (ii) Length of sporozoites below 10 μm
 (x) Width 2.7 μm ...
 (y) Width 3.3 μm ...

I. bel/ericae
I. cheeli
I. temenuchii
I. korean
I. rajuli
I. choudari
I. upupae
I. malabaricae
I. graculi
I. mandari
I. psittaculae
I. zosteropis
I. ceylonensis
I. parusi
I. garrulae
I. corviae
I. lonchcurae
I. garruluses
I. scicercusae
<table>
<thead>
<tr>
<th>Class</th>
<th>Genus</th>
<th>Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIMERIIDAE</td>
<td>Isospora</td>
<td>bengalensis</td>
<td>Oocyst spherical, double walled, the outerwall being thinner than the inner one, measuring 1.1 μm in thickness. It measures 18.7-23.3 μm in diameter with a mean of 20.5 μm. Cytoplasm is provided with highly refractile granules and measures about 16.5 μm in diameter. Micropyle present, oocystic residuum absent. Sporocyst pyriform in shape with a knob at the pointed anterior end, the posterior end being rounded. It measures 14.4-16.4 μm in length with a mean of 15.4 μm and 6.7-8.7 μm in width with a mean of 7.7 μm. The shape index is 2.0. Sporocystic residuum present as compact mass. Sporozoite is elongated in shape with anterior pointed end. It measures 8.8 μm by 3.3 μm with shape index 2.6. The sporozoites lie parallel to the long axis of the sporocysts, but the anterior end of two of them are directed towards the posterior end of the other two. Sometimes 3 sporocysts develop instead of the regular 2; in such cases two of them are small in size and each produced only two sporozoites instead of four.</td>
</tr>
<tr>
<td>(b) Size of oocyst below 23.00 μm x 20.00 μm</td>
<td>I. emberizae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) Oocyst without residuum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I) Oocyst oval</td>
<td>I. muniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Length of oocyst above 24 μm</td>
<td>I. pyenonotae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Length of oocyst below 24 μm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(II) Oocyst spherical or sub-spherical</td>
<td>I. sturniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Micropyle present</td>
<td>I. bengalensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Sporozoite elongated</td>
<td>I. mayuri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x) Size above 10.5 μm</td>
<td>I. ginginiana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y) Size below 10.00 μm</td>
<td>I. concinnus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) Sporozoite banana-shaped</td>
<td>I. megalaimae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x) Size 6-7 μm</td>
<td>I. lacazei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Sporozoites elongated</td>
<td>I. gypsi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x) Size above 10.00 μm</td>
<td>I. capistrata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I) With central nucleus</td>
<td>I. melopsittacus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(II) Without central nucleus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y) Size below 7.00 μm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) Sporozoites bean-shaped</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) Sporozoites sausage-shaped</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) Sporozoites club-shaped</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sporocyst almond-shaped</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sporulation time: 48-60 hours.

Type host: House crow, *Corvus splendens* Vieillot.

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Present in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

Fig. 29. A, immature and B, mature oocysts of *Isospora bengalensis*.

Description: Oocyst round or slightly oval, measuring 18.7-24.5 μm in length with a mean of 22.5 μm and 18.5-22.5 μm in width with a mean of 21.5 μm and provided with double wall. At one of the broader poles, the wall showed a bulbous thickening. The oocystic residuum and micropyle absent. Sporocyst pear-shaped with a prominent steida body. It measures 9.5-15.00 μm in length and 7.5-9.5 μm in width. The sporocystic residuum is centrally placed. The sporozoites are elongated in shape and the nucleus is centrally placed.

Sporulation time: 24-48 hours.

Type host: Crowned Crane, *Bellerica (=Bellearica) pavonina regulorum*.

Other hosts: Unknown.
Distribution: Zoological Garden, Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

15. *Isospora capistrata* Sinha and Sinha

(Fig. 30)

Description: Oocyst is spherical in shape measuring 18.2-24.6 μm in diameter with a mean of 21.6 μm. The oocystic wall is smooth, bilayered with uniform thickness of 0.2 μm. The distance between the two walls is 0.65 μm. Oocystic residuum, micropyle, micropylar cap, polar body are absent. Sporocysts are two in number and pyriform in shape. The anterior end of each sporocyst is provided with a knob and the posterior one is rounded. Each sporocyst containing four sporozoites. It measures 11.0-16.9 μm in length and 8.8-10.4 μm in width with a mean of 14.6 μm by 9.6 μm. The single layered sporocystic wall measures 0.13 μm in thickness, and sporocystic residuum is 0.3 μm in diameter is present inside the sporocyst. Sporozoites are club shaped each measuring 7.5-10.2 μm in length and 1.8-2.5 μm in width with a mean of 9.0-2.2 μm.

Sporulation time: 36-48 hours.

Type host: Black-headed sibia, *Leioptila capistrata* Vigors [= *Heteropharia capistrata* (Vigors)].

Other hosts: Unknown.

Distribution: Darjeeling, West Bengal.
Location: Intestine.

Endogenous stages: The authors (Sinha and Sinha, 1981) studied the endogenous stages and recorded the ovoid trophozoite with a sub-central nucleus and a thin outer covering. It measures 5.6 µm in length and 2.8 µm in width. Multinucleated schizont provided with nine nuclei measures 7.9 µm by 7.6 µm is also encountered in the preparation. Microgametocyte spherical measuring 13 µm in diameter having small nuclei arranged at the periphery. The mature one is provided with small comma shaped microgametes. A fertilised macrogamete is subspherical measuring 12.0 µm by 10.0 µm. A clear halo is present around the endosome of the fertilised macrogamete.

Type: Lying with the author's collections.

16. Isospora ceylonensis Sinha, Chattoraj, Bandyopadhyay and Ghosh

(Fig. 31)

Description: Oocyst oval or roundish in shape, measuring 20.5-26.5 µm by 18-23 µm with a mean of 24.8 µm by 21.5 µm. Oocystic wall double layered of uniform thickness. Micropyle or oocystic residuum absent. Sporocysts are oval in shape each measuring 17.5 µm by 18.5 µm with a mean of 18 µm. Sporocystic residuum present as clusterous mass. Sporozoite elongated, measuring 10 µm in length and 3 µm in width with a centrally placed nucleus.

Sporulation time: 36-48 hours.

Type host: Common Himalayan grey-headed flycatcher, Culicicapa ceylonensis calochrysea Oberholser.

Locality: Known from the type locality, Darjeeling, West Bengal.
Endogenous stages: The describer found the schizogony-cycle in the entire length of the small intestine specially in the epithelial cells. Trophozoite oval with centrally placed nucleus, measuring 5.7 μm by 3 μm. They have observed schizont with two or four nuclei. Merozoite measures 9.6 μm by 4.6 μm with centrally placed nucleus. Macrogametocytes round or oval each measuring 12 μm by 9.8 μm with a distinct nuclear membrane. Mature microgametocyte measures 15.7 μm by 13 μm packed compactly with small comma-shaped body.

Types: Lying with the collection of the describer.

17. Isospora cheeli Bhatia, Pande and Garg (Fig. 32)

Description: The oocyst measures 10-17 μm in length with a mean of 14.3 μm and 9.0-12.0 μm in width with a mean of 10.7 μm. The length width ratio is 1.1-1.5, mean 1.3. The wall is almost colourless, delicate membrane and enclosed two sporocysts. Micropyle, polar cap, polar granule and oocystic residuum absent. The ellipsoidal sporocyst measuring 9.0-12.0 μm in length with a mean of 10.5 μm and 5.5-7.8 μm in width with a mean of 6.8 μm. The length width ratio 1.3-1.8 (mean 1.55). Sporocystic wall 0.43 μm thick, straw-coloured lying either side by side or partly or completely overlapped. Sporocystic residuum present as prominent dark granules scattered around the four sporo-

Fig. 32. A, immature and B, mature oocysts of Isospora cheeli.
zoites. Sporozoites elongated, each measuring 7.8 μm in length and 1.7 μm in width, with one end tapering and the other rounded, carrying an inconspicuous refractile globule with the nucleus near the centre.

Sporulation time: Unknown.

Type host: Paria Kite, Milvus migrans (Boddaert).

Other hosts: Unknown.

Distribution: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Likely to be present in the Dept. of Parasitology, Mathura Veterinary College, Mathura, Uttar Pradesh.

18. **Isospora choudari** Bhatia, Chauhan, Arora and Agarwal *(Fig. 33)*

Description: Oocyst subspherical, 20-27 μm by 19.5-26.6 μm (mean 24 μm by 23.2 μm) in size. Oocystic wall 1.3 μm thick, with outer light yellow and inner dark yellowish brown layers. Micropyle and polar cap absent. Oocystic residuum and polar granule absent. Sporocyst ellipsoidal with narrow ends; lined by single-layered wall, measured 14.6-15.06 μm by 9.1-9.3 μm; small button-like stieda body present along with a coarse dark granular residuum. Sporozoite elongated, with one end broad and the other end tapering, measuring 11.7 μm by 2.6 μm in size with two refractile oval globules and a nearly central nucleus.

Type host: Grey Jungle Fowl, Gallus sonneratii Temminck.
Eimeriidae: Isospora

Other hosts: From the type host, Bhatia *et al.* (1973), Chauhan *et al.* (1973).

Distribution: Zoological Garden, Delhi.

Endogenous stages: Unknown.

Types: Likely to be present in the Dept. of Parasitology, Mathura Veterinary College, Mathura, Uttar Pradesh.

19. **Isospora concinnus** Sinha and Sinha

(Fig. 34)

Description: Oocyst spherical in shape measuring 23.5–29.0 μm by 21.0–25.0 μm with a mean of 27 μm by 23 μm. The oocystic wall smooth, bilayered with uniform thickness of 2μ. Neither micropyle nor oocystic residuum are present but one or two refractile bodies are seen to lie towards the outer sporocystic wall. The sporocysts are conical in shape each measuring 16.0-18.0 μm in length and 11.0-12.5 μm in width with a mean of 17.8 μm by 12.0 μm. The anterior end of the sporocyst is to some extent pointed while the posterior part is almost rounded. Each of the two sporocysts is provided with four sporozoites. Mature sporozoites are elongated bodies which overlap each other within the sporocysts. They measure 11.8 μm in length and 4.2 μm in width.

Sporulation time: 24-36 hours.

Type host: Sikkim Red-headed Tit, *Aegithalos concinnus rubricapillus* (Tricehurst).
Other hosts: Not known.

Distribution: Darjeeling, West Bengal.

Endogenous stages: The describer encountered the endogenous stages in the small intestine. The trophozoite is more or less oval in shape with a thin outer covering, measuring 7.0 \(\mu \text{m} \) by 4.2 \(\mu \text{m} \), with a distinct nucleus. Schizonts are oval or circular with a number of nuclei. A mature schizont measures 13.8 \(\mu \text{m} \) in diameter and contains 16 nuclei with a developing merozoite which measures 5.3 \(\mu \text{m} \) in length. A large number of macrogametes are encountered in the serial sections of the small intestine, usually in epithelial cells of the mucous membrane, subepithelially in the muscularis mucosae. The early macrogametocyte is oval measuring 9.8 \(\mu \text{m} \) by 8.4 \(\mu \text{m} \). The cytoplasm is alveolar in nature and contains a few deeply basic stained dots or granules. Each macrogametocyte is having a centrally placed nucleus with distinct nuclear membrane. A clear halo is found encircling the karyosome which occupies the major part of the nucleus. The growing macrogametocyte is spherical or oval in shape. A fully formed female gametocyte measures 16.3 \(\mu \text{m} \) by 15.4 \(\mu \text{m} \). The microgametocyte is round or oval found abundantly in the sections. The young microgametocyte is multinucleated and measures 7.4 \(\mu \text{m} \) in diameter. The mature one is spherical measuring 14.8 \(\mu \text{m} \) in diameter. The fully developed one is seen to contain microgametes which are small comma shaped bodies.

Types: Lying with the collection of the describer.

20. *Isospora corviae* Ray, Shivnani, Oommen and Bhaskaran (Fig. 35)

Description: Oocyst sub-spherical to spherical with double envelop, grayish-pink in colour. It measures 15.0-23.0 \(\mu \text{m} \) in length with a mean of 20.0 \(\mu \text{m} \) and 14.0-21.5 \(\mu \text{m} \) in width with a mean of 17.7 \(\mu \text{m} \). The shape index is 1.1. Cytoplasm present as concentrated mass with refractile grobules. Micropyle absent, oocystic residuum present. Sporocyst pyriform in shape, with a knob at the tapering anterior end, posterior end being rounded. It measures 7.5-12.5 \(\mu \text{m} \) in length with a mean of 10.8 \(\mu \text{m} \) and 6.25-8.75 \(\mu \text{m} \) in width with a mean of 7.75 \(\mu \text{m} \). The shape index is 1.3. Sporocystic residuum present as compact mass.
EIMERIIDAE: ISOSPORA

Sporozoite elongated with pointed anterior end, measuring 7.9-9.9 μm

Fig. 35. A, immature and B, mature oocysts of Isospora corvae.

in length with a mean of 8.9 μm and 2.2-4.2 μm in width with a mean of 3.2 μm. The shape index is 2.7.

Sporulation time: 36-48 hours.

Type host: Jungle Crow, Corvus macrorhynchos intermedius (Adams).

Other hosts: From the Type host, Mandal (1976).

Distribution: Mukteswar, Uttar Pradesh; Shillong, Meghalaya.

Endogenous stages: Unknown.

Types: Not known.

21. Isospora emberizae Mandal and Chakravarty

(Fig. 36)

Description: Oocyst oval with three envelopes. The middle layer is thicker than the other two layers. It measures 22.2-24.2 μm in length with a mean of 23.2 μm and 18.8-20.8 μm in width with a mean of 19.8 μm. The shape index is 1.1. Coarsely granular cytoplasm is present within the oocyst. Micropyle and oocystic residuum present. Sporocyst pyriform in shape with slightly curved anterior end having a small knob. It measures 18.8-20.8 μm in length with a mean of 19.8 μm and 14.4-16.4 μm in width with a mean of 15.4 μm. The shape index is 1.2. Sporocytic residuum present as scattered mass. Sporozoite is elongated in shape with tapering anterior end, measures
13.5-15.5 μm in length with a mean of 14.5 μm and 2.5-3.5 μm in width with a mean of 3.00 μm. The shape index is 4.8.

Sporulation time: 24-36 hours.

Type host: Red headed bunting, *Emberiza bruniceps* Brandt.

Other hosts: Unknown.

Distribution: Sundarban, West Bengal.

Endogenous stages: The microgametocyte measures 19.9 μm in diameter. The comma-shaped microgametes are formed with tapering ends. Macrogametocyte measures 11 μm in diameter, gives rise to spherical macrogamete measuring 13.2 μm with a central nucleus.

Types: Present in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

22. **Isospora garrulae** Ray, Shivnani, Oommen and Bhaskaran

(FIG. 37)

Description: Oocyst spherical to sub-spherical in shape, with double contour of brownish colour. The outer wall being thinner than the inner one. It measures 20.0-22.5 μm in length with a mean of 21.25 μm and 17.5-21.25 μm in width with a mean of 19.75 μm. The shape index is 1.05. Globular cytoplasm present. Micropyle absent, oocystic residuum present as small granule. Sporocyst pyriform in shape, with a knob at the tapering anterior end and the posterior end being rounded. It measures 10.0-15.5 μm in length with a mean of
13.40 μm and 7.5-12.5 μm in width with a mean of 8.5 μm. The shape index is 1.5. Sporocystic residuum is found in the form of granular mass. Sporozoite elongated with bluntly pointed anterior end and round posterior end. It measures 9.3 μm by 2.6 μm. The shape index is 3.9.

Sporulation time: 24-36 hours.

Type host: Jay, Garrulax lineatus lineatus (Vigors).

Other hosts: From the Type host, Mandal (1976).

Distribution: Mukteswar, Uttar Pradesh; Shillong, Meghalaya.

Endogenous stages: Unknown.

Types: Not known.

23. *Isospora garrulusae* Ray, Shivnani, Oommen and Bhaskaran

(Fig. 38)

Description: Oocyst oval to subspherical provided with double wall. General colour is greyish. It measures 25.0-27.5 μm in length with a mean of 25.20 μm and 20.0-25.0 μm in width with a mean of 21.00 μm. The shape index is 1.1. The cytoplasm is globular and appears as a compact mass. Micropyle and oocystic residuum or polar granules present. The sporocyst pear-shaped with pointed anterior and rounded posterior ends. The anterior end is provided with a stieda
body. It measures 12.5-17.5 μm in length with a mean of 16.07 μm and 7.5-10.0 μm in width with a mean of 9.60 μm. The shape index is 1.6.

![Image](image_url)

Fig. 38. A, immature and B, mature oocysts of *Isospora garrulusae*.

The sporocystic residuum is present as a compact mass. The sporozoite elongated, pointed at the anterior end and a rounded posterior end. It measures 8.3 μm in length and 2.7 μm in width. The shape index is 3.07. The nucleus is situated at the middle.

Sporulation time: 48-72 hours.

Type host: Himalayan Jay, *Garrulus glandarius bispecularis* (Vigors).

Other hosts: From the type host, Mandal (1976).

Distribution: Mukteswar, Uttar Pradesh; Shillong, Meghalaya.

Endogenous stages: Unknown.

Types: Not known.

24. **Isospora ginginiana** Chakravarty and Kar

(Fig. 39)

Description: Oocyst round with double envelop, measuring 22.3-24.5 μm in diameter with a mean of 23.4 μm. Micropyle and oocystic residuum absent. Spherical cytoplasm is 15.5 μm in diameter. Sporocyst pyriform with anterior pointed end having a refractile knob and other end rounded. Sporocyst measures 15.5-17.5 μm in length with a mean of 16.5 μm and 10.5-11.5 μm in width with a mean of
11 µm. The shape index is 1.5. It is provided with granular residuum and a thick wall. The sporozoite elongated with pointed anterior end, measuring 10.5 µm in length and 4.2 µm in width. The nucleus is situated at the middle.

Sporulation time: 72 hours. Chakravarty and Kar (1946) studied the effect of different temp. on the oocyst of this species and found that 37°C is most favourable for the sporulation.

Type host: Bank Mayna, Acridotheres ginginianus (Lath.)

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Schizonts are found in the small intestine, each measuring 8.8 µm in diameter. Mature schizont produces 8-16 nuclei. The microgametocyte round, measuring 11-13.2 µm in diameter, produces comma-shaped microgametes, each is provided with a single short flagellum. Macrogamete round, measuring 11 µm in diameter with a granular cytoplasm and a distinct eccentric nuclear karyosome.

Types: Lying in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

25. **Isospora ginginiana tristis** Chakravarty and Kar

(Fig. 40)

Description: Oocyst subspherical or slightly oval with double envelop. It measures 24.00-30.00 µm in length with a mean of 26.00 µm and 19.5-24.5 µm in width with a mean of 21.9 µm. The shape index is 1.18. Cytoplasm globular, oocystic residuum and micropyle absent. Sporocyst pyriform in shape with a small knob at the anterior pointed end. It measures 15.5-17.5 µm in length with a mean of 16.5 µm and
Sporocystic residuum present as compact mass. Sporozoite elongated in shape measuring 15.4 μm in length and 2.2 μm in width. The shape index is 7.00.

Fig. 40. A, immature and B, mature oocysts of *Isospora ginginiana tristis*.

Sporulation time: 60—70 hours.

Type host: Common Mayna, *Acrideres tristis tristis* (Linn.)

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Present in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

Remarks: Pellerdy (1974), is of opinion that there is no reason to accept the validity of sub-species in Sporozoa. Therefore, *ginginiana tristis* should be treated as separate species *I. tristis*. However, the present author believes in retaining the sub-species and followed here.

26. **Isospora graculi** Bhatia, Chauhan, Arora and Agarwal

(Fig. 41)

Description: Oocyst spherical to sub-spherical in shape, measures 21.3-29.3 μm in length and 18.6-25.3 μm in width (mean 24.5 μm by
22.6 μm), has a 1.5 μm thick wall with an outer yellowish-green and inner yellowish-brown layers. The length width ratio is 1.00-1.31 (mean 1.08). Micropyle and polar cap absent. Oocystic residuum absent. One or rarely 2 prominent dark polar granules present. The sporocyst ellipsoidal, with a narrower anterior end, carrying a vestigeal stieda body. It measures 16.0-21.3 μm by 9.3-12.0 μm (mean 18.4 μm by 10.0 μm). Sporocystic residuum is observed as a clump of coarse dark granules in two different forms, viz. small and large clumps. Sporozoite elongated, measuring 13.3-16.0 μm by 2.6-3.3 μm (mean 14.6 μm by 2.8 μm) in size, carrying a large refractile globule at the broad end and a smaller one towards the narrower end with nucleus in the centre.

Sporulation time: Unknown.

Type hosts: Hill Mayna, *Gracula religiosa* (Linn.).

Other hosts: Unknown.

Distribution: Zoological Garden, Delhi.

Endogenous stages: Unknown.

Types: Likely to be present in the Dept. of Parasitology, Mathura Veterinary College, Mathura, Uttar Pradesh.

Remarks: Chakravarty and Kar (1947) described, *I. ginginiana tristis* from the Common Mayna, *Acridotheres t. tristis* which comes very close to *I. graculi* Bhatia *et al.* (1973) in all respects except the shape of the sporocyst. But until or unless some cross transmission experiments are being carried out it would be difficult to comment on the validity of this species.
Isospora gypsi Patnaik and Mohanty

(Fig. 42)

Description: Oocyst spherical to sub-spherical, double walled of equal thickness measuring 1.3 μm and smooth. It measures 17.00 μm-23.5 μm (mean 20.4 μm) in length and 14.5 μm-19.5 μm (mean 17.5 μm) in width with shape index 1.5. The cytoplasm completely fills up the inner space; residuum and micropyle absent, one or more polar granules present. Sporocyst pyriform, ellipsoidal, measuring 11.5 μm-16.5 μm (mean 13.2 μm) in length and 8.2 μm-8.5 μm (mean 8.5 μm) in maximum width with a refractile plug like stieda body at the narrow anterior end. Sporocystic residuum present as dark granules. Sporozoite sausage-shaped with pointed anterior end. It measures 6.00 μm in length and 1.6 μm in maximum width. The tapering end is provided with two refractile globules and the nucleus is placed centrally.

Sporulation time: 20-24 hours.

Type host: Indian white-backed Vulture, Gyps bengalensis (Gmelin).

Other hosts: From the type host, Garg and Chauhan (1970), Mandal (1976).

Distribution: Bhubaneswar, Orissa; Mathura, Uttar Pradesh; Beliaghata, Calcutta, West Bengal.

Endogenous stages: Unknown. Garg and Chauhan (1970) expressed a desire to work out the endogenous stages but no such account is available so far.

Types: Not known.
28. **Isospora koreani** Bhatia, Chauhan, Arora and Agarwal

(Fig. 43)

Description: Subspherical oocyst; measuring 20-24 µm by 16.9-20 µm (mean 22.4 by 19.2 µm) in size; lined by double contoured oocystic wall; outer being straw-coloured and inner light-brown. Micropyle and polar cap absent. Oocystic residuum absent. Polar granules present. Sporocyst broadly ellipsoidal; 14.3-16.0 by 8-9.3 µm (mean 15.6 by 8.8 µm) in size; carries a plug-like stieda body at one pole. Sporocystic residuum present as clump of coarse granules. Sporozoite banana-shaped with one end narrow and tapering, and the other end broader with a large refractile globule.

Sporulation time: Unknown.

Type host: Korean Pheasant, *Phasienus colchicus* Linn.

Other hosts: Japanese green pheasant, *Phasianus versicolor* Vieillot, Bhatia et al. (1973); Chauhan et al. (1973).

Distribution: Zoological Garden, Delhi.

Endogenous stages: Unknown.

Types: Likely to be present in the Dept. of Parasitology, Mathura Veterinary College, Mathura, Uttar Pradesh.

29. **Isospora lacazei** (Labbé)

(Fig. 44)

Description: Oocyst spherical or sub-spherical double walled, inner one is thicker than the outer. Oocyst measures 24.0-32.0 μm in length with a mean of 26.8 μm and 20.0-30.0 μm in width with a mean of 27.4 μm. The shape index is 1.09. Cytoplasm is granular with several refractile granules. Micropyle and oocystic residuum absent. Sporocyst ovoid to pyriform with a button-shaped plug at the narrow anterior end. It measures 14-22 μm in length with a mean of 17.2 μm and 10.0-11.0 μm in width with a mean of 10.3 μm. The shape index is 1.56. Sporocystic residuum finely granular and present as scattered mass. Sporozoite bean-shaped, measuring 8.5 μm in length and 2.3 μm in width. The shape index is 3.7. Nucleus is situated at the middle.

Sporulation time: 48-60 hours.

Type host: House Sparrow, *Passer domesticus* (Linn.)

Distribution: Calcutta, West Bengal.

Fig. 44. A, mature B, immature and C, mature oocysts of *Isospora lacazeti*.
Endogenous stages: Schizonts are found in the epithelial cells of the small intestine. Mature schizont measuring 14 μm by 10 μm in size having 12-15 sickle-shaped merozoites. Microgametocyte round measuring 16 μm in diameter produces spindle-shaped microgametes each with a short flagellum on maturation. Macrogamete measuring 11-16 μm in diameter having a prominent nucleus with a distinct Karyosome. Shortest period to complete the endogenous development is about 6 days which has been noticed on the basis of experimental inoculation by Mandal and Bhattacherjee (1970).

Remarks: The endogenous development and the description of the oocyst are based on the author's own observations and after Chakravarty and Kar (1944). Pellerdy (1974) gave a detail account of this parasite and the contributions made by the different authors. The new variety 'indicus' described by Satyanarayanacharlu et al. (1970) does not hold good due to the world-wide distribution of the species.

Types: Not known.

30. Isospora lonchurae Mandal and Chakravarty

(Fig. 45)

Description: Oocyst oval and provided with double envelop, the outer being thinner than the inner one. It measures 24.3-26.4 μm in length with a mean of 25.8 μm and 20.9-23.1 μm in width with a mean of 21.8 μm. The shape index is 1.1. Cytoplasm spherical with highly refractile globules. Micropyle absent and oocystic residuum present.

Fig. 45. Mature oocyst of Isospora lonchurae.
Sporocyst is pyriform in shape, the anterior end is bluntly pointed with a small knob while the posterior end is round. It measures 18.7 \(\mu \text{m} \)-20.9 \(\mu \text{m} \) in length with a mean of 19.5 \(\mu \text{m} \) and 11 \(\mu \text{m} \)-13.2 \(\mu \text{m} \) in width with a mean of 12.1 \(\mu \text{m} \). The shape index is 1.6. Sporocystic residuum is present as scattered mass. The sporozoite elongated bluntly pointed at both ends. It measures 9.2-10.4 \(\mu \text{m} \) in length with a mean of 9.6 \(\mu \text{m} \) and 2.5-3.5 \(\mu \text{m} \) in width with a mean of 2.8 \(\mu \text{m} \). The shape index is 3.4. The nucleus is centrally placed. A vacuolated area is seen at one end of the sporozoite.

Sporulation time: 60-72 hours.

Type host: Spotted Munia, *Lonchura punctulata* (Linn.).

Distribution: Suberb of Calcutta, West Bengal.

Endogenous stages: Schizogony has not been observed. The microgametocytes are round each measuring 6.6 \(\mu \text{m} \) in diameter, on maturation it gives rise to many comma shaped microgametes. The macrogametocytes are also round and measuring initially 8.8-11.0 \(\mu \text{m} \) in diameter, when fully formed it measures 15.4 \(\mu \text{m} \) in diameter.

Types: Lying in the Collection of Protozoology Laboratory, Dept. of Zoology, Calcutta University.

31. **Isospora malabaricae** Swarup and Chauhan

Description: Oocyst spherical to subspherical in shape, measuring 19.5-25.5 \(\mu \text{m} \) in length and 19.5-24.0 \(\mu \text{m} \) in width with a mean of 22.3 \(\mu \text{m} \) by 21.8 \(\mu \text{m} \). The length width ratio is 1.0-1.06 mean 1.02. The oocystic wall is single layered, about 1.0 \(\mu \text{m} \) thick and it is light-yellow in colour. Micropyle and polar cap absent. In unsporulated stage, the sporont filled almost all the inner space. Oocystic residuum, polar granules vary in shape and size (one to five in number). The ovoid sporocyst, with small knob-like stieda body and pluy-like substiedal body at the narrow end ; measuring 16.5-18.0 \(\mu \text{m} \) in length and 10.5-12.0 \(\mu \text{m} \) in width with a mean of 16.8 \(\mu \text{m} \) by 10-8 \(\mu \text{m} \). The elongated sporozoite with one end narrower and the other round, lying head to tail and surrounded by sporocystic residuum, dispersed as coarse dark granules. It measures 12.0-12-7 \(\mu \text{m} \) in length and 3.0 \(\mu \text{m} \) in width with the mean of 12.2 \(\mu \text{m} \) by 3.0 \(\mu \text{m} \) and carries two refractile globules with a centrally placed nucleus.
Sporulation time: 2-3 days.

Type host: Grey-headed Mayna, *Sturnia malabarica malabarica* (Gmel.), [= *Sturnus m. malabaricus* (Gmel.).]

Other hosts: Unknown.

Distribution: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: This species is named after the specific name of the type host. Therefore as per rule it should be *Isospora malabarica* instead of 'malabaricae'.

32. *Isospora mandari* Bhatia, Chauhan, Arora and Agarwal (Fig. 46)

Description: Spherical to sub-spherical oocyst, measures 19.5-23.4 μm in length and 18.2-22.2 μm in width (mean 21.4 μm by 20.5 μm). The double contoured oocystic wall of 1.0-1.3 μm thickness, has outer transparent straw coloured and inner light brownish blue layers. Micropyle and polar cap absent. Oocystic residuum absent. A large polar granule present. Sporocyst ellipsoidal measuring 11.7-16.0 μm in length and 7.8-10.4 μm in width (mean 14.0 μm by 9.8 μm); has a prominent plug-like stieda body. Sporocystic residuum present as coarse dark granules dispersed around the sporozoites. Sporozoite banana-shaped measuring 12.0-13.3 in length and 2.8 μm in width (mean 12.5 μm by 2.7 μm) carried large refractile globule at the broader end and the other towards narrower end.

Fig. 46. Mature oocyst of *Isospora mandari.*
Type host: Mandarin Duck, *Aix galericulata* (Linn.)

Other hosts: Unknown.

Distribution: Zoological garden, Delhi.

Endogenous stages: Unknown.

Types: Not known.

33. *Isospora mayuri* Patnaik

(Fig. 47)

Description: The oocyst sub-spherical in shape, yellowish brown in colour and double walled. It measures 20-27.4 μm in length with a mean of 23.37 μm and 18-24.1 μm in width a mean of 21.36 μm. The shape index varies from 1.0-1.21, mean 1.09. Oocystic wall smooth and 1.5 μm thick, residuum and micropyle absent. Sporocyst pyrifrom in shape measuring 14.5-16.1 μm in length with a mean of 15.9 μm and 9.6-11.23 μm in width with a mean of 10.17 μm. It is provided with distinct wall and button like refractile stieda body at the pointed end. Sporozoites banana-shaped, each measuring 6-7 μm in length and 1.5-2 μm in width.

Sporulation time: 72 hours.

Type host: Indian Pea Fowl, *Pavo cristatus* Linn.

Other hosts: From the type host, Bhatia et al. (1972), Chauhan et al. (1973) and Mandal (1976).
Distribution: Bhubaneswar, Orissa; Calcutta market, West Bengal; and Zoological garden, Delhi; Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pande et al. (1970) recovered the spherical or subspherical oocysts from the faecal sample of *Pavo cristatus*, each measuring 19-22 μm by 17-29 μm with the mean of 20.8 μm by 18 μm and identified as *Isospora mayuri* Patnaik (1966). Pellerdy (1974) has made a comment that this species though differs to some extent from *Isospora mayuri* but can also be treated as independent species. He further noted that both the species are likely to be *Isospora lacazei* picked up from the droppings of sparrow.

34. **Isospora megalaimae** Mandal and Chakravarty

(Fig. 48)

Description: Oocysts round, each measuring 23.2-25.4 μm in diameter; possesses double envelop, without any micropyle. Oocystic residuum absent. The sporocyst pyriform in shape and has broader posterior and bluntly pointed anterior ends. It measures 17.6 by 9.9 μm.

![Fig. 48. Mature oocyst of *Isospora megalaima*.](image-url)
The sporocystic residual mass scattered irregularly. Sporozoites elongated each measuring $7.7 \mu m$ in length and arranged irregularly.

Sporulation time: 24-36 hours.

Type host: Crimson breasted Barbet, *Megalaima haemocephala* (P. L. S. Meiller).

Other hosts: Unknown.

Distribution: Suberb of Calcutta, West Bengal.

Endogenous stages: Mature schizont round, measuring $6.6 \mu m$ in diameter. The merozoites are elongated with tapering ends, each measuring $5.5 \mu m$ long with a centrally placed nucleus. Microgametocyte round, measuring $5.5 \mu m$ in diameter provided with many scattered dot-like vesicular nuclei which develop to comma-shaped bodies, each is rounded at one end and provided with a small flagellum at the opposite end. The macrogametocyte round measuring $15.5 \mu m$ in diameter and provided with granular cytoplasm. The zygote measures 14.4 by 9.9 \mu m.

Types: Present in the Collection of Protozoology Laboratory, Dept. of Zoology, Calcutta University.

35. **Isospora melopsittacusi** Bhatia, Chauhan, Arora and Agarwal

(Fig. 49)

Description: Oocyst ovoid, 20-28 \mu m in length and 17.3-21.3 \mu m in width (mean 24.0 \mu m by 18.5 \mu m) has an oocystic wall of 1.3 \mu m thickness and composed of outer straw-coloured and inner yellowish-

Fig. 49. Mature oocyst of *Isospora melopsittacusi*.
brown layers with length-width ratio of 1.15-1.42 (mean 1.29). Micropyle and polar cap absent. Oocystic residuum absent. One or more polar granules present. Sporocyst almond shaped, measuring 16.0-18.6 \(\mu m \) in length and 8.0-9.3 \(\mu m \) in width (mean 17.0 \(\mu m \) by 8.3 \(\mu m \)) carries a small knob-like stieda body at the narrow anterior end. Sporocystic residuum present as a loose clump of dark coarse granules. Sporozoites elongated each measuring 3.3 \(\mu m \) by 2.6 \(\mu m \) in size, and provided with two refractile globules.

Type host: Budgeriger, *Melopsittacus undulatus* Shaw.

Other hosts: Unknown.

Distribution: Zoological garden, Delhi.

Endogenous stages: Unknown.

Types: Likely to be present in the Dept. of Parasitology, Mathura Veterinary College, Mathura, Uttar Pradesh.

Remarks: The describer includes this host under the order Cuculiformes but it should come under the order Psittasiformes. Brada (1966) reported *Eimeria* sp. from this host species at South America. The oocyst was measured as 23-35 \(\mu m \) in length and 20-28 \(\mu m \) in width mean (33.7 \(\mu m \) by 22.8 \(\mu m \)). Sporulation was completed by 24 hours at 28° c. The oval sporocyst measured 12 \(\mu m \) in length and 9 \(\mu m \) in width with granular sporocystic residuum. He further stated that the species might be pathogenic, as he recovered oocysts from a host with diarrhoea. Experimentally it has been proved that this species is host specific.

36. **Isospora muniae** Chakravarty and Kar

(Fig. 50)

Description: Oocyst broadly or elongately oval, measuring 24.5-31.5 \(\mu m \) in length with a mean of 28.3 \(\mu m \) and 15.5-19.5 \(\mu m \) in width with a mean of 17.5 \(\mu m \). The shape index is 1.6. Oocyst is provided with double envelop of 1.5 \(\mu m \) thickness. The cytoplasm is granular with several refringent globules, 15.6 \(\mu m \) in diameter and placed centrally. Micropyle present, oocystic residuum absent. The sporocyst is pyriform with the anterior end pointed and the posterior end rounded, measuring 14.5-16.5 \(\mu m \) in length with a mean of 15.5 \(\mu m \) and 10.2-11.2 \(\mu m \) in width with a mean of 10.7 \(\mu m \). The shape index is 1.4. It is provided with double layers and having a refractile knob at the pointed anterior end. Sporocystic residual mass is granular and scattered irregularly.
Sporozoites are sickle-shaped, each measuring 6.5 \(\mu \text{m} \) by 2.00 \(\mu \text{m} \). The anterior end is pointed and the posterior end rounded where the nucleus is situated.

Fig. 50. A, immature and B, mature oocysts of *Isospora muniae*.

Sporulation time: 48-60 hours.

Type host: Black-headed Munia, *Munia (=Lonchura) malacca malacca* Linn.

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Elongately oval schizont measures 10-13.2 \(\mu \text{m} \) in length and 6.6-8.8 \(\mu \text{m} \) in width. The mature one produces sixteen-sickle-shaped merozoites, each measuring 8.8 \(\mu \text{m} \) by 1.5 \(\mu \text{m} \) in size. Microgametocyte oval, measures 15.4 \(\mu \text{m} \) by 11.0 \(\mu \text{m} \). The microgamete measures 4.4 \(\mu \text{m} \) in length with a long flagellum. Macrogamete oval measuring 18.8 \(\mu \text{m} \) by 13.2 \(\mu \text{m} \) in size with a large nucleus of 4.5 \(\mu \text{m} \) in diameter. The macrogametes are characterised by large granules presumably reserve food materials as stated by Chakravarty and Kar (1944 b).

Types: Likely to be present in the collections of Protozoology Laboratory, Dept. of Zoology, Calcutta University.

37. *Isospora parusi* Ray, Shivnani, Oommen and Bhaskaran

(Fig. 51)

Description: Oocyst oval to subspherical in shape, double walled of grayish-white colour with yellowish tinge. It measures 22.5-27.5 µm in length with a mean of 24.16 µm and 20.0-22.5 µm in width with a mean of 20.83 µm. The shape index is 1.1. Subspherical cytoplasm.

Fig. 51. A, mature and B, immature oocysts of *Isospora parusi*.

Oocystic residuum is in the form of one or two granules and micropyle present in the form of a slight depression in the endocystic wall. Sporocyst pyriform in shape tapering at the anterior end, with a steida body in the form of a plug. It measures 10.0-17.5 µm in length with a mean of 15.0 µm and 10.0 µm in width. The shape index is 1.5. Sporocystic residuum present in the form of globular mass. Sporozoites are elongated each having a nucleus at the posterior rounded end with tapering anterior end. Sporozoite measures 9.5 µm in length and 2.5 µm in width. The shape index is 3.8.

Sporulation time: 36-48 hours.

Type host: Brown crested Tit, *Parus dichrurus* (Hodgson).

Other hosts: From the Type host, Mandal (1976).

Distribution: Mukteswar, Uttar Pradesh; Shillong, Meghalaya.

Endogenous stages: Unknown.

Types: Not known.

38. **Isospora psittaculæ** Chakravarty and Kar

(Fig. 52)

Description: Oocyst broadly oval and provided with double envelop,
the outer one is thinner than the inner one. It measures 28.5-32.6 µm in length with a mean of 30.5 µm and 24.4-28.4 µm in width with a mean of 25.4 µm. The shape index is 1.16. Cytoplasm with refringent globules almost fills up the oocyst. Oocystic residuum present, micropyle absent. Sporocyst somewhat oval with narrow anterior end which is provided with a well developed knob of 2.2 µm in length. Sporocyst measures 22.0-26.4 µm in length with a mean of 24.5 µm and 12.5-14.5 µm in width with a mean of 13.5 µm. The shape index is 1.8. Sporocystic residuum present as compact mass. Sporozoite elongated in shape with pointed anterior end and rounded posterior end. It measures 11.5-15.5 µm in length with a mean of 13.5 µm and 4.4-6.4 µm at broadest width with a mean of 5.4 µm. The shape index is 2.5. Posterior end of the sporozoite is provided with a vacuole.

Sporulation time: 48-60 hours.

Type host: Large Indian Parakeet, *Psittacula eupatria nipalensis* (Hodgson).

Other hosts: Red whiskered Bulbul, *Elathea (=Pycnonotus) jocosus emeria* (Linn.)

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.
39. **Isospora pycnonotae** Mandal and Chakravarty

(Fig. 53)

Description: Oocyst oval, provided with double wall, the outer being thinner than the inner one. It measures 23.2-24.5 μm in length with a mean of 24.2 μm and 18.8-20.8 μm in width with a mean of 19.8 μm. The shape index is 1.2. Cytoplasm spherical, highly granular containing refractile globules. Micropyle present, oocystic residuum absent. The sporocyst pyriform with pointed anterior end and rounded posterior end. The pointed end is provided with small knob and just behind the knob a transparent refractile area is observed. Sporocyst measures 18.8-20.8 μm in length with a mean of 19.8 μm and 7.8-9.8 μm in width with a mean of 8.8 μm. The shape index is 2.1. Sporocystic residuum is present as scattered mass. Sporozoite elongated with both ends bluntly pointed and nucleus is situated at the middle position. Sporozoite measures 11.1-13.1 μm in length with a mean of 12.1 μm and 2.1-3.4 μm in width with a mean of 2.8 μm. The shape index is 4.3.

Sporulation time: 41-62 hours.

Type host: Red Whiskered Bulbul, *Pycnonotus jocosus* (Linnaeus).

Other hosts: Jungle bubbler, *Turdoides straitus* (Dumont.).

Distribution: Calcutta, West Bengal, Zoological Garden, Lucknow, Uttar Pradesh; Bhatia *et al.* (1973).

Endogenous stages: Schizont round measuring 4.4 μm in diameter. The mature one produces eight to twelve merozoites, each measuring
3.3 µm long. Microgametocytes are oval each measuring 12.1 µm in length and 9 µm in width. The comma-shaped microgametes are formed each is tapering at one end. The macrogametocyte measures 6.6 µm in diameter but the mature macrogamete measures 22 µm by 15.4 µm.

Type: Lying in the collections of Protozoology Laboratory, Dept. of Zoology, Calcutta University.

Remarks: The specific name was mispelt as 'pycnonotae' instead of 'pycnonoti' as cited by Pellerdy, 1974. Bhatia *et al.*, 1973 described *I. pycnonotusi* unawaring the fact that Mandal and Chakravarty (1964) already described *I. pycnonotae* from the same host. The measurements and shape of the oocysts as well as sporocysts come close to each other. Therefore *I. pycnonotusi* Bhatia *et al.*, 1973 is synonymised with *I. pycnonotae* Mandal and Chakravarty, 1964.

40. **Isospora rajuli** Satyanarayanacharullu, Subba Rao and Christopher.

Description: The oocyst subspherical to broadly ovoidal with both ends rounded, measuring 19.2-34.4 µm (mean 26.24 µm) in length and 17.4-26.6 µm (mean 21.84 µm) in width. The shape index is 0.83. The wall of oocyst is 1.5 µm, double contoured, smooth, clear and colourless. The micropyle is either inconspicuous or absent. The unsporulated oocyst shows sporont centrally placed. In a few cases the sporonts are noticed in paracentral position. They are spherical and granular each with a diameter of 12.5-25.5 µm (mean 19.2 µm). The sporont occupied two-third of the cavity leaving space on either end. The polar granules absent in the unsporulated oocyst but present in many of the sporulated ones and are compact and spherical in shape. These granules are terminal except in a few which are sub-terminal. Oocystic residuum absent. The sporocyst oval and measures 14.8-20.2 µm by 11.2-13.4 µm (mean 17.4 µm by 12.2 µm). Stieda body small, plug-like and present at the narrower end. Sporocystic residuum is present inbetween the sporozoites as a compact rounded mass. The sporozoites are slender, slightly curved and each measuring 10-14 µm by 3-5 µm (mean 12.2 µm by 4.2 µm) with a compact centrally located nucleus. The refractile globules were noticed on either side of the nucleus.
Type host: Mynah (=Common Mayna) *Acridotheres t. tristis* (Linn)

Other hosts: Unknown

Distribution: Tirupati, Andhra Pradesh.

Endogenous stages: Unknown.

Types: Not known.

41. *Isospora sicercesae* Ray, Shivnani, Oommen and Bhaskaran

(Fig. 54)

Description: Oocyst spherical to subspherical in shape and provided with double walls of pink colour. Oocyst measures 22.5-30.0 µm in length with a mean of 24.8 µm and 20.5-25.0 µm in width with a mean of 23.28 µm. The shape index is 1.06. Micropyle and oocystic residuum present. Sporocysts are pear-shaped each with a prominent knob at the tapering anterior end. It measures 10.0-17.5 µm in length with a mean of 14.21 µm and 8.75-11.25 µm in width with a mean of 10.31 µm. The shape index is 1.3. Sporocystic residuum present as compact mass. Sporozoites are elongated, each is provided with bluntly pointed anterior end. Sporozoite measures 8.5-9.7 µm in length with a mean of 8.8 µm and 2.2-4.3 µm in width with a mean of 3.3 µm. The shape index is 2.7. Nucleus is situated at the rounded posterior end.
Sporulation time: 48 hours.

Type host: Grey headed flycatcher Worbbler, *Sicercus xantoschistos* (Gray).

Other hosts: Unknown.

Distribution: Mukteswar, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

42. *Isospora sturniae* Chakravarty and Kar

(Fig. 55)

Description: Oocysts spherical or subspherical with double oocystic membrane. It measures 22.5-28.5 μm in diameter with a mean of 25.5 μm. Unsporulated oocysts filled up with cytoplasm. Micropyle present, oocystic residuum absent. Sporocyst pyriform in shape with narrow anterior and broader posterior ends, the former being provided with well developed knob. It measures 17.7-19.7 μm in length with a mean of 18.7 μm and 11.4-13.4 μm in width with a mean of 12.4 μm. The shape index is 1.5. Sporocystic residuum is present as compact mass. Sporozoite elongated in shape with a centrally placed nucleus. The sporozoite measures 11.2-13.2 μm in length with a mean of 12.2 μm and 2.2-3.2 μm in width with a mean of 2.8 μm. The shape index is 4.8.
Sporulation time: 30-43 hours.

Type host: Gray headed Mayna, *Sturnia malabarica* (=*Sturnus malabaricus* (Gmelin)).

Other hosts: Unknown.

Distribution: Gaya, Bihar.

Endogenous stages: Schizont round; the mature one produces elongated merozoite of 4.4 μm in length and 2.2 μm in width. The gametocytes are round. The microgametocyte on maturation gives rise to spindle-shaped microgametes each measuring 2.2 μm in length.

Types: Not known.

43. *Isospora temenuchii* Chakravarty and Kar

(Fig. 56)

Description: Oocyst subspherical or slightly ovoid, measuring 22.5-24.5 μm in length with a mean of 23.5 μm and 19.5-21.5 μm in width with a mean of 20.5 μm. The shape index is 1.14. Oocystic wall double layered of 2 μm. Micropyle present in some cases, oocystic residuum absent. Unsegmented zygote highly granular, contains several refringent globules, measures about 15.5 μm. Sporocyst elongately oval in shape, the anterior end somewhat bluntly pointed with a well developed knob. Sporocyst possesses single layer and measuring 15.5-17 μm in length with a mean of 16.5 μm and 10.2-11.5 μm in width with a
mean of 10.6 μm. Sporocystic residuum compact and appears as refractile area. Sporozoite elongated in shape with the anterior end narrowing down to a blunt point while the posterior end remains round. Nucleus is placed near the centre of the body or slightly towards the rounded end of the sporozoites. Sporozoite measures 8.5 μm by 3.3 μm.

Sporulation time: 36-48 hours.

Type host: Black headed or Brahmini Mayna, *Temenuchus (= Sturnus) pagodarum* (Gmelin).

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pellerdy (1974) stated that instead of 'temenuchii' it should be spelt as 'temenuchi', because the genetive of *temenuchus* is 'temenuchi'.

44. **Isospora upupae** Chakravarty and Kar

(Fig. 57)

Description: Oocyst spherical provided with double envelop. It measures 24.4-28.4 μm in diameter with a mean of 26.4 μm. Cytoplasm is rounded and contains refringent globules. Micropyle and oocystic residuum absent. Sporocyst oval, provided with blunt knob at the
pointed anterior end. It measures 15.4-19.4 µm in length with a mean of 17.4 µm and 11.3-13.5 µm in width with a mean of 12.4 µm. The shape index is 1.4. Sporocystic residuum is present as a compact irregular mass. Sporozoites are sickle-shaped, each measuring 16.00-18.00 µm in length with a mean of 17.00 µm and 2.00-3.00 µm in width with a mean of 2.4 µm. The shape index is 7.08. Nucleus is situated towards the rounded posterior end of the sporozoite.

Sporulation time: 48-62 hours.

Type host: Hooper, *Upupa epops orientalis* Baker.

Other hosts: Drongo, *Dicrurus macrocercus* (= *D. adsimilis*) macrocercus (Vieillot).

Distribution: Gaya, Bihar.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pellerdy (1974) has made a comment on the occurrence of this species in both the hosts after considering the remote systematic position. The type host belongs to the order Coraciiformes and the Black Drongo comes under the order Passeriformes. However, on personal discussion with one of the author (M. M. C.), the present author could not come to any conclusion about this type of host range.

45. *Isospora zosteropis* Chakravarty and Kar

(Fig. 58)

Description: Oocyst oval, double layered, the outer being thinner. Oocyst measures 17.5-22.5 µm in length with a mean of 19.8 µm and
13.5-19.5 μm in width with a mean of 16.5 μm. The shape index is 1.2. Cytoplasm circular and provided with refringent globules. Micropyle and oocystic residuum absent. Sporocyst oval and the anterior pointed end is provided with a knob. Sporocyst measures 15.3-17.5 μm in length with a mean of 16.5 μm and 10.5-11.5 μm in width with a mean of 11.1 μm. The shape index is 1.4. Sporocystic residuum is present as compact mass. Sporozoites are club shaped each is provided with nucleus at central position, measuring 14.5-16.5 μm in length with a mean of 15.5 μm and 2.1-3.5 μm in width with a mean of 2.5 μm. The shape index is 6.2.

Sporulation time: 30-48 hours.

Type host: White eye, Zosterops palpebrosa palpebrosa (Temm. & Schlegel).

Other hosts: Northern Green barbet, Thereiceryx zeylanicus caniceps (Frankl). (= Megalaima zeylanica caniceps (Franklin).

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pellerdy (1974) expressed a doubt about the occurrence of the present species in Northern-green barbet, Thereiceryx zeylanicus caniceps (Frankl) after considering the host specificity of the parasite.

46. Isospora sp.

Description: The oocyst subspherical or sometimes spherical and measures 16-33 μm by 15-31 μm (mean 23 μm by 20.4 μm). The wall consists of two layers; the external one is smooth, 1 μm thick and light yellow; the internal one is 0.5 μm thick and brownish yellow. There is no micropyle. No oocystic residuum is formed during sporulation but there are often one or two polar bodies. The thick-walled is having no micropyLe. No oocystic residuum is formed during sporulation but there are often one or two polar bodies. The thick-walled sporocyst has a stieda body and sporocystic residuum. The sporozoite is narrower at one end and bear yellowish globule on the other broad end.

Host: Domestic fowl, Gallus domesticus (= Gallus sp.)

Distribution: Madhya Pradesh.
Endogenous stages: Unknown.

Remarks: From domestic fowl so far 2 species of *Isospora* viz. *I. gallinae* Scholtyscek, 1954 and *I. gallinarum* Kornieko and Glebezdin, 1963 (vide Pellerdy, 1974, p. 260) have been reported. Pellerdy (1974) expressed a doubt about the validity of both the species. He presumed that both of them are *I. lacazei* Labbe, 1893 of sparrow and have erroneously been described, pointing the continuous contact of the hens with other birds like sparrow. On the report of the occurrence of this *Isospora* sp. in domestic fowl from India, he expressed the similar view as stated above. Mandal (1980) has also variably discussed about this *Isospora* sp.

The wide host range (vide Mandal, 1976) of *Isospora lacazei* along with the chance of contamination in addition to the variation in sizes of the oocyst and sporocyst, it is sometimes difficult to identify a *Isospora* species. It is quite possible that the present species might be *Isospora lacazei*, found due to contamination.

47. *Isospora* sp.

(Fig. 59)

Description: Oocyst spherical to subspherical, measuring 20-29.0 μm in length with a mean of 26.0 μm and 19-27.0 μm in width with a mean of 24.0 μm. It is provided with a comparatively delicate but

![Fig. 59. Mature oocyst of *Isospora* sp.](image-url)
double layered wall of 1.0-1.3 μm thickness, the outer nearly colourless or slightly pinkish and the inner of dark-blue colour. Micropyle, oocystic residuum and polar granule are absent. Sporocyst pyriform, measuring 14-20.0 μm in length with a mean of 17.3 μm and 9.0-13.0 μm width with a mean of 11.4 μm, the narrower end capped by a plug like stieda body. Sporocystic residuum present as diffuse granules. Sporozoite elongated with one end narrower, measuring 14.6 μm in length and 4.0 μm in width with two refractile globules and the larger one is situated at the broader end.

Sporulation time: 24-28 hours.

Host: Khaki Campbell duck, *Anas* sp.

Distribution: Chak Ganjaria Farm, Lucknow, Uttar Pradesh.

Remarks: Pellerdy (1969, 1974) has not mentioned any species of *Isospora* from the birds belonging to order Anseriformes. However, the occurrence of an *Isospora* species is likely to be contaminative and from the description it appears that the author was dealing with *Isospora lacazei* (Labbe, 1893) of some common passerine birds of the farm.

48. *Isospora* sp.

Description: The oocyst round in shape, measures 14.8-17.8 μm in diameter and usually sheds in the unsporulated state. The yellowish tint oocystic wall is double-contoured, the inner layer is thicker than the outer. The sporocyst has no outer residual body, measures 10.6 μm by 7.4 μm and at the tapering end, the wall is thickened. The sporozoites are 7.5 μm long.

Sporulation time: 10-12 days.

Host: Wagtail, *Motacilla alba* (Linnaeus)

Distribution: Lucknow, Uttar Pradesh.

Remarks: Pellerdy (1974) only mentioned this species but did not comment any. An Isosporan species of a bird with such prolong sporulation time is rare. The present author has examined some Wagtails at Shillong, Meghalaya and Lucknow, Uttar Pradesh but could not come across any coccidial infection.
Key to the species

A. Oocyst spherical, spherical to subspherical, subspherical or spherical to ovoid

1. **Sporocyst oval/ovoid**
 - (i) Size of sporocyst 18-24 µm by 12-15.00 µm ... *I. aurangabadensis*
 - (ii) Size of sporocyst 20-26 µm by 17-21 µm ... *I. krishnamurthyi*
 - (iii) Size of sporocyst 15.5-16 µm by 10-10.5 µm ... *I. tropicalis*

2. **Sporocyst not oval/ovoid**
 - (a) Sporocyst ellipsoidal
 - (i) Size of sporocyst 10-12 µm by 8.9 µm ... *I. hoaare*
 - (ii) Size of sporocyst 7-8 µm by 5-7 µm ... *I. bigemina*
 - (b) Sporocyst spherical ... *I. canis*
 - (c) Sporocyst elliptical to cylindrical ... *I. suis*

B. Oocyst not spherical, spherical to subspherical, subspherical or spherical to ovoid.

1. **Oocyst elongated or egg shaped**
 - (a) Micropyle present ... *I. bellii*
 - (b) Micropyle absent
 - (i) Size of sporocyst 9.16 µm by 7-11 µm ... *I. hominis*
 - (ii) Size of sporocyst 16-21 µm by 11-16 µm ... *I. ursi*

2. **Oocyst rhomboidal**

3. **Oocyst ellipsoidal**
 - (i) Size of sporocyst 21 µm by 15 µm ... *I. felina*
 - (ii) Size of sporocyst 19-21 µm by 12-14 µm ... *I. garnhami*
 - (iii) Size of sporocyst 14.4-20.16 µm by 11.52-15.54 µm ... *I. pantheri*

4. **Oocyst ovoid to egg-shaped**
 - (i) Size of sporocyst 20-24 µm by 18-21 µm ... *I. felis*
 - (ii) Size of sporocyst 12.96-17.28 µm by 11.52-14.4 µm ... *I. hippopotami*
 - (iii) Size of sporocyst 15.84-20.16 µm by 15.84-18.16 µm ... *I. leopardi*
 - (iv) Size of sporocyst 11.52-15.84 µm by 11.52-15.5 µm ... *I. mohini*

5. **Oocyst ovoid**
 - (a) Sporocyst ellipsoidal
 - (i) Size of sporocyst 19-21 µm by 11.12 µm ... *I. buriatica*
 - (ii) Size of sporocyst 16-18 µm by 11-14 µm ... *I. levinei*
 - (b) Sporocyst not ellipsoidal
 - (i) Size of sporocyst 17-19 µm by 12-14 µm ... *I. dubeyi*
 - (ii) Size of sporocyst 11 µm by 9.5 µm ... *I. nandankankanani*
 - (iii) Size of sporocyst 22.5 µm by 18 µm ... *I. pardusi*
 - (iv) Size of sporocyst 12-14 µm ... *I. rivolta*
49. **Isospora aurangabadensis** Kshirsagar

(Fig. 60)

Description: Oocyst spherical or subspherical in shape, measuring 32.0-44.0 μm in length with a mean of 35.46 μm and 32.0-40.0 μm in width with a mean of 33.96 μm. The length/width ratio is 1.0-1.12 with a mean of 1.04. The single layered oocystic wall is 1.5-2.0 μm thick and yellowish brown in color. The polar granule is present but the oocystic residuum is absent. The oocyst contains two sporocysts, each provided with four sporozoites. The sporocysts are oval, globose or elongated in shape each measuring 18.0-24.0 μm in length with a mean of 19.86 μm and 12.0-15.2 μm in width with a mean of 12.96 μm. The length/width ratio of the sporocyst is 1.50-1.76 with a mean of 1.54. A small stieda body is present. The sporocystic residuum is present in the form of small ovoid granular mass near the centre of the sporocyst. The sporozoites are short and stumpy with one end broad and the other slightly narrow and possess a large refractile body at the broader end.

Sporulation time: 48-72 hours.

Type host: Rat, *Rattus rattus rattus*.

Other hosts: Unknown.

Distribution: Aurangabad, Maharashtra.

Endogenous stages: Unknown.

Types: Not known.
Remarks: The subspecies like *R. r. rattus* is not found within Indian limit.

50. *Isospora belli* Wenyon

Description: The oocyst elongated, egg-shaped with one end more constricted than the other, forming neck, measuring 25-33 μm in length (mean 29 μm) and 12.5-16 μm in width (mean 14.25 μm). It is transparent and colourless with a wall consisting of two layers, the outer thick and procellanous, the inner thin and membranous. At the narrow end there is an indication of a micropyle. In fresh stools unripe oocysts are found with cytoplasmic contents contracted into a spherical body in each with highly refractile granules, and a single nucleus seen as a clear pale area. The cytoplasm divides into two sporoblasts, which become elongated and covered with wall. Sporocyst measures 12-14 μm and 7-9 μm having four sporozoites and a large spherical residual body. Sporozoites are elongated each is rounded at the anterior end and tapering at the posterior.

Sporulation time: 1-4 days.

Type host: Man, *Homo sapiens* Linnaeus.

Other hosts: Unknown.

Distribution: Calcutta, West Bengal; Bombay, Maharashtra.

Endogenous stages: Unknown.

Types: Not known.

Remarks: As mentioned by Bhatia (1938), four instances of this infection in man in Bombay has been reported by Garg (1917). Knowles (1924, 28) also reported the same in man. The authors like DasGupta (1934), Mukherjee and Ray (1956) and Ray, Mukherjee and Chakrabarty (1959) reported this species from man while working at the School of Tropical Medicine, Calcutta, West Bengal.

Description: The large oocyst, measuring 18-20 μm in length and 14-16 μm in width, is found in the dog only; whereas the smaller ones 10-16 μm long and 7.5-10 μm broad, is found in the dog and the cat alike. The oocysts are spherical to ovoidal in shape. Micropyle is not visible. Sporocyst broadly ellipsoid, measuring 7-8 μm by 5-7 μm without any stieda body; sporocystic residuum granular. Sporozoite are sausage-shaped and so arranged that their longitudinal axes lie parallel to each other.

Sporulation time: 4 days.

Type host: Domestic dog, *Canis familiaris* Linn. (= *Canis* sp.)

Other hosts: From the Type host and Domestic cat, *Felis domestica* Linn. (= *Fells* sp.) and Pup, white Alsatian, *Canis* sp., (Patnaik, 1963 and Rao, 1968).

Distribution: Bhubaneswar, Orissa and Bombay, Maharashtra.

Endogenous stages: Schizonts in the epithelial cells give rise to 8 merozoites in each sometimes subepithelially upto 12 nos. The gametocytes are found epi and subepithelially also.

Types: Not known.

Remarks: Morphologically the oocysts of *Isospora bigemina* and *Toxoplasma gondii* are very similar. The proper distinction between the two is almost impossible as stated by Pellerdy (1974). Some authors regarded the toxoplasma as vegetative stages of the coccidium. Scholtyseck and Piekarski (1965), Scholtyseck, Kepka and Piekarski (1970), Colley and Zaman (1970). Sheffield (1970) have also suggested the coccidial nature of toxoplasma. Moreover, the ultrastructure of
Toxoplasma zoites differ little from that of eimerian merozoites and the zoites of Sarcocystis, Besnoitia and Frenkelia (M—organism). The details about the cystforming coccidia may be had from Tardos and Laarman (1982).

52. Isospora buriatica Yakimoff and Matschoulsky
(Fig. 61)

Description: Oocyst ovoid, measuring 29-33 μm by 22-25 μm with a mean of 31 μm by 25 μm their length/width index ranged from 1.23-1.28. Oocystic wall 1-2 μm thick, composed of two layers, the outer thicker and of yellowish colour. Sporont was nearly as wide as the oocyst. Micropyle, polar cap, polar granule and oocystic residuum absent. Sporocyst ellipsoidal and double layered, measuring 19-21 μm by 11-12 μm with a mean of 19 μm by 12 μm. Sporocystic residuum present. Sporozoite measuring 14-15 μm by 3-4 μm with a central nucleus and a large globule at the posterior end.

Sporulation time: 2 days.

Type host: Corsac fox, Vulpes corsac (Linnaeus),

Other hosts: Bengal fox, Vulpes bengaiensis Shaw, (Dubey, 1963)

Distribution: Mathura, Uttar Pradesh.
Endogenous stages: Unknown.
Types: Not known.

53. *Isospora canis* Nemeseri

Description: Oocyst subspherical measuring 36-40 \(\mu \text{m} \) in length with a mean of 38 \(\mu \text{m} \) and 32 \(\mu \text{m} \) in width. The wall of the oocyst is thick. Micropyle and oocystic residuum absent. Sporocyst spherical in shape measuring 20 \(\mu \text{m} \) in length and 16 \(\mu \text{m} \) in width. Steida body absent, sporocystic residuum present as a large granular mass. Sporozoites are bean-shaped each measuring 11.5 \(\mu \text{m} \) in length.

Sporulation time: 15-20 hours.
Type host: Domestic dog, *Canis familiaris* Linn. (= *Canis* sp.)
Other hosts: From the Type host.
Distribution: Calcutta, West Bengal.
Endogenous stages: Unknown.
Types: Not known.

Remarks: Mandal (1976) has synonymised *Isospora canis* Ray and Banik with *I. canis* Nemeseri. Although the question of homonymy cannot also be ignored.

54. *Isospora dubeyi* Patnaik and Ray

Description: Oocyst is ovoid in shape, measuring 27-30 \(\mu \text{m} \) by 20-25 \(\mu \text{m} \) with a mean of 28 by 23 \(\mu \text{m} \); the length-width index ranging from 1.17-1.22. Oocystic wall 1-2 \(\mu \text{m} \) thick composed of two layers. The outer thicker and of yellowish orange in colour and the inner darker with a shining inner contour. Sporont nearly as wide as the oocyst. Micropyle, polar cap, polar granule and oocystic residuum absent. Sporocyst measures 17-19 \(\mu \text{m} \) by 12-14 \(\mu \text{m} \) with a mean of 15 \(\mu \text{m} \) by 11 \(\mu \text{m} \). Steida body absent. Sporocystic residuum present. Sporozoite elongated with one end pointed, measuring 13-15 \(\mu \text{m} \) by 2-3 \(\mu \text{m} \).

Sporulation time: 1 to 2 days.
Type host: Indian Grey Mongoose, *Herpestes mungo* (= *Herpestes edwardsii* Geoff.).

Other hosts: Unknown.

Distribution: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

55. *Isospora felina* Patnaik and Acharjyo

(Fig. 62)

Description: The oocysts are thin walled colourless, ellipsoidal to globular in shape, and their micropyle indistinct, each measuring 25 μm by 20 μm and contains the eccentric spherical sporont at the bottom.

![Fig. 62. Mature oocyst of *Isospora felina*.](image)

The oval sporocyst measures 15 μm by 21 μm leaving behind no oocystic residuum. The sporocyst contains four elongate to oval sporozoites each measuring 10 μm by 3 μm and a granular residual body at the end.

Sporulation time: 48 hours.

Type host: Leopard cat, *Felis bengalensis* Keer.

Other hosts: Unknown.

Distribution: Nandankanan Zoological Garden, Orissa.

Endogenous stages: Unknown.
Types: Not known.

Remarks: Though there is little difference between the oocysts of *I. felina* and *I. nandankananensis* described from Leopard cat but at present it is very difficult to treat them as one species.

56. **Isospora felis** (Wasielewsky)

(Fig. 63)

Description: Oocysts are ovoid to egg-shaped, each is tapering at one end. The ovoid form measures 39-48 μm by 26-37 μm (mean 43.5 μm by 31.5 μm) and the another one measuring 35-45 μm by 23-35 μm (mean 40 μm by 29 μm). The oocystic wall is smooth and pinkish in colour. No micropyle is present. Sporocysts are elongated each measuring 20-24 μm by 18-21 μm (mean 22 μm by 19.5 μm). Sporozoites are comma-shaped. The sporocystic residuum is present as large-sized granules.

Sporulation time: 48 hours.

Type host: Domestic cat, *Felis catus* (=*F. domestica* Linn. (=Felis sp.).

Distribution: Calcutta, West Bengal; Bombay, Maharashtra; Madras, Tamil Nadu; Lucknow, Uttar Pradesh.

Endogenous stages: Shah (1971) studied with the pure strain of I. felis and found that the first generation schizont measures 4-6.2 μm produces 8-16 merozoites. Each schizont finally attains 11-30 μm by 10-23 μm. The first generation merozoite are banana-shaped each measuring 11-15 μm by 3-5 μm, tapering at one end. The second generation schizonts appear after 4-5 days and each produce 2-10 merozoites. Each of the third generation schizonts measures 14-36 μm by 13-22 μm in size and produce about 70 merozoites. Microgametocyte measures 24-72 μm by 18-32 μm produces many microgametes and a residuum, each microgamete measures 5-7 μm by 8 μm with a single flagellum. The macrogametocyte measures 16-22 μm by 8-17 μm when mature, with a large nucleus and plastic granules.

Types: Not known.

57. Isospora garnhami Bray
(Fig. 64)

Description: The oocyst occurs in two sizes, large and small. The larger forms were ellipsoidal with rounded ends each measuring 27-34 μm by 23-27 μm (mean 34 μm by 27 μm), their length-width index ranges from 1.17-1.25. Oocyst wall 1-2 μm thick, composed of two layers, the outer thicker, light yellowish green to pale yellow and inner darker with shining inner contour buckling on application of pressure to rupture the oocysts. Sporont is centrally placed measuring 17-19 μm in diameter. Micropyle, polar cap, polar granule and oocystic residuum absent. Oocystic shape, after sporulation seen to vary depending upon the position of the larger size sporocysts. Sporocyst ellipsoidal, measuring 19-21 μm by 12-14 μm (mean 21 μm by 14 μm). Sporocystic residuum present. Stieda body absent. Sporozoite sausage-shaped with one end narrower, filling up the entire cavity of sporocyst and lying somewhat twisted and each having a prominent globule at the broader
end. Smaller forms of the oocysts are spherical each measuring 19-22 μm by 16-19 μm with the sporocyst 14-17 μm by 8-11 μm in dimensions.

Fig. 64. A, immature and B, mature oocysts of *Isospora garnhami*.

Sporulation time: 24 hours.

Type host: Mongoose, *Halogale undulata rufula* (= *Halogale pervula undulata* Peters).

Distribution: Mathura, Uttar Pradesh.

Endogenous stages: Young gametocytes are found in the terminal ileal portion and in the large intestine at the epithelial cells of the villi. The microgametocyte measure 23 μm by 22 μm produce about 400 microgametes with a residuum. The macrogamete measures 24 μm by 22 μm (Bray, 1954).

Types: Not known.

58. *Isospora hippopotami* Agarwal, Ahluwalia, Bhatia and Chauhan

(Fig. 65)

Description: Oocysts are ovoid to broadly ellipsoidal in shape, each measuring 30.24-36.00 μm in length and 21.60-27.36 μm in breadth with a mean of 32.40 μm by 24.48 μm. The oocystic wall is bilayered, measuring 1.5 μm in thickness, the outer layer is light yellowish green. The length-width ratio of the oocyst is 1.4-1.5 with a mean of 1.33. Micropyle, polar cap, oocystic residuum and polar granules are absent. Sporocyst subspherical to ovoid in shape with an entire wall without stieda body. It measures 12.96-17.28 μm in length and 11.52-14.4 μm in breadth with a mean of 15.12 μm by 13.68 μm. Sporocystic residuum present as clumps of few coarse dark granules. Sporozoites are 4 in number and pear shaped each measuring 7.4-11.5 μm in length and 2.8-5.04 μm in breadth with a mean of 9.36 μm by 3.60 μm lay parallel to each other with one end narrow and pointed and the other end broad carrying a larger refractile globule.

Type host: Hippopotamus, *Hippopotamus amphibius* Linn.

Other hosts: Unknown.

Distribution: Zoological garden, Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

59. *Isospora hoarei* Bray

(Fig. 66)

Description: The oocysts are yellowish tinged, spherical to subspherical, rarely ellipsoidal in shape and had no perceptible micropyle.
Oocyst measures 19.32-20.93 μm by 16.32 μm-18.25 μm with a mean of 19 μm by 17.55 μm. The length/width ratio varied from 1-1.2 with a mean of 1.12. The sporant was of 9.5-11.5 μm in diameter. Sporulated in 2-3 days into two sporocysts and contain no oocystic residuum. The tetrozoic ellipsoidal, thin walled sporocyst measures 10-12 μm by 8-9 μm and contained a globular sporocystic residual mass. The sporozoites are banana or sausage-shaped.

Type host: Mongoose, *Helogale undulata rufula* (= *Halagale permta undulata* Peter).

Distribution: Mathura, Uttar Pradesh; Orissa.

Endogenous stages: Unknown.

Types: Not known.

60. **Isospora hominis** (Railliet and Lucet)

(Fig. 67)
Description: Oocysts are elongated in shape each measuring 22-32 μm in length and 10-15 μm in width. They are transparent, colourless bodies, each with a thin outer and a thick inner membrane. Micropyle and oocystic residuum absent. Sporocysts are oval shaped each measuring 9-16 μm in length and 7-11 μm in width. A large sporocystic residual mass is always present. Sporozoites are elongated in shape each with one end rounded and the other pointed.

Sporulation time: 96 hours.
Type host: Man, Homo sapiens Linn.
Other hosts: From the Type host.
Distribution: Calcutta, West Bengal.
Endogenous stages: Unknown.
Types: Not known.
Remarks: The authors like Ray, Mukherjee and Chakravarty (1959) and Haldar and Chakravarty (1969) reported this species from India. With the advancement of knowledge on coccidia and subsequent description of certain genera like Sarcocystis, Besnoitia, Frenkelia etc. the human coccidia have also been reviewed. As a result, Isospora hominis has now been treated as Sarcocystis hominis and S. suis hominis.
The authors like Zaman (1968) Tardos and Laarman (1976), Dubey (1976) and long (1982) have contributed much on the subject.

61. *Isospora krishnamurthyi* Kashirsagar
(Fig 68)

Description: Oocyst spherical or slightly ovoid in shape, measuring 36.0-48.0 μm in length with a mean of 42.40 μm and 35.2-40 μm in width with a mean of 37.10 μm. The length width ratio is 1.0-1.28 with a mean of 1.14. The single layered oocystic wall measuring 1.8 μm thick and pale yellowish in colour. A prominent polar granule is always present but the oocystic residuum is absent. Elongated or ovoid sporocysts are two in number, each possesses a conspicuous stieda body. The sporocyst measures 20.8-26.0 μm in length with a mean of 23.64 μm and 17.6-21.5 μm in width with a mean of 19.25 μm. The length/width ratio of the sporocyst is 1.16-1.36 with a mean of 1.23. Sporocystic residuum is present in the form of coarse granules. Each sporocyst contains four sporozoites. The sporozoites are elongated in shape and without any refractile body.

Sporulation time: Six hours.

Type host: Rat, *Rattus rattus rattus*.

Other hosts: Unknown.

Distribution: Aurangabad, Maharashtra.

Endogenous stages: Unknown.
Types: Not known.

Remarks: There is no subspecies like ‘rattus’; found in our country.

62. Isospora leonina Mandal and Ray
(Fig. 69)

Description: Oocyst rhomboidal in shape measuring 30-32 μm in length with a mean of 31.8 μm and 28.00-31.00 μm in width with a mean

\[10μ \]

Fig. 69. Mature oocyst of Isospora leonina.

| 10μ |

Sporulation time: 5 days.

Type host: Lion, Panthera leo (Linn.).

Other hosts: From the type hosts; Patnaik and Acharjya, (1970).

Distribution: Zoological Garden, Calcutta, West Bengal and Nandankanan Zoological garden, Orissa.

Endogenous stages: Unknown.

Types: Not known.
63. *Isospora leopardi* Agarwal, Ahluwalia, Bhatia and Chauhan
(Fig. 70)

Description: Oocysts are nearly egg shaped each measuring 38.88-44.64 μm in length and 23.04-27.36 μm in breadth with a mean of 41.04 μm by 25.20 μm. Bilayered oocystic wall is smooth, measuring 1.5 μm thick, the outer wall is light yellowish and inner one is dark brown in colour. The length/width ratio is 1.55-1.75 with a mean of 1.64. Micropyle, polar cap, oocystic residuum and polar granules are absent. Sporocysts are ovoid in shape each measuring 15.44-20.16 μm in length and 15.84-18.72 μm in breadth with a mean of 18.00 μm by 17.28 μm. Sporocystic residuum is present as scattered granules. Sporozoite elongated with one end broader and the other end pointed; measures 11.52-15.84 μm in length and 3.6-5.04 μm in breadth with a mean of 12.96 μm by 4.32 μm. The broader end of the sporozoite is provided with a large refractile globule.

Type host: Clouded leopard, *Neofelis nebulosa* (Linn.).

Other hosts: Unknown.

Distribution: Zoological garden, Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.
64. *Isospora levinei* Dubey

(Fig. 71)

Description: Oocyst ovoid, measuring 23-29 µm by 22-26 µm with a mean of 27 µm by 25 µm, length/width ratio ranged from 1.05-1.06. Oocystic wall 1-2 µm in thickness, composed of two layers, outer smooth, thicker, yellowish green and inner dark with a shining inner contour. Sporocyst ellipsoidal, situated centrally, 13-16 µm in diameter. Division into two double-walled sporoblasts was accomplished after a few hours of collection (Dubey, 1963). It measures 16-18 µm by 11-14 µm, with a mean of 18 µm by 14 µm. Sporocystic residuum present as dark granular bodies. A few refractile bodies are also seen in the sporocystic residuum. Sporozoite is pointed at one end and rounded on other, measuring 10-14 µm by 3-4 µm.

Sporulation time: 24 hours.

Type host: Striped Hyaena, *Hyaena striata* [= *Hyaena hyaena hyaena* (Linn.)].

Other hosts: Unknown.

Distribution: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Likely to be present in the Collection of Dept. of Parasitology, Mathura Veterinary College, Mathura, Uttar Pradesh.
65. *Isospora mohini* Agarwal, Ahluwalia, Bhatia and Chauhan
(Fig. 72)

Description: Oocyst ovoid to broadly ellipsoidal in shape measuring 18.72 μm-27.36 μm in length and 14.40 μm-20.16 μm in breadth with a mean of 23.04 μm by 17.28 μm. The oocystic wall is double layered and 1.5 μm thick, the outer layer is yellowish green while the inner one is dark brown in colour. The length-width ratio of the oocyst is 1.53-1.86 with a mean of 1.65. Oocystic residuum, micropyle, polar cap and polar granules are absent. Sporocysts are ovoid, each measuring 11.52 μm-15.84 μm in length and 11.52-15.54 μm in breadth with a mean of 17.14 μm by 14.4 μm. Sporocystic residuum is present in the form of clumps of coarse granules. Sporocyst contains four sporozoites each measures 7.92-10.8 μm in length and 1.8-3.24 μm in width with a mean of 9.36 μm by 2.16 μm. Sporozoites are banana-shaped each is provided with one broader end having a large refractile globule and the other end is pointed.

Type host: Lion, *Panthera (Leo) leo [= Panthera leo (Linnaeus)]*

Other hosts: Unknown.

Distribution: Zoological garden, Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.
66. *Isospora nandankanani* Patnaik and Acharjyo
(Fig. 73)

Description: The oocyst colourless, relatively large and oval in shape. The micropyle is imperceptible. It measures 30 μm by 40 μm with subglobular sporont. The oocyst sporulates into two oval sporocysts leaving behind no oocystic residuum. The sporocyst measures 11 μm by 9.5 μm and contained four banana shaped sporozoites and a globular sporocystic mass consisting of granular bodies. The sporozoite measures 8.5 μm by 2.75 μm.

Sporulation time: 72 hours.

Type host: Leopard Cat, *Felis bengalensis* Keer.

Other hosts: Unknown.

Distribution: Nandankanan Zoological garden, Orissa.

Endogenous stages: Unknown.

Types: Not known.

Remarks: The specific name should be *nandankanonensis* instead of *nandankanani*.

67. *Isospora pantheri* Agarwal, Ahluwalia, Bhatia and Chauhan
(Fig. 74)

Description: Oocyst ellipsoidal measuring 33.12-40.32 μm in length and 20.92-25.92 μm in breadth with a mean of 36.72 μm by 22.32 μm. Light yellowish while the inner one is dark brown. The length width ratio of the oocyst is 1.53-1.86 with a mean of 1.65. The micropyle, polar cap, oocystic residuum and polar granules are absent. The sporocysts are ovoid in shape each measuring 14.0-20.16 μm in length and 11.52-15.54 μm in breadth with a mean of 17.28 μm by 14.4 μm. Sporocystic residuum is present in the form of clumps of coarse granules. Sporocyst contains four banana-shaped sporozoites, measures 11.52-14.40 μm in length and 2.88-4.32 μm in breadth with a mean of 12.24 μm by 3.60 μm. The sporozoite banana-shaped with one end broad, provided with a large prominent refractile globule and the other end is pointed.

Type host: Lion, *Panthera (Leo) leo [=Panthera leo (Linn.)].

Other hosts: Unknown.

Distribution: Zoological garden, Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

68. *Isospora pardusi* Patnaik and Acharjyo

(Fig. 75)

Description: The oocyst colourless and oval in shape with no distinct micropyle. It measures 40-49 μm in length and 30-36 μm in
breadth (mean 45 by μm 33 μm). The unsporulated oocyst contains a relatively small spherical sporont which further shrunk on sporulation and developed into two sporocysts within 72 hours. There is no oocystic residuum. The sporocyst measures 22.5 μm long and 18 μm wide and contained four elongated symmetrically arranged sporozoites and a residual mass of 18-22 μm consisting of globular bodies. Sporozoite measures 15 μm by 4.5 μm.

Type host: Leopard, *Panthera pardus* (Linnaeus).

Other hosts: Unknown.

Distribution: Nandankanan Zoological garden, Orissa.

Endogenous stages: Unknown.

Types: Not known.

69. *Isospora rivolta* (Grassi)

1904. *Diplospora bigeminum* Wesielewsky (partim), *Studien und Mikrophotogramme zur Kenntnis der Pathogenen Protozoon*, Leipzing, p.?

Description: Oocyst ovoid measuring 27-30 by 20-25 μm (mean
28 μm by 23 μm, the length-width index ranging from 1.17-1.22. Oocystic wall 1-2 μm thick composed of two layers the outer thicker and of yellowish to orange in colour and the inner darker with a shining contour. Sporont centrally placed. Sporulation completed in 24 hours. Micropyle, polar granules and oocystic residuum absent. Sporocyst ellipsoidal measuring 17-19 μm by 12-14 μm (mean 18 μm by 12 μm). Steida body absent. Sporocystic residuum present, sporozoites elongated, each with one pointed end, measuring 13-15 μm by 2-3 μm.

Sporulation time: About 24 hours.

Type host: Domestic dog, Canis familiaris Linn. (=Canis sp.),

Distribution: Bombay, Maharashtra; Madras, Tamil Nadu; Mathura, Uttar Pradesh; Calcutta, West Bengal.

Endogenous stages: Mahrt (1967) using a pure strain studied the life cycle and found that the stages are detectable in the posterior segment of the small intestine and few are in the caecum and colon. Schizont oval, 17-24 μm by 12-15 μm in size, produces 4-20 merozoites but usually 4-8; each measures 10.5-13.4 μm by 2.3-3 μm, The microgametocyte measures 13.4 μm by 8.7 μm having 50-70 nuclei which are transformed into microgametes. Biflagellate microgamete measures 5.8-6.4 μm by 6 μm with flagellum about 11-14 μm long. Macro gametocyte measures 4-5 μm in diameter with many granules.

Types: Not known.

70. Isospora suis Biester and Murray

(Fig. 76)

Description: Oocyst subspherical measuring 20-24 μm in length and 18-21 μm in width with a mean of 22 μm by 19.5 μm. The shape index is 1.1. The oocystic wall is double layered,
thickness 1.5 \(\mu m \), light yellow in colour with a brown shade. No micropyle is visible. Two sporonts are usually round in shape, each measuring 16.5 \(\mu m \) in diameter and occupies the central position of the oocyst. Oocystic residuum absent. Sporocysts are elliptical to cylindrical in shape, each measuring 16-18.6 \(\mu m \) in length and 10-12 \(\mu m \) in width with a mean of 18 \(\mu m \) by 11 \(\mu m \). The sporocystic wall is very distinct and 0.66 \(\mu m \) in thickness. Sporozoites are four in number in each sporocyst.

\textit{Sporulation time}: 74-95 hours.

Dimension of the oocyst reported by other authors are as follows: 19-25 \(\mu m \) by 16-21 \(\mu m \) (Boch, Pezenburg and Rosenfeld, 1961); 17-22 \(\mu m \) by 17-19 \(\mu m \) with the mean 19.5 \(\mu m \) by 17.5 \(\mu m \) (Vetterling, 1965).

\textit{Type host}: Domestic pig, \textit{Sus scrofa} (Linn.) (= \textit{Sus sq.}).

\textit{Distribution}: Orissa and Uttar Pradesh.

\textit{Endogenous stages}: Little is known about the endogenous developmental stages. This coccidium prefers jejunum and ileum. The discharge of oocysts takes place after 6-8 days from the date of inoculation.

\textit{Types}: Not known.

\textit{Remarks}: Pellerdy (1974) expressed a doubt about the validity of \textit{I. suis} and of opinion that this \textit{Isospora} resembles to that of \textit{I. lacazei} (Labbe) found in Sparrow. Mandal (1980) stated that some cross in-
fection experiments are needed for further clarification of this species.

71. **Isospora tropicalis** Mukherjee and Krassner

Description: Oocyst spherical measuring 16 μm in diameter. The wall is thin and tightly stretched over the sporocyst. Micropyle and oocystic residuum absent. Sporocyst oval measuring 15.5-16 μm in length and 10.00-10.5 μm in width. The sporocystic residuum present as a granular mass. The sporozoites are banana-shaped each measuring 8-10 μm by 3.2-4 μm.

Sporulation time: Not known.

Type host: Asiatic Jackle, *Canis aureus* Linn.

Other hosts: Unknown.

Distribution: Bandipore, Hooghly dist., West Bengal.

Endogenous stages: Little is known about the endogenous stages. Both epithelial and subepithelial tissues of the small intestine are found infected as stated by the describer.

Types: Likely to be present in the Protozoology Laboratory, School of Tropical Medicine, Calcutta.

72. **Isospora ursi** Agarwal, Ahluwalia, Bhatia and Chauhan

(Fig. 77)

Description: Oocysts are more or less egg shaped each measuring 34.56-43.20 μm in length and 20.16-30.0 μm in breadth with a mean of 37.44 μm by 24.48 μm. The oocystic wall is bilayered measuring 1.5 μm in thickness. The outer wall is yellowish green and the inner one is dark brown in colour. The length/breadth ratio of the oocyst is 1.40-1.73 with a mean of 1.54. The micropyle, polar cap, oocystic residuum and polar granule are absent. The sporocysts are broadly ellipsoidal in shape each measuring 15.84-21.60 μm in length and 10.08-15.84 μm in breadth with a mean of 18.72 μm by 12.96 μm. There is no stieda body within the sporocyst. Sporocystic residuum is present in the form of clumps of dark granules or sometimes spread over the sporozoites. The sporocyst is provided with 4 elongated...
sporozoites each measures 11.52-14.40 μm in length and 2.88-4.32 μm in breadth with a mean of 12.9 μm by 3.60 μm and having a broader end carrying a refractile globule and the other tapering. The sporozoites lay parallel within the sporocyst.

Type host: Sloth bear, *Melursus ursinus* Linn.

Other hosts: Unknown.

Distribution: Zoological garden, Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

73. *Isospora* sp.

Description: The oocysts are ovoid in shape, each measuring 23-33 μm by 20-28 μm with a mean of 26 μm by 22 μm. The length-width ratio of the oocyst is 1.06-1.4 with a mean of 1.2. The oocystic wall is 1.3 μm thick, double-contoured, with an outer straw-coloured and the inner brown layers. Micropyle and polar cap absent. Oocystic residuum and polar granule absent. Sporocyst ellipsoidal, single-layered, 16-18 μm by 11-13 μm in size with a mean of 17 μm by 12 μm. Sporocystic residuum present as a large mass of dark and coarse granules. Sporozoite banana-shaped, 12-15 μm by 3.25-4.9 μm in size.
with a mean of 13 µm by 3.6 µm, with one end broader and the other pointed, the former carrying a prominent refractile globule with a centrally placed small nucleus.

Host: Lion, *Panthera leo* (Linn.)

Distribution: Zoological Garden, Lucknow, Uttar Pradesh.

Remarks: It is very difficult at this stage to comment about the specific diagnosis of this parasite.

74. *Isospora* sp.

Description: Oocyst usually subspherical, occasionally spherical, measuring 21-33 µm in length and 20-32 µm in width with a mean of 27 µm by 25 µm. Oocysts wall smooth, colourless, pale-leavender or pale-yellowish, composed of a single layer about 1 µm thick, sometimes apparently lined by a thin membrane. Micropyle and oocystic residuum absent. Several irregular, refractile polar granules present. Sporocyst lemon-shaped, quite thick-walled, 14-20 by 10-12 µm in size with a mean of 17 µm by 11 µm. Sporocystic stieda body is button-shaped with a dependant globular, hyaline mass (substieda body) protruding into the interior of the sporocyst. Sporocystic residuum finely granular. Sporozoite appears sausage-shaped, not arranged in any particular order within the sporocyst. Sporocystic residuum and sporozoites enclosed in a membrane, forming more or less of a ball within sporocyst.

Sporulation time: 24 hours.

Host: Domestic cattle, *Bos taurus* (=*Bos* sp.)

Distribution: Dhupatul, Kocklai, Assam; Shillong, Meghalaya.

Endogenous stages: Unknown.

Remarks: The report of an *Isospora* sp. from domestic cattle is vividly explained by Levine and Mohan, 1960 and Mandal, 1965b. *Isospora* sp. of Cooper and Gulati is also indistinguishable from that of *Isospora lacazei* of sparrow. The description of *Isospora* sp. as stated by Cooper and Gulati is too meager, “Oocysts were quite rounded and within twenty four hours two fully formed sporoblasts were seen in all cases”. This detail description of the oocysts of *Isospora* sp. of cattle is mainly based on Levine and Mohan (1960) and Mandal, (1965b).
75. *Isospora* sp.

Description: Oocysts are subspherical in shape, each measuring 19.5-25 \(\mu m \) in length and 17-20 \(\mu m \) in width; lined by an outer light yellowish-brown and an inner blue layer. Micropyle and polar cap absent. Oocystic residuum and polar granule absent. Sporocyst almond-shaped, measuring 13-16 \(\mu m \) in length and 9-11 \(\mu m \) in width, with a small stieda body at the narrower pole. Sporocystic residuum present as dark granules. The sporozoites, though could not be differentiated, carried two refractile globules in each.

Distribution: Zoological Garden, Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Remarks: The present species has got resemblance with *Isospora scorzal* Arcay-Peraza (1967) described from Uakari Monkey, *Cacajo rubicundus*. Moreover, the contamination due to *Isospora lacazei* Labbe cannot also be ignored. However, it is very difficult at this stage to comment further for the specific identity of the parasite.

76. *Isospora* sp.

Description: Oocysts are subspherical in shape, each measuring 25-26 \(\mu m \) by 25 \(\mu m \) in diameter with a mean of 25.5 \(\mu m \) by 25 \(\mu m \). The wall composed of two layers, 1.2 \(\mu m \) in total thickness; outer layer smooth, yellowish to pale brown, the inner layer dark brownish-yellow. Micropyle and micropylar cap absent. Polar granule and oocystic residuum absent. Sporocysts lemon-shaped. Stieda body present, with dependent hyaline mass extending into the anterior of the sporozoite more or less sausage-shaped, with a clear large globule at broad end; having no definite arrangement within the sporocyst. Sporocystic residuum present as fine granules scattered throughout.

Host: Domestic pig, *Sus scrofa domestica* [= *Sus* sp.]

Distribution: Jabalpur, Madhya Pradesh.

Endogenous stages: Unknown.

Remarks: It is very likely that the discriber was dealing with the *Isospora lacazei* commonly found in sparrow.
IV. Genus *Dorisa* Levine, 1980

Type species: *scololepidis* Ray.

Type species: *hoarei* (Yakimoff and Gouseiff, 1935).

Oocyst with two sporocysts, each having eight sporozoites; occurring in vertebrate hosts.

Type host: *Elaphe quatuorlineata sauromates*. *Reptilia*: *Ophidia*. From birds, six species and from mammals, one species have been reported so far.

(A) Parasites of Birds

Key to the species

1. Oocyst spherical
 (A) Oocystic residuum present
 (B) Oocystic residuum absent
 (a) Sporocyst ellipsoidal
 (b) Sporocyst vial-shaped

2. Oocyst oval
 (A) Oocystic residuum present
 (a) Sporocyst oval
 (b) Sporocyst vial-shaped
 (B) Oocystic residuum absent

77. *Dorisa aethiopsaris* (Chakravarty and Kar)
(Fig. 78)

Description: Oocyst subspherical or oval, double walled of equal thickness. The spherical form measures 28.5-30.5 μm in length with a mean of 29.5 μm and 24.4-25.4 μm in width with a mean of 25.4 μm. The shape index is 1.16. Oval form measures 33.5-38.5 μm in length with a mean of 35.8 μm and 24.5-26.4 μm in width with a mean of 25.4 μm. The shape index is 1.4. Cytoplasm spherical and centrally placed with numerous refractile globules. Micropyle and oocystic residuum absent. Sporocyst oval, with a well developed knob at the anterior pointed end. It measures 19.5-22.5 μm in length with a mean of 20.9 μm and 11.2-13.2 μm in width with a mean of 12.2 μm. The shape index is 1.5. Sporocystic residuum present as compact mass.
Sporozoite is elongated in shape with pointed anterior end and rounded posterior. Nucleus is centrally placed. Sporozoite measures 12.2-14.2 μm in length with a mean of 13.2 μm and 1.5-2.5 μm in width with a mean of 2.1 μm. The shape index is 6.2.

Sporulation time: 48-62 hours.

Type host: Jungle Mayna, *Aethiopsar (=Acredotheres) fuscus fuscus* (Wagler).

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Schizonts are spherical each measuring 8.8 μm in diameter. The mature one possesses eight to sixteen nuclei and is found in the epithelial layer of the small intestine. The microgamocyte measures 11-13.2 μm in diameter. The microgametes are comma-shaped and each bears a single short flagellum. The macrogametes are spherical each measuring 11 μm in diameter having a granular cytoplasm and a distinct eccentric karyosome inside the nucleus.

Types: Likely to be present in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

78. *Dorisa chakravartyi* (Ray and Sarkar)

Description: Oocyst spherical, measuring 27.5-30.00 μm with a mean of 28.45 μm. Double layered, the outer being transparent and the inner one dark black in transmitted light. Oocystic residuum and micropyle absent. Sporocyst ellipsoidal, measuring 22.5 μm in length and 15.0-17.5 μm in width. The narrow end is provided with stieda and substiedal body. Sporocystic residuum is present as scattered mass. Sporozoite elongated, club-shaped measuring 13.2 μm in length and 3.6 μm in width. Each sporozoite has a large vacuole at its broader pole and small one at the narrower pole, while the nucleus is placed just below the large vacuole.

Sporulation time: 3-4 days.

Type host: White throated Munia, Lonchura malabarica (Linn.) and Spotted Munia, L. punctulata (Linn.).

Other hosts: From the type host, Sarkar (1968).

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

79. Dorisa hareni (Chakravarty and Kar) (Fig. 79)

Description: Oocyst spherical, measuring 18.5-22.5 μm in diameter with a mean of 20.5 μm having double envelop, the outer being thinner than inner one. The cytoplasm measuring 18.2 μm in diameter and coarsely granular with several refringent globules. Micropyle and
EIMERIIDAE: DORISA 121

oocystic residuum absent. Sporocyst single layered and pyriform in shape with anterior pointed and posterior rounded ends, the anterior end being provided with small ill-differentiated knob. Sporocyst measures 14.5-18.5 \(\mu m \) in length with a mean of 16.5 \(\mu m \) and 9.5-10.5 \(\mu m \) in width with a mean of 9.9 \(\mu m \). The shape index is 1.5 \(\mu m \). Residuum present. Sporozoite club-shaped with bluntly pointed anterior end. Sporozoite measures 8.2 \(\mu m \) by 2.5 \(\mu m \), nucleus is situated at the rounded posterior end.

\[\text{Sporulation time} \quad 72-96 \text{ hours.} \]

Type host: Black headed Munia, *Munia (=Lonchura) malacca malacca* Linn.

Other hosts: (i) Chestnet-bellied Munia (=Nepal Black headed Munia), *Munia atricapilla (=Lonchura malacca) rubroniger* (Hodgson) (ii) Red Munia, *Amandava amandava (=Estrilda amandava*) (Linn.), (iii) White throated Munia, *Uroloncha (=Lonchura) malabarica* (Linn.) (iv) Spotted Munia, *Uroloncha (=Lonchura) puntulata* (Linn.).

Endogenous stages: The detail life-cycle can be had from Bhattacharyya and Chakravarty (1975). Trophozoite spherical, measuring 5.6 \(\mu m \) with a clear cytoplasm and a distinct nucleus. Chakravarty and Kar (1944) found trophozoite of 4.0 \(\mu m \) in diameter also. The schizonts are found in the epithelial cells of the small intestine. The mature one measuring 19.50 \(\mu m \) by 16.35 \(\mu m \) and contains 16 or more chromatin granules. Bhattacharjee and Chakravarty (1975) have observed first generation schizont in fair number on inoculation after 48 hours. The merozoite measures 9.2 \(\mu m \) by 3.4 \(\mu m \) with a central nucleus and uniformly granular cytoplasm. The second generation schizonts are observed on the 3rd day after inoculation and the mature one measured 11.19 \(\mu m \) by 7.72 \(\mu m \). The large schizont produces nearly 50 merozoites and the smaller one contains 14 to 16 merozoites. The second generation merozoites are smaller each measuring 7.5 \(\mu m \) by 2.5 \(\mu m \) with a nucleus at the middle. The mature microgametocyte measures 14.8 \(\mu m \) by 10.6 \(\mu m \) and the earliest one measures 11.3 \(\mu m \) by 7.1 \(\mu m \). The nucleus divided upto 50 approximately. The microgametes are comma-shaped. The macrogametocytes are spherical in shape, each measuring 16.6 \(\mu m \) by 12.8 \(\mu m \), gives rise to macrogamete measuring 19.5 \(\mu m \) by 14.8 \(\mu m \). The cytoplasm appears dense with food materials, having eosinophilic granules inside.

The fertilized one can be distinguished from other stages by the nature of the cytoplasm which appears as “powdery mass” (vide Chakravarty and Kar, 1944).
Types: Not known.

Remarks: The describer could not observed any flagellated microgamete which is something unusual.

80. Dorisa mandali (Ray and Sarkar)

Description: Oocyst oval in shape measuring 27.5-33.7 µm in length and 25.0-30.0 µm in breadth (average 30.73 µm by 26.7 µm). Oocystic wall 1.8-2.00 µm thick, outer wall transparent greenish yellow in colour with a thin yellow inner membrane. Oocystic residuum present as a few scattered minute refractile granules; having no micropyle. Two vial-shaped sporocysts each is provided with prominent pluglike “stieda body” at the pointed anterior end. Sporocystic residuum comprises of compact refractile granules. Sporozoite measures 12.2 µm by 4.5 µm. Nucleus is placed just below the vacuole.

Sporulation time: 4-5 days at 31°C.

Type host: Indian white eye, Zosterops palpebrosa (Temm.).

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

81. Dorisa passeris (Ray and Sarkar)

Description: Oocyst spherical, 30-32.5 µm in diameter (average 31.17 µm) wall 1.8-2 µm thick, colour of the outer transparent wall is pale yellowish green, while the inner one is dark-black in transmitted light. Oocystic residuum present in the form of a few scattered granules, micropyle absent. Two vial shaped sporocysts each measures 20.2 µm in length and 14-16.0 µm in breadth (average 22.5 µm by 15.2 µm). Sporocystic residuum centrally situated as a compact granular mass. Sporozoites are curved, sausage-like in appearance and each measures 9.7 µm by 3.0 µm having both the ends blunt. The vacuoles are seen at both ends with the nucleus in the centre.

Sporulation time: 6-8 days.

Type host: House Sparrow, Passer domesticus (Linn.)

Other hosts: Unknown.
Distribution: Calcutta, West Bengal.
Endogenous stage: Unknown.
Types: Not known.

82. *Dorisa vagabundae* (Mandal and Chakravarty) (Fig. 80)

Description: Oocyst oval, double walled, outer thinner; micropyle seen in early stage; cytoplasm globular and refractile, oocystic residuum

Fig. 80. Life cycle of *Dorisa vagabundae* from *Crypsirina vagabunda*:
present. Fully developed oocyst measures 24.0-26.4 by 22.0 μm. Fully developed sporocyst having one pointed end with a less prominent stieda body and rounded posterior end. Sporocyst measures 17.6-19.8 μm by 12.1 μm. Sporozoite club-shaped, pointed at one end, nucleus is situated at the rounded posterior end; cytoplasmic striations are found on the sporozoite and their arrangement is irregular.

Sporulation time: 60-72 hours. Mandal (1966a) studied the sporulation and the viability of oocyst of this species by using some physical and chemical agents.

Type host: Indian Tree-pie, Crypsirina vagabunda (Latham).
Other hosts: Unknown.
Distribution: Calcutta, West Bengal.

Endogenous stages: In the intestinal submucosa the schizonts (figs 80 A and B) are mainly found and less often within the villi. The mature schizont measures 5.5 μm in diameter. The merozoites (figs 80 C and D) are irregularly arranged each measuring 6.6 μm in length and 1.1 μm in width with a nucleus at the rounded posterior end. The microgametocytes (fig 80 E) are circular in shape each measuring 3.2 μm in diameter. The comma-shaped microgametes (fig 80 F) are found in peripheral rows inside the microgametocytes. The macrogametes (fig 80 G) are found with prominent nuclei and uniformly granular cytoplasm which ultimately become coarsely granular.

Types: Present in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

(B) Parasite of Mammal

83. Dorisa harpia (Sinha and Das Gupta)
(Fig. 81)

Description: Oocysts are subspherical to ellipsoidal in shape each measuring 21.5-24.2 μm in length and 17-19 μm in width with a mean of 22.6 μm by 17.8 μm. The oocystic wall is smooth and double layered measuring 0.5 μm in thickness. The cytoplasm is coarsely granular. No oocystic residuum or micropyle are seen but one or two refractile bodies are found inside the oocyst. Sporocyst two in number, each provided with eight sporozoites. The sporocyst measures 16.8 μm
by 10.8 µm with the compact sporocystic residuum. The sporozoite is elongated in shape and measures 8.4 µm by 3.2 µm.

Fig. 81. Mature oocyst of Dorisa harpia.

Sporulation time: 120-144 hours at room temperature.

Type host: Hairry winged Bat, Harpiocephalus harpia lasyurus (Hodgson).

Other hosts: Unknown.

Distribution: Darjeeling, West Bengal.

Endogenous stages: The trophozoite is oval in shape measuring 6.6 µm by 5.5 µm with a thin outer covering. The schizont is spherical measuring 5.5 µm in diameter containing 12-14 nuclei. The macrogametocyte is subspherical measuring 7.9 µm by 6.8 µm with a centrally placed nucleus while the microgametocyte is round to subspherical measuring 6.8 µm by 5.5 µm, provided with several small microgametes arranged along the periphery. The macrogamete measures 15.5 µm by 14.0 µm.

Types: Not known.

V. Genus **Sivatoshella** Ray and Sarkar, 1967

Type species: lonchurae Ray and Sarkar.

Oocyst having two sporocysts each with sixteen sporozoites (hecclaidecazoic).
84. *Sivatoshella lonchurae* Ray and Sarkar

Description: Oocysts spherical in shape each measures 36.0-38.0 μm in diameter with a mean of 37.62 μm. Oocystic wall consists of 4 layers of 3.6 μm in thickness. Oocystic residuum and micropyle absent. Sporocyst pear-shaped measuring 28.00-29.00 μm in length and 18.0 μm in width. A stieda body along with a substiedal body are present at the narrow pole. Sporozoites are broad, comma-shaped each is provided with a large vacuole at the broader end. Sporocystic residuum present as small refractile globules. Sixteen sporozoites are invariably arranged at the periphery of this individual mass.

Sporulation time: 24-48 hours.

Type host: Spotted Munia, *Lonchura punctulata* (Linn.).

Other hosts: White throated Munia, *L. malabarica* (Linn.)

Distribution: Calcutta, West Bengal.

Endogenous stages: The merozoites are broadly sickle-shaped, each measuring 5 μm by 2 μm in size with a distinct nucleus at the middle. The schizonts are found in the anterior part of the duodenum each measuring 24-26 μm in diameter and the mature one contains nearly 100 merozoites. The macro and micro gametocytes are found in the posterior part of the duodenum and sometimes to the anterior part of the small intestine. Microgametocytes produce microgametes each measuring 5-7 μm in length. The macrogametocyte measuring 30-35 μm in diameter. The macrogametes with large peripheral globules are seen in the preparation each is provided with a distinct karysome at the middle.

Types: Not known.

Remarks: The description of this parasites is made mainly on the basis of Ray and Sarkar (1968).

VI. Genus *Eimeria* Schneider, 1875

Oocyst having four sporocysts, each is provided with two sporozoites.

Type host: *Mus musculus* Rodentia: Muridae.

Represented both from invertebrate and vertebrate hosts; centepede (one species), fish (six species), amphibian (three species), reptile (18 species), bird (52 species) and mammal (92 species). In addition, one *Eimeria* sp. from insect, eight from fish and one each from bird and mammal have also been reported.

PARASITES OF INVERTEBRATE

(A) **Parasite of Centipede**

85. *Eimeria mecistophori* Narasimhamurthi

(Fig. 82)

Description: The oocysts are spherical in shape each measuring 26-0.28 μm in diameter. They are bilayered and without any polar thickenings. A small quantity of residual cytoplasm is left in the centre of each oocyst after sporulation. The oocyst contains four
spherical sporocysts each measuring 14.0 \(\mu m \) by 10.0 \(\mu m \) in diameter. The sporocyst is provided with two sporozoites which are elongated and cylindrical. It has an anterior round and posterior bluntly pointed ends, measuring 10.0-12.0 \(\mu m \) in length 2.5-3.0 \(\mu m \) in width.

Type host: Centipede, *Mecistrocephalus punctiform*.

Other hosts: Unknown.

Distribution: Waltair, Andhra Pradesh.

Endogenous stages: The merozoites observed in the epithelial cells of the gut each measuring 10.0 by 3.0 \(\mu m \). One end of the merozoite is broadly rounded and the other tapering gradually. The nucleus is situated towards the broader end having a distinct membrane with a number of chromatin granules and the endosome is placed centrally. The schizont measuring 14.0 \(\mu m \) by 8.0 \(\mu m \) developed from the merozoite initially possesses 14-16 nuclei having finely alveolated cytoplasm with scattered refringent granules. The number of nuclei was counted upto 45 in fully developed schizont. Each nucleus is having a clear membrane with a number of chromatin granules. The merozoites were detected as finger-shaped lobes radiating from the residual mass of central cytoplasm. Each merozoite measures 6.5-7.0 \(\mu m \) in length and 2.5-3.0 \(\mu m \) in width.

The author further studied the merozoites developed into the gametocytes in the subepithelial layer, surrounded by a sheath of connective tissue of the host. It has been possible by the author to distinguish the merozoites developing into the male and female gametocytes by their size and amount of reserve food material present in the cytoplasm. The female gametocyte contains a large quantity of paraglycogen, which in some cases may fill the entire cytoplasm where as the males are smaller and show a comparatively smaller quantities of reserve food material in the cytoplasm.
The merozoites which transform into the micro (male) gametocytes attain a maximum size, each measuring 38.0 μm by 18.0 μm. When fully grown it becomes round or oval in shape. The single nucleus repeatedly divides forming a large number of daughter nuclei. The nuclei in the earlier stages appear as rings of chromatin while in the later stages they are crescent-shaped. The microgametes are found on the surface as deeply staining comma-shaped bodies each measuring 6.0-7.0 μm by 1.0-1.5 μm. They are intensive feulgen positive. The cytoplasm forms a thin film surrounding the male gametes and a large quantity of cytoplasm remains unused which ultimately disintegrates.

The anterior end of the microgamete is slightly curved and the posterior end is provided with a flagellum measuring 8.0-10.0 μm in length. A second flagellum was also detected by the author a little behind the curved anterior end which trails backwards. The motozoite forming macro (female) gametocyte measures 50.0 μm by 22.0 μm having finely alveolated cytoplasm which is larger than the alveolus of microgamete. When matured the macrogametocyte becomes spherical and measures 30.0-32.0 μm in diameter having cytoplasm completely packing with paraglycogen bodies. While attaining maturity the nucleus of the macrogametocyte breaks down into smaller bodies and the nuclear membrane is found to disintegrate. The fertilised macrogamete is distinguishable from the unfertilised one due to the presence of outer membrane in the former which subsequently becomes the oocystic membrane.

Types: Lying in the collection of Dept. of Zoology, Andhra University, Waltair.

Remarks: As already stated, except zygote, rest of the stages in the life-cycle of a coccidium are haploid. While describing this species the author could be able to differentiate the merozoites forming micro and macro gametocytes. The author further discussed about the misconception of the formation of polar bodies by the macrogamete and concluded that no such phenomenon occurs in this particular parasite.

B) Parasite of Insects

86. *Eimeria* sp.

Description: The oocysts are oval in shape, each measuring 8 μm.
in length and 4 μm in width and possesses a vacoule (?) surrounded by a faint granulation.

Type host: Mosquito, *Culex* sp.

Distribution: Ootacamund, Madras, Tamil Nadu.

Remarks: Bhatia (1938) remarks that Ross could not come across this parasite afterward. From the literature it reveals that he reported in 1906 once more while mentioning 'notes on the parasites of mosquitoes in India between 1895 and 1899.' Pellerdy (1974) questioned the validity of this *Eimeria* sp.

PARASITES OF VERTEBRATE

(C) **Parasites of Fishes**

Key to the species

(A) Oocyst spherical or round.

(1) Sporocyst elliptical
 (i) With long protuberance at one end *E. harpodoni*

(2) Sporocyst not elliptical
 (a) Sporocyst pyriform
 (i) Wall of sporocyst provided with worts ... *E. zygaenae*
 (ii) Wall of the sporocyst not provided with worts ... *E. glossogobii*

(B) Oocyst not spherical

(1) Sporocyst oval
 (i) With sausage-shaped sporozoites of 10.1 μm in length *E. southwelli*
 (ii) With elongated sporozoites of 5.5 μm in length ... *E. notopteri*

(2) Sporocyst not oval
 (a) Sporocyst ellipsoidal
 (i) With elongated sporozoites of 4.5-5 μm in length *E. ambassi*

Remarks: Dykova and Lom (1981) while reviewing fish coccidia recognised two genera as valid viz., *Gaussia* Labbe with type species, *G. cluperum* (Thelohan, 1894) having tetrasporocystic, dizoic sporocyst, devoid of any stieda body and wall consists of two prominent valves join along a meridional suture ; and *Epieimeria* with type species *E. anguillae* (Leger and Hollande, 1922) characterised by the tetrasporocystic, dizoic sporocyst having a stieda body. However, the present author treated all these fish parasites under the genus *Eimeria*, though the proposition made by Dykova and Lom (1981) is thought provoking.
87. *Eimeria ambassi* Patnaik and Acharya

(Fig. 83)

Description: Oocyst oval or somewhat pyriform in shape measuring 15.0-17.5 μm in length with a mean of 16.0 μm and 10.0-12.5 μm in width with a mean of 11.25 μm. Oocystic wall double layered, colourless of 1.5 μm in thickness. Micropyle measures 2.5 μm without any polar cap. The outer layer is relatively thinner than the thick inner layer. The sporont completely fills up the entire space. Oocystic residuum absent. Sporocyst somewhat ellipsoidal measures 5-7 μm in length with a mean of 5 μm and 3.3-7.5 μm in width with a mean of 3.5 μm. Sporozoite measures 4.5-5 μm in length and 1.75 μm in width. Sporocystic residuum appears as a granular mass.

Sporulation time: 36 hours.

Type host: Minnow Barb, *Barbus ambassi* [= *Puntius ambassis* (Day)].

Other hosts: Unknown.

Distribution: Bhubaneswar, Orissa.

Endogenous stages: Unknown.

Types: Not known.
88. **Eimeria harpodoni** Setna and Bana

(Fig. 84)

Description: Oocyst spherical with two transparent membrane, the outer one is thinner than the thick inner one, 12.3-17.5 μm in diameter with a mean of 14.02 μm. Cytoplasm granular with centrally placed nucleus. Cytoplasmic mass measures 8.5-10.5 μm in diameter with a mean of 9.5 μm. Four rounded sporoblasts each 3.5-4.4 μm in diameter are seen without any micropyle. Thin granular oocystic residuum clearly visible after the complete development of the oocyst.

Sporocyst elliptical in shape with a long protuberance at one end. At the edge of this protuberance or neck there is a broad inverted V-shaped appendage. Sporocyst measures 8.5-10.8 μm in length with a mean of 9.7 μm and 3.6-5.7 μm in breadth with a mean of 4.8 μm, shape index is 2.02. Sporocystic residual compact mass present at one end of the sporocyst. Elongated sporozoite is slightly curved at middle region with one pointed end. Sporozoite 7.3 μm in length. Nucleus is situated at broader end of the sporozoite.

Sporulation time: 24-36 hours.

Type host: Bombay duck, *Harpodon nehereus* (Ham.).

Other hosts: Reported from the type host, Mandal (1976).

Distribution: Bombay, Maharashtra; Port Canning, West Bengal.

Endogenous stages: Unknown.

Fig. 84. A, immature and B, mature oocysts of *Eimeria harpodoni*.
Types: Not known.

Remarks: Oocysts with two sporocysts instead of regular four are common as stated by the describer. However, Mandal (1976) did not come across any oocyst of such anomalous development.

89. Eimeria glossogobii Mukherjee and Haldar
(Fig. 85)

Description: Oocyst spherical, with a very delicate and smooth wall having faintly yellowish tinge, measuring 7.1-12.2 µm by 7.1-11.0 µm in diameter with a mean 10.0 µm by 10.2 µm. Sporocyst four in number, pyriform to oval in shape measuring 3.0-9.1 µm in length and 2.0-5.1 µm in breadth with a mean of 7.2 µm and 3.9 µm respectively. Stieda body is present as a small knob at the pointed end of each sporocyst. Oocystic and sporocystic residuum absent. Sporozoites sickle shaped but the authors could not be definite about the position of the nucleus.

Habitat: Small intestine.

Type host: Bar eyed Goby, Glossogobius giuris (Hamilton).

Other hosts: Unknown.

Distribution: Kalyani, West Bengal.

Endogenous stages: Unknown.
Types: Lying in the collection of Protozoology Laboratory, Kalyani University, Kalyani.

Remarks: The absence of sporocystic residuum is interesting in this species. However, the inclusion of present species under genus *Goussia* Labbe due to its thin wall and sporulation inside the intestine is substantiated by the work of Dykova and Lom (1981). The specific name should be *glossogobia* instead of *E. glossogobii* as per International Code of Zoological Nomenclature.

90. **Eimeria notopteri** Chakravarty and Kar

(Fig 86)

Description: Oocyst irregular in shape measuring 23.5-25.2 μm in length with a mean of 24.3 μm and 21.4-22.5 μm in width with a mean of 22.2 μm. Oocystic wall double layered of equal thickness. Zygotic mass is centrally placed measuring 20.4-21.1 μm in diameter. Sporoblasts four in number each measuring 5.8 in diameter. Neither any micropyle nor any oocystic residuum are seen after complete development of the oocyst. Sporocyst oval, with both ends bluntly pointed, measuring 10.5-11.5 μm in length with a mean of 11.00 μm and 5.5-7.3 μm in width with a mean of 6.8 μm. The shape index is 1.5. Sporocystic residuum absent. Sporozoite is elongated in shape with one pointed and the other rounded ends. It measures 5.5 μm in length and the nucleus is situated at the middle.

Sporulation time: 48-50 hours.

Type host: Feather back, *Notopterus notopterus* (Pallas).

![Fig. 86. A, immature and B, mature oocysts of Eimeria notopteri.](image-url)
Other hosts: From the type host, and Chital, *Notopterus chitala* (Gunther), Mandal (1976).

Distribution: Calcutta market, West Bengal; Shillong market, Meghalaya.

Endogenous stages: Unknown.

Types: Not known.

91. *Eimeria southwelli* Halawani

(Fig. 87)

Description: Immature oocyst, pear-shaped the mature oocyst cylindrical or sausage-shaped provided with a single outer transparent wall, measuring 1-3 μm in thickness. Oocyst measures 30.5-53.4 μm in length with a mean of 39.5 μm and 10.5-15.4 μm in width with a mean of 13.1 μm. The shape index is 3.02. The cytoplasmic mass appears as refractile globules. Sporoblasts four in number, each measures 10.5-13.5 μm in length with a mean of 10.6 μm. The shape index is 1.9. The sporocysts are oval in shape each measures 10--12 μm in length and 6.5 μm in width. Sporocystic residuum absent but present at immature stage. Sporozoite sausage shaped with one pointed end. It measures 10.1 μm in length and arranged irregularly.

Sporulation time: 48 hours.

Type host: Eagle Ray (Devil fish), *Aetobatis narinari* [= *Aetobatus flagellum* (Schn.)].

Other hosts: Light Tip Shark, *Scoliodon sorrae* (Cuvier), Mandal (1976).
Distribution: Indian Ocean; Sunderban, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

Remarks: An interesting feature of *E. southwelli* is its occurrence in the embryo as noted by the describer. He further observed the invasion of sporozoites to the liver.

92. *Eimeria zygaenae* Mandal and Chakravarty

(Fig. 88)

Description: Perfectly round oocyst, measures 12.1-14.3 \(\mu m \) in diameter with a mean of 13.2 \(\mu m \), having two transparent oocystic envelop, one in thinner than the inner one. Highly refractile cytoplasm completely fills up the oocyst. Sporoblast 4 in number. No oocystic residuum and micropyle seen after complete development of the oocyst. Sporocyst pyriform in shape, anterior end bluntly pointed and the posterior end rounded. Wall of the sporocyst warty and yellowish in colour, sporocyst measures 7.7-8.9 \(\mu m \) in length with a
mean of 8.8 μm and 4.5-6.6 μm in width with a mean of 5.5 μm. Shape index is 1.6. Sporocystic residuum present as globular mass. Sporozoite elongated in shape, measuring 6.6 μm in length with a centrally placed nucleus.

Sporulation time: 72-80 hours.

Type host: Hammer headed shark, *Zygaena blochii* Cuvier [= *Sphyraena blochii* (Cuvier)].

Other hosts: From the type host, Mandal (1976).

Distribution: Digha shore; Sunderban, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

93. **Eimeria sp.**

Description: All that is known about this coccidium is that it was reported from Bombay in the intestine of *Plotosus canius*.

Host: Canine cat-fish eel, *Plotosus canius* Hamilton-Buchman.

Distribution: Bombay, Maharashtra.

Remarks: Bhatia (1938) mentioned this species without any description.

94. **Eimeria sp.**

Description: Oocyst spherical in shape measuring 15-18 μm in diameter. Residual body is absent. Sporocyst ovoid, frequently with a knob at one end. The sporocyst 8.7 μm in length and 5.3 μm in width. Sporocystic residuum is absent.

Distribution: Bombay, Maharashtra.

Remarks: Could not be possible to trace the original description. Bhatia (1938) reported the present species.
95. *Eimeria* sp.

Description: Oocyst spherical in shape, measuring 11 μm in diameter. Residual body is absent. Sporocyst ovoid, measuring 4.2 μm in length and 3 μm width. Sporocystic residuum absent.

Distribution: Bombay, Maharashtra.

Remarks: This species is only mentioned by Bhatia (1938).

96. *Eimeria* sp.

Description: Oocyst spherical in shape measuring 12 μm in diameter. Residual body absent. Sporocyst broadly ovoid, measuring 7.6 μm in length and 6.1 μm in width. Sporocystic residuum absent.

Host: Mus achieved anchovy, *Engraulis mystax* (Bloch and Schneider).

Distribution: Bombay, Maharashtra.

Remarks: This species is only mentioned by Bhatia (1938).

97. *Eimeria* sp.

Description: Oocyst spherical in shape, measuring 8.4 μm in diameter. Residual body in absent. Sporocyst ovoid, with one end more pointed than the other, measuring 4 μm in length and 2.5 μm in width. Sporocystic residuum absent.

Host: Silver whiting, *Sillago sihama* (Forskal).

Distribution: Unknown.

Remarks: Bhatia (1938) mentioned this species but could not be possible to trace the original description.

98. *Eimeria* sp.

Description: Oocyst spherical in shape, measuring 10.6 μm in diameter. Residual body absent. Sporocyst ovoid in shape, measuring 5.3 μm in length and 3 μm in width. There is a small rounded knob-like thickening at one end of the sporocyst. Sporocystic residuum absent.

Host: Small headed ribbon fish, Trichiurus savala Cuvier.

Distribution: Bombay, Maharashtra.

Remarks: Bhatia (1938) only mentioned this species.

99. Eimeria sp.

Description: Oocyst spherical in shape, measuring 7.6 μm in diameter. Residual body occasionally present. Sporocyst ovoid and small in size, with one pole slightly narrower than the other, measuring 3.6 μm in length and 2.4 μm in width.

Host: Frog fish, Batrachus grunnieus (Linnaeus).

Other hosts: Unknown.

Distribution: Bombay, Maharashtra.

Remarks: This species is only mentioned by Bhatia (1938).

100. Eimeria sp.

Description: Oocyst spherical in shape, measuring 10 μm in diameter. Residual body absent. Sporocyst ovoid in shape, measuring 5.5 μm in length and 3.1 μm in width. The sporocystic residuum in present in the form of two darkly staining globules.

Host: Greasy reef-cod, Epinephelus tauvina (Forskal).

Other hosts: Unknown.

Distribution: Bombay, Maharashtra.

Remarks: All the Eimeria sp. reported from fish are ill-described. Therefore a thorough reassessment of these parasites mentioned / described is badly needed.
Key to the species

A. Oocyst spherical
 (i) Measuring 8.5-11.0 \(\mu \text{m} \) ...

B. Oocyst not spherical
 (1) Oocyst without residuum and sporocyst naviculoid ...
 \(\text{E. himalayana} \)
 (2) Oocyst with residuum and sporocyst spindle-shaped ...
 \(\text{E. cyanophlyctis} \)

101. \textit{Eimeria cyanophlyctis} Chakravarty and Kar
 (Fig. 89)

Description: Both immature and mature oocysts are oval or sub-spherical in shape. In some of the former, clear spherical globules are present. The single layered oocystic membrane is very thin and transparent. An oocystic residuum in the form of an irregular mass containing a globule is present. Micropyle absent. Oocyst measures 15.5-20.2 \(\mu \text{m} \) in length with a mean of 17.9 \(\mu \text{m} \) and 15.5-18.3 \(\mu \text{m} \) in width with a mean of 16.7 \(\mu \text{m} \). The shape index is 1.07. Sporocyst spindle-shaped also single layered tapering at one end; measuring 10.5-12.5 \(\mu \text{m} \) in length with a mean of 11.5 \(\mu \text{m} \) and 4.5-6.5 \(\mu \text{m} \) in width with a mean of 5.5 \(\mu \text{m} \). The shape index is 2.09. Sporocystic residuum scattered. Sporozoite elongated with pointed anterior end and highly granular cytoplasm having refringent globules. The nucleus is situated at the broader end of the sporozoite.

Sporulation time: 60-75 hours.
Type host: Skipping Frog, *Rana cyanophlyctis* Schneider.

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

Remarks: The original description of the species was deficient as stated by Pellerdy (1974), though Chakravarty and Kar (1952) described this species in detail. However, Mandal (1976) has redescribed the species after examining the topotype, on which the present description is based.

102. *Eimeria himalayana* Ray and Misra

(Fig. 90)

Description: Oocyst rounded-oval, with two thin oocystic wall, without micropyle; residuum absent. Oocyst measures 7.5-10.5 \(\mu m \) in diameter with a mean of 9.2. \(\mu m \). Sporocyst naviculoid, measures 4.5-6.5 \(\mu m \) in length with a mean of 5.5 \(\mu m \) and 2.5-3.5 \(\mu m \) in width with a mean of 2.9 \(\mu m \) with globular residuum. Sporozoite club-shaped; with centrally placed nucleus and siderophilous structure at one of the poles. Sporozoite measures 3.8-4.5 \(\mu m \) in length.
Type host: Himalayan Toad, *Bufo himalayanus* Boulenger.

Other hosts: Unknown.

Distribution: Mukteswar, Uttar Pradesh.

Endogenous stages: Two types of schizonts are found in the intestine and regarded as macro and micro schizonts. Thirty two macro-merozoites each measuring 4.3 μm by 0.6 μm in size develop from the macro-schizonts. The micro-schizonts produce 16 to 32 slender-merozoites each measuring 4-6 by 0.4 μm. In the intestinal epithelium the gametocytes are developed. Microgamete measures 2.6 μm by 0.8 μm and macrogamete measures 7-12 μm by 6-10 μm.

Types: Not known.

Remarks: Pellerdy (1974) emended the specific name as *himalayana* instead of *himalayanum*. Ray and Misra (1943) described this species in detail.

103. **Eimeria laminata** Ray

(Fig. 91)

Description: Oocyst spherical, measures 8.5-11.0 μm in diameter with a mean of 9.8 μm. Oocystic wall double layered, outer one thicker than the inner one, with oocystic residuum. Cytoplasm round, contains highly refringent, refractile globules. Sporocyst spindle-shaped pointed at both ends and without any knob. Sporocyst measures 5.2-6.5 μm in length and 3.0 μm in width. The shape index

Fig. 91. A, immature and B, mature oocyst of *Eimeria laminata*.
is 1.96. Sporocystic residuum present. Sporozoite elongated bodies pointed at one end, with a nucleus at the middle.

Sporulation time: 60-72 hours.

Type host: Indian common Toad, *Bufo melanostictus* Schneider.

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stage: Both macro and micro schizonts are observed in the intestine by Ray (1935). He further noted the development of the parasite not only within the epithelial cells of intestine but also upon them.

Types: Not known.

Remarks: Sporulation of the oocyst is completed within the host-organism as observed by the describer. The present author observed the sporulated oocyst in the intestinal lumen which was also noted by Ray (1935).

(E) **Parasites of Reptiles**

Key to the species

A. Oocyst spherical
 1. Sporocyst oval or ellipsoidal
 (a) Size of oocyst 13.00-15.00 μm *E. bongaonensis*
 (b) Size of oocyst, 16.00-18.00 μm *E. legeri*
 (c) Size of oocyst 20.00-22.00 μm *E. kermoganti*

2. Sporocysts pyriform or spindle-shaped
 (a) Oocyst without residuum *E. koormae*
 (b) Oocyst with residuum
 (i) Size of oocyst 20 μm or above *E. stolatae*
 (ii) Size of oocyst below 20 μm *E. trionyxae*

B. Oocyst not spherical
 1. Oocyst triangular *E. triangularis*
 2. Oocyst lemon-shaped *E. hemidactyli*
 3. Oocyst elliptical ellipsoidal
 (a) Sporocyst ovoid *E. flaviviridis*
 (b) Sporocyst neviculoid *E. fibrilosa*
 4. Oocyst irregular *E. irregularis*

5. Oocyst oval, cylindrical, subspherical or almond-shaped.
 (a) Oocyst with residuum
 (i) Size of oocyst 36.00 μm×18 00 μm *E. gupti*
 (ii) Size of oocyst 29.00-31.00 μm×22.5-24.5 μm *E. piscatorii*
 (iii) Size of oocyst 23—27 μm×17—18 μm *E. najae*
104. *Eimeria bongaonensis* Sinha and Sinha

(Fig. 92)

Description: Oocysts are circular in shape each measuring 13-15 μm in diameter with a mean of 13.8 μm. Usually the greenish oocystic wall is smooth and bilayered with a uniform thickness of 0.2 μm. The space between the two walls is 0.5 μm. Micropyle, oocystic residuum and polar granule are absent. The four sporocysts are ellipsoidal, each measuring 8.4-9.3 μm in length and 5.1-5.7 μm in width with a mean of 8.8 μm by 5.2 μm. The sporocysts are without stieda body and contain scattered residue. Each of the sporocyst has two sporozoites each measuring 3.9-4.3 μm in length and 1.4-1.9 μm in width with a mean of 4.08 μm by 1.7 μm.

Sporulation time: 24-30 hours.

Type host: Takhak or Indian Gekko, *Gekko gecko* (Linn.).

Other hosts: Not known.

Distribution: Bongaon, West Bengal.

Endogenous stages: Not known.

Types: Lying with the collection of the describer.
Eimeriidae : Eimeria

105. *Eimeria fibrilosa* Mandal

(Fig. 93)

Description: The oocyst ellipsoidal in shape measuring 25-27 μm in length with a mean of 25.5 μm and 13.5-22.5 μm in width with a mean of 11.0 μm. The length-width ratio (shape index) is 1.36. It is provided with double-layered wall of 0.75 μm in thickness, the outer being thinner than the inner one. No micropyle is visible on the oocystic wall. The cytoplasm of the oocyst is coarsely granular and almost spherical in shape, measuring 9-10 μm in diameter. During the course of development, four rounded sporoblasts each of 5-6 μm in diameter are formed. A cytoplasmic prolongation from both sides of the sporoblast comes out with a definite wall to form the naviculoid sporocyst. A clear shiny stieda body at both ends of the sporocyst is visible and appears like a glume of the paddy. On careful examination, fine fibril of 6 μm in length is observed attached to each end of sporocyst. The oocystic residuum appears as refractile globular mass. Sporocyst measures 10-15 μm in length with a mean of 12.5 μm and 5-6 μm in width with a mean of 5.5 μm. The shape index 2.09. The cytoplasm of sporocyst appears as beaded refractile mass. Two bean-shaped sporozoites along with refractile bodies situated at both ends of each sporozoites were noticed. The sporozoite measures 10.5-14.4 μm by 7.5-8.5 μm with a mean of 12.2 μm by 8 μm. The length-width ratio being 1.56. After sporulation the sporocystic residuum appears like a beaded mass and takes the position at both ends of the sporocyst. On examination of the oocyst after few days from 2.5%
potassium dichromate solution, it is seen that four refractile globules of the sporozoite become very prominent.

Though the elliptical form of the oocyst is very common simultaneously some subspherical to round forms each of 13.5 \(\mu m \) to 19.5 \(\mu m \) in diameter with a mean of 16.5 \(\mu m \) have also been observed.

Sporulation time: 50-72 hours at room temperature 30°C-35°C.

Type host: Common water snake, *Enhydris enhydris* (Schneider).

Other hosts: Unknown.

Seat of infection: Intestine.

Distribution: Chakdah, Nadia, West Bengal.

Endogenous stages: Unknown.

106. *Eimeria flaviviridis* Setna and Bana

(Fig. 94)

Description: Oocyst elliptical, colourless, measuring 18.5-35.4 \(\mu m \) in length with a mean of 25.5 \(\mu m \) and 10.5-15.5 \(\mu m \) in width with a mean of 12.5 \(\mu m \). The shape index is 2. Micropyle and oocystic residuum absent. The ovoid sporocyst measures 6.5-9.4 \(\mu m \) in length with a mean of 8.3 \(\mu m \) and 5.3-8.3 \(\mu m \) in width with a mean of 6.9 \(\mu m \). The shape index is 1.2. Granular sporocystic residuum present in the

Fig. 94. A, immature and B, mature oocysts of *Eimeria flaviviridis*.
middle region. Sporozoites are elongated in shape with a bent in each at mid region. They overlap each other inside the sporocyst at one end. Sporozoite measure 9.5 μm in length and 1 μm in width with a nucleus situated close to the anterior end.

Sporulation time: 3-4 days.

Type host: House Lizard, *Hemidactylus flaviviridis* (Ruppell)

Other hosts: From the Type host, Mandal (1976).

Distribution: Bombay, Maharashtra; Barasat, West Bengal.

Endogenous stages: The schizonts are round each measuring 12 μm in diameter or sometimes irregular. The immature one measures 21 μm by 15 μm. Each mature schizont contains 16 to 140 elongated merozoites, each measuring 8-10 μm by 1.3-1.5 μm. Microgametocytes are ovoid in shape each measuring 1/ by 16 μm, produces many microgametes after maturation. The authors could not observe any flagellum on the microgamete. The authors examined the endogenous stages within the endocystic epithelial cells. The host cells are found to be destroyed and hypertrophied. They have also observed detached disintegrating cells inside the lumen.

Types: Not known.

Remarks: Setna and Bana (1935) noted that almost all the gekkos in Bombay area are infected with this parasite. Mandal (1976) could not come across such massive rate of infection while collecting the topotypes.

107. *Eimeria qupti* Bhatia

Description: Oocyst cylindrical, measuring 36 μm by 18 μm. Oocystic residuum present.

Type host: Checkered keelback (Water snake), *Natrix piscator* (Schneid.).

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Type: Not known.
Remarks: Mandal (1976) warned regarding the validity of such incompletely described species and more so due to the non-availability of the topotype. The description is based on Bhatia (1938).

108. Eimeria hemidactyli Knowles and Das Gupta

Distribution: The oocyst lemon-shaped with two layers of equal thickness. It measures 16.5-21.5 μm in length with a mean of 18.5 µm and 12.5-16.2 μm in width with a mean of 14.4 μm. The shape index is 1.3. Oocystic residuum and micropyle absent. Granular cytoplasm gives rise to four rounded sporoblasts. Ovoid sporocyst measures 9.5-11.3 μm in length with a mean of 10.4 μm and 7.5-8.5 μm in width with a mean of 8.00 μm. The shape index is 1.3. The sporocystic residuum is scattered inside the sporocyst. The elongated sporozoite is pointed at one end. It measures 6.5 μm in length. The nucleus is situated at the posterior end.

Sporulation time: 24-36 hours.

Type host: House Lizard, Hemidactylus flaviviridis (Ruppell).

Other hosts: From the type host, Mandal (1976).

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Dark colour of the oocyst was observed by the describer from which it was inferred that the site of endogenous development was the liver or the bile ducts. Unsporolated oocysts were also observed frequently by the describer. The present author could not come across any such coloured oocyst while collecting topotype (Mandal, 1976).

109. Eimeria irregularis Kar

(Fig. 95)

Description: The immature oocysts are spherical in shape and mature one irregular and without microphle or oocystic residuum. The oocyst measures 14.6-16.5 μm in diameter with a mean of 15.5 μm. Cytoplasm measures 11.5-12.5 μm in diameter. Spindle shaped sporo-
blast measures 8.3 μm by 4.5 μm. The sporocyst is elongately oval in shape having rounded posterior end and somewhat pointed anterior ends. At the anterior end of the sporocyst there is a little knob. A sporocyst measures 11.5-13.5 μm in length with a mean of 12.5 μm and 6.5-7.5 μm in width with a mean of 6.9 μm. Sporocystic residual mass is present. The sporozoites are sausage shaped each having both the ends rounded and measures 8.5 μm by 2.5 μm. The spherical nucleus is placed at the centre of the body of the sporozoite.

Sporulation time: 30-45 hours.

Type host: Pond Turtle, Lissèmys punctata (Bonnaterre).

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

110. Eimeria innominata Kar

(Fig. 96)

Description: Oocyst subspherical; double walled, the outer is thinner than the inner one. It measures 16.5-18.8 μm in length with
a mean of 17.7 μm and 11.5-14.3 μm in width with a mean of 13.5 μm. The shape index is 1.3. Spherical cytoplasm measures 7.3-8.2 μm in diameter and is provided with highly refringent globules. Micropyle and oocystic residuum absent. Sporocyst pyriform with an irregular shaped knob at the pointed end. Sporocyst measures 10.5-12.3 μm in length with a mean of 11.3 μm and 5.5-7.5 μm in width with a mean of 6.5 μm. The shape index is 1.7. Sporocystic residual mass present. The sporozoites are elongated in shape each with one sharply pointed end and measures 6.5-7.5 μm in length and 4.1-4.6 μm in width with a nucleus at the centre.

Sporulation time: Unknown.
Type host: Pond turtle, Lissemys punctata (Bonnaterre).
Other hosts: From the Type host, Mandal (1976).
Distribution: Calcutta, West Bengal.
Endogenous stages: Unknown.
Types: Not known.
Remarks: This parasites is exclusively found in the liver and bile duct.

111. Eimeria koormae Das Gupta
(Fig. 97)

Description: Spherical oocyst with two layers, the inner layer being thicker than the outer. Granular cytoplasm and micropyle present. The oocyst measures 13.5-15-8 μm in diameter with a mean of 14.6 μm. Oocystic residuum absent. Spindle-shaped sporocyst with tapering at both ends, measures 9.3-11.3 μm in length with a mean of 10.3 μm and 3.5-5.6 μm in width with a mean of 4.6 μm. The shape index is 2.24. Sporocystic residual mass is granular and situated.

Fig. 97. A, immature and B, mature oocysts of Eimeria koormae.
between the two sporozoites. The sporozoite elongated and has one end rounded and stouter than the other.

Sporulation time: 2-3 days.

Type host: Pond turtle, *Lyssemys punctata* (Bonnaterre).

Other hosts: From the Type host, Mandal (1976).

Distribution: Jessore, Bangladesh; Basirhat, West Bengal.

Endogenous stages: Parasites are found in the small intestine. Schizogonic stages are located within the epithelial cells and other sub-epithelially. The young schizont is round, measuring 2-2 μm. The mature one measures 4.12 μm (mean) in diameter and possesses 8 merozoites, each measuring 1.5 μm by 1.0 μm. Macrogamete spherical when fully formed measures 12.36 μm in diameter.

Types: Not known.

Remarks: Initially the specific name was mispelt as ‘boormae’ instead of ‘koormae’.

112. *Eimeria kermoganti* (Simond)

Description: Oocysts spherical or subspherical, measuring 20-22 μm in diameter, provided with double wall of equal thickness. Cytoplasm granular; oocystic residuum absent. Sporocyst oval, sporocystic residual mass is situated at one end. Sporozoites comma shaped and transparent.

Sporulation time: Unknown.

Type host: Gharial, *Gavialis gangeticus* (Gmelin).

Other hosts: Unknown.

Distribution: River Ganges, India.

Endogenous stages: Simond (1901b) found the endogenous stages in the spleen.

Types: Not known.

Remarks: This description is taken from Bhatia (1938).

113. *Eimeria knowlesi* Bhatia

Description: The oocyst spherical or oval, double-layered having granular cytoplasm and without any micropyle and residuum. It measures 16.5—20.5 μm in length with a mean of 18.5 μm and 14.5-18.5 μm in width with a mean of 16.5 μm. The sporocysts are ovoid in shape, each measures 9.00-11.00 μm in length with a mean of 10.00 μm and 7.5-8.5 μm in width with a mean of 7.9 μm. The sporozoite elongated with nucleus situated at posterior rounded end. The sporocystic residual mass is placed in between the sporozoites. The sporozoite measures 7.2 μm in length.

Sporulation time: 50-40 hours.

Type host: House Lizard, *Hemidactylus flaviviridis* (Ruppell).

Other hosts: From the Type host, Mandal (1976).

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Bhatia (1938) stated that the oocysts of *E. knowlesi* are sometimes oval and come close to those of *E. flaviviridis* (= Species B of Knowles and Das Gupta, 1935). He further has made a comment that the present species might not be a distinct form. Setna and Bana (1935b) while describing *E. flaviviridis* synonymised ‘Species B’ of Knowles and Das Gupta, 1935, but did not mention anything about ‘Species A’ of the same author (= *E. knowlesi* Bhatia). However, from the diagram of both the oocysts, it appears that they are distinct from each other. Mandal (1976) on the other hand came across and marked similarity between *E. hemidactyli* Knowles and Das Gupta, 1935 and the present species in size but the oocyst of the former is lemon-shaped and that of the later is spherical or oval. At present all the three species can be kept as distinct.

114. **Eimeria legari** (Simond)

Description: Oocyst spherical, the cytoplasm dividing to form two sporoblasts without leaving any residuum. Oval sporocyst contains two comma-shaped sporozoites; sporocystic residuum is granular at the beginning and becomes transparent and refringent later on.

Sporulation time: Unknown.
Type host: Indian Flap-shelled Turtle, *Emyda granosa* [= *Lyssemys punctata granosa* (Schoepff)].

Other hosts: Unknown.

Distribution: India.

Endogenous stages: The macrogametocytes develop within the liver cells. Oocysts pass into the intestine through the bile duct.

Types: Not known.

Remarks: Parasites occur in the liver. The description is mainly based on Reichenow (1929) and Bhatia (1938).

115. **Eimeria minetti** Ray, Raghavachari and Spar
d

1942. *Eimeria minetti* Ray, Raghavachari and Spar,

1973. *Eimeria rabiti* Mandal and Nair,

Description: Oocyst oval, double walled, the outer being thinner. It measures 17.5-21.5 μm in length with a mean of 19.5 μm and 12.5-14.5 μm in width with a mean of 15.5 μm. The shape index is 1.2. Cytoplasm appears as globular refractile mass. Micropyle and oocystic residuum absent. Spherical sporocyst measures 7.5-9.5 μm in diameter with a mean of 8.5 μm. Sporocystic residuum granular. The sporozoites are circular in shape.

Sporulation time: 36 to 48 hours.

Type host: Skink, *Mabuya* sp.

Other hosts: Unknown.

Distribution: Mukteswar, Uttar Pradesh.

Endogenous stages: Reported to occur in the epithelial cells of the small intestine without any detail description.

Types: Not known.

Remarks: Mandal and Nair (1973) described *Eimeria rabiti* from *Gymnodactylus rabitus* (Blyth) after obtaining the specimen from Chiriatapu, Andaman Islands which is now synonymised with *Eimeria minetti* Ray, Raghavachari and Sapre, 1942 described from Skink, *Mabuya* sp. after considering the close similarity between the two.

116. **Eimeria najae** Ray and Das Gupta

(Fig. 98)

Description: Oocyst ovoidal, double walled, outer wall being thinner. It measures 23.5-27.5 \(\mu m \) in length with a mean of 25.5 \(\mu m \) and 15.5-18.5 \(\mu m \) in width with a mean of 16.9 \(\mu m \). The shape index is 1.5. Micropyle visible in immature oocysts. Oocystic residual mass appears as compact mass. Sporocyst spindle-shaped, measures 11.5-13.5 \(\mu m \) in length with a mean of 12.5 \(\mu m \) and 5.9-7.8 \(\mu m \) in width with a mean of 6.9 \(\mu m \). The shape index is 1.8. The sporozoite elongated, tapering at both ends. The nucleus is situated at the middle. Sporozoite measures 10.5-11.5 \(\mu m \) in length.

Sporulation time: 4-5 days.

Type host: Cobra, Naja naja Linn.

Other hosts: From the Type host, Mandal (1976).

Distribution: Sunderban, West Bengal.

Endogenous stages: The parasite is found in the intestinal epithelium. Two types of schizonts are seen by Ray and Das Gupta (1936b-37d). Both of them give rise to eight merozoites in each and measures 7 \(\mu m \) in length and 2 \(\mu m \) in breadth. According to the describer it appears that the schizont with a vacuolar cytoplasm and delicate karyosome gives rise to female gametocyte. On the other hand the schizont with hyaline cytoplasm and little nuclear chromatin material gives rise to male gametocyte. Macrogamete with temporary micropyle has been observed by the describer. The dimension of the macrogamete also correspond to those of the oocyst. The microgametocyte measures 20-24 \(\mu m \) in diameter and gives rise to many microgametes each of 6.1 \(\mu m \) in length.

Types: Not known.

117. Eimeria piscatori Ray and Das Gupta

Description: Oocyst oval, measuring 29-31 μm by 22.5-24.5 μm with oocystic residuum. Sporocyst spindle shaped, measuring 14 μm by 4.5 μm.

Sporulation time: Unknown.

Type host: Checkered Keelback (Water Snake), *Natrux piscator* (Schneid).

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

Remarks: The description is based on Bhatia (1938). Mandal (1976) examined 20 examples of water snake from the suburb of Calcutta but could not come across any parasite of this type. Species with such incomplete description may not be treated as valid.

118. **Eimeria stolatae** Ray and Das Gupta

(Fig. 99)

Description: Oocyst spherical, provided with double envelop, the outer is thinner than the inner one. It measures 19.5-21.5 μm in diameter with a mean of 20.5 μm. Neither micropyle nor oocystic residuum are present. The cytoplasm is rounded with refractile globules, gives rise to four spindle-shaped sporoblasts ultimately forms the spindle shaped sporocysts, each with both ends tapering. It measures 11.5-13.4 μm in length with a mean of 12.5 μm and 5.5-7.5 μm in width with a mean of 6.5 μm. The shape index is 2.0. Sporocystic residuum present in between

Fig. 99. A, immature and B, mature oocysts of *Eimeria: stolatae*.
the elongated sporozoites by lie side by side with their broad nuclear ends facing each other. The sporozoite measures 8.5 μm by 2.3 μm.

Sporulation time: 60-72 hours.

Type host: Striped keelback (Grass snake), *Natrix stolota* (Linnaeus).

Other hosts: From the type host, Mandal (1976).

Distribution: Calcutta, West Bengal.

Endogenous stages: The schizonts are found in the intestinal epithelium, each measuring 8.2 μm by 4.1 μm in size. Mature schizont gives rise to eight irregular nuclei each of which develops into a merozoite measuring 6.1 μm. Macrogametes are round each measuring 18-20 μm in diameter. Microgametocytes are irregular in shape, each gives rise to biflagellated microgamete measuring 6.2 μm in length.

Types: Not known.

119. *Eimeria trionyxae* Chakravarty and Kar

(Fig. 100)

Description: Oocyst spherical, double layered, the outer being thinner. It measures 14.45 μm in diameter with a mean of 16.5 μm. The cytoplasm is spherical and placed centrally with large number of refringent globules. No micropyle is present but oocystic residuum present. The cytoplasm gives rise to four oval-shaped sporoblasts which are ultimately converted into pyriform sporocysts each with one end pointed and the other end round. The sporocyst measures 11.5-13.48 μm in length with a mean of 12.5 μm and 5.7-7.9 μm in width.

Fig. 100. A, immature and B, mature oocysts of *Eimeria trionyxae*.
with a mean of 6.3 μm. The shape index is 2.00. Sporocystic residuum is present in between the two sporozoites-as centrally placed compact mass. The sporozoites are narrow and elongated, each measuring 9.5-10.5 μm in length with a centrally placed nucleus.

Sporulation time: 48-60 hours.

Type host: Tortoise, *Trionyx gangeticus* Cuv.

Other hosts: From the type host, Mandal (1976).

Distribution: Calcutta, West Bengal.

Endogenous stages: In the intestinal epithelium, the round schizont measuring 8-14 μm in diameter is found. The merozoites are arranged in a rosette inside the mature schizont each with the pointed ends turned outwardly. It measures 4-6 μm in length and 1.0 μm at its broadest width.

Types: Not known.

120. *Eimeria triangularis* Chakravarty and Kar

(Fig. 101)

Description: Oocyst triangular with the sides arched. It measures 9.5-14.5 μm in length with a mean of 12.5 μm. The cytoplasm is rounded measuring 9.12-11.50 μm in diameter and provided with some refringent globules. Oocystic residuum and micropyle absent. The sporocyst oval or spindle-shaped with both the ends bluntly rounded. Sporocystic wall is very thin. Sporocyst measures 9.5-11.5 μm in length with a mean of 10.5 μm and 3.4-5.4 μm in width with a mean of 4.14 μm. The shape index is 3.02. The sporozoites are elongated in shape each with tapering ends. It measures 9.5 μm in length.

Sporulation time: 24-36 hours.

Type host: Tortoise, *Trionyx gangeticus* Cuv.
Other hosts: From the type host, Mandal (1976).

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

121. Eimeria varani Bhatia and Chauhan

(Fig. 102)

Description: The oocysts are nearly almond-shaped each with tapering ends, measuring 17-21 μm in length with a mean of 19 μm and 10-16 μm in width with a mean of 13 μm. The 0.8-1 μm thick oocyst wall is bilayered; outer layer is light yellow and the inner one is light brown in colour. Micropyle, polar granules and oocystic
residuum absent. The elongated ellipsoidal sporocyst bears stieda body and measuring 11-14 \(\mu \text{m} \) in length with a mean of 13 \(\mu \text{m} \) and 5-6 \(\mu \text{m} \) in width with a mean of 6 \(\mu \text{m} \) in size. The sporocystic residuum is dispersed as coarse dark granules between the sporozoites, each measures 10.4-11.7 \(\mu \text{m} \) in length with a mean of 11 \(\mu \text{m} \) and 2.6 \(\mu \text{m} \) in width.

Sporulation time : 4 days.

Type host : Monitor Lizard, *Varanus monitor* [= *Varanus bengalensis* (Daudin)].

Other hosts : Unknown.

Distribution : Mathura, Uttar Pradesh.

Endogenous stages : Unknown.

Types : Not known.

Remarks : Regarding the testudine coccidia, Bhatia (1938) included *Eimeria mitraria* (Laveran and Mesnil, 1902) from the host, *Chinemy reevissi* (Gray) as reported from Ceylon but not included here due to lack of definite information about the distribution of this species.

(F) **Parasites of Birds**

Key to the species

1. Oocyst kidney shaped

 E. sphenocercae

2. Oocyst elliptical or ellipsoidal

 (A) Sporocyst pear shaped
 (i) Oocyst with micropyle

 E. alectorae
 (ii) Oocyst without micropyle

 E. meleagridis

 (B) Sporocyst not pear shaped
 (i) Sporocysts elongated ovoid
 (x) Polar granule one

 E. mayuri
 (y) Polar granule more than one

 E. adenoides
 (ii) Without stieda body

 E. gallopaonis
 (II) Stieda body prominent

 (ii) Stieda body not prominent

 E. gorakhpurensis
 (III) Sporocyst elongated ellipsoidal

 E. grusi
 (IV) Sporocyst ellipsoidal

 E. lophural

3. Oocyst pyriform

 E. gallinagoi

4. Oocyst egg-shaped

 (A) Oocystic residuum present

 E. pavonina

 (B) Oocystic residuum absent
 (i) Size of oocyst above 20 \(\mu \text{m} \)

 E. dubeyi
 (ii) Size of oocyst below 20 \(\mu \text{m} \)

 E. acervulina
5. Oocyst oval or ovoid

(A) Oocystic residuum present

(x) Sporocyst pyriform

(a) Sporocyst large above 10.0 µm in length
 (i) Micropyle present \textit{E. tenella}
 (ii) Micropyle absent \textit{E. roscoviensis}

(b) Sporocyst small below 10.00 µm length
 (i) Size of oocyst above 17.00 µm/13.00 µm ... \textit{E. patnaiki}
 (ii) Size of oocyst below 17.00 µm/13.00 µm ... \textit{E. charadrii}

(y) Sporocyst ovoid or ellipsoidal

(a) Size of oocyst large above 25 µm \textit{E. columbae}

(b) Size of oocyst small below 25 µm \textit{E. kapotei}

(B) Oocystic residuum absent

(i) Sporocyst ovoid ellipsoidal

(a) Size of sporocyst 10-13 µm/6-8 µm \textit{E. bezei}

(b) Size of sporocyst 12 µm/5-7 µm \textit{E. francolini}

(c) Size of sporocyst 15-20 µm/8-9 µm \textit{E. maxima}

(ii) Sporocyst not ovoid ellipsoidal

(a) Size of oocyst 17-27 µm/15-23 µm \textit{E. dispersa}

(b) Size of oocyst 16-30 µm/13-25 µm \textit{E. bateri}

(c) Size of oocyst 20-31 µm/18-25 µm \textit{E. brunetti}

(d) Size of oocyst 15.5-23.3 µm/13-6-20 µm \textit{E. necatrix}

(e) Size of oocyst 16-21 µm/13-17 µm \textit{E. picta}

6. Oocyst spherical or subspherical

(A) Oocystic residuum present

(i) Sporocyst ellipsoidal \textit{E. tropicalis}

(ii) Sporocyst pyriform \textit{E. numenii}

(a) Size of oocyst above 20 µm \textit{E. mandali}

(b) Size of oocyst below 20 µm
 (i) Sporocyst pyriform \textit{E. bhutanensis}
 (ii) Sporocyst bean-shaped \textit{E. anatis}

(B) Oocystic residuum absent

(I) Sporocyst oval, ovoidal or elliptical

(a) Length of sporocyst below 10 µm
 (i) Length of oocyst above 20 µm \textit{E. lucknowensis}
 (ii) Length of oocyst below 20 µm

(x) Micropyle present \textit{E. mitis}

(y) Micropyle absent \textit{E. malaccae}

(b) Length of sporocyst ranging from 10 µm—13 µm
 (i) Length of oocyst above 25 µm \textit{E. labbeana}
 (ii) Length of oocyst below 25 µm \textit{E. battakhi}

(x) Length of sporozoite 6.5 µm \textit{E. barbeta}

(y) Length of sporozoite 9-11 µm \textit{E. pavonis}

(a) Length of sporocyst above 13.00 µm
 (i) Width of sporocyst above 7 µm \textit{E. coturnicis}
 (ii) Width of sporocyst below 7 µm \textit{E. coturnicis}

(II) Sporocyst pyriform

(a) Size of oocyst large above 27 µm \textit{E. coturnicis}
(b) Size of oocyst below 27 μm
 (i) Size of sporocyst below 8 μm
 (ii) Size of sporocyst above 8 μm
(x) Wall of oocyst provided with warts ...
(y) Wall of oocyst smooth
 (i) Oocyst with knob at the micropyler end ...
 (ii) Oocyst without knob at the micropyler end
(a) Size of sporocyst below 12 μm in length ...
(b) Size of sporocyst above 12 μm in length ...
(7) Oocyst spherical to elliptical ...
(8) Oocyst sub-spherical to ellipsoidal
 (A) Size of sporocyst above 12 μm in length ...
 (B) Size of sporocyst below 12 μm in length
 (i) Sporozoite with one refractile globule ...
 (ii) Sporozoite with many refractile globules ...
(9) Oocyst ellipsoidal to ovoid ...
(10) Oocyst broadly ovoid ...

122. Eimeria acervulina Tyzzer
(Fig. 103)

Description: The oocysts are egg-shaped or oval, smooth walled and yellowish in colour each with uniformly thick wall except at the anterior end where it was slightly thin. It measures 17.7-20.0 μm by 13.7-16.3 μm with a mean of 19.5 μm by 14.3 μm. Shape index 1.1-1.4 with a mean of 1.25; having a micropyle at the narrower end. The wall is double-contoured and has a smooth surface. No oocystic residual body is formed, but a polar granule is visible in most sporulated, and even in some unsporulated oocysts. There is no inner residual bodies.

Sporulation time: 24 hours.

Dimension of the oocysts reported by other authors are as follows: 12-23 by 9-17 μm with a mean of 16 by 13 μm (Levine, 1961);
17-19 by 14 μm. (Soltys, 1966); 13-22 by 10-16 μm with a mean of 18 by 13.5 μm (Tacla, 1967); 18-20 by 14-16 μm with a mean of 19.5 by 14.3 μm (Pellerdy, 1974).

Type host: Domestic fowl, Gallus domesticus (= Gallus sp.)

Other hosts: Bob white, Colinus v. virgeneanus (Linnaeus); California Velley Quail, Lophoryx californicus [= L. californica californica (Shaw)]; Plumed Quail, Oreortyx picta plumifera [= O. picta picta (Douglas)] are also harbouring oocysts morphologically similar to the present species (Pellerdy, 1974).

Distribution: Uttar Pradesh, Orissa, Madhya Pradesh, Bombay, Maharashtra and Tamil Nadu.

Endogenous stages: Endogenous stages are found mainly within the epithelial cells of the anterior portion of the small intestine, particularly in the duodenal loop; sometime they may invade the posterior segments. Four schizogenic generations have been observed in E. acervulina (Vetterling and Doran, 1966). First generation schizont measures 9.1-11.3 μm in diameter localizes above the nucleus of the host cell and form sixteen long merozoites each measuring 4.4-5 μm with a central residuum. Second generation schizont measures 5-5.5 μm in diameter localizes supranuclearly, produces sixteen, of 3.9-4.5 μm long merozoites without any residuum. The third one measures 3.9 μm by 5.5 μm localizes supranuclearly and produces eight merozoites each measuring 5.2-5.9 μm long, arranged around a residuum. The fourth generation schizont also lies above nucleus measures 9.1-10.3 μm with a large residuum.

Microgametocyte measures 11 μm by 9 μm gives rise to microgametes each measuring 2.2-3.3 μm in length. The macrogametocyte measures 14.5-19 μm. The prepatent period is 4 days. Further details may be had from Doran and Farr, 1965; Doran, Jhan and Rinaldi, 1962; Doran, 1966. However, the ultrastructure of macrogametes and oocysts were studies by Lee and Millard (1971). It was found that the macrogametes are devoid of microtubuli on the surface. Wall forming bodies were detected in association with golgi complex. Oocyst was composed of three layers. Jurajdova (1969) observed micropore on the surface of the gametocyte lying inside the vacuole. The macrogametocyte was provided with two layers and the microtubule was detected in the parasitophorous vacuole, older macrogametocytes were provided with glycogen in the form of rosettes. The microgamete was having three flagella of which two were free and the third one was attached to the body contour.
Excystation: The excystation of oocyst was studied *in vitro* (Doran and Farr, 1961) and *in vivo* (Farr and Doran, 1961) and found that no excystation took place in gastric or duodenal juice, pepsin and different pancreatic enzymes but due to mechanical disruption of the wall most of the oocyst released sporozoites in the bile and pancreatic juice. In the living bird no excystation took place in the crop, quite a large number of excystation took place in the gizzard but most of the sporozoites were released in the duodenum.

Pathogenicity: Tyzzer (1932) regarded this species as nonpathogenic. However, afterwards it has been proved experimentally that *E. acervulina* is pathogenic (Morehouse and Mc Guire, 1958, Horton-Smith and Long, 1963 and Gill and Lall, 1961). Pellerdy (1974) is of opinion that there might be different strain of *E. acervulina*. Long transverse ladder-like lesions are seen if the infection is medium (Tyzzer, 1929) in case of severity coalescence hides the characteristic pattern. The contents of the intestine are found pesty catarrhal and occasionally with extensive vasodilatation is marked by the reddening of the mucosa with rare epithelium desquamation.

Types: Not known.

Remarks: The distribution and further activity may be had from Ray (1945 c), Gill (1959 a,b) Patnaik (1963), Bhatia and Pande (1968 a,e), Rahman and Anantarman (1970). Chandra and Chhabra (1972) and Mandal (1980).

123. *Eimeria adenoeides* Moore and Brown

(Fig. 104)

Description: Oocyst double contoured with smooth surface usually elliptical in shape measuring 19-31 μm in length with a mean of 26 μm and 12.6-21.0 μm in width with a mean of 16 μm. Oocystic residuum

![Fig. 104. Mature oocyst of Eimeria adenoeides.](image)
absent but with 1 to 3 polar granules. Sporocyst elongated ovoid apparently with a stieda body.

Sporulation time: 24 hours.

Dimension of the oocysts reported by other authors are as follows:
- 19-31 \(\mu m\) by 13-21 \(\mu m\) with a mean of 25 \(\mu m\) by 16 \(\mu m\) (Moore and Brown, 1951);
- 18-21 \(\mu m\) by 14-17 \(\mu m\) (Svanbeav, 1957);
- 21-30 \(\mu m\) by 13-20 \(\mu m\) with a mean of 25.6 \(\mu m\), by 16.2 \(\mu m\) (Clarkson, 1958);
- 19-32 \(\mu m\) by 14-18 \(\mu m\) with a mean of 27.2 \(\mu m\) by 16.6 \(\mu m\) (Golemansky, 1962).

Type host: Domestic Turkey, *Meleagris g. gallopavo* Linnaeus (= *Meleagris* sp.).

Other hosts: From the type host and Lady Amherst’s Pheasant, *Chrysolophus amherstiae* (Lead beater).

Distribution: Lucknow, Uttar Pradesh, Orissa.

Endogenous stages: This species localizes in the tubular portion of the caecum and the terminal portion of the ileum i.e. the lower region of the small intestine the caecum and the colon (Moore and Brown, 1951 and Clarkson, 1956 and 1958). The first generation schizont measures 30 \(\mu m\) by 18 \(\mu m\) produces several hundred merozoites each measuring 4.5-7 \(\mu m\) by 1.5 \(\mu m\). They lie below or next to the nucleus but the second generation schizont much smaller lie subnuclearly, measuring 10 \(\mu m\) in diameter and produce 10-24 merozoites each measuring 10 \(\mu m\) by 3 \(\mu m\). The macrogamete measures 20 \(\mu m\) by 18 \(\mu m\) with large cytoplasmic granules, the nucleus is provided with a central Karyosome surrounded by a pale halo. The microgametocytes are roughly similar in size and the microgametes within them surrounded an irregular residual mass. Doran (1970) observed the schizogony in the bovine embryonic kidney cell cultures where schizonts found after 48 hours. This species is pathogenic to the Turkey.

Types: Not known.

Remarks: While dealing with Coccidia of Turkey at Lucknow, Uttar Pradesh, Bhatia (1968a) came across a species and described the oocyst as ellipsoidal with smooth double contoured wall, measures 20-28 \(\mu m\) \(\times\) 14.6-17.3 \(\mu m\) (mean 25.6 \(\mu m\) \(\times\) 16.4 \(\mu m\)) (from 50 oocysts) with a length width ratio of 1.36-1.81 (mean 1.56). The 1.2 \(\mu m\) thick oocystic wall had the outer layer yellowish or light green and the inner with a violate or bluish hue. Oocystic residuum absent. One or two polar granules were present. Micropyle perceptible occasionally as a light area. Sporocyst 10.6-14.6 \(\mu m\) \(\times\) 6.6 \(\mu m\) (mean 12.6 \(\mu m\) \(\times\) 6.6 \(\mu m\))
in size, elongate-ovoid and with a narrower end. Stieda body present. Sporocystic residuum presents as scattered granules. Sporozoite of $9.3 \times 2.0 \mu m$ in size, with one end broadly rounded and the other narrower, had two refractile globules, the larger lying at the broader end and the smaller towards the narrower extremity with a small but distinct nucleus situated between the two. Scrapings from regions of the hind gut yielded oocysts inside caecal epithelial cells.

However, with this description the authors expressed a doubt of differentiating *E. adenoeides* and *E. meleagridis* so also by Clarkson (1960). Mandal (1980) expressed a desire that the author might be dealing with *E. adenoeides*. The further details may be had from Patnaik (1963) and Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973).

124. *Eimeria alectorae* Ray and Hiregaudar

Description: Oocyst ellipsoidal in shape with a few ovoidal and very few spherical forms. Oocystic wall pale yellowish-brown with fine granules near the micropyle. Micropyle conspicuous as a minute opening in the wall. Oocyst measures $23.6-26.4 \mu m$ in length and $15.6-19.5 \mu m$ in width and the shape index is 1.43. Oocyst from another bird of the same species measures $26.2-29.5 \mu m$ in length and $17.4-19.5 \mu m$ in width and the shape index is 1.50. Refractile granules present in the cytoplasm. Sporocysts are pear-shaped each measures $8-9.5 \mu m$ by $5-5.6 \mu m$, with stieda body at the pointed end. Sporozoites banana-shaped. Sporocystic residuum present.

Sporulation time: 24-48 hours.

Type host: Chukar Partridge, *Alectoris graeca* (Meisner).

Other hosts: Unknown.

Distribution: Zoological Garden, Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

125. *Eimeria anatis* Scholtyseck

(Fig. 105)

Description: Oocyst nearly sphetical or ovoid with a truncated
end and a smooth double contoured wall of 1 \(\mu m \) thick. It measures 15-19 \(\mu m \) in length with a mean of 16.9 \(\mu m \) and 11-15 \(\mu m \) in width with a mean of 14.3 \(\mu m \). The outer layer is colourless but the thick inner layer is straw coloured. Micropyle prominent measuring 4 \(\mu m \) wide and thickening at their ends. Oocystic residuum absent but provided with one or two polar granules. Sporocyst ovoid with one pointed end measuring 8-10 \(\mu m \) in length with a mean of 9.3 \(\mu m \) and 5-6.6 \(\mu m \) in width with a mean of 6.1 \(\mu m \). Stieda body absent, sporocystic residuum present as loose scattered mass at the centre. Sporozoite elongated-pyriform, measuring 6-7 \(\mu m \) in length and 2.7 \(\mu m \) in width with one narrower end and the other end broadly rounded. Two refractile globules lying in different positions on the sporozoites.

Sporulation time: 3 days.

Dimension of the oocysts reported by other authors are as follows: 14-19 \(\mu m \) by 11-16 \(\mu m \) with a mean of 16.8 \(\mu m \) by 14.1 \(\mu m \) (Kenneth et al. 1971 and Pellerdy, 1974).

Type host: Mallard or Domestic Duck, *Anas p. platyrhynchos* (= *Anas* sp.).

Other hosts: From the Type host, Bhatia (1968b).

Distribution: Lucknow, Uttar Pradesh.

Endogenous stages: Examination of stained duodenal and some parts of ileum revealed isolated oocysts of similar nature attached to viller epithelial cells. Other stages unknown.

Types: Not known.

126. **Eimeria barbeta** Kar

(Fig. 106)

Description: Oocystic oval, double walled, the outer being thinner. It measures 22.2-34.2 \(\mu m \) in length with a mean of 32.2 \(\mu m \) and 17.5-19.5 \(\mu m \) in width with a mean of 18.5 \(\mu m \). The shape index is 1.2. Micropyle present and oocystic residuum absent. Sporocyst oval, with anterior portion narrower than the posterior. The anterior end is provided with a ill developed knob. Sporocyst measures 14.5-16.5 \(\mu m \) in length with a mean of 15.5 \(\mu m \) and 7.5-9.5 \(\mu m \) in width with a mean of 8.5 \(\mu m \). The shape index is 1.8. Sporocystic residuum present as compact mass. Sporozoites are sickle shaped, each measuring 10.5-12.5 \(\mu m \) in length and 2.2 \(\mu m \) in width. The shape index is 5.2. Nucleus is placed towards the round posterior end.

Sporulation time: 48-62 hours.

Type host: Blue throated Barbet, *Cyanops asiatica asiatica* (Lath.).

Other hosts: From the Type host, Mandal (1976).

Distribution: Calcutta, West Bengal.

Endogenous stages: Both micro and macrogametocytes are spherical, each measures 11.0-13.0 \(\mu m \) in diameter. The microgametes are small spindle-shaped bodies, each having a flagellum. The macrogametes are spherical with a large number of irregularly scattered granules in the cytoplasm. The schizonts have also been observed and have the same shape as those of the gametocytes. The merozoites are elongated each measuring 8.8 \(\times \) 2.2 \(\mu m \) with a centrally placed spherical nucleus as studied by Chakrrvarty and Kar (1947a).

Types: Likely to be present in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.
127. *Eimeria bateri* Bhatia, Pandey and Pande

(Fig. 107)

Description: Oocyst ovoid measuring 16.5-29.8 μm in length and 13.5 μm-24.5 μm in width (mean 24.5 μm by 18.5 μm). The shape

Eimeria bateri: Eimeria 169

index is 1.25. The outer wall yellowish, inner one dark bluish. Micropyle and oocystic residuum absent. Polar granules present, sporocyst ovoidal or pyriform with prominent stieda body at narrow anterior end. It measures 8.5-13.5 μm by 5.5-8.5 μm with a mean of 12.5 μm by 7.5 μm. The shape index is 1.8. Sporocystic residuum is present as scattered granules. Sporozoites are elongated in shape each with a nucleus at posterior blunt end.

Sporulation time: 24-30 hours.

Type host: Indian Common grey quail, Coturnix c. coturnix (Linn.).

Other hosts: Unknown.

Distribution: Not mentioned by the describer but likely from Mathura, Uttar Pradesh.

Endogenous stages: The schizont measures 7.15-10 μm by 6.7-12.0 μm in size and produces 20-25 tapering merozoites each measuring 4.5-6 μm by 1 μm. Microgametocyte measures 12.0-20.00 μm by 19.4 μm, the mature one produces thousands of biflagellate microgametes each measuring 1.5 μm, and arranged around a prominent residual mass. Macrogamete measures 13.4-21.0 μm by 10.4-14.0 μm in size. Schizonts, microgametocytes, macrogametes, developing and mature oocysts were found in the superficial epithelial lining of the villi particularly in the lower half of the small intestine as studied by the describer.

Types: Likely to be present in the Dept. of Parasitology, Mathura Veterinary College, Uttar Pradesh.

Remarks: Norton and Pierce (1971) were able to infect Japanese quail with E. bateri oocysts from the Common grey quail. Shah and Johnson (1971) observed this species in Hungarian quail in the United States and failed to transmit E. bateri in the Domestic fowl.

128. Eimeria battakhi Dubey and Pande
(Fig. 108)

Description: Oocyst subspherical to ovoid, double walled the outer being thinner than the inner one. It measures 19-24 μm in length with a mean of 21 μm and 16-21 μm in width with a mean of 18 μm. The shape index is 1.16 μm. Cytoplasm centrally placed, coarsely granular with small refractile globules. Micropyle and oocystic
residuum absent. The sporocyst elongately ovoid, measuring 11-13 \(\mu m \) in length with a mean of 12 \(\mu m \) and 6-8 \(\mu m \) in width with a mean of 7 \(\mu m \). The shape index is 1.7 \(\mu m \). The narrower end is provided with a small knob (stieda body). Sporocystic residuum present as a compact mass. The sporozoite elongated with one end broader and other narrower. It measures 9-11 \(\mu m \) in length with a mean of 10 \(\mu m \) and 2 \(\mu m \) in width. A clear vacuolated area is seen on the posterior rounded end in addition to the centrally placed nucleus.

Sporulation time: 24-32 hours.

Type host: Domestic duck, _Anas platyrhynchos domesticus_ (= _Anas sp._).

Other hosts: Unknown.

Distribution: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

129. _Eimeria bazei_ Chauhan and Bhatia

(Fig. 109)

Description: The oocyst ovoid or broadly ellipsoidal in shape with prominent projection of the outer wall at the narrow micropylar end, measuring 21-28 \(\mu m \) by 16-20 \(\mu m \) (mean 23.7 \(\mu m \) by 16.8 \(\mu m \)) with a length width ratio of 1.2-1.7 (mean 1.4). Oocysts wall is smooth, 0.7 \(\mu m \) thick and double contoured. The outer is yellowish-green and the inner violate in colour. Prominent micropyle measures 3.9-4.5 \(\mu m \)
(mean 4.0 μm) broad. Oocystic residuum absent. A polar granule is present. Sporocyst ellipsoidal measuring 10.4-13.0 μm by 6.5-7.8 μm (mean 12.2 μm by 7.2 μm), with a small knob-like stieda body; sporocystic residuum is present as a mass of dark granules. Sporozoites lie head to tail, each measures 9 μm by 2.6 μm with two prominent refractile globules, one at each end and a nearly central nucleus.

Sporulation time: 48 hours.

Type host: Black Ibis, *Pseudobis papillosa* (Temminck).

Other hosts: Unknown.

Distribution: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

130. *Eimeria bhutanensis* Ray and Hiregaudar

Description: Oocysts spherical to subspherical in shape. Endocytic wall of each is thicker than the ectocystic wall and slightly yellowish in colour. Refractile granules present. Oocyst measures 15.5-16.8 μm in length and 14.6-16.6 μm in width. Sporocyst bean-shaped with a
stieda body at one end and having scanty residual matter. Sporocyst measures 6-7 by 3-4 μm. Sporozoites sickle-shaped.

Sporulation time: 24-36 hours.

Type host: Bhutan Peacock pheasant, *Polyplectron bicoloratum* (=*Polyplectron bicoloratum bakeri* (Linn.).

Other hosts: Unknown.

Distribution: Zoological Garden, Calcutta, West Bengal.

Endogenous stages: Unknown.

Type: Not known.

131. *Eimeria brunetti* Levine

(Fig. 110)

Description: The oocyst oval, measures 20.7-30.3 μm in length and 18.1-24.2 μm in width with a mean of 26.8 μm by 21.7 μm resembling

![Fig. 110. Mature oocyst of *Eimeria brunetti*.](image)

E. maxima oocysts, from which it differs by having smaller size and thin wall.

In the sporulated oocyst polar granules are present, but no residual body is formed. The oocyst obtained from this country measures 24-30 μm by 20-23 μm with sporocyst of 11-16 μm by 5-10 μm in size and are structurally similar to *E. brunetti*.

Sporulation time: 24-48 hours.

Dimension of the oocysts reported by other authors are as follows:

Eimeriidae : Eimeria

Type host: Domestic Fowl, *Gallus* sp.

Other hosts: From the type host, Gill (1955) and Dubey and Sivastav (1965).

Distribution: Jabalpur, Madhya Pradesh and Uttar Pradesh.

Endogenous stages: The endogenous development occurs primarily in the lower part of the small intestine, the caeca, the colon and the cloaca. The gametocytes and oocysts were found in the ileum, caecum and rectum. In the stained sections macrogametocyte measuring 16.5-19.5 μm by 13.2-16.5 μm and microgametocyte of 16.5-24.7 μm by 16.5-19.5 μm with a large residual mass of 13.2 by 11.5-13.2 μm were seen. Oocyst measuring 16.5-23.1 by 13.2-16.5 μm in size was also observed. These oocysts were probably of *E. brunetti* as observed by Dubbey and Srivastav (1968). Workers like Boles and Becker (1954), Pellerdy (1960) Davis (1963) and Pohl (1964) have studied the endogenous development in detail. Schizogonic process takes place in the terminal portion of the ileum and in the rectum and cloaca.

First generation schizont measures 30 by 20 μm gives rise to 200 merozoites. Second generation schizont smaller produces only 50-60 merozoites. The macrogamete measures 25 μm by 27 μm. The microgametocyte large and both the stages are found in the terminal segments.

Pathogenicity: This species is pathogenic and caused heavy mortality. The complete blockage of the large intestine with exudate inside the small intestine are frequently encountered with the infection of this parasite.

Types: Not known.

132. **Eimeria charadrii** Mandal

(Fig. 111)

Description: Oocyst (Fig. 111 A) oval in shape with double wall, the outer wall is thinner than the inner one. Anterior end of the oocyst is drawn out as a small neck. Oocyst measures 14.3-17.6 μm in length with a mean of 15.8 μm and 11.0-12.0 μm in width with a mean of 11.5 μm. The shape index is 1.3. Highly refractile cytoplasm completely fills up the oocyst. Micropyle present at the anterior end, oocystic residuum absent. Sporocyst pyriform in shape measuring 7.8-9.8 μm in length
with a mean of 8.8 μm and 5.5-7.6 μm in width with a mean of 6.6 μm. The shape index is 1.3. The anterior end of the sporocyst is narrow and the posterior end round. Sporocystic residuum is present as a scattered mass. Sporozoites are elongated in shape each with both ends bluntly pointed. Sporozoite measures 4.4 μm by 2.2 μm. The shape index is 2.0. Nucleus is situated at the middle.

Sporulation time: 80-90 hours.
Type host: Sand Plover, *Charadrius asiaticus* Pallas.

Other hosts: Unknown.

Distribution: Narayantala, 24 Parganas, West Bengal.

Endogenous stages: The schizonts are spherical each measuring 8.8 \(\mu m \) in diameter. The mature one (Fig. 111 B) produces 6.6 \(\mu m \) long merozoite with a central nucleus (Fig. 111 C). The microgametocytes (Fig. 111 D) are oval each measuring 7.7 \(\mu m \) by 5.5 \(\mu m \) produces many microgametes each bears a single flagellum. The macrogamete (Fig. 111 E) measures 6.6 \(\mu m \) in diameter with a central nucleus.

Types: Lying in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.

133. *Eimeria choudari* Bhatia, Chauhan, Arora and Agarwal

(Fig. 112)

Description: Subspherical to broadly ellipsoidal oocyst, measuring 16.9-22.1 \(\mu m \) in length and 13.0-18.02 \(\mu m \) in width (mean 19.24 \(\mu m \) by 15.6 \(\mu m \)). The oocystic wall is 1.3 \(\mu m \) thick and had an outer yellowish green and an inner bluish-brown layer. Micropyle and polar cap absent. Oocystic residuum absent. A large polar granule present. Sporocyst elongate-ellipsoidal, measures 13.0-14.3 \(\mu m \) in length and 6.5-7.8 \(\mu m \) in width (mean 13.6 \(\mu m \) by 7.2 \(\mu m \)) having small nipple-like stieda body at one end. Sporozoites nearly banana-shaped, each measuring 10.4-11.1 \(\mu m \) in length and 2.6-3.2 \(\mu m \) in width (mean 10.7 \(\mu m \) by 2.9 \(\mu m \)) with one end tepering and the other end broad and rounded; having a large oval refractile globule at the broader end and a small one near the centre towards the narrower extremity.

Type host: Ring Dove, *Streptopelia decaota* (Frivaldszky).

Distribution: Zoological garden, Delhi and Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: While describing this species the authors have compared the present form with those of the species occurring in the Gallinaceous birds. The host, *Streptopelia* sp. comes under the order Columbiformes and *E. labbeana* is frequently present in this group of birds.

However, the present form is distinct from all the species described so far. Bhatia et al. (1973) reported this species from Grey Jungle fowl, *Gallus sonneratii*, Naqab-Posh pigeon and Pouter pigeon (*Columba* spp.) from Lucknow Zoo. The occurrence of Dove coccidium in Jungle fowl warns some sort of contamination at the time of examination.

134. **Eimeria columbae** Mitra and Das Gupta

(Fig. 113)

Description: Oocyst subspherical, thick-walled, the outer being thinner and membranous. Oocyst measures 14.5-17.5 μm in length with a mean of 16.5 μm and 13.5-15.5 μm in width with a mean of 14.5 μm. The shape index is 1.14. Micropyle, absent, oocystic residuum present. Sporocyst ellipsoidal, without any knob, it measures 6.5-8.5 μm in length with a mean of 7.3 μm and 3.5-5.8 μm in width with a mean of 4.6 μm. The shape index is 1.6. Sporocystic residuum
is present as scattered mass. Sporozoites are curved each with one pointed end and the other end rounded.

Sporulation time: 3-4 days.

Type host: Domestic Pigeon, *Columba intermedia* (=*Columba livia intermedia* Strickle (=*Columba* sp.)).

Other hosts: From the Type host, Patnaik and Ray (1966).

Distribution: Bhubaneswar, Orissa; Calcutta, West Bengal.

Endogenous stages: Early schizont measuring 2 \(\mu m \) in diameter is round in shape and found in the intestinal epithelium. The mature schizont measures 4.1 \(\mu m \) in diameter produces eight merozoites. Each merozoite measures 4.2 \(\mu m \) in length and 1.8 \(\mu m \) in width. Macrogametocyte measures 6.1 \(\mu m \) in diameter and fully formed microgametocyte measures 10.3 \(\mu m \) with biflagellated microgametes each measuring 4 \(\mu m \) by 1 \(\mu m \) around the central residual mass.

Types: Not known.

Remarks: A funnel-shaped area is found inside the macrogamete which recedes towards the periphery during fertilization, Das Gupta (1938d). Patnaik and Ray (1966) reported this species from Orissa for the first time.

135. *Eimeria columbarum* Nieschulz

(Fig. 114)

Description: Oocyst spherical/subspherical measures 19-24 \(\mu m \) by 18-19 \(\mu m \) with a mean of 20 by 18 \(\mu m \). The double contoured oocystic wall, the outer being thinner than the thick inner one.

![Mature oocyst of *Eimeria columbarum*](image)
Micropyle and oocystic residuum absent. The polar granules are sometimes present. The sporocyst tapering at one end, measuring 8-11 μm by 5-6 μm.

Type host: Rock dove, *Columba livia livia*.

Other hosts: Domestic pigeon, *Columba livia intermedia* (=*Columba* sp.), Patnaik and Ray (1966b).

Distribution: Bhubaneswar, Orissa.

Endogenous stages: Unknown.

Types: Not known.

136. *Eimeria coturnicis* Chakravarty and Kar

(Fig. 115)

Description: Oocyst oval, provided with double envelop. It measures 26.5-38.5 μm in length with a mean of 31.5 μm and 19.4-26.4 μm in width with a mean of 22.8 μm. The shape index is 1.3. The cytoplasm, spherical and completely filled up the oocyst. It is provided with refractile globules. Micropyle and oocystic residuum absent. The sporocyst pyriform and the anterior pointed end is provided with a knob. It measures 13.4-17.4 μm in length with a mean of 15.4 μm and 8.5-11.5 μm in width with a mean of 9.5 μm. The shape index is 1.6. The sporocystic residuum is present as a compact mass. The sporozoites are spherical or slightly oval in shape.
Sporulation time: 60-72 hours.

Type host: Common Quail, *Coturnix c. coturnix* (Linn.)

Other hosts: Unknown.

Distribution: Calcutta market, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

137. **Eimeria dauki** Bhatia and Pande

(Fig. 116)

Description: Oocyst ovoidal, knob at narrow micropylar end and provided with double wall. It measures 14-20 µm in length with a mean of 17.8 µm and 11-13.5 µm in width with a mean of 12.5 µm. The shape index is 1.4. Oocystic residuum absent. Sporocyst elongated with narrow anterior end. It measures 10.5-12.5 µm in length with a mean of 10.5 µm and 5.5-7.8 µm in width with a mean of 5.8 µm. Steida body prominent plug-like, sporocytic residuum present as dark granules. Sporozoites elongated, each measuring 8.5 µm in length and 2.5 µm in width. Nucleus is situated at the middle.
Sporulation time: 24-30 hours.

Other hosts: From the type host, Mandal (1976).

Distribution: Mathura, Uttar Pradesh; Barasat, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

138. *Eimeria dispersa* Tyzzer

(Fig. 117)

Description: The oocyst is broadly oval in shape. In many cases it shows a double-contoured and in some there is only one dark wall.

![Fig. 117. Mature oocyst of *Eimeria dispersa*.](image)

It measures 17.6-26.4 μm in length and 15.4-22.4 μm in width with a mean of 22.7 μm by 18.8 μm. The sporont fills the greater part of the oocyst. Steida body present on the sporocyst. There is no evidence of an outer residual body. Sporocystic residual bodies represented by some coarse granules.

Sporulation time: 45 hours.
Eimeriidae : Eimeria

Dimension of the oocysts reported by other authors are as follows :

23 by 19 μm (from Quail) and 18-26 by 15-22 μm (from Pheasant) (Tyzzer, 1929); 21-23 μm by 18-24 μm with a mean 26 by 21 μm (Hawkins, 1922).

Type host : Bobwhite (Quail), *Colinus virginianus virginianus.*

Distribution : Orissa.

Endogenous stages : The development takes place in the epithelial cells of the anterior part of the small intestine mainly in the apical part of the villi. Schizonts localise in the epithelial cells of the small intestine and are of two types. First one small contains 15 merozoites, each measuring 4-6 μm by 1 μm and the large one possesses 50 merozoites. The gametocytes are found in the duodenum. Macrogametocyte measures 7-8 μm in diameter with a large Karyosome lies inside a parasitophorous vacuole. The macrogamete is 18-20 μm in diameter with cytoplasmic granules at the periphery. The microgametocyte measures 20 μm in diameter each microgamet is provided with double flagella. The prepatent period is 5 days; in Quail it is 4 days.

Types : Not known.

Remarks : The occurrence of this species in Quail and Turkey with different prepatent periods and at different regions of the intestine are common. Pellerdy (1974) treated this species as *Species invera.* Patnaik (1963) reported this species from Orissa.

139. **Eimeria dubeyi** Pande, Bhatia, Chauhan and Garg

(Fig. 118)

Distribution : Oocyst egg shaped, of 24-34 μm in length and 19-23 μm in width (mean 31 μm by 21.7 μm) with a length-width ratio of 1.2-1.5 (mean 1.4). Oocystic wall 1.7 μm thick and smooth, with the 1.3 μm thick light greenish-brown outer coat and the 0.4 μm thick dark yellowish-brown inner lining. A large polar granule present. Oocystic
residuum absent. Micropyle and polar cap absent. Sporocyst ellipsoidal, with narrower end of 15.6-19.5 μm by 6.8-9.7 μm in size.

![Fig. 118. Mature oocyst of *Eimeria dubeyi*.](image)

(mean 18 μm by 7.6 μm). Stieda body present as a prominent plug. Sporocystic residuum dispersed as dark granules. Sporozoite sausage-shaped, of 9.09-9.7 μm by 2.6-3.2 μm in size (mean 9.3 μm by 2.9 μm) with two refractile globules, the larger toward the broad end and the smaller near the pointed extremity, and the nucleus lies towards the centre.

Type host: Red jungle fowl, *Gallus gallus* (Linn.)

Other hosts: Unknown.

Distribution: Zoological Garden, Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pellerdy (1974) mentioned the striking similarity between the oocyst of the present species and of *E maxima* from domestic fowl and warned the validity of this species. However, at present it is difficult to comment anything until or unless some cross infection experiments are being carried out. Moreover, this species was reported by Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973) again from the Zoological Garden, Lucknow with certainty.

140. *Eimeria francolini* Swarup and Chauhan

Description: Oocysts are ovoid in shape each measuring 18.6-20 μm in length and 16-18.6 μm in width with the mean of
EIMERIIDAE : EIMERIA
19.7 \(\mu \text{m} \) by 17.5 \(\mu \text{m} \). The length-width ratio is 1.07-1.15; mean 1.09. The oocystic wall is bilayered, the outer layer is yellowish green and the inner is bluish brown. Micropyle, polar cap and oocystic residuum absent. Sporocysts are ellipsoidal in shape each measuring 12 \(\mu \text{m} \) in length and 5.3-6.7 \(\mu \text{m} \) in width with a mean of 12 \(\mu \text{m} \) by 6.1 \(\mu \text{m} \). Each sporocyst bears a small knob like stieda body. Sporocystic residuum present as a clump of coarse granules. Sporozoites elongated, with one end broad and the other tapering, carrying two refractile globules at either ends.

Type host: Black partridge, *Francolinus francolinus* (Linnaeus).

Other hosts: Unknown.

Distribution: Zoological Garden, Delhi.

Endogenous stages: Unknown.

Types: Not known.

141. *Eimeria gallinagoi* Mandal

(Fig. 119)

Description: Oocyst pyriform, double walled with uniform thickness and yellowish in colour. It measures 19.8-20.9 \(\mu \text{m} \) in length with a mean of 20.2 \(\mu \text{m} \) and 13.2-14.3 \(\mu \text{m} \) in width with a mean of 13.8 \(\mu \text{m} \).

Fig. 119. A, mature oocyst, B, fully developed schizont, C, merozoites, D, microgamates and E, fertilized macrogamete of *Eimeria gallinagoi.*
The shape index is 1.4. Cytoplasm is completely packed up within oocyst and provided with refractile globules. Micropyle present and oocystic residuum absent. Sporocyst pyriform in shape, anterior narrower end is provided with a small knob. It measures 6.7-8.7 μm in length with a mean of 7.7 μm and 4.5-6.5 μm in width with a mean of 5.5 μm. The shape index is 1.4. Sporocystic residuum is present as concentrated mass. Sporozoite measures 5.5 μm in length and 2.5 μm in width.

Type host: Fantail snipe, _Gallinago gallinago_ (Linnaeus)

Other hosts: Unknown.

Distribution: Basanti, 24 Parganas, West Bengal.

Endogenous stages: Schizonts are spherical each measuring 5.5 μm in diameter, produce 8-12 nuclei. The fully developed merozoite measuring 8.8 μm in length with a central nucleus. The microgametocytes are subspherical each measuring 12.1 by 7.7. μm, possesses many nuclei. The macrogamete is spherical measuring 5.5 μm in diameter with a centrally placed nucleus.

Types: Present in the collection of Protozoology Laboratory, Dept. of Zoology, Calcutta University.

142. _Eimeria gallopavonis_ Hawkins

Description: Oocyst elliptical measures 22.2-32.7 μm in length with a mean of 27.1 μm and 15.2-19.4 μm in width with a mean of 17.2 μm. The oocystic wall, double contoured with a smooth surface and no evidence of any micropyle. No oocystic residual body is formed but with a distinct polar granule. The sporocysts are elongated-ovoid each with one end pointed. The inner residual body represented by scattered granules.

Sporulation time: 24 hours.

Dimension of the oocysts reported by other authors are as follows:

24-35 by 17-23 μm with the mean of 29.5 by 19.3 μm (Golemansky, 1964) 22-33 by 15-19 μm with the mean of 27.1 by 17.2 μm (Pellerdy, 1974).

Type host: Domestic Turkey, _Meleagris gallopavo_ Linn.

Other hosts: (i) Indian turkey, _Meleagris_ sp. (= _Meleagris_ sp.)

(ii) Domestic Turkey, _Meleagris_ sp.

Distribution: Lucknow, Izatnagar, Uttar Pradesh.
Endogenous stages: Hawkins (1952) traced two types of schizonts, the first or the small type produces 10-12 relatively large merozoites and the second or the large one developed many merozoites. The former is found within the epithelial cells of the ileal and rectal mucosa and the later one is found supranuclearly in ileal, caecal and rectal epithelial cells. The gametocytes are found in the mucosal epithelial cells of the ileum, caecum and chiefly at the rectum. Farr (1964) reported three schizogonic processes in this species. The first generation schizont measured 25-40 by 28-30 μm and found in the crypts of lieberkuehn, each produced about 40 merozoites each of 8-10 by 1.6 μm size. The second generation schizonts were smaller each measuring 9 μm in diameter produced 8-12 merozoites. The third one also appeared after 144th hour.

Types: Not known.

Remarks: Gill (1954b) and Bhatia (1968a) have reported this parasite from India.

143. Eimoria gennaescus Ray and Hiregaudar

Distribution: Oocyst subspherical in shape, with thin wall, pale yellowish brown in colour. Endocystic wall thicker than the outer wall. Oocyst measures 21.2 μm in length and 18.3 μm in width and the shape index is 1.16. Sporocyst pear-shaped with a small stieda body and residuum. It measures 7.8 μm by 4.5 μm. Sporozoites are sickle shaped.

Sporulation time: 24-36 hours.

Type host: Kalij Pheasant, Gennaeus horsfieldi G. R Gray (=Lophura leucomelelana (Latham)).

Other hosts: Unknown.

Distribution: Zoological Garden, Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

144. Eimeria gorakhpurensis Bhatia and Pande emend

(Fig. 120)

Description: Ellipsoidal or ovoid oocysts have thin and smooth
wall, without a micropylar cap; each measuring 16-24 \(\mu m \) by 13-17 \(\mu m \) (mean 20 by 14 \(\mu m \)) in size. The double-contoured oocystic wall is of 1.3 \(\mu m \) thickness, with a yellowish outer layer and a light violet coloured inner layer. Oocystic residuum absent. Polar granules aggregated as numerous dark particles of variable size towards one pole. Sporocysts are ovoid, each is provided with a faint stieda-body at the somewhat narrower end, measuring 8-12 \(\mu m \) by 5-7 \(\mu m \) in size (mean 10 \(\mu m \) by 6 \(\mu m \)). Sporocystic residuum is granular, scattered among the sporozoites. Sporozoites are nearly comma-shaped, each measuring 6.5 by 2.7 \(\mu m \) in size, on the wider end it is carrying a larger, and on the narrower end a smaller globule. It has finely granular cytoplasm with nearly central small nucleus.

Sporulation time: 48 hours at room temperature.

Type host: Guinea fowl, *Numida meleagris* Linn.

Other hosts: From type host; Bhatia, Chauhan, Arora and Agarwal (1972, 1973) and Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973).

Distribution: Gorakhpur, Mathura, and Zoological Garden, Lucknow, Uttar Pradesh and Zoological Garden, Delhi.

Endogenous stages: The schizont measures 4.5 \(\mu m \) by 3-4 \(\mu m \) in size and produce 2-6 merozoites each measuring 3.3-5 \(\mu m \) by 1 \(\mu m \). Macrogemete measuring 11-15 \(\mu m \) by 8-10 \(\mu m \) with a mean of 12 \(\mu m \) by 9 \(\mu m \). The microgametocyte measures 7-9 \(\mu m \) by 5-9 \(\mu m \) with a mean of 8 \(\mu m \) by 7 \(\mu m \). The microgametes are slightly bent each measuring 1.3 \(\mu m \) in length, arranged along the periphery. All the stages
are found in the entire length of the intestine but majority are found in the tubular portion of the caecum as stated by the authors.

Types: Not known.

145. *Eimeria grusi* Pande, Bhatia, Chauhan and Garg

(Fig. 121)

Description: Oocysts are ellipsoidal in shape, each measuring 17-26 µm in length with a mean of 22.2 µm and 13-19 µm in width with a mean of 16.5 µm. The length width ratio is 1.2-1.6 (mean 1.3). Oocystic wall 1.3 µm thick, smooth, double-contoured, with the outer layer yellowish green and the inner dark brown in colour. One or two polar granules present. Oocystic residuum, micropyle and polar cap absent. Sporocyst ellipsoidal measuring 10-15 µm in length with a mean of 13.8 µm and 5-7 µm in width with a mean of 6.0 µm, slightly narrower and capped by a dark stieda body. Sporocystic residuum present mostly in clumps of dark granules. Sporozoite measures 11 µm in length and 3.5 µm in width with one end broader and the other pointed, the former carrying a large refractile globule with a centrally placed nucleus.

Type host: Sarus crane (Demoiselle Crane), *Anthropodites vergo* (Linn.).

Other hosts: From the Type host, Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973).
Distribution: Zoological Garden, Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pellerdy (1974) has made a comment on the specific name and expressed a desire to change it as 'gruis' instead of 'grusi'. But the name *Eimeria gruis* is preoccupied. Yakimoff and Matschoulsky (1935) described *E. gruis* from crane exhibited at Laningrad zoo. However, the present species is distinct from *E. gruis* and can be named as *Eimeria vergo*, according to the specific name of the host.

146. *Eimeria hagani* Levine

Description: The oocyst dimension is 15.8-20.9 μm in length and 14.3-19.5 μm in width, average 19.1 μm by 17.6 μm. The shape is broadly ovoid, the wall double contoured, with smooth surface. Micropyle absent. Polar granule remains in the mature oocysts after sporulation.

Sporulation time: 24-48 hours.

Type host: Domestic Fowl, *Gallus domesticus* (= *Gallus* sp.)

Other hosts: From the type host, Gill (1954 a). and Patnaik (1963).

Distribution: Mukteswar, Uttar Pradesh; Orissa; Madhya Pradesh; and Bombay, Maharashtra.

Endogenous stages: Little is known about the endogenous stages of this parasite. They are found in the anterior part of the small intestine. The schizonts are found in the epithelium. The prepatent period is 6 days and the patent period is as long as 8 days.

Type host: Chicken, *Gallus* sp.

Remarks: Pellerdy (1974) stated owing to the deficient morphological description of the species, it can only be differentiated with certainty by applying cross-immunity tests and a complete description of the endogenous stages. However, this species is antigenically unique [Edger (1977) cited by Ruff and Reid (1977) in the chapter on avian coccidia in the *Parasitic Protozoa* edited by Kreier, J. P. 1977]. As regards pathogenicity, some pin point haemorrhages were noted at the mucosa in case of experimental infection.
147. *Eimeria innocua* Moore and Brown

Description: The oocyst more or less round in shape. The double contoured oocystic wall have a smooth surface. The oocyst measures 18.6-25.9 μm in length and 17.3-24.5 μm in width with a mean of 22.4 μm by 20.9 μm. There is no evidence of polar body in the sporulated oocyst. The sporocyst measures 14.8-16.6 μm in length and 8-9.5 μm in width and possesses a granular residuum. The sporozoite measures 9.8 μm by 3.2 μm in size.

Sporulation time: Within 24-48 hours.

Dimension of the oocysts reported by other authors are as follows: 19-29 by 17-24 μm with a mean of 23.9 by 20.9 μm (Golemansky, 1964); 19-26 by 17-24 μm with a mean of 22.4 by 20.9 μm (Pellerdy, 1974).

Type host: Domestic turkey, *Meleagris gallopavo gallopavo* Linn.

Other hosts: From the Type host, Patnaik (1963).

Distribution: Orissa.

Endogenous stages: This coccidium invades the epithelium of the small intestine particularly at the tip of the villi and exceptionally at the crypts (Moore and Brown, 1952), The prepatent period is about 5-6 days and the patent period lasts for 14 days. It is found to be nonpathogenic.

Types: Not known.

148. *Eimeria kapotei* Chatterjee and Ray

Description: Oocyst oval, measuring 24-30 μm in length with a mean of 26.1 μm and 22-26 μm in width with a mean of 23.5 μm. It contains one or two refractile globules. It is provided with two layers, inner one being thicker. Micropyle present as depression at the anterior pole. Sporocyst ovoid, measures 8.5-9.5 μm, sporocystic residuum present in the form of scattered granules, stieda body present. Sporozoite bean-shaped, measures 5.6 μm in length.

Sporulation time: 3-4 days.

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.
Endogenous stages: All that is known about the endogenous stages of this parasite is the schizogony which takes place in the posterior portion of the small intestine. The cluster of endogenous stages are found in patches on the intestinal epithelium.

Types: Not known.

149. Eimeria labbeana (Labbe)

(Fig. 122)

Description: Oocysts are of two forms, oval or spherical, the oval form measures 19.5-21.2 μm in length with a mean of 20.1 μm and 16.5-17.5 μm in width with a mean of 16.9 μm. The shape index is 1.1. The spherical form measures 17.5-18.5 μm with a mean of 17.9 μm. Possesses double envelop, the outer being thinner. The cytoplasm is refractile with refringent globules. Micropyle present, oocystic residuum absent. Sporocyst oval measuring 11.00-13.5 μm in length with a mean of 12.4 μm and 5.5-6.8 μm in width with a mean of 6.4 μm. The shape index is 1.4. The sporocystic residuum appears as a compact mass. The sporozoites are elongated each measuring 6.5 by 2.3 μm. The nucleus is situated at the middle.

Sporulation time: 24-36 hours, sometimes upto 50 hours.

Type host: Domestic pigeon, *Columba livia intermedia* Strickl (= *Columba* sp.)
Other hosts: (i) Ring necked Dove, *Streptopelia orientalis*

Distribution: Calcutta, West Bengal.

Endogenous stages: The detail life history can be had from Srivastava (1966a), after the description of Chakravarty and Kar (1944 •
Two types of schizonts are found in the first generation, one measuring 6.7 μm in diameter produces 15 small merozoites and the other measures 15.8 μm in diameter which gives rise to 15 large merozoites. The merozoite of the former measures 6.7 μm by 1 μm with a compact nucleus and the later measures 11.3 by 1 μm. The second generation schizonts are also of two types, the smaller type (5-6 by 4.5 μm) giving rise to 10-15 merozoites each measuring 4.5 μm by 2-3 μm and the large type (7-12 μm by 4-8 μm) produces 20-30 large merozoites each measuring 6-8 μm by 2 μm. The third generation schizonts are also of two types. Immature and mature microgametocytes are also found in the preparation and are of multinucleate in nature. The nuclei are arranged in a row with a central residuum. The microgamete is provided with double flagella, measuring 4.5 to 10 μm. The macrogametocytes are small each measuring 3.4-15.8 μm by 2.3-12.2 μm in size with a basophilic and distinctly vacuolar cytoplasm and a nucleus with prominent karyosome. The fertilized zygote is provided with large cytoplasmic granules proceeding towards the periphery.

Types: Not known.

150. *Eimeria lopburae* Chauhan, Paliwal and Swarup

Description: Oocysts are ellipsoid in shape each measuring 20-24 μm in length with a mean of 21.8 μm and 14.6-17.3 μm in width with a mean of 16.11 μm. Bilayered oocystic wall is 1.3 μm thick and the outer wall is yellowish green while the inner one bluish-brown. The length width ratio is 1.23-1.50 with a mean of 1.35. Oocystic residuum absent. An ovoid dark polar granule present. Sporocysts are ellipsoidal in shape each measuring 10.7-12 μm in length with a mean of 11.4 μm and 5.3-6.7 μm in width with a mean of 6.3 μm. The anterior end of sporocyst in narrower than the posterior one. A small knob like stieda body is present at the anterior end of sporocyst. Sporocystic residuum present as dark scattered granules. Sporozoite elongated with one end broad and rounded and the other tepering, having two similar refractile globules.
Sporulation time: Unknown.

Endogenous stages: Unknown.

Type host: Kaliz pheasant, Lophura leucomelana (Latham).

Other hosts: Unknown.

Distribution: Mathura, Uttar Pradesh.

Type host: Not known.

Remarks: Bhatia et al. (1973) traced one Eimeria sp. from the Kaliz pheasant at Delhi zoo, but did not describe it.

151. Eimeria lucknowensis Misra

Description: Oocyst ovoid in shape and comes out as unsegmented condition in the faeces. Cyst wall colourless and double layered. Both ends of the oocyst are similar and rounded and there is no indication of a flatterning and prolongation at either end. Oocystic residuum absent. Oocyst measures 21.4-24.5 μm by 17.4-18.8 μm in size. Sporocyst ovoid and devoids of any thickening at either pole. It measures 8.5 μm by 6.0 μm. Sporozoites are curved and club-shaped. It measures 7.6 μm in length and arranged with the concavity facing the sporocystic residuum.

Sporulation time: 3 to 4 days.

Type host: White Wagtail, Motacilla alba Linn.

Other hosts: From the type host, Mandal (1976).

Distribution: Lucknow, Uttar Pradesh and Shillong, Meghalaya.

Endogenous stages: Unknown.

Types: Not known.

Remarks: The specific name is mispelt as 'lacknowensis' instead of 'lucknowensis' vide pellerdy, 1956a.

152. Eimeria malaccae Chakravarty and Kar

(Fig. 123)

Description: Oocyst broadly oval, measuring 26.5 μm-30.5 μm in length with a mean of 28.5 μm and 16.5-18.5 μm in width with a mean
of 17.5 μm. The shape index is 1.6. Oocyst possesses double wall, outer being thinner. Cytoplasm is rounded and appears like refractile globules. Micropyle present, oocystic residuum absent. Sporocyst oval, anterior end pointed and provided with a small knob. Sporocyst measures 11.5-13.5 μm in length with a mean of 12.5 μm and 9.5-11.5 μm in width with a mean of 10.5 μm. The shape index is 1.1. Sporocystic residuum coarsely granular. Sporozoite measures 8.5 μm by 2.3 μm with tapering anterior end. Nucleus is situated near the posterior end.

Sporulation time: 48-70 hours.

Type host: Black headed Munia, *Munia (Lonchura) malacca malacca* Linn.

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

153. **Eimeria mandali** Banik and Ray

Description: Oocyst round, possesses double envelop. It measures 14.5-20.6 μm in length with a mean of 17.6 μm and 14.2-18.8 μm width with a mean of 16.5 μm. The shape index is 1:1. Cytoplasm centrally placed, granular. Micropyle present with a refractile granule below. Oocystic residuum present. Sporocyst pyriform measures 6.5-12.0 μm in length and 4.5 μm in width. The sporocystic

residual mass is present at the centre. Sporozoite banana-shaped, measuring 6.5 μm in length and 2.5 μm at broadest region.

Sporulation time: 24-72 hours

Type host: Common Pea Fowl, *Pavo cristatus* Linnaeus.

Other hosts: From the type host; Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973).

Distribution: Zoological Gardens, Calcutta, West Bengal and Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

154. **Eimeria maxima** Tyzzer

(Fig. 124)

Description: The sporulated oocyst ovoid, egg shaped or ellipsoidal, measuring 27-34 μm by 16-28 μm (mean 31 μm by 23 μm) in size, with the light yellowish-brown and occasionally rough oocystic wall of 1.3 μm in thickness. A polar granule present but oocystic residuum absent. The ovoid sporocyst, with slightly narrower extremities, is 15-20 μm by 8-9 μm (mean 17 μm by 9 μm) in size. A prominent ‘Stieda’ body present. The elongated sporozoite of 15 μm by 4 μm in size. It is provided with a large refractile globule on the broader, and a smaller globule towards the narrower end.
Sporulation time: 48 hours.

Dimension of the oocysts by other authors are as follows:

26-49 by 22-31 \(\mu m\) (Kotlan, 1961); with an average 31 by 23 \(\mu m\) (Long, 1959); 25-42 by 21-27 \(\mu m\) with the mean of 33.7 by 24 \(\mu m\) (Tecla, 1967); 30-33 by 22-26 \(\mu m\) (Soltys, 1966); 21-42 by 16-30 \(\mu m\) with a mean of 29.3 by 22.6 \(\mu m\) (Pellerdy, 1974).

Type host: Domestic Fowl, Gallus sp.

Other host: From the type host; Ray (1945b), Gill (1954a), Patnaik (1963), Bhatia and Pande (1968c), Rahman and Ananthraman (1970) and Chandra and Chhabra (1972).

Distribution: Madhya Pradesh; Bombay, Maharashtra; Orissa; Mathura, Uttar Pradesh; Madras, Tamil Nadu.

Endogenous stages: The endogenous stages are found along the entire length of the small intestine, but more towards the anterior part. Tyzzer (1929) studied the life-cycle in detail. Schizont measures 10 \(\mu m\) by 8 \(\mu m\) is found at the tip of the villi, develops above the nuclei of the epithelial cells, and on maturation produce 8-16 merozoites. It is very likely that there is only one schizogonic generation. The microgametocyte has a granular cytoplasm measuring 34 \(\mu m\) by 22 \(\mu m\) produces many microgametes each measuring 4.5-12.0 \(\mu m\) in length. The macrogametes have granular cytoplasm each measuring 22.27 by 16-18 \(\mu m\) with a vesicular nucleus and large karyosome. The prepatent period is about 5 days. This species may cause severe pathological changes. The haemorrhagic enteritis associated with a thickening of the intestinal wall is frequently marked. Further details about the life cycle can be had from Scholtyseck, 1963, Challey and Johnson, 1968, Backer et al. 1956, Long, 1959 and Pellerdy, 1960.

Types: Not known.

155. **Eimeria mayuri** Bhatia and Pande

(Fig. 125)

Description: Oocyst smooth, ellipsoidal, 20-27 \(\mu m\) by 13-16 \(\mu m\) (mean 23 \(\mu m\) by 14 \(\mu m\)), with length-width ratio of 1.4-1.8 (mean 1.6). Sporont nearly filling the oocyst, with a centrally placed vesicular nucleus. Oocystic wall 1.2 \(\mu m\) thick, double-layered, with outer layer
light blue and inner brownish. Micropyle indistinct. Micropylar cap absent. Oocystic residuum absent. Sporulation completed in two days. One polar granule present. Sporocyst elongate-ovoid, with a somewhat narrower anterior extremity capped by a small stieda body,

![Fig. 125. A and B, mature oocysts of Eimeria mayuri.](image)

measuring 10-13 μm by 5-7 μm (mean 12 μm) by 6 μm, with length-width ratio of 1.7-2.6 (mean 2.0). Sporocystic residuum present as diffuse dark granules. Sporozoite elongate, lying head to tail inside sporocyst, of 9-11 μm by 3-4 μm (mean 10 μm by 3.6 μm) in size with one large globule towards the broader end, and a small globule visible sometimes towards the narrower extremity. Cytoplasm includes dark granules.

Type host: Common Peafowl, *Pavo cristatus* (Linn.).

Other hosts: From the type host and Burmese peafowl, *Pavo muticus* (Linn.), Bhatia and Pande (1968d), Bhatia, Chauhan, Arora and Agarwal (1972, 1973) and Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973).

Distribution: Mathura, Zoological Garden, Lucknow, Uttar Pradesh and Zoological Garden, Delhi.

Endogenous stages: The mature schizont measures 9-15 μm by 6-10 μm average 11 μm by 9 μm. The merozoites are elongated each measuring 6 by 1.25 μm with central nucleus. The microgametocyte-measures 9-17 μm by 9-15 μm in size with a central residuum. Macro-
gamete measures 14-23 μm by 10-14 μm (average 18.5 μm by 12.5 μm) with plastic granules and a large nucleus.

Types: Not known.
156. *Eimeria meleagridis* Tyzzer

(Fig. 126)

Description: Oocyst ellipsoidal, measuring 19—29.7 μm in length with a mean of 23.8 μm and 14.5-23.0 μm in width with a mean of 17.3 μm. It is provided with a smooth wall with one or more polar granules and without any oocystic residuum. The sporocyst reveals a stieda body at its tapering end with granular residual mass.

Dimension of the oocysts reported by other authors are as follows:

20-31 by 15-21 μm with a mean of 24.4 by 18.1 μm (Hawkins, 1952), 22 by 16 μm (Clarkson, 1959a), 18-31 by 12-19 μm with a mean of 23.7 by 16.8 μm (Golemansky, 1962), 19-30 by 14-23 μm with a mean of 23.8 by 17.3 μm (Pellerdy, 1974).

Type host: Domestic Turkey, *Meleagris gallopavo* (Linn.) (= *Mel-eagris* sp.).

Other hosts: Mexican Turkey, *Meleagris mexicana* Gould.

Distribution: Mukteswar, Zoological Garden, Lucknow, Mathura, Uttar Pradesh and Zoological Garden, Delhi.

Endogenous stages: The endogenous development takes place in the caeca (Tyzzer, 1927) and small intestine. Morehouse (1949) encountered the endogenous stages in the terminal portion of the small intestine. Hawkins (1952) found them in the caecal epithelium after 9th hour from the time of inoculation. Clarkson (1959a) reported first generation schizont in jejunum. Mature first generation schizont

![Fig. 126. Mature oocyst of *Eimeria meleagridis*.](image-url)
measures 20 μm by 15 μm produce 50-100 merozoites, each measuring 7 μm by 1.5 μm in size. The second generation schizont produces 10 to 14 merozoites each measuring 10 μm by 2 μm with central residuum. The macrogametocyte measures 8—10 μm in diameter when matures become 20 μm with a large nucleus and granular cytoplasm. It lies below the host cell nucleus along with the microgametocyte. The prepatent period is about 5 days. It is found to be nonpathogenic.

Types: Not known.

Remarks: However, Pande et al. (1970) came across the oocysts from Amherst pheasant at Lucknow Zoological Garden, Uttar Pradesh and described as ‘Oocyst’ ovoidal (50 measured), 22-27 μm by 17-20 μm in size (mean 23.6 μm by 18.0 μm), with a length-width ratio of 1.2-1.4 (mean 1.26). Oocystic wall 1.5 μm thick, smooth, double-contoured, the outer being yellowish green and the inner dark brown in colour. A micropyle and polar cap absent. One or 2 polar granules present. Oocystic residuum absent. Sporocyst elongate-ellipsoidal, of 12-14 μm by 5.5-7 μm in size (mean 13.0 μm by 6.5 μm). Stieda body present as a small dark knob. Sporocystic residuum present as scattered granules. Sporozoite elongated, with one end broadly rounded and the other somewhat narrower, a large globule lying towards the broader end and a small near the pointed end, with centrally placed nucleus. In Turkey coccidia, the differences in the exogenous developmental stages are extremely poor particularly among the *E. adenoides*, *E. meleagridis* and *E. meleagrimitis* as stated by Clarkson (1960). The report on the occurrence and other details of this species may be had from Gill (1954b), Bhatia (1968a) and Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973).

157. Eimeria meleagrimitis Tyzzer

(Fig. 127)

Description: The oocyst measures 15-21 μm by 12-17 μm (mean 18.5 μm by 15.6 μm, from 30 oocysts) and with a length/width ratio of 1.08-1.38 (mean 1.19), were somewhat sub-spherical or broadly oval, with a smooth double wall. The 1 μm thick oocystic wall had the outer layer of yellowish-green and the inner with a dark blue colour. Micropyle and oocystic residuum absent. One or two polar granules present. The ovoid sporocyst measures 8-12 μm by 5.3-6.0 μm (mean
9.6 μm by 5.4 μm) in size. Stieda body present, sporocystic residuum present as scattered granules tending to clump towards the middle.

Fig. 127. Mature oocyst of *Eimeria meleagrimitis*.

Sporozoite banana-shaped, with narrower but rounded extremities, having two refractile globules, the larger at the broader end, the smaller towards the tapering extremity and a small nucleus lying between the two-more towards the middle.

Sporulation time: 48 hours.

Dimension of the oocysts reported by other authors are as follows:

16-20 by 13-17 μm with a mean of 18.1 by 15.3 μm (Tyzzer, 1929),
16-27 by 13-22 μm with a mean of 19.2 by 10.3 μm (Hawkins, 1952),
16-25 by 13-19 μm with a mean of 20.1 by 17.3 μm (Clarkson, 1959b);
15-20 by 13-19 μm with a mean of 17.8 by 16.4 μm (Golemansky, 1962).

Type host: Domestic Turkey, *Meleagris gallopavo* (Linn.).

Other hosts: From the type host.

Distribution: Lucknow, Izatnagar, Uttar Pradesh and Orissa.

Endogenous stages: The development takes place mainly in the upper part of the small intestine (Hawkins, 1952; Clarkson, 1959b). The trophozoites measures 2-3 μm in diameter from which the first generation schizont appears. Schizont measures 8 by 7 μm and the mature one produces 9-10 μm merozoites each merozoite measures 4-6 μm by 1.5 μm. The second generation schizont produces 10-12 merozoites and each merozoite measuring 5-6 μm by 1.2 μm. The microgametocyte has many nuclei produces many slender microgametes with a centrally large residuum. Horton-Simth and Long (1961) traced
the 3rd generation schizont. The prepatent period is about 114-118 hours (Clarkson, 1959b).

Fayer (1969) observed some posterior eosinophilic granules and smaller granules at the anterior region of inoculated sporozoites in the cell culture after 12th hours from the time of inoculation and concluded that those granules aggregated in the gland and first generation schizont develops which measuring 8 μm by 7 μm. Nine to ten merozoites are developed each measuring 4-6 μm by 1.5 μm in size. Doran and Vetterling (1968) studied the schizogony in the turkey intestinal cells and bovine kidney cell cultures. The early stage was detected in 48 hours in turkey intestinal cells and after 5 hours in the bovine kidney cell cultures.

Mostly pathogenic. Duodenal enlargement along with haemorrhage in other parts of the intestine were observed.

Types: Not known.

Remarks: Bhatia (1968a) obtained a species and stated that the size-range and the sporulation time of the oocysts confirmed to the description of *E. meleagrititis*, Tyzzer. The sizes approximate to those given by the describer as 16.2-20.5 μm by 13.2-17.2 μm average 18.1 μm by 15.3 μm. The sporozoite, however, revealed, in addition to a colourless globule at the larger end, another smaller globule towards the tapering end. In spite of this minor variation, the oocystic material is identified as *E. meleagrititis* by the author. This species has also been reported by Gill (1954b) and Patnaik (1963) earlier.

158. *Eimeria mitis* Tyzzer

(Fig. 128)

Description: The oocysts are yellowish tinged, smooth walled and almost spherical in shape. The oocystic size-range varies from 12.3-20.7 μm in length and 10.7-19.2 μm in width with a mean of 17.0 μm by 15 μm and the shape index varies from 1.0-1.3 with a

![Fig. 128. Mature oocyst of *Eimeria mitis.*](image)
mean of 1.1. Polar granules present in the sporulated oocyst but without any oocystic residuum. Micropyle absent. Sporocyst 4 in number, ovoid in shape, each measuring 9-10.00 μm by 6.5 μm in (average) size. The stieda body is prominent; sporocystic residuum granular and placed centrally.

Sporulation time: 48 hours.

Dimension of the oocysts reported by other authors are as follows:

11-21 μm by 10-18 μm with a mean of 10.6 μm by 13.8 μm (Joyner, 1958); 10-21 μm by 9-18 μm with a mean of 16 μm by 13 μm (Levine, 1961); 11-19 μm by 10-17 μm (Pellerdy, 1974).

Type host: Domestic Fowl, (Gallus domesticus (= Gallus sp.).

Other hosts: From the type host, Ray (1945b) Gill (1954a), Patnaik (1963), Rahaman and Anantaraman (1970) and Chandra and Chhabra (1972).

Distribution: Madhya Pradesh; Bombay, Maharastra; Mukteswar, Uttar Pradesh; Orissa and Tamil Nadu.

Endogenous stages: The development takes place in the anterior portion of the small intestine within the epithelial cells (Tyzzer, 1929, Joyner, 1958). The schizonts are found in the anterior portion of the small intestine. Each of them produces 6-24 or more bent merozoites each measuring 5 μm or 6 μm in length. The gametocytes develop more towards the posterior. The microgametocytes are subspherical each measuring 9-14 μm in diameter. A residuum is left after producing many microgametes. The macrogametes are larger and contain plastic granules. The prepatent period lasts about 4-5 days (Joyner, 1958). Previously it was treated as nonpathogenic but recent studies proved that severe mortality occurred in young chicks due this species (Pellerdy, 1974).

Types: Not known.

159. Eimeria mivati Edger and Seibold

(Fig. 129)

Description: The oocysts are ellipsoidal to ovoid in shape, each measuring 10.7-20.0 μm in length and 10.1-15.3 μm in width with a mean of 15.6 μm by 13.4 μm. The shape index ranges from 1.0 to 1.3. The oocyst wall consists of three layers (viz. exo., middle and endo membranes). Micropyle is always present. Each sporulated oocyst
possesses 4 sporocysts and a refractile polar granule approximately 1 \(\mu m \) in diameter. Each sporocyst possesses a residual mass approximately 2-3 \(\mu m \) in diameter. Stieda body remains at the end of the

thin walled sporocyst. The sporocyst measures 7.3-12.1 \(\mu m \) by 5.0-6.1 \(\mu m \) with an average of 10.5 by 5.6 \(\mu m \). Each sporulated oocyst contains two sporozoites in each of 4 sporocysts. The sporozoites are crescent or banana-shaped each with pointed anterior and blunt posterior ends, measuring 11.1-13.0 \(\mu m \) by 1.9-2.5 \(\mu m \) with an average of 11.7 \(\mu m \) by 2.1 \(\mu m \) and possesses a large eosinophilic globule located posteriorly and an almost spherical nucleus slightly anterior to the centre.

\textit{Sporulation time} : 12 hours or more.

\textit{Type host} : Domestic Fowl, \textit{Gallus domesticus} (= \textit{Gallus} sp.)

\textit{Other hosts} : From the type host, Gill and Grewal (1974).

\textit{Distribution} : Izatnagar, Uttar Pradesh.

\textit{Endogenous stages} : The development occurs along the entire length of the small intestine mainly at the duodenal loop towards the ileum and in rectal caeca. The first generation mature schizont measures 9-11.7 \(\mu m \) by 9-11.1 \(\mu m \), produces 10-30 merozoites each measuring 8.6-10.6 \(\mu m \) by 2.1-3 \(\mu m \) in size. The second generation schizont measuring 4.8-10.9 \(\mu m \) by 3.9-7.5 \(\mu m \), produces 16-20 merozoites each measuring 5.6-8.8 \(\mu m \) long with a residuum inside, measuring 7-8 \(\mu m \) in diameter. The third generation schizont measures 5.8-7.7 \(\mu m \) by 4.5-6.7 \(\mu m \) in size produces 14 merozoites each measuring 5.6-6.7 by 1.1-3 \(\mu m \) encircling a residuum of 5-6 \(\mu m \) in diameter. The fourth generation schizont measures 9.6-17.3 \(\mu m \) by 9.6-13.4 \(\mu m \) and produce 16-20 merozoites each measuring 7.5-9.6 by 0.8-1.5 \(\mu m \) in size with a residuum of 10-11 \(\mu m \) in diameter. The macrogametes are of almost the size of the oocysts. The microgametocyte measures 10.4-16.3 by 8.6-15.4 \(\mu m \) produces about 50-100 microgametes each measuring 2-4 \(\mu m \) long and carries 2 flagella each of 5-10 \(\mu m \) long. The prepatent period lasts 93-96 hours, and the patent period is as
long as 12 days. The information about the life-cycle mainly based on Long (1967a) and Pellerdy (1974). This species is also treated as pathogenic.

Types: Not known.

160. *Eimeria necatrix* Johnson

(Fig. 130)

Description: The oocyst broad-ovoid in shape but more stocky, and has one end less pointed; measuring 15.3-23.3 μm by 13.6-6.2 μm with a mean of 20.5 μm by 16.8 μm. The shape index is 1.0-1.6 with a mean of 1.26. The oocyst wall is smooth and double contoured.

Fig. 130. Oocyst of *Eimeria necatrix*.

There is no micropyle. No oocystic residual body is found. The sporocysts are elongated each measuring 10 μm in length and 6 μm in width. A polar body is present.

Sporulation time: 48 hours.

Dimension of the oocysts reported by other authors are as follows:

15-25 by 14-20 μm with a mean of 20.5 by 17 μm (Becker *et al.* 1956) 20 by 17 μm (Scholtyseck, 1956); 15-25 by 12-22 μm with a mean of 21 by 19 μm (Tacla, 1967); 18-21 by 13-15 μm with a mean of 17.7 by 15.5 μm (Mohamed, 1969), 13-23 by 4-18 μm with a mean of 16.7 by 14.2 μm (Pellerdy, 1974).

Type host: Domestic Fowl, *Gallus domesticus* (= *Gallus* sp.)

Other hosts: From the type host, Ray (1945b), Gill (1961), Patnaik (1963), Bhatia and Pande (1968b), Rahaman and Anantaraman (1970) and Chandra and Chhabra (1972) from India and Hassan (1970) from Bangladesh.

Distribution: Mukteswar, Mathura, Uttar Pradesh; Madras, Tamil Nadu and Bangladesh.

Endogenous stages: Tyzzer, Theiler and Jones (1932), Davis (1956) and Mohamed (1969) were the pioneers in elucidating the lifecycle of
this species. The development takes place in the small intestine and caeca. First generation schizont measures 17.1 by 12.9 \(\mu m \) produces 48 merozoites. The merozoites are banana-shaped and each of them has a nucleus close to the pointed end. The second generation schizonts are large each measuring 63 by 49 \(\mu m \) in size, produces 32-132 merozoites each measuring 10.5 by 5.5 \(\mu m \) in size with a granular cytoplasm and a nucleus close to the anterior end. The third generation schizont produces 4-8 small merozoites. The sexual stages are found in the caeca or in the large intestine. The macrogametocyte measures 13.1 by 12.6 \(\mu m \) with a large nucleus surrounded by a halo and the microgametocyte measures 12.5 by 14.3 \(\mu m \). The prepatent period lasts for 7 days and the patent period is as long as 12 days. Van Doornick and Becker (1957) observed that the sporozoites invade the lamina propria earlier than the crypt of leiberkuehn. Pathogenic, clotted blood along with mucus debris were noted at the mucosal surface of the intestine. White and dark spots were visible at the serosal surface.

Types: Not known.

161. *Eimeria numenii* Mandal

(Fig. 131)

Description: Oocyst spherical, possesses double envelop, the outer being thinner. Oocyst measures 20.9-23.1 \(\mu m \) in diameter with a mean of 22.2 \(\mu m \). Cytoplasm is centrally placed and round in shape, highly globular and refractile, measures 15.4 \(\mu m \) in diameter. Micro-

Fig. 131. Mature oocyst of *Eimeria numenii*.
pyle and oocystic residuum absent. Sporocyst pyriform in shape with bluntly pointed anterior end and rounded posterior end. Sporocyst measures 5.6-7.6 μm in length with a mean of 6.6 μm and 4.5-6.5 μm in width with a mean of 5.5 μm. The shape index is 1.2. The wall of the sporocyst is very thin. Sporocystic residuum present as scattered mass. Sporozoite elongated in shape with tapering anterior end. It measures 5.9 μm in length and 2.5 μm in width. The shape index is 2.3. The nucleus is situated at the middle.

Sporulation time: 60-70 hours.

Type host: Curlew, *Numenius arquata* (Linnaeus).

Other hosts: Unknown.

Distribution: Namkhana, 24 Parganas, West Bengal.

Endogenous stages: Schizont spherical measuring 5.5 μm in diameter. The microgametocyte measures 7.7 μm by 4.4 μm, produces many comma-shaped uniflagellated microgametes. The macrogametes are oval each measuring 6.6 μm by 4.4 μm in size with clear cytoplasm and a central nucleus.

Types: Lying in the collection of Protozoology Laboratory, Dept. of Zoology, Calcutta University.

162. *Eimeria patnaiki* Ray

Description: Oocyst smooth walled, spherical to subspherical in shape and colourless. It measures 17.5-19.35 μm in length and 13-17 μm in width with a mean of 18.5 μm by 15.5 μm. The shape index is 1.2. Micropyle absent. Polar granule and oocystic residuum present. Sporocyst lemon-shaped, measures 6.45-8.5 μm in length and 3.2-4.83 μm in width with a mean of 7.5 μm and 4.0 μm respectively. Stieda body visible as a small thickening at the narrower end. Sporocystic residuum present at early stage. Sporozoites are comma-shaped each with a large globular hyaline body at the broader blunt end.

Sporulation time: 4 to 6 days.

Type host: Common Pea-fowl, *Pavo cristatus* Linn.

Other hosts: Unknown.

Distribution: Bhubaneswar, Orissa.
Endogenous stages: Unknown.

Types: Not known.

Remarks: As the specific name 'pavonis' is preoccupied Ray 1966 renamed the species.

163. Eimeria pavonina Banik and Ray

Description: Oocyst egg-shaped, double layered, the outer being thicker. Cytoplasmic mass granular and not entirely filled up the oocyst. It measures 20-28 µm in length with a mean of 26.5 µm and 16-20 µm in width with a mean of 18.5 µm. A small micropyle present with a refractile granule usually lying just underneath. Oocystic residuum present. Sporocyst boat-shaped, measuring 6-16 µm in length and 4-8 µm in width, with one end being sharply pointed than the other. A stieda body is present at the pointed end. Sporocystic residuum present as scattered granules. The sporozoites are elongated each measuring 10-12 in length.

Sporulation time: 24-72 hours.

Type host: Common Pea-Fowl, Pavo cristatus Linnaeus.

Other hosts: Unknown.

Distribution: Zoological Garden, Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

164. Eimeria pavonis Mandal

(Fig. 132)

Description: Oocyst ovoidal in shape double walled, the inner being thinner than the outer. It measures 19.8-25.4 µm in length with a mean of 17.6 µm, the shape index is 1.2; the cytoplasm completely fills up the oocysts and appears as refractile globular mass. Micropyle present, oocystic residuum absent. Sporocysts are more or less elliptical in shape each with double wall of uniform thickness and having knob at the anterior narrower end. Sporocyst measures 12.1-15.6 µm in length with a mean of 14.5 µm and 5.6-7.6 µm in width with a mean of 6.6 µm.
The shape index is 2.1. Sporocystic residuum present as scattered mass. Sporozoites are elongated in shape, each with pointed anterior end and nucleus is situated at the posterior end. Sporozoite measures 11.5-13.8 μm in length with a mean of 12.5 μm and 2.3-3.8 μm in width with a mean of 2.6 μm. The shape index is 4.8. The sporozoites lie along the longitudinal axis of the sporocyst with their anterior ends directed to opposite poles.

Sporulation time: 65-70 hours.

Type host: Common Pea-Fowl, *Pavo cristatus* Linnaeus.

Other hosts: From the type host, Chauhan *et al.* (1973) and Bhatia-*et al.* (1973).

Distribution: Mau, Uttar Pradesh. Zoological Garden, Delhi.

Endogenous stages: Unknown.

Types: Likely to be present in the collection of Protozoology Laboratory, Dept. of Zoology, Calcutta University.

165. **Eimeria picta** Bhatia

(Fig. 133)

Description: Nearly ovoid oocysts, measuring 16-21 μm by 13-17 μm (mean 18.9 μm by 15.3 μm) (from 50 oocysts) in size. Length-width ratio 1.20-1.37 (mean 1.23). It possesses a smooth and double-contoured wall of 1.3 μm thickness, the outer coat is light-yellow and the inner
dark-green in colour. Micropyle absent. One or sometimes two polar granules were detected but without any oocystic residuum. The pear-shaped pyriform sporocyst with one end narrower, measuring 8-10 \(\mu \text{m} \) by 5.0-6.6 \(\mu \text{m} \) (mean 9.3 \(\mu \text{m} \) by 5.6 \(\mu \text{m} \)). A dark stieda body is present as a cap. Sporocystic residuum appears as loose granules or sometimes clumped in the middle. The elongated sporozoite having one end broadly rounded and the other narrower and pointed, containing two refractile globules, the larger lying towards the broader end and the smaller near the narrower end, a small nucleus is situated towards the middle.

Sporulation time: 24 hours.

Type host: Golden pheasant, *Chrysolophus pictus* (Linn.).

Other hosts: From the type host and Silver pheasant, *Lophura nycthemera*, (= *Lophura* sp.), Pande, Bhatia, Chauhan and Garg (1970), Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973) and Bhatia, Chauhan, Arora and Agarwal (1972).

Distribution: Zoological Garden, Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

166. *Eimeria praecox* Johnson

(Fig. 134)

Description: The oocyst spherical to elliptical in shape measuring 17.7-24.4 \(\mu \text{m} \) by 13.8-19.2 \(\mu \text{m} \) with an average of 21.2 \(\mu \text{m} \) by 15.64 \(\mu \text{m} \).
The colour of the oocyst is yellowish and the wall is smooth with an average 0.72 μm thickness. The shape index is 1.1-1.6 with an average

![Fig. 134. Oocyst of *Eimeria praecox.*](image)

1.3. Micropyle indistinct, polar granule present in sporulated oocyst but without any oocystic residuum. Sporocyst elongated to ovoid in shape.

Sporulation time: 48 hours at room temperature.

Type host: Domestic Fowl, *Gallus domesticus* (= *Gallus* sp.)

Other hosts: From the type hosts, Ray (1945b), Gill (1954a), Patnaik (1963) and Chandra and Chabra (1972).

Distribution: Tarai, Uttar Pradesh; Madhya Pradesh; Bombay, Maharashtra.

Endogenous stages: Endogenous development occurs in the upper third of the small intestine. Generally there are two schizogonic generations (Tyzzer, Theiler and Jones, 1932 and afterward by Long, 1967b). The first one measures 9-10 μm in diameter produces 16 elongated merozoites. The smaller one lies deeper but encloses few larger merozoites. The microgametocyte measures 10-14 μm in diameter contains a large residuum after the development of microgametes. Long (1967b) observed schizont measuring 20 μm in diameter (larger one) and 14 μm in diameter (smaller). Leo and Millard (1971) studied the fine structure and encountered three schizogonic generations. Nonpathogenic.

Types: Not known.

167. *Eimeria roscoviensis pluvialina* Mandal

(Fig. 135)

Distribution: Oocyst pyriform or ovoidal in shape with double envelop. It measures 17.7-19.7 μm in length with a mean of 18.7 μm and 13.3-15.3 μm in width with a mean of 14.3 μm. The shape index is 1.3. Cytoplasm present with globular refractile mass. Micropyle absent. Oocystic residuum present. Sporocysts are pyriform each with a pointed anterior end and rounded posterior end. It measures 11.1-13.1 μm in length with a mean of 12.1 μm and 5.6-7.6 μm in width with a mean of 6.6 μm. The shape index is 1.7. Sporocystic residuum is present as scattered mass. Sporozoites are elongated in shape each with a nucleus in the central position and anterior end is narrower than the posterior one. Sporozoite measures 8.8 by 2.5 μm. The shape index is 3.5.

Sporulation time: 72-80 hours.

Type host: Golden Plover, Pluvialis appricaria (Linnaeus).

Other hosts: Unknown.

Distribution: Namkhana, 24-parganas, West Bengal.

Endogenous stages: The shizont measures 6.6 μm in diameter. The merozoites are spindle-shaped each measuring 7.7-8 μm long; arranged irregularly within the mature schizonts. The microgametocyte measures 9.9 μm by 7.7 μm develops many comma-shaped microgametes. The macrogamete measures 8.8 by 5.5 μm in size with central nucleus having a distinct nuclear membrane.

Types: Lying in the Protozoology Laboratory, Dept. of Zoology, Calcutta University.
Remarks: Pellerdy (1974) treated this subspecies as a distinct species since there is no subspecies in coccidia. However the present author wants to retain this as subspecies.

168. **Eimeria sphenocercae** Ray

Description: Oocyst kidney-shaped with a slight bent on one side, having double contoured. It is surrounded by an exomembrane which is tight fitting all over the body except at either pole where it broadens considerably in the form of an irregular cap. In most specimens on one of the broader side of the oocyst the endocystic wall is depressed considerably giving the appearance of kidney and in some the oocyst has got an appearance of dumble. Perfectly cylindrical specimen is seen rarely. Micropyle is asymmetrical in position and appears as a protuberance. In some cases a plug like structure closes the opening of the micropyle. The size of the oocyst varies from 17.5-25.0 μm in length and 12.5-15.0 μm in width with the average being 19.18 μm by 12.61 μm. Sporocyst broadly oval in outline ranging from 17.5-18.5 μm in length and 12.5-13.5 μm in width, the average being 19.18 μm by 12.61 μm, having scattered sporocystic residuum.

Sporulation time: 5-6 days.

Type host: Kokla green Pigeon, *Sphenocercus sphenurus* (= *Treron* sp.).

Other hosts: Unknown.

Distribution: Mukteswar, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

169. **Eimeria teetari** Bhatia, Pandey and Pande

(Fig. 136)

Description: Oocyst elliptical/ellipsoidal/ovoidal with a double contoured wall, measuring 21.0-29.0 μm in length with a mean of 24.0 μm and 19.0-23.0 μm in width with a mean 20.0 μm. The length width ratio is 1.03-1.3 with a mean of 1.16. Oocyst wall smooth, measuring 1.4 μm in thickness. Micropyle and oocystic residuum absent. Sporocyst ovoid, with bluntly narrower ends, measuring
11.0-15.0 μm in length and 6.0-8.0 μm in width with a mean of 13 μm by 7.0 μm. Prominent plug like stieda body present. Sporocystic residuum granular, dispersed around sporozoites. Sporozoite comma-shaped, measuring 7.0-7.5 μm in length with a mean of 7.4 μm and 3.0-3.7 μm in width with a mean of 3.5 μm, having two globules at both ends.

Sporulation time: 3 days.

Type host: Grey partridge, *Francolinus pondicerianus* (Gmelin).

Other hosts: Black partidge, *F. francolinus* (Linn.) and Chakor partridge, *Caccabis* (= *Alectoris*) *chakor* (J. E. Grey).

Distribution: Mathura, Zoological Garden, Lucknow, Uttar Pradesh and Zoological Garden, Delhi.

Endogenous stages: The endogenous stages are found in the anterior part of the small intestine. Microgametocyte (*H. Francolinus francolinus*) measures 21-34.5 μm by 17-27.6 μm (average 29.0 by 24.8 μm) and (*H. F. pondicerianus*) measures 20.7-26.7 by 17-24.1 μm (average 23 μm by 20.7 μm). The microgamete measures 2-3 μm long and encircling a large granule. Macrogamete (*H. F. francolinus*) measures 17-24 μm by 14-20.1 μm. The schizont of the former host are 8.6-14 μm by 7-10.3 μm and of the later 12-13.4 μm by 9-12 μm. The merozoite measures 4-6 μm by 1.1-1.4 μm.

Types: Not known.
Remarks: Simultaneously the authors described the oocysts and endogenous stages of this species from Black partridge (F. francolinus) with oocyst measuring 20.8-28.0 \(\mu m \) by 18.0-21.0 \(\mu m \) (mean 23.0 \(\mu m \) by 19.0 \(\mu m \)); sporocyst measuring 10.5-13.4 \(\mu m \) by 6.0-9.0 \(\mu m \) (mean 12.0 \(\mu m \) by 7.4 \(\mu m \)) and the sporozoite measures 7.4-9.80 \(\mu m \) by 3.4-4.0 \(\mu m \) (mean 7.9 \(\mu m \) by 3.6 \(\mu m \)). Sporulation time 2 days [while dealing with the coccidia of Chakor Partridge, Pande et al. (1970) again reported the same species and described the oocyst measuring 24-31 \(\mu m \) by 17-24 \(\mu m \) (mean 26.1 \(\mu m \) by 20.3 \(\mu m \)). Sporocyst measuring 12-14 \(\mu m \) by 6.5-8 \(\mu m \) (mean 12.9 \(\mu m \) by 7.3 \(\mu m \)) and the sporozoite measures 12 \(\mu m \) by 3 \(\mu m \)]. However, with these slightly variable measurements, it is almost certain that the authors are dealt with the same species. Of course, the describer of this species questioned the validity of such species till the cross infections experiments are conducted. Nothing has been undertaken so far.

Report on the occurrence of this species may be had from Pande, Bhatia, Chauhan and Garg (1970), Bhatia, Chauhan, Arora and Agarwal (1972, 73) and Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1773).

170. \textit{Eimeria tenella} (Raillet and Lucet)

(Fig. 137)

Description: The oocyst broad-ovoid in shape, one end being slightly narrower than the other. The wall bears very transverse

Fig. 137. Oocyst of \textit{Eimeria tenella}.
striations on the surface, is double contoured, 1-1.5 \(\mu m \) in thickness and shows a moderate size micropyle. The oocyst measures 19.2-26 \(\mu m \) in length and 16-22 \(\mu m \) in width (mean 22.6 \(\mu m \) in length and 20 \(\mu m \) in width). Most sporulated oocysts develope sporocysts and a refractile granule in each, mostly polar in position with an outer residual body. The sporocyst measures 11 \(\mu m \) in length and 7 \(\mu m \) in width with a micropyle at the pointed end sealed by a slightly protruding stieda body. The sporozoites are elongated banana-shaped bodies, each measuring 6-8 \(\mu m \) in length, with some spherical hyaline material in the granular cytoplasm near blunt end, and the outline of the nucleus having 1 to 2 \(\mu m \) in diameter, showing near it. A granular sporocystic residuum is present.

Dimensions of the oocysts measured by other authors are as follows:

- 24.5 \(\mu m \) by 18.2 \(\mu m \) (Scholtyseck, 1953);
- 14-31 \(\mu m \) by 9-25 \(\mu m \) with a mean of 22.9 \(\mu m \) by 19.1 \(\mu m \) (Levine, 1961);
- 21-23 \(\mu m \) by 19 \(\mu m \) (Soltys, 1966);
- 16-27 \(\mu m \) by 15-26 \(\mu m \) with a mean of 21 \(\mu m \) by 16.6 \(\mu m \) (Pellerdy, 1974).

Type host: Domestic Fowl, *Gallus domesticus* (= *Gallus* sp.)

Other hosts: Pellerdy (1965) listed few with great doubt.

Distribution: Madhya Pradesh; Bombay, Maharashtra; Mukteswar, Uttar Pradesh; Calcutta, West Bengal; Orissa; Madras, Tamil Nadu and Bangladesh.

Endogenous stages: The development of the endogenous stages are restricted to cæca but sometimes they are found in the lower region of the small intestine and colon. The sporozoites enter epithelial cells of the cæcal glands and develop at the base of the epithelial cells. Asexual stage of development initiates with the formation of trophozoite. The nucleus divides to form schizont measuring 25.3 by 21.0 \(\mu m \). The mature schizont produces a large number of merozoites and regarded as first generation merozoites. Each merozoite measures 2.4 \(\mu m \) by 1.5 \(\mu m \) in size, fusiform in shape with one broader end. The merozoite soon invades the epithelial cells and ultimately gives rise to second generation merozoites. The mature schizont of which measures 42.5 \(\mu m \) by 37.5 \(\mu m \). This merozoite measures 6.5 \(\mu m \) in length definitely larger than the first generation merozoite but are slender and gives rise to sexual forms. The nucleus of microgametocyte divides and produces innumerable biflagellate microgametes each having a comma-shaped slender body. Macrogametocyte oval with a well defined karyosome surrounded by a halo. The prepatent period is 7
days and the patent period lasts as long as 10 days. Mukherjea and Ray (1962) developed a method for staining the oocysts of this species.

Types: Not known.

Remarks: The presence of transverse striations on the oocyst wall and the occurrence of micropyle along with oocystic residuum have not been observed by the previous authors. However, the tissue phase and other characters have been examined by the present author. The description of endogenous stages is mainly based on Gill and Ray (1957). However, authors like Lotze and Leek (1963, 1968 and 1969) and Rose (1967a) described the excystation/release of sporozoites from oocysts. Tyzzer (1929) studied some details of the life-cycle of this species. Pettillo (1959), Chally and Burns (1959) Scholtyseck (1953) Scholtyseck, Strout and Haberkorn (1969) and Leatham (1969) studied the invasion of sporozoites in the connective tissues. The details of the endogenous development in kidney cell cultures were studied by Scholtyseck and Strout (1968), Strout and Scholtyseck (1970a, b) in the Electron microcopy.

The report on the occurrence of this species has been made by Ray (1945), Nath, Dutta and Sagar (1960, 1962 and 1965), Patnaik (1963, 1966) and Rahman and Anantaraman (1970) from Indian subregion and Hassan (1970) reported it from Bangladesh.

171. Eimeria tropicalis Malhotra and Ray
(Fig. 138)

Description: Oocyst spherical or sub-spherical, measuring 19-24 μm in length and 18-23 μm in width with a mean of 20.5 μm. The wall of the oocyst is thick. Small oocystic residuum is seen after the

![Fig. 138. Mature oocyst of Eimeria tropicalis.](image-url)
development. Sporocyst ellipsoidal, 10 μm in length and 6 μm in width with a prominent stieda body. The sporocystic residuum is present as scattered mass. Sporozoites globular in shape.

Sporulation time: 40-48 hours.

Type host: Blue rock Pigeon, *Columba livia intermedia* (Strickland).

Other hosts: From the type host, Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973) and Mandal (1976).

Distribution: Calcutta, West Bengal and Zoological Garden, Lucknow, Uttat Pradesh.

Endogenous stages: All that is known regarding the endogenous stages of this parasite is the coccidium localizes in the duodenum and the anterior portion of the jejunum.

Types: Not known.

172. **Eimeria vanelli** Mandal

(Fig. 139)

Description: Oocyst oval or pyriform in shape with double envelop, the outer being thinner and provided with warts. Oocyst

![Fig. 139. Mature oocyst of *Eimeria vanelli*.](image)

19.9-21.9 μm in length with a mean of 20.9 μm and 13.3-15.3 μm in width with a mean of 14.3 μm. The shape index is 1.4. The cytoplasm granular and refractile material completely fills up the oocysts. Micropyle present, oocystic residuum absent. Sporocyst pyriform in
shape with bluntly pointed anterior and rounded posterior ends. Sporocyst measures 11.1-13 μm in length with a mean of 12.1 μm and 5.6-7.6 μm in width with a mean of 6.6 μm. The shape index is 1.8. Sporocystic residuum is present as scattered mass. Sporozoites are elongated in shape each tapering at both ends. Cytoplasm of the sporozoite shows banded appearance. Sporozoite measures 7-8.7 μm in length with a mean of 7.7 μm and 2.3-4.3 μm in width with a mean of 3.3 μm. The shape index is 2.3.

Sporulation time: 72-80 hours.

Type host: Yellow-wattled Lapwing, Vanellus malabaricus (Boddart)

Other hosts: Unknown.

Distribution: Basanti, 24-Parganas, West Bengal.

Endogenous stages: The young schizont round, measures 5.5 μm in diameter afterwards become elongated. Each schizont produces 6-10 merozoites, each measuring 9.9 μm in length, arranged symmetrically. Microgametocytes are oval, each measuring 11 μm by 7.7 μm produces uniflagellated microgametes. Macrogametocytes are also oval, each measuring 12.1 μm by 9.9 μm with a central nucleus and clear cytoplasm.

Types: Lying in the collection of Protozoology Laboratory, Dept. of Zoology, Calcutta University.

173. Eimeria vanmurghavi Panda, Bhatia, Chauhan and Garg (Fig. 140)

Distribution: Smaller oocyst subspherical to ellipsoidal, measuring 12-22 μm in length, mean 16 μm and 8-13 μm in width, mean 12 μm.
Length width ratio 1.06-1.7 (mean 1.33). Oocystic wall smooth, 1.3 µm thick, double-layered, the outer light-yellowish in colour and the inner brownish. Polar granule present. Oocystic residuum absent. Micropyle and polar cap absent. Sporocyst broadly ellipsoidal, measuring 7.5-10.5 µm in length with a mean of 8.4 µm and 4.5-6.0 µm in width with a mean of 5.5 µm. Sporocystic residuum present as few scattered granules. The narrower end of the sporocyst is provided with small plug-like stieda body. Sporozoite measuring 5.2-7.8 µm by 2.06 µm in size with one end rounded and the other pointed. The broader end shows a refractile globule, and the nucleus is lying towards the centre.

Type host: Red jungle fowl, *Gallus gallus* (Linn.).

Other hosts: From the type hosts and Grey jungle Fowl, *Gallus sonneratii* (Temminck), Bhatia, Chauhan, Arora and Agarwal (1972) and Chauhan, Bhatia, Arora Agarwal and Ahluwalia (1973).

Distribution: Zoological Garden, Lucknow, Uttar Pradesh; and Zoological Garden, Delhi.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pellerdy (1974) made a comment that there is a little difference between the oocysts of *E. acervulina* and the present species. However, until or unless some cross infection experiments are being conducted it is difficult at this stage to say anything about the validity of this species.

174. *Eimeria* sp.

(Fig. 141)

Description: The somewhat ellipsoidal, ovoid or sub-spherical oocysts are brownish in colour and each measuring 13-17 µm by 11-13 µm in size (mean 15.7 by 12.0 µm). Oocystic wall is of a rough and punctate character; the outer layer is colourless and membraneous. Micropyle broad, 4-6 µm in width; is peripherally thickened and placed on two prominent knobs at the ends of the inner layer. Oocystic residuum absent. Polar granule large and globule like, near the centre of the micropyle. Sporocyst ovoidal, with the narrower end carrying stieda-body, measuring 7-11 µm by 5-7 µm in size (mean 9-0 µm by 5-7 µm). Sporocystic residuum present as a dark mass. Sporulation completed in 5 days at room temperature (two days in case of H: *Fulica. a atra*)
Fig. 141. Mature oocyst of *Eimeria* sp.

Hosts: Purple Moorhen, *Porphyrio porphyrio* (Linnaeus) and Coot, *Fulica a. atra* Linn.

Distribution: *Eimeria* sp. described from Purple Moorhen, *Porphyrio porphyrio* (Linn.) and from Coot, *Fulica a. atra* Linn. are similar in their structural accounts but differ only in the sporulation time. Moreover, it resembles *E. peludosa* but the significant points of differences are the longer sporulation time and absence of stieda body in *E. peludosa*. Further studies are essential to confirm the specific identity.

G) Parasites of Mammals

Key to the species

(A) Oocyst spherical/subspherical

(1) Oocystic residuum present

 (i) Shape of sporocyst ovoidal
 (ii) Shape of sporocyst broadly pyriform

(2) Oocystic residuum absent

(a) Sporocyst spherical

(b) Sporocyst not spherical

 (i) Sporocyst almond shaped
 (ii) Sporocyst pear shaped
 (iii) Sporocyst lemon shaped
 (iv) Sporocyst egg shaped
 (v) Sporocyst cylindrical

\[E. \text{punjabensis} \]
\[E. \text{andamanensis} \]
\[E. \text{clupearum} \]
\[E. \text{chinkeri} \]
\[E. \text{bahdipurensis} \]
\[E. \text{suncus} \]
\[E. \text{tuberculata} \]
\[E. \text{cervis} \]
(vi) Sporocyst ovoid/ovoidal
(a) Length of sporocyst below 7 µm
 (i) Width of sporocyst above 3 µm ...
 (ii) Width of sporocyst below 3 µm ...
 (b) Length of sporocyst above 7 µm
 (i) Width of sporocyst above 5.5 µm ...
 (ii) Width of sporocyst below 5.5 µm ...

(vii) Sporocyst ellipsoidal
 (i) Size of sporocyst 9.8-10.4 by 4.3-5.3 µm ...
 (ii) Size of sporocyst 8.7-10.7 by 5.3-6.7 µm ...
 (iii) Size of sporocyst 8.5-13.6 by 3.4-6.0 µm ...

(B) Oocyst not spherical/subspherical
1. Oocyst fusiform shaped ...
2. Oocyst pear shaped ...
3. Oocyst barrel shaped ...
4. Oocyst elongated ...
5. Oocyst elongate-ellipsoidal ...
6. Oocyst elongated-ovoid ...
7. Oocyst spherical or subspherical ...
8. Oocyst pyriform or subspherical ...
9. Oocyst ellipsoidal or subspherical ...
10. Oocyst pyriform or subspherical ...
11. Oocyst ellipsoidal or spindle shaped ...
12. Oocyst elliptical to spherical ...
13. Oocyst subspherical to ovoid ...
14. Oocyst cylindrical or slightly oval ...
15. Oocyst elongated or ovoidal ...
16. Oocyst oval or subspherical ...
17. Oocyst round to spherical ...
18. Oocyst subspherical to spherical or nearly spherical
 (i) Size of sporocyst 11 µm by 7 µm or below ...
 (ii) Size of sporocyst 14 µm by 8 µm or above ...

19. Oocyst oval or ellipsoidal
 (A) Oocystic residuum present ...
 (B) Oocystic residuum absent
 (a) Sporocyst spindle shaped ...
 (b) Sporocyst not spindle shaped
 (i) Sporocyst ellipsoidal ...

20. Oocyst egg shaped
1. Oocystic residuum present ...
2. Oocystic residuum absent
 (a) Sporocyst ovoid ...
 (b) Sporocyst not ovoid
 (i) Width of sporocyst 6 µm or above ...
 (ii) Width of sporocyst below 6 µm ...

21. Oocystic cylindrical
 (A) Oocystic residuum present ...

220 Mandal: Fauna of India: Protozoa
(B) Oocystic residuum absent
 (i) Shape of sporocyst pyriform
 (ii) Shape of sporocyst not pyriform
 (a) Shape of sporocyst oval or round

22. Oocyst pyriform
 (A) Oocystic residuum present
 (B) Oocystic residuum absent
1. Sporocyst ovoidal or elongate ovoid
 (a) Sporocyst elliptical
 (b) Sporocyst lemon shaped

23. Oocyst ovoid/oval
 (A) Oocystic residuum present
 (B) Oocystic residuum absent
1. Sporocyst pyriform
 (i) Shape of sporocyst oval, size 18.5 μm by 6.2 μm
 (ii) Shape of sporocyst ovoid, size 7.75 μm by 3.75 μm
 (iii) Shape of sporocyst ovoidal, size 15.25 μm-1800 μm by 7.8-7.5 μm
 (f) Sporocyst elongated
 (i) Length of sporocyst 10.5 μm or below
 (ii) Length of sporocyst above 16 μm but below 20 μm
 (iii) Length of sporocyst above 30 μm but below 45 μm
 (g) Sporocyst oval

24. Oocyst ovoidal to ellipsoidal or vice versa
 (A) Oocystic residuum present
 (i) Shape of sporocyst oval, size 18.5 μm by 6.2 μm
 (ii) Shape of sporocyst ovoid, size 7.75 μm by 3.75 μm
 (iii) Shape of sporocyst ovoidal, size 15.25 μm-1800 μm by 7.8-7.5 μm
 (B) Oocystic residuum absent
 (i) Sporocyst ovoidal to oval
 (ii) Sporocyst elongate ovoid size 1.7 μm by 9 μm
 (a) Length of sporocyst 16 μm or below
 (b) Length of sporocyst 16 μm or above
 (iii) Sporocyst nearly ovoid size 8-10 μm by 6-8 μm
 (iv) Sporocyst ellipsoidal size 19-23 μm by 9-10 μm
 (v) Sporocyst ovoid size 10.0-13.3 μm by 5.3 6.6 μm
 (vi) Sporocyst pyriform

25. Oocyst ovoidal
1. Oocystic residuum present
2. Oocystic residuum absent
 (i) Sporocyst oval size 14-16 \(\mu m \) by 8-9 \(\mu m \) ... \(E. ovoidalis \)
 (ii) Sporocyst pyriform size 11.25 \(\mu m \) by 6.0 \(\mu m \) ... \(E. pandei \)
 (iii) Sporocyst ovoid size 9.5-14.5 \(\mu m \) by 9.0-7.5 \(\mu m \) ... \(E. bovis \)
 (iv) Sporocyst pear-shaped size 18.0 \(\mu m \) by 8 \(\mu m \) ... \(E. wyomingensis \)
 (v) Sporocyst with moderately pointed ant. end ... \(E. irresidua \)

26. Oocyst ellipsoidal
 (A) Oocystic residuum present
 (i) Sporocyst elongated size 8-14 \(\mu m \) by 4-8 \(\mu m \) ... \(E. oryctolagi \)
 (ii) Sporocyst oval size 16-19 \(\mu m \) by 6.4 \(\mu m \) ... \(E. scabra \)
 (B) Oocystic residuum absent
 (i) Sporocyst spindle shaped \(E. crandallis \)
 (ii) Sporocyst elongate \(E. brasiliensis \)
 (iii) Sporocyst broadly ovoid \(E. hammondii \)
 (iv) Sporocyst ovoid to elongate \(E. cheetai \)
 (v) Sporocyst oval
 (a) Length of sporocyst 13 \(\mu m \) or below
 (i) Width of sporocyst 4 \(\mu m \) or below \(E. ninakholyakimovi \)
 (ii) Width of sporocyst 6 \(\mu m \) \(E. arloingi \)
 (b) Length of sporocyst about 16 \(\mu m \)
 (i) Width of sporocyst 8 \(\mu m \) \(E. neoleporis \)
 (ii) Width of sporocyst 10 \(\mu m \) or above \(E. intricata \)
 (vi) Sporocyst ellipsoidal
 (a) Size of sporocyst 7.2-10.8 \(\mu m \) by 3.6-5.76 \(\mu m \) \(E. ailuri \)
 (b) Size of sporocyst 9.1-11.7 \(\mu m \) by 5.2-6.5 \(\mu m \) \(E. spinosa \)
 (c) Size of sporocyst 5 \(\mu m \) by 3 \(\mu m \) \(E. ellipsoidalis \)
 (vii) Sporocyst ovoid
 (a) Size of sporocyst 11 \(\mu m \)-14 \(\mu m \) by 8 \(\mu m \)-10 \(\mu m \) ... \(E. lomarii \)
 (b) Size of sporocyst 5.92 \(\mu m \) by 4.93 \(\mu m \) ... \(E. newali \)
 (c) Size of sporocyst 14-15 \(\mu m \) by 8-11 \(\mu m \) ... \(E. rajasthanii \)

175. \textit{Eimeria ahsata} Honess

(Fig. 142)

\textit{Description}: The oocyst ellipsoidal to ovoid in shape, measures 37-45 \(\mu m \) and 22-29 \(\mu m \) in size with a mean of 39 \(\mu m \) by 24 \(\mu m \). The oocystic wall is thick measuring 1.3 \(\mu m \) with a light yellowish green outer and a yellowish brown inner layers. More than one polar granules present. Oocystic residuum absent. Micropylar cap present measuring 5-10 \(\mu m \) by 1-3 \(\mu m \) with a mean of 8 \(\mu m \) by 2 \(\mu m \) in size. Sporocyst elongate-ovoid measuring 16-21 \(\mu m \) by 7-10 \(\mu m \) with a mean of 39 \(\mu m \) by 9 \(\mu m \). Stieda body absent. Sporocystic residuum present
as scattered granules or along the side of the sporozoite. Sporozoite banana-shaped measures 16 μm by 4.3 μm in size, with one end broad

![Fig. 142. Mature oocyst of Eimeria ahsata.](image)

and the other tapering carrying two refractile globules with the nucleus in the middle.

Sporulation time: 2 days.

Dimensions of the oocysts reported by other authors are as follows:

36-44 by 22-29 μm with a mean of 40 by 26 μm (Levine et al., 1962); 29-37 by 17-28 μm with a mean of 33 by 23 μm (Honess, 1942); 23-48 by 20-28 μm with a mean of 36 by 24 μm (Kamalapur, 1961); 31-39 by 22-28 μm (Donciu, 1961); 30-37 by 22-29 μm with a mean of 29.4 by 25.6 μm (Jackson, 1964); 30-39 by 18-30 μm (Chevalier, 1965); 30-34 by 18-24 μm (Vassiliades, 1965).

Type host: Rocky mountain big horn Sheep, *Ovis canadensis*.

Other hosts: Domestic Sheep (Lamb), *Ovis* sp., and Domestic Goat, *Capra hircus* (= *Capra* sp.).

Distribution: Mathura, Uttar Pradesh; Orissa; West Bengal and Sri Lanka.

Prevalence: Shah (1963) found 24% infection of sheep from Illinois and other states, Chevalier (1965) found 39% infection of sheep from Germany, and Joyner et al., (1966) found 62% infection of sheep from England. Jha and Subramanian (1966) found 5% infection of goats in Uttar Pradesh from India. Wiesenhutter (1965) found 34%
and 42% of sheep and goats respectively from Syria. Sayin (1966) recorded 63% infection of Angora goats in Turkey.

Levine and Ivens (1970) have made a comment that the occurrence of this species in goat may possibly be *E. christenseni* instead.

Endogenous stages: The schizonts occur in the central portion of the mucosa of the small intestine, mostly in the jejunum, some occur in the lacteals of the villi and a very few in the muscularis mucosae. The schizonts were traced by Davis and Bowman (1970) intranuclearly inside the epithelial cells of the small intestine. It measures 1.6-5 μm within the cavity of the nucleus. The second generation schizonts were encountered inside the cytoplasm of the epithelial cells. Largest schizont measures 52 μm by 39 μm and 50 merozoites developed inside. Davis, Bowman and Smith (1963) encountered globidial schizont almost along the entire length of the small intestine measuring 265 μm by 262 μm. Gametocytes were traced in the epithelial cells of the crypts. The microgametocyte measures 36.5 μm by 23 μm and the macrogametocyte is of 35-45 μm in diameter.

Types: Not known.

Remarks: Patnaik (1963), Singh (1963), Pande, Bhatia, Dubey and Srivastava (1964), Jha and Subramanian (1965, 1966), Bhatia and Pande (1970) and Misra and Mahapatra (1972) reported this species from different parts of India. Jegatheeswaran (1967) reported this species from Sri Lanka.

176. **Eimeria ailuri** Agarwal, Ahluwalia, Bhatia and Chauhan

Description: Oocyst ellipsoidal in shape measuring 21.60-27.36 μm in length and 11.52-15.54 μm in breadth with a mean of 23.76 μm by 13.32 μm. The bilayered oocystic wall is 1.5 μm thick. The outer layer in greenish and the inner one is dark brown in colour. The length width ratio of the oocyst is 1.72-1.87 with a mean of 1.78. Micropyle, polar cap, oocystic residuum and polar granules are absent. Sporocysts are ellipsoidal in shape each measuring 7.2-10.08 μm in length and 3.60-5.76 μm in breadth with a mean of 7.92 μm by 5.14 μm. The sporocyst is provided with a small stieda body at the narrower end. Sporocystic residuum present as an aggregation of some dark granules in the centre. Sporozoite measuring 6.4-8.6 μm in length and 2.6-6 μm in breadth with a mean of 7.56 μm by 2.88 μm have two
Type host: Red Panda, *Ailurus fulgens* S. Cuvier.

Other host: Unknown.

Distribution: Zoological garden, Lucknow, Uttar pradesh.

Endogenous stages: Unknown.

Types: Not known.

177. *Eimeria alabamensis* Christensen

(Fig. 143)

Distribution: Oocyst pyriform to subellipsoidal, measuring 17-24 μm by 12-16 μm (mean 21 μm by 14 μm) in size, (length width ratio 1.3-1.6, mean 1.5). The oocystic wall double layered, almost colourless or light yellowish, 1.3μm thick. Micropyle and micropylar cap absent. Oocystic residuum and polar granule absent. Parachute-shaped cap at each rounded end of developing sporocyst but disappearing with the development of sporozoites. Sporocyst elongate-ovoid, with slightly narrow ends, measuring 11-16 μm by 5-6 μm (mean 11.9 μm by 5.2 μm) in size. Stieda body absent. Sporocystic residuum absent. Sporozoites are elongated, banana-shaped each measuring 9 μm by 2.6 μm in size, with one end broader and other...
tapering, having coarsely granular cytoplasm with three or more refractile globules, the larger at the wider end and the smallest towards the narrower tip. Prepatent period is 6-11 days.

Sporulation time: 8-10 days.

Dimensions of oocysts reported by other authors are as follows:

13-16 μm by 11-13 μm with a mean of 15.2 μm by 12.8 μm (Patnaik, 1965); 14-24 μm by 12-16 μm (Rakovcev and Brglez, 1966); 17-24 μm by 12-16 μm with a mean of 21 μm by 14 μm (Bhatia *et al.*, 1968); 13-23 μm by 11-17 μm (Levine and Ivens, 1970); 13-24 μm by 11-16 μm with a mean of 18.9 μm by 13.4 μm (Pellerdy, 1974).

Type host: (Ox) Domestic cattle, *Bos taurus* (Linn.).

Other hosts: (i) Buffalo, *Bubalus bubalis* Linn. (ii) Indian cattle, *Bos indicus* (= *Bos sp.*).

Distribution: Izatnagar, Agra, Mathura, Uttar Pradesh; Karnal, Haryana.

Prevalence: Davis, Boughton and Bowman (1955) found 93% infection in dairy calves from United States; Hasche and Todd (1959a) got 42% infection in cattle from Wisconsin; Ruiz and Oritz (1961) obtained 20% infection in calves from Costa Rica; Balconi (1963) received 43% infection in cattle from Guatemala; Szanto, Mohan and Levine (1964) obtained 17% infection in cattle from Illinois, Missouri, Texas and Wyoming; Patyk (1965) received 9% infection in calves from Poland; Patnaik (1965) got 1% infection in buffaloes from Agra, India; Joyner *et al.*, (1966) observed 14% infection in cattle from England; Nyberg, Helfer and Knapp (1967) got 1% infection in cattle from Oregon; Svanbaev (1967a) received 8% infection in caves from Kazakhstan, Bhatia *et al.*, (1968) reported 3% infection in buffaloes from Mathura, Uttar Pradesh, Vassiliades (1969) reported 2% infection in cattle from Senegal. Sayin (1969) got 10% infection in buffaloes from Turkey; Jacobson and Worley (1269) observed 0.4% in calves from Montana.

Endogenous stages: The endogenous life-cycle of this particular species took place in nucleus of the intestinal epithelial cells, particularly to the posterior part of the small intestine as stated by Davis, Bowman and Boughton (1957). The sporozoites entered the epithelial cells of the villi of the small intestine, where they rounded of and became schizonts, they were generally in the distal end of the host cell but then entered the nucleus. The sporozoites became spindle-shaped each measuring 3-7 μm by 1.5-3 μm. Ultimately rounded of, measuring
The mature schizont measures 8-18 µm giving rise to 16-32 sickle-shaped merozoites. Each merozoite measuring 7-9 µm by 1.4-2.1 µm. The micro and macrogametocytes are found intra-nuclearly with in the epithelial cells of small intestinal villi. The microgametocyte measures 8.4-25.2 µm by 7-12 µm (average 15.6 by 11.5 µm), and macrogametocyte measures 7-19.6 µm by 7-11 µm (average 12 by 9.1 µm). Sampson, Hammond and Earnst (1971), Sampson and Hammond (1970), studied the ultra-structural details of schizogony in the monolayer cell culture.

Generally it is non-pathogenic, but sometimes it may exhibit some pathological symptoms in the laboratory. Davis, Bowman and Boughton (1957) observed that due to the infection of this parasite serosal entritis developed in the lower half of the small intestine along with the massive destruction of the epithelial cells with leucocytic infiltration and villar edema. It destroyed the cell along with the nucleus. Double and rather multiple infections were found in a single cell. The schizonts as well as gametocyte might occur simultaneously in one and the same nucleus.

Prepatent period is 6-11 days as noted of Davis, Boughton and Bowman (1955); 7-9 days according to Smith and Davis (1965); 7-8 days according to Svanbaev (1967a).

Types: Not known.

Remarks: Gill (1960, 1968), Patnaik (1963, 1965) and Bhatia, Pande, Chauhan and Arora (1968) reported this species from different parts of India.

178. Eimeria andamanensis Mandal and Nair

(Fig. 144)

Distribution: Oocyst are always subspherical in shape each measuring 12.50-15.50 µm in length with a mean of 13.50 µm and 8.50-10.50 µm in width with a mean of 9.50 µm. Oocystic wall double layered, the outer is thinner one and measures 0.37 to 0.50 µm in thickness. In natural light it is pinkish in colour. The zygotic mass is spherical, clear, highly refractile and concentrated at the centre. It measures 7.5-8.5 µm in diameter. Micropyle is present, oocystic residuum is massive having a diameter 4.5-5.5 µm and located at one side in fully matured oocyst. Sporocysts are broadly pyriform;
sporocystic wall is double layered and both are very thin. Sporocyst measures 4.5-6.5 μm in length with a mean of 5.25 μm and 3.0-4.5 μm in width with a mean of 3.75 μm. The shape index is 1.5. The anterior end of sporocyst is provided with a thick prominent area and devoid of any plug. Sporozoite elongated; the anterior end is more pointed than the bluntly pointed posterior end. It measures 2.5-3.5 μm in length with a mean of 3 μm and 1.5-2.75 μm in width a mean of 1.5 μm at the broader end. Sporozoites appear like shining elongated bodies within the sporocysts. The nucleus of the sporozoite is located at the posterior end and appears like a hyaline mass. The sporocystic residum is irregularly scattered inside the sporocyst and sometimes due to its enormous volume renders the observation of the sporozoite difficult.

Sporulation time: 24-36 hours.

Type host: Black headed Tomb bat, *Taphozous melanopogon* (Temminck)

Other hosts: Unknown.

Distribution: Haddo, Port Blair, Andaman Islands, India.

Endogenous stages: Unknown.

Types: Present in the collection of Zoological Survey of India, Registration No. Pt. 1581.
179. **Eimeria antelocervi** Ray and Mandal

Description: The cylindrical oocyst measures 28-34 μm by 12-16 μm. It is light brown in colour and has a distinct micropyle. Oocyst wall 1.5-2.0 μm thick, composed of a single layer. Oocystic polar granule not mentioned. Oocyst residuum absent. The pyriform sporocyst measuring 11 μm in length 7 μm in width. Sporocystic residual bodies present.

Sporulation time: 40-72 hours.

Type host: Black buck, *Antelope cervicapra* [= *Antilope cervicapra* (Linn.)]

Other hosts: Unknown.

Distribution: Zoological Garden, Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

180. **Eimeria arloingi** (Marotel)

(Fig. 145)

Description: The capped and typically ellipsoidal oocysts, of pale
brownish yellow to orange in colour, exhibited a great variation in the size, each measuring 24.65-37.4 μm in length with a mean 30.3 μm. The prominent crescent-shaped polar cap, lying above the micropyle, measuring 3.4-7.6 μm by 1.7-3.4 μm in size. The shape index ranges from 0.16-0.82. The oocystic residuum absent. Sporocyst elongate ovoid with a rather truncated small end. Stieda body absent or vestigial. Sporocyst measures 11-17 μm in length and 6-10 μm in width with a mean of 13-15 μm by 7-8 μm. Sporocystic residuum present. Sporozoite elongated lying lengthwise, head to tail within the sporocyst. Sporozoite usually contains a large, clear globule at the broad end a small one at the small end.

Sporulation time: One or 2 days, Ray (1952, 61) observed maturation time for *E. hawkinsi* as 10 hours at 37°C and 5-6 days at 21°C.

Dimensions of the oocysts reported by other authors are as follows:

- 17-42 μm by 13-27 μm (Christensen, 1938a); 24-38 μm by 18-20 μm (Honess, 1942); 25-38 μm by 17-25 μm (Balozet, 1932); 40-45 μm by 25-30 μm (Prasad, 1960); 29-41 μm by 20-28 μm average 23.76 μm by 24.14 μm in (Restani, 1966); 22-36 μm by 16-26 μm average 28 μm by 19-21 μm (Levine and Ivans, 1970).

Type host: Domestic goat, *Capra hircus* (= *Capra* sp.)

Distribution: Hydrabad, Andhra Pradesh; Orissa; West Bengal; Uttar Pradesh; Madhya Pradesh; Bombay, Maharashtra; Bihar; Punjab and also in the Zoological Garden, Lucknow, Uttar Pradesh.

Prevalence: Most common in sheep. Christensen (1938a) found in 9% of sheep from Idaho, Maryland, New York and Wyoming. From Tunsia, Balozet (1932) obtained it in 52% of sheep and 56% of goat. Jacob (1943) reported it in 58% sheep and 11% in goats from Germany. From Kazakhstan, Svanbaev (1957) reported this species and is predominant in goats rather than in sheep. Fernando (1967) got 43% infection in goats at Ceylon.

Location: Small intestine.

Endogenous stages: Lotze (1953) observed mature schizonts or globidia, each measuring 146 μm by 122 μm contains enormous number of merozoites. Each merozoite measures 9 μm by 2 μm. Levine, Ivans and
Fritz (1962) studied two types of schizonts in kid. The small schizont sometimes measures 10-14 \(\mu \text{m} \) by 9-10 \(\mu \text{m} \) and contain 16-22 merozoites each measuring 9 \(\mu \text{m} \) by 8.4 \(\mu \text{m} \). The giant schizont measures 280 \(\mu \text{m} \) by 150 \(\mu \text{m} \) with many merozoites each measuring 10-12 \(\mu \text{m} \) by 8.12 \(\mu \text{m} \). But they thought that the small schizont might be either \textit{E. arloingi}, \textit{E. crandallis}, \textit{E. christenseni} or might be a fourth species which had not yet began to produce oocyst in the faeces. The mature microgametes were slender, each measuring 3.5 by 0.4 \(\mu \text{m} \); crescent-shaped structure arranged at the periphery around a residuum. The microgametocyte measures about 11-26 by 8-16 \(\mu \text{m} \). The macrogamete measures 18-29 by 14.8-22.2 \(\mu \text{m} \) or 23.8-30.6 by 17-21.1 \(\mu \text{m} \). Sometimes the gametocytes aggregate to form a white plaque of 5 mm in diameter on the mucus membrane of the small intestine.

Sayin (1965) observed only one type of immature giant schizont measuring 140 \(\mu \text{m} \) by 100 \(\mu \text{m} \) in the ileum of a goat. He further studied the microgametocyte measuring 15-23 by 10-14 \(\mu \text{m} \) and the macrogametocyte of 18-29 by 22.2-24.8 \(\mu \text{m} \) in size. From India, Singh and Pande (1967b) and Pande \textit{et al.} (1967) studied the developmental stages in the large intestine of a goat and observed both micro and macrogametocytes each measuring 23.8-30.6 \(\mu \text{m} \) by 17-12.1 \(\mu \text{m} \) and 23.8-27.2 \(\mu \text{m} \) by 17-20.4 \(\mu \text{m} \) respectively. The former is found with many comma shaped microgametes.

Types: Not known.

Remarks: Levine and Ivens (1970) described \textit{Eimeria ovina} from sheep and stated that \textit{E. arloingi} of sheep can be separated from \textit{E. arloingi} of goat due to presence of straight side wall in the oocyst with slightly flattened micropylar end. Levine (personal communication) further stated that number of species of goat do not infect sheep and \textit{vice versa}. Therefore the Coccidia of goat and sheep require thorough revision [vide \textit{E. ovina} Levine and Ivans (1970)].

Most common species of goat, from India authors like Ray (1949), Sharma (1951-52), Rao and Hiregudaar (1954), Gill and Katiyar (1961), Singh (1963, 1964), Shah and Joshi (1963), Pande, Bhatia, Dubey and Srivastava (1964), Sivdas, Rajan and Nair (1965), Sharma Deorani (1966), Jha and Subramanian (1965), Bhatia and Pande (1966, 69 and 70), Bali (1972), Misra and Mohapatra (1972), Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973), Bhatia, Chauhan, Arora and Agarwal (1973) and Krishnamurthy and Kshirsagar (1976) reported this parasite from different parts of India. Fernando (1957) reported it from Sri Lanka.
181. *Eimeria auburnensis* Christansen and Porter

(Fig. 146)

Description: Oocyst ovoid or ellipsoidal, with a narrower micropylar end, of 32-44 μm by 20-27 μm (mean 38 μm by 24 μm) in size, (length width ratio 1.36-1.74 mean 1.58). Oocystic wall smooth but occasionally coarsely granular, yellowish brown, 1.5-2.0 μm thick. Micropyle 3-5 μm wide. Micropylar cap absent. Oocystic residuum absent. Two or three polar granules present in some oocysts. Sporocyst elongate-ovoid or ellongate-ellipsoidal, measuring 17-21 μm by 8-9 μm (mean 19 μm by 8 μm in size). Stieda body present as a dark knob over the narrower end. Sporocystic residuum present as a centrally situated mass of granules or in scattered groups or arranged as a streak along the sporozoites. Sporozoite elongate, with one end broader and other narrower, 15-18 μm by 4 μm in size. Two refractile globules present, the larger towards the wider end and the smaller towards the narrower end with a nucleus surrounded by fine granules, lying between the two globules. Prepatent period is about 18 days.

Sporulation time: 3-4 days.

Dimensions of the oocysts reported by other authors are as follows:

31-44 by 20-27 μm with a mean of 38 by 24 μm (Bhatia *et al.*, 1968); 35-44 by 19-26 μm with a mean of 37 by 22 μm (Nyberg and
Hammond, 1965) ; 32-46 by 20-25 \(\mu \text{m} \) with a mean of 38.4 by 23.1 \(\mu \text{m} \) (Pellerdy, 1974).

Type host: Ox, _Bos taurus_ (Linn.).

Other hosts: Indian cattle, _Bos indicus_ (= _Bos_ sp.) ; Zebu (_Bos indicus_) [= _Bos_ sp.]; Buffalo, _Bubalus bubalis_ Linn.

Distribution: Izatnagar, Agra, Mathura, Uttar Pradesh; Karnal, Haryana.

Prevalence: Davis and Bowman (1952) found cent percent infection in calves from Alabama ; Hasche and Todd (1959a) obtained 45% infection in cattle from Wisconsin ; Szanto, Mohan and Levine (1964) reported 46% infection in beef calves from Illinois ; Nyberg, Helfer and Knapp (1967) observed 14% infection in cattle from Oregon ; Jacobson and Worley (1969) got infection in 32% calves and 12% cattle from Montana. Torres and Ramos (1939) reported 32% infection in cattle from Brazil ; Supperer (1925) found 3% infection in cattle from Austria ; Joyner _et al._, (1966) got infection in 34% cattle of England ; Marinkelle (1964) reported 32% infection in calves from Colombia. Ruiz and Ortiz (1961) observed 1% infection in calves from Costa Rica ; Balconi (1963) reported 43% infection in cattle from Guatemela ; Watanebe and Iwata (1956) reported 2% infection in cattle from Japan ; Chroust (1964) observed 18% infection in calves from Czechoslovakia ; Patyk (1965) noted 15% infection in calves from Poland ; Vassiliades (1969) reported 12% infection in cattle from Senegal ; Svanbaev (1967a) observed 5% infection in cattle at Kazakhistan. According to Lee and Armour (1959) this species was very common at Vom Nigeria ; Sayin (1969) reported 44% infection in buffaloes from Turkey ; Patnaik (1965) found 19% infection in buffaloes from Agra, Uttar Pradesh, India and Bhatia _et al._ (1968) got 32% infection in buffaloes from Mathura, Uttar Pradesh, India.

Endogenous stages: Several authors have worked on the endogenous cycle of _E. auburnensis_. Hammond, Clerk and Miner (1961) were the first who attempted to trace the life-cycle of the parasite. They reported the sexual stage in the ileal villi and the mesodermal cells of the lamina propria. The microgametocyte measured 67-103 \(\mu \text{m} \) by 48-83 \(\mu \text{m} \) with the mean of 85 \(\mu \text{m} \) by 65 \(\mu \text{m} \) containing thousands of microgametes. Each microgamete measures 4-8 \(\mu \text{m} \) by 0.5-0.75 \(\mu \text{m} \) with two flagella each about 10-12 \(\mu \text{m} \) long.

Davis and Bowman (1962) encountered the giant schizont measuring 78-250 \(\mu \text{m} \) by 48-150 \(\mu \text{m} \) with the mean of 140 \(\mu \text{m} \) by 92 \(\mu \text{m} \) in the
lamina propria of the small intestine. The microgametocyte measures 36-288 μm by 27-150 μm with the mean of 125.5 μm by 79.5 μm. Chobotar and Hammond (1967) have described the globidial schizont measuring 78-250 μm by 48-150 μm with the mean of 140 μm by 92 μm, located in the epithelial cells lining the crypt of Lieberkuehn.

Scholtyseck, Hammond and Ernst (1966) studied the ultrastructure and noted the glycogen granule of 0.3-1.0 μm in diameter at the margin of the macrogamete, associated with one or more adjacent granules. The dark bodies were found large each measuring 1.5 μm in diameter. The wall forming bodies, each measuring 1.7 μm in diameter differentiated from the dark bodies by their slightly larger size, were also encountered. The parasitophorous vacoule relatively large, containing amorphous electron-dense material, appeared around the macrogamete. The process of pinocytosis was encountered in the macrogametes (Scholtyseck, Hammond and Chobotar 1967).

Hammond, Scholtyseck and Miner (1967) reported thousands of irregularly arranged nuclei inside the microgametocyte except at the surface while studying the ultrastructure. The glycogen granules were not seen but large and small thick-walled vacoules either empty or containing electron dense material were encountered. The parasitophorous vacoules were present at early development of microgametes but usually not found around the mature one.

Hammond, Scholtyseck and Chobotar (1969) studied the ultrastructure of the microgametocyte. They noticed a compact nucleus and relatively few electron-dense masses in the nucleus of developing microgametocyte. The basal body of the flagellum appeared at the anterior end of the mature microgamete with large mitochondrion.

Hammond, Ernst and Chobotar (1967) and Hammond, Chobotar, and Ernst (1968) encountered broadly lanceolate sporozoites each measuring 16-21 μm by 3.5-9 μm with the mean of 18.7 μm by 5.6 μm. The sporozoite is vesicular having a large refractile body at the posterior end with one or more smaller bodies anterior to the nucleus. There is a nipple like projection at the anterior end, occasionally with median rod like bodies.

Chobotar (1968) reported mature smaller schizont measuring 6-12 μm by 5-9 μm with the mean of 8.5 μm by 6 μm in the lamina propria of small intestine, 12-14 days after inoculation. The schizont is provided with 4-11 spindle-shaped merozoites each measuring 7-9 μm by 1-2 μm with the mean of 8 μm by 1.5 μm. The microgametocyte measures 61-151 μm by 42-109 μm with the mean of 103 μm by 70 μm.
In India, Patnaik and Pande (1965) and Bhatia and Pande (1967b) described the endogenous stages. However they were dealing with a mixed infection.

According to Christensen and Porter (1939) prepatent period is 24 days; Hammond, Clark and Miner (1961) reported it as 18-20 days; Svanbaev (1967a) encountered the same as 18-19 days; Chobotar (1968) noted it as 16-17 days.

Types: Not known.

Remarks: Authors like Gill (1960a, 68), Patnaik (1963), Bhatia, Pande, Chauhan and Garg (1971) reported it from different parts of India.

182. *Eimeria aurei* Bhatia, Chauhan, Agarwal and Ahluwalia

(Fig. 147)

Description: The oocysts are subpherical in shape each measuring 15.0-17.0 µm in length with a mean of 16.3 µm and 13.0-15.0 µm in width with a mean of 14.7 µm. The thin and smooth oocystic wall of about 1.0 µm in thickness, consisting of inner dark brown and outer straw-coloured layers. There is no micropyle and oocystic residuum. One or more polar granules present as small dark particles. Sporulated oocyst contains four sporocysts, which are ellipsoidal in shape each with one end broad and other narrow carrying a distinct stieda body as a small dark thickening. The sporocyst measures 8.7-10.7 µm in length.

Fig. 147. Mature oocyst of *Eimeria aurei*.
with a mean of 10.2 μm and 5.3-6.7 μm in width with a mean of 5.7 μm. Sporocystic residuum is present as round mass of coarse granules. Elongated sporozoites are two in number lie head to tail inside the sporocyst and each measures 9.0 μm in length and 2.6 μm in width. A large refractile globule is present at the broader end of the sporozoite.

Sporulation time: Unknown.
Type host: Jackle, Canis aureus naria.
Other hosts: Unknown.
Distribution: Mathura, Uttar Pradesh.
Endogenous stages: Unknown.
Types: Not known.

183. Eimeria bandipurensis Ray, Banik and Mukherjee
(Fig. 148)

Description: Oocyst spherical or egg-shaped; the former measuring 16-18 μm with a mean of 17 μm and the later measuring 16-20 μm by 14-18 μm with a mean of 18 μm by 16 μm. It is provided with double wall of uniform thickness and pale yellow in colour. Micropyle and
EIMERIIDAE : EIMERIA

Oocystic residuum absent. Sporocysts broadly pear-shaped each with a stieda body at the narrow end. It measures 6-10 \(\mu m \) in length with a mean of 8 \(\mu m \) and 6-8 \(\mu m \) in width with a mean of 6.5 \(\mu m \). The sporocystic residuum present as refractile globules lying in between the two sporozoites. Sporozoites banana-shaped each with one end rounded and other pointed, having a clear globule at each end. Oocyst measuring 15-19 \(\mu m \) by 20-25 \(\mu m \) was noted by Joseph (1979). He further observed the surface pitting and striations on the outer wall of the oocyst.

Sporulation time: 48-120 hours.

Type host: Indian Palm Squirrel, *Funambulus palmarum* (Linnaeus).

Other hosts: Unknown.

Distribution: Bandipur, West Bengal; Kottayam, Kerala, Mandal (1976) and Joseph (1979).

Endogenous stages: Unknown.

Types: Not known.

184. *Eimeria bareillyi* Gill, Chhabra and Lall

(Fig. 149)

Description: Oocysts are pyriform, each with the narrower anterior end truncated and slightly flattened, measuring 24-31 \(\mu m \) in length and 15-21 \(\mu m \) in width with a mean of 28 \(\mu m \) by 19 \(\mu m \). The length/width ratio is 1.3-1.8 with the mean of 1.4. A mass of few granules, as a small body laying below the micropyle both in unsporulated and sporulated oocysts, is seen. Oocystic wall double-layered,

![Fig. 149. Mature oocyst of *Eimeria bareillyi*.](image)
yellowish brown; residuum and polar granule absent. Sporocysts elongate-ovoid, each with one end broader and the other pointed, 15-18 μm by 7-8.5 μm (mean 17 μm by 7.3 μm) in size. Stieda body present; sporocystic residuum is present as a small central mass or scattered in the middle of the sporozoite. Sporozoites elongated, somewhat banana-shaped, each measuring 12 μm by 4 μm in size, with one end broader and the other pointed; having two refractile globules, a larger at the broader end and the smaller lying with a centrally placed nucleus at the anterior end. The prepatent period is 12-13.5 days as noted by Shastri et al. (1973)

Sporulation time: 3-4 days. Chauhan et al. (1980) noted that the optimum tempt. for sporogony is between 30°C-35°C, when minimum 4 days require for maturity. Lethal tempt. is noted as 40°C.

Dimension of the oocysts reported by other authors are as follows:

24-31 by 15-21 μm mean 28.0 μm by 19.0 μm (Bhatia et al., 1968); 28.6-35.0 μm by 20.0-25.7 μm mean 31.6 μm by 22.6 μm (Krishnamurthi and Shastri, 1976).

Type host: Buffalo, Bubalus bubalis Linn.

Distribution: Bareilly, Izatnagar, Mathura, Uttar Pradesh; Parbhani, Maharashtra.

Prevalence: Bhatia et al. (1968) found 5% infection in buffaloes from Mathura, Uttar Pradesh and reported that higher incidence is found in rainy season than the winter or summer; Shastri et al. (1974) reported some infection in Maharashtra.

Endogenous stages: While studying the endogenous cycle of *E. bareillyi*, Pande, Bhatia and Chauhan (1971) found slight prominent, whitish, opalescent areas of 3-6 μm in diameter at the anterior portion of the jejunum. Typically pyriform oocysts were also obtained each measuring 23-27 μm by 13-17 μm with the mean of 24.6 μm by 14 μm. Oocystic wall is of 1.3 μm thick carrying a prominent and almost flat micropyle 4-5 μm wide from mucosal scrapings. The microgametocyte measuring 20-37 μm by 18-25 μm and possesses 2.6-3 μm long microgamete, were also encountered. The macrogametocyte measures 23-25 μm by 14-17 μm enclosing a large nucleus and plastic granules. The parasites are located supranuclearly in the epithelial cells of the villi and subnuclearly in the epithelial cells of the crypts. The schizogonic stages have not yet been observed. Shastri and Krishnamurthi (1975) found this species abundantly in the middle third of jejunum through out the length of the villi.
Prepatent period 12-13 days as noted by Shastri and Krishnamurthi (1975).

Types: Not known.

Remarks: In addition, authors like Chhabra (1968), Bhatia, Pande, Chauhan and Garg (1971) and Shastri, Krishnamurthi and Ghafoor (1973) reported this parasite from different parts of India. Chauhan et al. (1980) studied the epidemiology of this parasite.

195. Eimeria bovis (Zublin)

(Fig. 150)

Description: Oocyst broadly ovoid, with a narrower micropylar end, 23-33 μm by 15-26 μm (mean 28 μm by 21 μm) in size (length/
width ratio 1.2-1.5, mean 1.36). Oocytic wall smooth, double layered, light yellowish brown of 1.5 μm thick. Micropyle present as a light area at the narrower end. Micropylar cap absent. Oocystic residuum and polar granules absent. Sporocyst elongated ovoid, of 15-17 μm by 6-7 μm (mean 16 μm by 6.6 μm) in size. Stieda-body is capping the narrower end as dark knob. Sporocystic residuum granular, lies along the longitudinal axis of sporozoites. Sporozoite elongate, somewhat banana-shaped, of 13 μm by 3 μm in size with finely granular cytoplasm, having two refractile globules, the larger one lies at its wider end and the other towards the tapering extremity; with a centrally situated nucleus surrounded by small granules.

Sporulation time: 3-4 days.

Type host: Ox, Bos taurus (Linn.)

Other hosts: (i) Zebu, Bos indicus (=Bos sp.), (ii) Buffalo, Bubalus bubalis Linn. (iii) Indian cattle, (Domestic) Bos indicus (=Bos sp.) (iv) Indian Bison or Gour, Bos gaurus (H. Smith).

Dimension of the oocysts reported by other authors are as follows:

- 30-35 μm by 20 μm (Zublin, 1908);
- 23-34 μm by 17-23 μm with a mean of 27.7 by 20.3 μm (Christensen, 1941);
- 25-33 μm by 14-23 μm with a mean of 28 μm by 20 μm (Nyberg and Hammond, 1965).

Distribution: Agra, Mathura, Izatnagar, Uttar Pradesh; Karnal, Haryana; Aurey Milk Colony, Bombay, Maharashtra and Betla Forest, Palamau, Bihar.

Prevalence: Boughton (1945) found 41% infection in bovine from United States; Hasche and Todd (1959a) observed 41% infection in cattle from Wisconsin; Sánto, Mohan and Levine (1964) got 52% infection in calves from Illinois. Nyberg, Helfer and Knapp (1977) reported 62% infection in cattle from Oregon; Jacobson and Worley (19.9) received 61% infection in calves and 30% in cattle from Montana. Fitzgerald (1962) reported as a predominant species in the cattle of Utah; Supperer (1952) observed 66% infection in cattle from Austria; Joyner et al. (1966) reported 75% infection in bovis from England. Chroust (1964) received 69% infection in calves from Czechoslovakia; Patyk (1969) got 23% infection in calves from Poland; Torres and Ramos (1939) found 49% infection in cattle from Brazil. Balconi (1963) reported 41% infection in cattle from Guatemala; Ruiz (1959) got 7% infection in cattle from San Jose, Costa Rica. Vassiliades (1959) got 21% in cattle from Senegal; Yakimoff, Gousseff and Rastegaieff (1932) reported 40% infection in the cattle of Uzbekistan. Yakimoff (1933) received...
44% infection in zebu, 30% in cattle and 23% in buffalo from Azerbaidzhan. Marchenko (1937) reported 54% infection in cattle from North Caucasus. Patnaik (1965c) reported 52% infection in buffalo from Agra, Uttar Pradesh and Rao and Hiregauder (1954a) found some infection in buffalo from Bombay, India. Svanbaev (1967a) got 26% in cattle from Kezakhstan. Bhatia et al. (1968) reported 31% in buffalo from Mathura, Uttar Pradesh, India; Sayin (1969) got 34% infection in buffalo from Turkey.

Endogenous stages: Hammond et al. (1946) have observed the sporozoites in the small intestine invading the endothelial cells of the luteals in the villi. The schizonts appeared after 5 days and formed the giant schizonts after 14-18 days from the date of inoculation. Each mature schizont measured 207-435 μm by 134-267 μm with the mean of 281 μm by 203 μm containing numerous merozoites. The schizonts appear as white balls, visible in naked eyes. The sexual stages in the epithelial cells of intestinal glands, caecum and colon had also been observed by the same authors. The macrogamete was provided with the plastic granules inside the cytoplasm.

Hammond, Anderson and Miner (1963), first pointed out the second schizogonic generation. The mature schizonts were encountered in the epithelial cells of the caecum and colon each measuring 9 μm by 10 μm in diameter, containing 30-36 merozoites each of 3.5 μm by 1.1 μm in size. Finally the merozoite attained the size of 6-7 μm in length.

Hammond, Ernst and Goldman (1965) studied the first generation merozoites in details where each merozoite measured 11-16 μm by 1-2 μm with the mean of 13.5 μm by 1.4 μm in size. The merozoites showed flexing and gliding movements *in vitro* and revealed a dark caplike covering with a terminal pore anteriorly. Some granules in the posterior 2/3 and a rod-like structure extending along the middle of the merozoite were found. The nucleus was localized at the posterior third of the body with the chromatin arranged around the periphery of the nucleus.

Sheffield and Hammond (1966) studied the ultrastructure of first generation merozoites. They detected spindle-shaped merozoite with 22 subpelicular fibrils from a polar ring, formed at the anterior part of the merozoite. The conoid consists of one or more fibrils round in a tight helix and two rhoptries passed through the conoid. Numerous glycogen granules, ribosomes and one or two mitochondria were encountered in the cytoplasm. The golgi apparatus was located at the flattened anterior end of the nucleus. The endoplasmic
reticulum consists of numerous cisternae, presents both posterior and anterior to the nucleus.

Hammond, Ernst and Miner (1966) allowed the sporozoites to invade up to 8 days and found the daughter nuclei along the periphery of the schizonts with the pellicular invagination. Round or elliptical blastopores measuring 5-20 μm in diameter was recorded on the 12th day. A single row of the blastopores was also detected at the periphery formed by the nuclei which ultimately extended as radial outgrowths leaving a short survival residual bodies of various sizes.

Scholtyseck, Hammond and Ernst (1966) studied the ultrastructure of the macrogametes. Glycogen inclusion measuring 0.3-1.3 μm in diameter, lipoid bodies and wall forming bodies about 1.8 μm long were observed in the macrogamete. Microtuble measuring about 500° A in diameter and 1000° A deep appeared as blind pouches on the surface of the macrogamete. The nucleus is provided with relatively large nucleolus having prominent granules in the karyosome with some pores on the nuclear membrane.

Sheffield and Hammond (1967) noted the ultrastructural structure of the first schizont. They noticed that the cytoplasm is divided into many blastopores. Many nuclei are formed resulting from the repeated divisions and arranged at the periphery of each blastopore. They formed a complex structure in the cytoplasm of each merozoite at the anterior end. A thickened layer under the cytoplasmic membrane appeared in the inner membrane of the merozoite. A central opening located at the membrane corresponding to the conoid was also noticed with the subpellicular fibrills. The merozoite developed through the blastopore to a cone-shaped projection along with a finger-like bud, containing the rhoptries of a nucleus. Golgi apparatus and other cytoplasmic structures appeared from the blastopore. The blastopore hold the attachment of the merozoite and remained as such until the the attachment was dislocated.

Hammond, Scholtyseck and Miner (1967) studied the fine structure of the macrogametocyte.

In India very little work on the endogenous stages has been done. Patnaik and Pande (1965) and Bhatia and Pande (1967b) attempted to describe the schizogonic process in the small intestine of buffalo but the species was tentatively identified, and they were dealing with mixed infection. Pande et al. (1968) described several stages from the same host but did not assign them as E. bovis.
Prepatent period: 16-21 days according to Hammond, Davis and Bowman (1944); 18-20 days also noted by Hammond et al. (1946); 7-16 days have been found by Senger et al. (1959) and 17-18 days by Svanbaev (1967a).

Types: Not known.

Remarks: Report on the occurrence on this parasite in India may be had from Ware (1936), Gill (1960a, 68), Patnaik (1963, 65c); Bhatia, Pande, Chauhan and Garg (1971) and Mandal and Chaudhury (1981).

186. Eimeria brasiliensis Torres and Ramos

(Fig. 151)

Description: Oocyst ellipsoidal or ovoidal, 31-44 μm by 20-29 μm (mean 39 μm by 27 μm) in size, (length-width ratio 1.35-1.56, mean 1.44). Oocystic wall double layered, colourless to slightly yellowish-brown, 1.3 μm thick. Micropyle 6-7 μm wide. Micropylar cap present, 8-10 μm by 0.8-3.0 μm (mean 9.0 μm by 2.3 μm) in size. Oocystic residuum and polar granule absent. A light small homogenous protoplasmic granular mass, as a small body, present below the micropyle in most of the oocysts either unsporulated or sporulated. Sporocyst elongate-ovoid, measuring 17-21 μm by 8-9 μm (mean 20 μm by 8.4 μm) in size. Stieda-body present as a fine cap at the narrower pole. Sporo-

Fig. 151. Mature oocyst of Eimeria brasiliensis.
cystic residuum present as small granular mass at different positions near the centre, in one side or towards the poles. Sporozoite elongate, banana-shaped, of 16 \(\mu m \) by 4.7 \(\mu m \) in size, having one end broader and the other bluntly tapering with a large refractile globule at the wider end and a smaller between the nucleus surrounded by fine granules, and the narrower tip.

Sporulation time: 5-6 days.

Dimension of the oocyst reported by other authors are as follows:

34-43 \(\mu m \) by 24-30 \(\mu m \) with a mean of 37 \(\mu m \) by 27 \(\mu m \) (Torres and Ramos, 1939); 34-49 \(\mu m \) by 21-33 \(\mu m \) (Supperer, 1952); 37 \(\mu m \) by 26 \(\mu m \) (Bazanova, 1952, cit. Orlov, 1956); 38 \(\mu m \) by 26 \(\mu m \) (Donciu, 1961); 31-34 \(\mu m \) by 20-29 \(\mu m \) with a mean of 39 \(\mu m \) by 27 \(\mu m \) (Bhatia, et al., 1968); 37-38 \(\mu m \) by 21-28 \(\mu m \) (Rakovec and Brgiez, 1966); 33-42 \(\mu m \) by 23-30 \(\mu m \) with a mean of 38.5 \(\mu m \) by 26 \(\mu m \) (Ernst Stevens and Copper, 1971).

Type hosts: Ox, *Bos taurus* (Linn.).

Other hosts: (i) Buffalo, *Bubalus bubalis* Linn. (ii) Indian cattle, *Bos indicus* (= *Bos* sp.).

Distribution: Mathura, Izatnagar, Uttar Pradesh; Bombay, Maharashtra; Karnal, Haryana.

Prevalence: Hasche and Todd (1950a, b) found 3% infection in cattle from Wisconsin; Bhatia et al. (1968) got 2% infection from water buffalo in India. The percentage of infection varies from 1.6% to 7% as reported by different authors (Levine and Ivins, 1970) from Brazil, England, Austria, Rumania, Kazakhstan and Turkey.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Gill (1960a), Patnaik (1963, 65c) and Rao and Bhatawadekar (1959) reported this species from different parts of India.

187. **Eimeria bukidnonensis** Tubangui

(Fig. 152)

Description: Oocyst pyriform, measuring 38-46 \(\mu m \) in length and 25-35 \(\mu m \) in width with a mean of 42 \(\mu m \) in length and 31 \(\mu m \) in width. The length/width ratio is 1.2-1.5. Oocystic wall dark, yellowish
to brown, two-layered, the thicker outer wall of 2.9 μm with interrupted radial striations/streaks and spotted or speckled with irregular refractile dark protuberances, and an inner wall of 1.0 μm thickness. On rupture of the outer oocystic coat, minute granules liberated on the inner coat. Micropyle at the narrow end is 3.8-4.7 μm (mean 4.0 μm) wide.

![Fig. 152. Mature oocyst of *Eimeria bukidnonensis.*](image)

Micropylar cap absent. Sporocyst ovoid, measuring 15-19 μm in length and 8-11 μm in width with a mean of 17 μm in length and 9 μm in width. Stieda body present as a dark cap over the narrower end. Sporocystic residuum present as a rounded mass of fine granules mostly situated centrally. Sporozoite elongate, with one end much broader and the other bluntly pointed, measuring 13.3 μm in length and 5.3 μm in width having a large globule at the broader end and a nearly central nucleus. Prepatent period is 25 days.

Sporulation time: 5-7 days.

Dimension of the oocysts as reported by other authors are as follows:

47-50 by 33-38 μm with a mean of 48.6 μm by 36.6 μm by (Tubangui, 1931) 33-41 μm by 24-28 μm with a mean of 36.6 μm by 26.7 μm (Christensen, 1941); 34-50 by 26-34 μm with a mean of 39 μm by 30 μm (Svanbaev, 1967a); 43-54 μm by 29-29 μm (Levine and Ivens, 1970).

Type Host: Domestic cow, *Bos indicus* (= *Bos* sp.)

Other hosts: From the type host and Buffalo, *Bubalus bubalis* Linn.

Distribution: Mathura, Izatnagar, Uttar Pradesh; Karanal, Haryana.

Prevalence: Initially Christenten (1938b) reported this species from American Cattle. Szanto, Mohamad and Levine (1964) found 1%
infection in calves from Illinois; Jacobson and Worley (1969) got 9% in calves, and in cattle from Montana; Joyner et. al. (1966) observed 2% in cattle from England; Patyk (1965c) received 30% in Calves from Poland; Patnaik (1965) obtained 3% in buffaloes from Gaya, India; Bhatia et al. (1968) noted 5% infection in buffaloes from Mathura, India; Svanbaev (1967a) recorded 9% in cattle from Kazakhastan.

Endogenous stages: Very little is known about the endogenous cycle of *E. bukidnonensis*. Davis and Bowman (1964) found the binucleated schizont measuring 5.5 μm in diameter after 11 days from the date of infection inside the parasitophorous vacuole of 11 μm wide and about 12 feet back from the caecum. Also they reported numerous merozoites each measuring 9-13 μm long throughout the small intestine, after 13 days from the date of infection. Large number of oocysts were observed beneath the epithelium about half way down to the muscularis mucosa after 25 days.

Prepatent period: Ten days according to Baker (1939), 15-17 days as noted by Davis and Bowman (1964) and according to Svanbaev (1967a) it is 24-25 days.

Types: Not known.

Remarks: Further information may be had from Gill (1960a, 68 and 73) and Patnaik (1963).

188. *Eimeria cameli* (Henry and Masson)

Description: The oocysts are ovoid, each measuring 67 μm in length and 57 μm in width. The oocystic wall is three layered; the outermost thick, pitted and of greenish-yellow colour, the middle darker, and the innermost dark-green. A micropyle is visible at the anterior end. The centrally placed sporont measured 41 μm in diameter. According to Zigankoff (1950) the sporont was 43.5 μm in diameter, the sporocyst measured 40-50 μm in length and 14.5-20 μm in width (mean 44.7 μm by 17.8 μm). The sporozoite elongated, rounded at one end, and measures 13-14.5 μm in length and 5.8-7.3 μm in width (mean 14 μm by 6.5 μm). Granular residual bodies are seen scattered in the sporocyst.
Sporulation time: 10-15 days.

Type host: Bactrian Camel, Camelus bactrianus (Linn.).

Other hosts: One humped Camel, Camelus dromedarius (Linn.).

Distribution: Mathura, Uttar Pradesh; Dubey and Pande (1964a).

Endogenous stages: Henry and Masson (1932) studied the smallest schizont measuring 3-4 μm in diameter, occurring in the epithelial cells of the small intestine. The largest globidium measures 350 μm in diameter and contain small granules or spherules ultimately give rise to microgametes. Macrogamete measures 52-100 μm by 44-87 μm with refractile cytoplasmic granules.

Types: Not known.

189. Eimeria canadensis Bruce

(Fig. 153)

Description: Oocyst ellipsoidal, measuring 25-37 μm by 18-28 μm (mean 31 μm by 22 μm) in size (length-width ratio 1.3-1.7 mean 1.4).

Fig. 153. Mature oocyst of Eimeria canadensis.
Oocystic wall double-layered, light yellowish, 1.2 \(\mu \text{m} \) thick. Micropyle visible as a flattening of the pole. Micropylar cap absent. Oocystic residuum and polar granule absent. Sporocyst elongate-ovoid, measuring 13-17 \(\mu \text{m} \) by 6.6-8.9 \(\mu \text{m} \) (mean 16 \(\mu \text{m} \) by 7.5 \(\mu \text{m} \)) in size. Stieda body present as a dark cap over the narrow end. Sporocystic residuum present as loose granules in linear masses or distributed along sides. Sporozoite elongate, banana-shaped, measuring 14 \(\mu \text{m} \) by 3 \(\mu \text{m} \) in size, with one end wider and the other tapering, having a centrally situated nucleus, with a large refractile globule at the wider end and two smaller ones lying between the nucleus and the narrow tip—the one towards the later being the smallest.

Sporulation time: 3-4 days.

Dimension of the oocysts reported by other authors are as follows:
28-38 \(\mu \text{m} \) by 20-29 \(\mu \text{m} \) with a mean of 33 \(\mu \text{m} \) by 24 \(\mu \text{m} \) (Levine and Ivens, 1970); 28-37 \(\mu \text{m} \) by 20-27 \(\mu \text{m} \) with a mean of 32.5 \(\mu \text{m} \) by 23.4 \(\mu \text{m} \) (Pellerdy, 1974).

Type host: Ox, Domestic cattle, *Bos taurus* (Linn.).

Other hosts: Buffalo, *Bubalus bubalis* Linn.
(i) Indian cattle, *Bos indicus* (= *Bos* sp.).

Distribution: Mathura, Agra, Izatnagar, Uttar Pradesh; Karnal, Haryana.

Prevalence: Hasche and Todd (1959a) found 35% infection in cattle from Wisconsin; Balconi (1963) found 39% infection in the cattle of Guatemala; Szanto, Mohan and Levine (1964) got 35% infection in cow calves from Illinois; Joyner *et al.* (1966) obtained 13% in cattle from England; Bhatia *et al.* (1968) reported 9% infection in buffaloes from Mathura, Uttar Pradesh, India; Sayin (1969) got 20% infection in buffaloes of Turkey; Jacobson and Worley (1969) obtained 5% infection in calves and 3% in cattle from Montana.

Endogenous stages: Unknown.

Types: Not known.

Remarks: All that is known about this species from India is due to Gill (1960a, 68, 73), Patnaik (1963, 65c, 73) and Patnaik and Pande (1965).

190. *Eimeria canis* Wenyon

Description: The oocysts are ovoid to ellipsoidal in shape and each measures 18-45 \(\mu \text{m} \) by 11-28 \(\mu \text{m} \) in size. The wall is well
developed and pink in colour its outermost layer is distinct, and has tendency to peel off. It leaves the anterior pole of the oocyst uncovered, where there is a clearly visible micropyle. The innermost layer of the sporulated oocyst is distinctly visible. During sporulation pyramidal stages are observed. Initially the sporoblasts are quadrangular, and clearly distinct from the sporonts. At one end of the sporocyst a knob-like structure is often visible. There is evidence of a sporocystic residuum.

Sporulation time: 3-4 days.

Type host: Dingo, Canis dingo.

Other hosts: Domestic cat, Felis domestica Linn. (=Felis sp.). and Domestic dog, Canis familiaris Linn. (=Canis sp.), Rao and Hiregaudar (1952) for both the hosts.

Description: Bombay, Maharashtra.

Endogenous stages: Unknown.

Types: Not known.

191. Eimeria cati Yokimoff

Description: Oocysts are subspherical to spherical, each measuring 19-25 μm by 19-22 μm with a mean of 21 μm by 19 μm, the length width index ranges from 1.0-1.3. Oocyst wall 1-2 μm thick, composed of two layers, the outer thicker, greyish and inner contour darker. Sporont is as wide as the oocyst. Micropyle, polar cap and oocystic residuum absent. Polar granule present. Sporocysts ellipsoidal, each measuring 10-11 μm by 7 μm. Stieda body absent. Sporocystic residuum absent.

Sporulation time: 8 days.

Type host: Domestic cat, Felis catus (=F. domestica Linn.) (=Felis sp.).

Distribution: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.
Remarks: Pellerdy (1974) questioned the validity of some carnivore coccidia, as the coccidia is rare in the order Carnivora. Moreover, most of the Carnivores ingest other animals where coccidia generally harbour and it may be possible that these variable sizes of oocysts are nothing but the coccidia of the ingested animals. A review of carnivore coccidia is needed before making any further comments.

192. Eimeria cerdonis Vetterling
(Fig. 154).

Description: Oocyst broadly ovoid, slightly flattened at the anterior end. Sporulated oocyst measures 27-29 \(\mu m \) by 21-23 \(\mu m \) with a mean of 28.0 \(\mu m \) and 21.8 \(\mu m \); the length width ratio ranges from 1.2-1.3 with a mean of 1.2. Oocystic wall two layered, about 1.5 \(\mu m \) in thickness; the outer layer rough, dark yellow, devoid of striations, the inner layer smooth, dark brown. Micropyle and micropylar cap absent. One or more (maximum 6) oocystic polar granules present. Oocystic residuum absent. Sporocyst elongate, stieda body present as pluglike. Sporocyst measures 16-17 \(\mu m \) by 7-9 \(\mu m \) with a mean of 16.3 \(\mu m \) by 8.0 \(\mu m \), the length width ratio being 2.0. Sporozoites banana-shaped lying length wise, head to tail within sporocysts. Sporozoite usually contained 1 or 2 large globules.

Type host: Domestic pig, Sus scrofa domestica [\(= \) Sus scrofa (Linn.)].

Other hosts: Form the type host.
Distribution: Mhaw, Jabalpur, Madhya Pradesh; Izatnagar, Aligarh, Uttar Pradesh; Karnal, Haryana.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pellerdy (1974) is of opinion that the oocysts of *E. cerdonis* and *E. polita* are identical but differ due to the surface of the oocyst. In the former it is scabrous and in the later both smooth and scabrous surfaces are found. Vetterling (1965) while describing *E. cerdonis* did not compare this species with *E. polita* as he has synonymised *E. polita* with *E. debliecki*. He further stated that *E. cerdonis* was not possible to distinguish from *E. debliecki* until a pure culture of the later had been obtained from a single oocyst infection. Moreover, the oocyst of *E. cerdonis* had yellow cast, whereas in *E. debleicki* it is colourless. However, at present, it is wise enough to keep *E. cerdonis* as distinct species so also *E. polita*. Further information may be had from Shrivastav and Shah (1968) and Upadhyay, Ahluwalia and Asthana (1977). Mandal (1980) gave a detail account of swine coccidia in India.

193. **Eimeria cervis** Mandal and Chaudhury

Description: Oocyst subspherical, yellowish green in colour, measuring 12.65 µm-14.57 µm in length with a mean of 13.62 µm and 9.90 µm-11.50 µm in width with a mean of 10.82 µm. Having one thin inner and one thick outer layer, measuring, .80 µm-1.00 µm; mycropyle, oocystic residuum absent. In some instances the authors have observed a few refractile globules after the complete development of the oocysts. Sporocyst cylindrical, slightly curved with one end narrower than the other. The broader end is provided with a shining globular area. The sporocyst measures 6.60 µm-8.25 µm in length and 2.20 µm-3.30 µm in width. Sporocystic residuum absent. Sporozoite club shaped with a blunt posterior and a tapering anterior end. A globular refractile body was observed at the posterior end of the sporozoite. The sporozoites lie head to tail in position inside the sporocysts. The sporozoite measures 3.30 µm-6.05 µm in length with a mean of 4.69 µm and 1.10 µm-1.76 µm in width with a mean of 1.39 µm.

Sporulation time: 2-3 days at room tempt. 28⁰C-30⁰C.
Type host: Spotted deer, *Axis axis* (Erxleben).

Other hosts: Unknown.

Distribution: Sundarbans Tiger Reserve, 24-Parganas, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

194. *Eimeria chausinghi* Pande, Bhatia, Chauhan and Garg

(Fig. 155)

Distribution: Oocyst egg-shaped, measuring 20-27 μm by 15-21 μm in size (mean 24.8 μm by 18 μm), with the length-width ratio of 1.2-1.4 (mean 1.3). Oocystic wall 1.3 μm thick, smooth, double contoured the outer layer cap absent. Oocystic residuum and polar granule absent. Sporocyst ellipsoidal, with somewhat narrower extremities, measuring 13-16 μm by 5.6-75 μm (mean 14 μm by 6.6 μm) in size. Stieda body present as a fine cap. Sporocystic residuum consisting of a few dark granules. Sporozoite measuring 11 μm-14.0 μm by 3 μm-4 μm. in size. (mean 12.7 μm by 3.6 μm) with one end broadly and the other pointed, the former carrying a large refractile globule, and a small nucleus is situated at the centre.

Type host: Four-horned antelope, *Tetracerus quadricornis* Blainville.

Other hosts: Unknown.

Distribution: Mathura, Zoological Garden, Lucknow, Uttar Pradesh; Nandankanan Zoological Garden, Orissa.
Endogenous stages: Unknown.

Types: Not known.

Remarks: Report on further occurrence of this species from the Indian sub-continent may be had from Patnaik and Acharjyo (1971) and Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973).

195. Eimeria cheetali Bhatia
 (Fig. 156)

Distribution: Ellipsoidal oocyst measuring 24.0-30.7 μm by 14.0-16.0 μm (mean 26.3 μm by 14.8 μm) had double-layered and 1.0-1.3 μm thick oocystic wall with the outer layer yellowish-green and the inner dark-brown in colour. Micropyle, 2.0-2.6 μm wide, present as a flattened area. Oocystic residuum and polar granules absent. Ovoid to elongate-ovoid sporocyst measured 9.3-12.0 μm by 5.0-6.7 μm (mean 11.8 μm by 6.5 μm) in size, stieda body absent. Sporocystic residuum
present as scattered granules. The banana-shaped sporozoite with one end broader and 8.9 μm by 2.6 μm in size. It reveals two refractile globules, the larger towards the broader end the smaller towards the narrower end, and the nucleus lying between them.

Sporulation time; 3 days.
Type host: Spotted deer, *Axis axis* (Erxleben)
Other hosts: (i) Black buck, *Antelope cervicapra* Linn.

Distribution: Zoological Garden, Lucknow, Uttar Pradesh; and Zoological Garden, Delhi.

Endogenous stages: Unknown.
Types: Not known.

Remarks: Pande, Bhatia, Chauhan and Garg (1970), Patnaik and Acharjyo (1971), Bhatia, Chauhan, Arora and Agarwal (1973) and Chauhan Bhatia, Arora, Agarwal and Ahluwalia (1973) also reported this species from different Zoological Gardens of India.

196. *Eimeria chinkari* Pande, Bhatia, Chauhan and Garg

(Fig. 157)

Distribution: Oocyst subspherical measuring 24-27 μm by 19-25.5 μm in size (mean 25.3 μm by 22.3 μm), with length-width ratio of 1.06-1.3 (mean 1.11). Oocystic wall smooth, 1.3 μm thick, double contoured, with the outer layer light greenish blue and the inner dark
yellowish-blue in colour. Micropyle and polar cap absent. Oocystic residuum and polar granule absent. Sporocyst somewhat almond-shaped, with the narrower end carrying a prominent plug-like stieda body, measuring 13-14.3 μm by 7.8-9.5 μm in size (mean 13.8 μm by 8.2 μm). Sporocystic residuum present as scattered dark granules. Sporozoites with 2 prominent globules, one being larger, and a small nucleus lying between them.

Type host: Chinkara, *Gazella gazella* (Pallas).

Other hosts: Unknown.

Distribution: Zoological Garden, Lucknow, Uttar Pradesh.

Remarks: Bhatia, Chauhan, Arora and Agarwal (1973) and Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973) reported this species afterwards.

Endogenous stages: Unknown.

Type: Not known.

197. *Eimeria christensenii* Levine, Ivens and Fritz

(Fig. 158)

Description: The oocyst ovoid, rarely ellipsoidal, and slightly flattened at the micropylar end, sporulated oocyst measures 22-43 μm by 24-30 μm with a mean of 39 μm by 26 μm. Oocyst wall composed

![Fig. 158. Mature oocyst of *Eimeria christensenii.*](image)
of two layers, the outer one smooth, pale-yellowish about 1.0 \(\mu m \) thick; and the inner one brownish yellow, 0.4 \(\mu m \) thick; the intact oocysts often appeared to have colourless outermost layer of 0.3 \(\mu m \) thick, but no evidence of such a layer could be seen in crushed oocysts and its appearance was probably an optical illusions. Micropyle present at smaller end of the oocyst. Micropylar cap prominent, colourless round-shaped, the micropylar cap of sporulated oocyst ranges from 2-3 \(\mu m \) by 5-10 \(\mu m \) with a mean of 3 \(\mu m \) by 7\(\mu m \). In one or more oocysts polar granules are present but oocystic residuum absent. Sporocysts broadly ovoid. Stieda body absent. Sporocyst measured 14-18 \(\mu m \) by 8-11 \(\mu m \) with a mean of 15 \(\mu m \) by 10 \(\mu m \). Sporocystic residuum present. Sporozoites lie head to tail inside sporocysts. One large and one or two small clear globules usually present in each sporozoite.

Sporulation time: Not known.

Type host: Domestic goat, *Capra hircus* (= *Capra* sp.)

Other hosts: Unknown.

Distribution: Izatnagar, Uttar Pradesh; Madhya Pradesh.

Prevalence: Shah and Joshi (1963) examined 300 goats in Madhya Pradesh which showed 5% infection. Jha and Subramanian (1966) detected 1% infection out of 243 goats examined in Uttar Pradesh, while Chevalier (1966) found the same in 9% out of 40 goats in Germany.

Location: Small intestine, ceacum and colon.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Further details may be had from Shah (1965), Jha and Subramanian (1965), Pande, Bhatia, Chauhan and Kala (1967), Bhatia and Pandey (1968) and Bhatia and Pande (1970).

198. *Eimeria clupearum* (Thelohan)

Description: The oocyst is spherical, light brown in colour, and possesses a fairly thick wall, roughened on the outer surface and lined
by a delicate membrane on the inner surface. The oocyst measures 18-21 μm (mean 19.5 μm) in diameter. It contains four sporocysts, each having rounded ends. The sporocyst measures 10 μm in diameter. Each sporocyst contains two sporozoites and some residual substances in the form of one or two masses of refractile material. Each sporozoite is provided with rounded anterior end and pointed posterior end and contains an ovoid refractile body in the anterior portion.

Type host: Herring, *Alosa sardiana*; *Clupea harengus*.

Distribution: Calcutta, West Bengal.

Types: Not known.

Remarks: The species originally found in large numbers in the intestine of herrings, mackerel and sparts, which might be the possible reason that the oocysts were found in the faeces of man. Knowles (1924) recorded this species from the faeces of man. The occurrence of *Eimeria sardinae* (Thelohan) in man who visited South Africa, India and Ceylon is included by Bhatia (1938) in his Fauna volume and vividly been discussed but has not been incorporated here as this species is not definitely reported from India.

199. **Eimeria coucangi** Patnaik and Acharjyo

(Fig. 159)

Description: The oocyst oval, colourless, thin-walled and had no visible micropyle. It measures 18-24 μm in length by 15-21 μm in

Fig. 159. A, immature and B, mature oocysts of *Eimeria coucangi*.

33
width with a mean of 21 μm by 17 μm and the shape index is 1.23. The sporont was granular and spherical with diameter of 15 μm. They sporulate into four pyriform sporocysts each of 8 μm in length and 5 μm in width. The oocystic residuum absent. Each sporocyst contains two nearly arranged sporozoites each of 5 μm long and a granular sporocystic residuum.

Sporulation time: Twelve days.

Type host: Slow loris, Nycticebus coucang (Boddaert)

Other hosts: Unknown.

Distribution: Nandankanan Zoological Garden, Orissa; the host was brought from Assam as stated by the authors.

Endogenous stages: Unknown.

Types: Not known.

Remarks: From the description and the diagrams, it appears that E. nycticebi and E. coucangi are the same. The authors might have confused the shape of the sporocyst by observing the oval-shaped form from the above, under the microscope, which appears spherical. However, at the present moment it is not possible to comment further until some cross infection experiments are carried out.

200. Eimeria crandallis Honess

(Fig. 160)

Description: The oocyst more or less spherical to oval or ellipsoidal, measuring 17-23.8 μm in length and 17-22.1 μm in width with a mean of 20.4 μm by 18.4 μm. The shape index ranged from 0.74-0.93.

![Fig. 160. Mature oocyst of Eimeria crandallis.](image-url)
Its colour is light yellow with a greenish tinge, at times which is very faint or colourless. The sporont measures 13.6-15.3 μm in diameter. Micropyle present with a very small polar cap measuring 2.6 μm in width and 0.8 μm in height. The oocystic residuum absent. The sporocysts ovoid, measuring 13.6 μm in length and 3.6 μm in width with a mean of 10 μm by 7 μm with no stieda body. Sporocystic residuum usually present. Sporozoite contains one or two clear globules.

Sporulation time: 24-72 hours.

Dimension of the oocysts reported by other authors are as follows:

Oocyst from *Capra hircus* measures 20-27 μm by 17-20 μm (average 23 μm by 19 μm) as stated by Levine, Ivens and Fritz (1962) and Kamalapur (1961). From Indian goats it measures 18-28 μm by 15-20 μm average 22 μm by 18 μm and 19-27 μm by 14-20 μm (average 22 μm by 18 μm) as noted by Shah and Joshi (1963) and Singh (1964) respectively. The average dimension of oocyst from goat is 23.4 μm by 18.3 μm as stated by Chevalier (1966).

Type host: Rocky Mountain bighorn sheep, *Ovis c. canadensis* Shaw.

Distribution: Izatnagar, Uttar Pradesh; Bihar; West Bengal; Bombay, Maharashtra; Madhya Pradesh; Orissa; Kashmir and Madras, Tamil Nadu.

Prevalence: *E. crandallis* is reported from 24% of sheep from Illinois as noted by Shah (1963); from England, Joyner et al. (1966) reported this species from 90% of sheep. Patyk (1965) got this species in 1% of sheep from Poland. From Turkey, Sayin (1966) got infection in 11% of goats. Wiesenhütter (1965) got 25% sheep and 22% goats infected with this species from Syria. From India, Shah and Joshi (1963) got 10% infection in goats of Madhya Pradesh, Singh (1964) found 20% and Jha and Subramanian (1966) obtained 13% of goats infected with this species while examining them from Uttar Pradesh.

Endogenous stages: Only account that is available due to the in
vitro examination of De Vos and Hammond (1971). As such the endogenous stages are unknown.

Types: Not known.

Remarks: Further information on this species may be had from Sharma (1951-52), Ray (1961), Patnaik (1963), Singh (1963), Pande, Bhatia, Dubey and Srivastava (1964), Jha and Subramanian (1965), Singh and Pande (1967a, b), Pande, Bhatia, Chauhan and Kala (1967), Bhatia and Pande (1970), Bali (1972) and Bhatia, Chauhan, Arora and Agarwal (1973).

201. *Eimeria cylindrica* Wilson

(Fig. 161)

Description: Oocysts are cylindrical or somewhat sub-cylindrical, each measuring 20-34 μm by 12-17 μm (mean 26 μm by 14 μm) in size (length-width ratio 1.8-2.3 mean 1.83). Oocystic wall two layered, colourless or somewhat straw coloured, 1.3 μm thick. Micropyle absent. Sporocyst elongate ovoid, measuring 9-13 μm by 4-6 μm (mean 10.4 μm by 5.2 μm) in size. Stieda-body present as a light cap over the narrow end. Sporocystic residuum present as free scattered granules in different positions. Sporozoites elongate, banana-shaped each measuring 7-9 μm by 2.0-2.6 μm (mean 7.6 μm by 2.1 μm) in size with the large refractile globule at the wider end and the smaller globule located anterior to the centrally situated nucleus but towards the narrower and tapering end. Prepatent period is 11-20 days.

![Fig. 161. Mature oocyst of *Eimeria cylindrica*.](image-url)
Dimension of the oocysts reported by other authors are as follows:

16-27 μm by 12-15 μm with a mean of 23.3 by 12.3 μm (Pellerdy, 1974); 16-30 μm by 12-17 μm with a mean of 21-25 μm by 13-15 μm (Levine and Ivens, 1970).

Type host: Ox, Bos taurus (Linn.).

Other hosts: (i) Buffalo, Bubalus bubalis Linn.
(ii) Indian cattle, Bos indicus (= Bos sp.).

Distribution: Agra, Mathura, Izatnagar, Uttar Pradesh; Orissa; Karnal, Haryana.

Prevalence: Hasche and Todd (1959a) found 20% infection in cattle from Wisconsin; Supperer (1952) got 4% in cattle from Austria; Chroust (1964) reported 8% in calves from Czechoslovakia; Szanto, Mohan and Levine (1964) observed 12% in beef calves from Illinois; Patyk (1965) noted infection in calves from Poland; Patnaik (1965) observed 7% in buffaloes from Agra, India, Joyner et al. (1966) reported 13% in cattle from England; Nyberg, Helfer and Knapp (1967) got 10% in cattle from Oregon; Jacobson and Worley (1969) reported 2% infection in calves from Montana; Vassiliades (1969) received 6% infection in cattle from Senegal; Sayin (1969) reported 5% infection in buffaloes from Turkey.

Endogenous stages: Unknown, however, Patnaik and Pande (1965) studied the endogenous stages in buffaloes, but the species was not considered as E. cylindrica because the authors were dealing with the mixed infection.

Types: Not known.

Remarks: Further information may be had from Ray (1941), Gill (1960a, 68), Patnaik (1963) and Bhatia, Pande, Chanuhan and Arora (1968).

202. Eimeria darjeelingensis Sinha and Sinha

(Fig. 162)

Description: Oocysts are subspherical in shape each measuring 15.0-18.7 μm in length and 13.2-17.4 μm in width with the mean of 16.7 μm by 14.9 μm. Oocystic wall is smooth, bilayered with an uniform thickness of 0.3 μm. Oocystic residuum, micropyle and polar granule absent. Sporocyst ovoid, single layered, 0.16 μm in thickness and measuring 7.1-8.9 μm in length and 5.5-7.0 μm in width with the
mean of 8.0 µm by 5.6 µm. A small stieda body and sporocystic residuum in the form of refractile granules, 0.5 µm in diameter, are present. Each sporocyst develops two sporozoites each measuring 4.0-5.5 µm in length and 1.4-1.8 µm in width with a mean of 4.4 µm by 1.6 µm.

Sporulation time: 38-52 hours.

Type host: House-shrew, *Suncus murinus soccatus* (Hodgson).

Other hosts: Not known,

Distribution: Darjeeling, West Bengal.

Endogenous stages: While studying the endogenous stages of *E. darjeelingensis* the authors observed a large number of trophozoites in the epithelial and subepithelial cells of the mucosa of the small intestine. The trophozoite is subspherical to ovoid in shape measuring 5.6-7.7 µm in length and 5.2-6.3 µm in width, with the mean of 6.4 µm by 5.8 µm. Cytoplasm is homogeneous and contains a sub-central nucleus with a distinct nuclear membrane. Binucleated schizont measures 9.3 µm by 6.3 µm and the multinucleated one with 12 nuclei measures 13.9 µm in length 11.9 µm in width. Young macrogamete with centrally placed nucleus is ovoid, measuring 12.6 µm by 9.3 µm. A fully developed macrogamete with a sub-central nucleus attains 14.8 µm by 11.0 µm in size. The young microgametocyte is spherical measuring 6.3 µm in diameter and contains several small nuclei arranged at the periphery. Mature microgametocyte is subspherical measuring 5.7-11.0 µm in length.
and 5.6-9.0 μm in width with the mean of 8.3 μm by 7.0 μm. It contains small comma shaped microgametes.

Types: Lying with the collection of the describer.

Remarks: This species has some resemblance with *E. suncus* described from *S. m. murinus*.

203. *Eimeria dawari* Bhatia, Chauhan, Arora and Agarwal

(Fig. 163)

Description: Oocysts sub-spherical to ovoid, each measuring 21.0-22.6 μm by 18.6-20.0 μm (mean 21.7 μm by 19.7 μm). Oocystic wall double-contoured, with outer light yellowish green and inner dark yellowish-brown layers. Micropyle and polar cap absent. Length width ratio ranges between 1.07 and 1.21 (mean 1.14). Oocystic residuum absent. Polar granules present as numerous dark particles scattered around the sporocysts. Sporocysts broadly ellipsoidal, each with one end narrower measuring 10.6-12.0 μm by 6.6-8.0 μm (mean 11.0 μm by 7.2 μm). Stieda body present as small dark area. Sporozoites elongate, each carries two refractile globules, one towards either end.

Sporulation time: Unknown.

Type host: Barking deer, *Muntiacus muntjak* (Zimmermann)
Other hosts: Unknown.

Distribution: Zoological Garden, Lucknow, Utter Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: E. sardari and E. dawari are very much alike except the size and shape of the oocysts. On personal discussion with the authors I could not come to any conclusion regarding the separate entity of these two species. However, for convenience these species have been retained as such.

204. Eimeria debliecki Douwes

(Fig. 164)

1921. Coccidium suis Jaeger, Beitrage zur Anreicherung der Parasiteneir im kot der Haustiere. Diss. Munchen, p. ?

Description: Oocyst ellipsoidal to ovoid, sporulated oocyst measuring 20-29 μm by 14-20 μm with a mean of 24.2 μm by 16.8 μm.

Fig. 164. Mature oocyst of Eimeria debliecki,
The length width ratio ranges from 1.3 to 1.5 with a mean of 1.4. Oocystic wall composed of two layers, 1-2 \(\mu \text{m} \) in total thickness, the inner one yellowish brown. The polar granules (maximum 3) present. Sporocyst elongate-ovoid, asymmetrical, one side slightly flattened, stieda body present. Sporocyst measures 13-16 \(\mu \text{m} \) by 6-7 \(\mu \text{m} \) with a mean of 14.7 \(\mu \text{m} \) by 6.4 \(\mu \text{m} \). The length width ratio ranges from 2.1-2.3 with a mean of 2.2; sporocystic residuum present. Sporozoites elongate lying length wise, head to tail in side the sporocyst, each containing two clear globules.

Sporulation time: 4-6 days (Kutzer, 1960), 8-13 days (Wiesen­hütter, 1962b), 5-7 days (Pastuszko, 1966) 5-10 days (Vetterling, 1965), 14-16 (de Graaf, 1925), 5-9 days (Henry, 1931), 8-9 days (Pellerdy, 1949) Upadhyay and Ahluwalia (1977) noted this as 4-6 days at 26°C.

Dimension of the oocysts reported by other authors are as follows:

- 28-32 by 18-25 \(\mu \text{m} \) (Jaeger, 1921)
- 12-15 by 10-12 \(\mu \text{m} \) (Noller, 1921)
- 24-35 by 18-24 \(\mu \text{m} \) (Krediet, 1921)
- 12-19 by 12-20 \(\mu \text{m} \) (Henry, 1931)
- 15-24 by 13-18 \(\mu \text{m} \) (Galli-Valerio, 1935)
- 13-25 by 12-19 \(\mu \text{m} \) (Kutzer, 1960)
- 15-25 by 11-18 \(\mu \text{m} \) (Boch, Pezenburg and Rosenfeld, 1961)
- 12-50 by 10-30 \(\mu \text{m} \) (Donciu, 1961)
- 20-30 by 14-19 \(\mu \text{m} \) with the mean of 24.9 by 17 \(\mu \text{m} \) (Vetterling 1965)
- 13-23 by 13-19 \(\mu \text{m} \) (Pastuszko, 1966)
- 18-24 by 15-20 \(\mu \text{m} \) (Pellerdy, 1974)
- 16-20 by 14-18 \(\mu \text{m} \) (Wiesen­hütter, 1962b).

Type host: Domestic pig, *Sub scrofa domestica* [= *Sus scrofa*]

Other hosts: From the type host.

Distribution: Mhow, Jabalpur, Madhya Pradesh; Izatnagar, Aligarh, Uttar Pradesh; Karnal, Haryana.

Endogenous stages: The schizont measures 18 \(\mu \text{m} \) by 21 \(\mu \text{m} \) and gives rise to 25 merozoites each measuring 4.7 \(\mu \text{m} \) by 1.2 \(\mu \text{m} \) in size. The microgametocyte measures 16 \(\mu \text{m} \) by 10\(\mu \text{m} \) and produces about 70 microgametes each measuring 2-3 \(\mu \text{m} \) by 5-7 \(\mu \text{m} \) in size. The macro­gametocyte measures 12-18 \(\mu \text{m} \) by 8-10 \(\mu \text{m} \) with clear cytoplasm and a large nucleus.

The details about the endogenous stages can be had from Wiesen­hütter (1962a). Boch and Wiesen­hütter (1963) and Vetterling (1965, 1966).

Types: Not known.

Remarks: Further information may be had from Ahluwalia (1959), Gill (1960b), Patnaik (1963), Mishra (1967 a, b), Sinha (1963), Shrivastav
205. *Eimeria dromedarii* Yakimoff and Matschoulsky
(Fig. 165)

Description: Oocyst subspherical to spherical, measuring 26-28 μm in length with a mean of 27 μm and 21-23 μm in width with a mean of 21 μm. The shape index is 1.19-1.33. Double layered. Micropyle and oocystic residuum absent. Sporocyst ovoid measuring 10-11 μm in length with a mean of 10 μm and 8.5 μm in width. Each sporozoite contains two or more prominent globules.

Sporulation time: 9 days.

Type host: One humped camel, *Camelus dromedarius* (Linn.)

Other hosts: From the type host and Bactrian Camel, *Camelus bactrianus* (Linn.).

Distribution: Bikanir, Rajasthan, Dubey and Pande (1964a).

Endogenous stages: Unknown.

Types: Not known.
206. Eimeria ellipsoidalis Becker and Frye

(Fig. 166)

Description: Oocyst ellipsoidal to slightly ovoid, measuring 15-26 μm by 12-16 μm (mean 20 μm by 14 μm) in size; (length-width ratio 1.2-1.6 mean 1.44). Oocystic wall double layered, light yellowish-green, 1.3 μm thick. Micropyle present as a small light area at one pole with a slightly thin wall. Micropylar cap absent. Oocystic residuum and polar granule absent. Sporocyst elongate-ovoid, measuring 10-13 μm by 5-6.0 μm (mean 12.2 μm by 5.4 μm) in size. Stieda body present as a somewhat flattened dark knob. Sporocystic residuum present as a mass of loose granules either centrally situated or towards the poles. Sporozoite elongate, banana-shaped, with one end broad and the other blunt, measuring 11 μm by 2.6 μm in size, with a prominent refractile globule behind the wider end and the centrally placed nucleus surrounded by small granules. Prepatent period is about 10 days.

Sporulation time: 3-4 days.

Dimension of the oocysts reported by other authors are as follows:

12-27 μm by 10-18 μm, average 17 μm by 13 μm (Christensen, 1941); 21 μm by 15 μm (Cordero del Campillo, 1960); 18-26 μm by 13-18 μm, average 23 μm by 16 μm (Levine and Ivens, 1967); 15-25 μm by 12-16 μm average 20 μm by 12 μm (Bhatia *et al.* 1968), 18-28 μm by 16-18 μm, average 21.6 μm by 15.3 μm (Patnaik, 1965c).
Type host: Ox, *Bos taurus* (Linn.).

Other hosts: Buffalo, *Bubalus bubalis* Linn.

(i) Indian cattle, *Bos indicus* (= *Bos sp.*).

Distribution: Agra, Mathura and Izatnagar, Uttar Pradesh; Karnal, Haryana.

Prevalence: From South-Eastern United States, Boughton (1945) reported 45% cases of bovine coccidiosis, Hasche and Todd (1959a) got infection in 43% cattle at Wisconsin; Szanto, Mohan and Levine (1964) came across 40% infection in cow calves of Illinois. Nyberg, Helfer and Knapp (1967) reported 33% case from the cattle of Oregon. From Montana, Jacobson and Worley (1969) got 14% infection in cow calves and 3% in adult. Ruiz (1959) reported 3% and Ruiz and Ortiz (1961) got 4% cases at Costa Rica. From Guatemala, Balconi (1963) recorded 47% infection. Supperer (1952) came forward with 15% infection from Austria so also Chroust (1964) from Czechoslovakia who received 34% infection. Patyk (1965) got 13% infection from Poland; Joyner et al. (1966) reported 26% infection from cattle of England; Vassiliades (1969) got 12% infection in Sinegal. Yakimoff, Gousseff and Rastegaieff (1932) reported 23% cases of Oxen coccidia from Uzbekistan. Yakimoff (1933) got 27% infection in oxen, 6% in zebu and 52% of water buffaloes in Azerbaijan. From Japan, Iwata (1956) (vide Levine and Ivans, 1970) got 0.4% infection in cattle. In India Patnaik (1965c) found 21% infection in buffaloes from Agra and Bhatia et al. (1968) received 20% infection at Mathura from Buffaloes.

Endogenous stages: Boughton (1945) reported the endogenous stages in the epithelial walls of the mcosa of the small intestine. Merozoites were detected in the scrapings of small intestinal mucosa 11 days after inoculation (Hammond, Sayin and Miner, 1963). The fully developed schizont measures 9-15 \(\mu \text{m} \) by 7.5-15 \(\mu \text{m} \) with a mean of 11 \(\mu \text{m} \) by 9 \(\mu \text{m} \) and gives rise to 24-36 merozoites. The merozoite measures 8-11 \(\mu \text{m} \) by 1-2 \(\mu \text{m} \). The gametocytes were found at the terminal segment of the small intestine mainly at the ileum. The immature gametocytes were detected 8 days after inoculation and the mature one was detected after 11 days at the bottom of the crypts in the epithelial cells. After 14 days: the fully developed micro and macrogametocytes were also detected by the same authors. The microgametocyte measures 12-16.5 \(\mu \text{m} \) by 11-16.5 \(\mu \text{m} \) (average 15 \(\mu \text{m} \) by 13 \(\mu \text{m} \)) and produces 2-3 \(\mu \text{m} \) long many microgametes. Patnaik and Pande (1965) detected endogenous stages in the intestine of domestic buffalo but they were dealing with the mixed infections. The schizogony of this species was studied
by Speer and Hammond (1971b) in the Madin Darby bovine Kidney, embryonic bovine Trachea, synovial or spleen cell cultures. Sporozoite measures 5-6 \(\mu \text{m} \) by 2.4 \(\mu \text{m} \) after one day, having three refractile globules each measuring 1.5 \(\mu \text{m} \) in diameter with an eccentric nucleus. After sometime, the sporozoite rounded off and formed the schizont measuring 5.9 \(\mu \text{m} \) by 5.4 \(\mu \text{m} \). The authors could trace 4-42 nuclei inside the schizont on the 4th day. With a little difference the same authors got almost similar results in all types of \textit{in vitro} cell cultures.

Types: Not known.

Remarks: Authors like Gill (1960a, 1968 and 1973), Patnaik (1963) and Patnaik and Pande (1965) made further contribution on this parasite from India.

207. \textit{Eimeria faurei} (Moussu and Marotel)
(Fig. 167)

1902. \textit{Coccidium faurei} Moussu and Marotel, \textit{Archr. Parasit.}, 6 : 82.

Description: The oocyst hen egg-shaped with a brownish yellow colour which, in some showed a greenish tinge, measures 23.8-38.34 \(\mu \text{m} \) in length with a mean of 29.52 \(\mu \text{m} \) and 18.8-23.8 \(\mu \text{m} \) in breadth with

![Fig. 167. Mature oocyst of \textit{Eimeria faurei}.](image-url)
a mean of 22.36 μm. The prominent micropyle, at the narrower end, measures 3.1-5.1 μm in width with no cap over it. The sporont measures 16.2-20.4 μm in maximum diameter. Oocystic residuum absent, polar granules present. The elipsoidal sporocyst, with narrow ends, measures 15-17 μm by 8-10 μm in size. The granular sporocystic residual body lies scattered among the sporozoites without any stieda body. Sporozoites elongate lie head to tail each with one or two large globules.

Sporulation time: 24-48 hours.

Dimension of the oocysts reported by other authors are as follows:

25-36 μm by 19-28 μm mean 29 μm by 21 μm (Christensen, 1938a); 27-35 μm by 20-23 μm mean 31.5 μm by 22 μm (Balozet, 1932); 27-30 μm by 18-28 μm mean 28 μm by 23 μm (Kamalapur, 1961); 27-33 μm by 19-25 μm mean 29 μm by 22 μm (Shah and Joshi, 1963); 28-37 μm by 21-27 μm mean 32 μm by 23 μm (Chevalier, 1965); 28-35 μm by 19-25 μm mean 31.1 μm by 22.2 μm (Restani, 1966); 18-42 μm by 18-30 μm (Moussu and Marotel, 1902), 36-40 μm by 18-27 μm (Pellerdy, 1974).

Type host: Domestic sheep, Ovis aries (= Ovis sp.).

Other hosts: From the type host and (i) Domestic goat, Capra hircus (= Capra sp.) (ii) Rocky Mountain big born sheep, Ovis canadensis Shaw (iii) Argali, Ovis ammon (Linnaeus) (iv) Oriental sheep, Ovis orientalis Gmelin (v) Barbary sheep, Ammotragus lervia (= Ovis tragelapus (Peller) (vi) Ibex, Capra ibex Linnaeus (vii) Chamois, Rupicapra rupicapra (viii) Siberian Wild goat, Capra siberica (Pallas).

Distribution: Haryana; Punjab; Bombay, Maharashtra; Madhya Pradesh; Uttar Pradesh; Orissa and West Bengal.

Prevalence: Christensen (1938a) found infection in 11% of sheep from Idaho, Maryland, Newyork and Wyoming. From Tunisia, Balozet (1932) reported infection in 21% of sheep and 18% of goats from Germany; Svanbeav (1957) reported in 43% of sheep and 40% of goats from Kazakhstan.

Location: Small intestine.

Endogenous stages: Prepatent period is 9-10 days. Endogenous cycle is still wanting. Lotze (1953) studied only giant schizont measuring 100 μm in diameter with numerous merozoites. From India, Singh and Pande (1967a, b) encountered giant schizont in the large intestine of a goat and considered it to be due to the infection of E. faurei. However, they were dealing with mixed infection.

208. Eimeria felina Nieschulz

Description: Oocysts are ovoidal/ellipsoidal, each measuring 15-19 μm by 11-17 μm (mean 19 μm by 15 μm), the length-width index ranges from 1.16-1.44. Oocyst wall 0.8-1.5 μm wide, composed of two layers, outer thicker and yellowish to orange in colour and the inner one darker with a shining inner contour. Sporont was centrally placed. Micropyle, polar cap, polar granule and oocystic residuum absent. An unorganised mass was constantly seen. Sporocyst nearly ovoid, measuring 8-10 μm by 6-8 μm (mean 10 μm by 8 μm). Stieda body prominent at the narrower end as a cap. Sporocystic residuum present. Sporozoite large comma-shaped and measures 8-9 μm by 2-3 μm.

Sporulation time: 24 hours.

Type host: Domestic cat, Felis catus (F. domestica Linn. = Felis sp.).

Other hosts: (i) Jungle cat, Felis chaus Guldensteadt, Dubey and Pande (1963a) and (ii) Lion, Panthera leo (Linn.).

Description: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: As discussed after describing E. cati under remarks.

209. Eimeria gaurusi Patnaik and Acharjyo

(Fig. 168)

Description: The oocyst smooth walled, colourless and oval in shape. Micropyle indistinct. It measures 20.5-22 μm by 18-19.5 μm with a shape index (L/B) of 1.01. The sporont when fresh was
globular in shape and measures 15 μm in diameter. On maturation, the sporont develops into four oval sporocysts, each containing two sporozoites. The oocystic and sporocystic residual bodies present. The sporocyst measures 10.5 μm by 4.5 μm and sporozoite measures 7 μm by 1.5 μm.

Sporulation time: 72 hours.

Type host: Gaur or Indian Bison, *Bos gaurus* (Smith)

Other hosts: Unknown.

Distribution: Nandankanan Zoological Garden, Orissa.

Endogenous stages: Unknown.

Types: Not known.

210. *Eimeria granulosa* Christensen

(Fig. 169)

Description: The oocyst pyriform, egg or urn-shaped, measuring 22-35 μm by 17-25 μm with an average of 29.4 μm by 20.9 μm in size. The large is the oocyst, the darker is the brownish-yellow or yellowish-brown colour, having a clearly visible micropyle 3-5 μm in diameter with a polar cap of 5 μm wide and 1-2.5 μm in height. Oocystic residuum
or polar granule absent. The spherical sporont measures 14-23 \(\mu m \) with a mean of 16.5 \(\mu m \) in diameter. Sporocyst ovoid or elongate ovoid, rounded at both ends. Stieda body faintly perceptable. It measures 13-16 \(\mu m \) by 8-9 \(\mu m \) with a mean of 15 \(\mu m \) by 8 \(\mu m \). Sporocystic residuum present as loosely scattered granules. Sporozoite elongated with one end narrower than the other lying lengthwise, head to tail position with 1-3 clear globules.

Sporulation time: 3 or 4 days.

Dimension of the oocysts measured by other authors are as follows:

22-35 by 17-25 \(\mu m \) with a mean of 29.4 by 20.9 \(\mu m \) (Christensen, 1938a); 30-35 by 21-22 \(\mu m \) with a mean of 31 by 22 \(\mu m \) (Shah, 1963) and 28-37 by 21-26 \(\mu m \) with a mean of 32.5 by 24.0 \(\mu m \) (Jackson, 1964).

Type host: Domestic sheep, *Ovis aries* (= *Ovis* sp.)

Other hosts: From the type host and (i) Rocky mountain bighorn sheep, *Ovis canadensis* Shaw, (ii) Domestic sheep, *Ovis* sp. (iii) Domestic goat, *Capra hircus* (Linn.) (= *Capra* sp.).

Distribution: Hissar, Haryana; Orissa; Madhya Pradesh and Uttar Pradesh.

Prevalence: Christensen (1938a) found 10% infection of sheep from Maryland and Newyork; Hamilton (1940, 1941) found 16% infection of sheep from northern Utah; Saha (1963) found 4% of sheep from Illinois and other states; Joyner et al. (1966) found 9% infection of sheep from England; Jacob (1943) found 1% infection of sheep from Germany; Patyk (1965) found 3% of lambs aged 1-8 months from Poland; Merdivenci (1959) found 6% infection of sheep from Turkey; Wiesenhiitter (1965) found 13% from Turkey, and Sayin (1966) found 3%.
3% from Angora goats in Turkey. Saha and Joshi (1963) found 1% infection from goats in Madhya Pradesh, India. Jha and Subramanian (1966) found 10% infection of goats in Uttar Pradesh, India.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Further information about this parasite from India may be had from Sharma (1951-52), Jha and Subramanian (1965), Misra and Mohapatra (1972) and Krishnamurthy and Kshirsagar (1976).

211. *Eimeria hammondi* Dubey and Pande

Description: Oocyst ellipsoidal in shape, measuring 24-29 μm by 19-22 μm, the length- width index ranges from 1.10-1.34. Oocyst wall 1-2 μm thick, composed of two layers, the outer thicker, greenish and inner darker with a shining inner contour. Sporont was as wide as the oocyst. Sporulation completed in 6 days. Four sporoblasts were observed on second day. Micropyle, polar cap, polar granule and oocystic residuum absent. Sporocysts broadly ovoid. Stieda body vestigial and visible only as a small thickening at the narrower end of the sporocyst. Sporocyst measures 11-14 μm by 8-10 μm, with a mean of 12 μm by 8 μm. Sporocystic residuum distributed throughout the sporocyst. Sporozoites comma-shaped, each with a central nucleus and a globule at the narrower end. It measures 8-10 μm by 2-3 μm.

Type host: Jungle cat, *Felis chaus* Guldensteadt.

Other hosts: Unknown.

Distribution: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

212. *Eimeria hungarica* Pellerdy

(Fig. 170)

Description: The oocyst round or subspherical in shape, measuring 13-15 μm by 12-14 μm with an average of 14 μm by 13 μm. There is no evidence of micropyle. Both the oocystic and sporocystic residual body are absent. The shape index is about 1.07. Sporocyst faintly visible, having an ovoid with buntly pointed anterior end. Sporozoite is having a refractile globule of medium size and rather large for the size of the sporozoite.

Sporulation time: 2-3 days at room tempt.

Type host: European Hare, Lepus europaeus Pallas.

Other hosts: Domestic rabbit, Oryctolagus cuniculus (Linn.) (= Oryctolagus sp.).

Distribution: Kashipur, Uttar Pradesh; Ludhiana, Punjab.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Gill and Ray (1960) reported E. exigua from Domestic rabbit and described as fragile, colourless small ovoidal oocysts; absence of micropyle and absence of both residual bodies with delicate sporocytes. Measurements of oocyst ranges from 17-22.5 μm, mean 18.75 μm, width 8-14 μm, mean 11.5 μm.

213. Eimeria intestinalis Cheissin

(Fig. 171)

Description: The oocyst pear-shaped or pyriform, measuring 25-30 μm in length and 17.5-20 μm in width, with a mean of 26.92 μm by 18.88 μm. The shape index is 1.45. The oocyst wall is yellowish and
smooth. A large round oocystic residual body and a finely granular central round sporont are present. A well visible granular primary residual body measuring 3-5 μm in diameter is always present.

![Image of mature oocyst of Eimeria intestinalis](image)

Fig. 171. Mature oocyst of *Eimeria intestinalis*.

Micropyle distinct. The round sporoblast develops to a elongated-ovoid sporocyst with anterior end bluntly pointed. Sporozoite is having a big or medium sized refractile globule and a central nucleus. Sporocystic residual body round or oval, measuring 1.5-3.0 μm in diameter.

Sporulation time: 1-2 days.

Type host: Tame Rabbit (=Domestic), *Oryctolagus cuniculus* (Linn.). (=*Oryctolagus* sp.).

Distribution: Kashipur, Uttar Pradesh and Ludhiana, Punjab 1960, Gill and Ray (1960).

Endogenous stages: There are 3 generation schizonts in the villar cells of the ileum. The first one measures 15-25 μm in diameter. Each produces 20-60 spindle-shaped merozoites each measuring 7-8 μm by 2 μm. Two types of second generation schizonts are found. ‘Type A’ schizont measures 13-30 μm in diameter and produces 70-150 slender merozoites, each measures 6-12 μm by 5-1.0 μm. ‘Type B’ schizont measures 13-16 μm in diameter and produce 35-80 merozoites. The third generation schizont measures 10-16 μm in diameter produces 15-25 merozoites each measuring 10-12 μm by 1 μm. The gametocytes are
found above the host cell nucleus in the epithelial cells of the villi of the small intestine, caecum, and ascending colon. The microgametocyte reaches 20-27 μm by 18-20 μm in size and forms nearly 250-500 microgametes, each measuring 3-4 μm by 5 μm with 2 flagella each of 5-7 μm in length. The prepatent period is 9-10 days and the patent period generally 6-8 days.

Types: Not known.

214. *Eimeria intricata* Spiegel

(Fig. 172)

Description: The oocyst measures 37.4-51.0 μm in length and 28.9-37.4 μm in breadth with a mean of 45.5 μm by 32.7 μm. The shape is ellipsoidal to ovoid. The shape-index varies from 0.65-0.83 μm. The exocystic wall of the oocyst is very thick. The large micropyle measures 3.4-8.5 μm in size and appears as a wide gap below the crescent-shaped polar cap which is colourless and 8.5-13.6 μm wide and 2.6-5.4 μm in height. The sporont measures, in its maximum diameter, 20.0-25.8 μm and was not easily visible on account of the darker nature of the oocystic wall. The sporocyst pyramidal in shape, and pointed

![Fig. 172. Mature oocyst of *Eimeria intricata*.](image_url)
at ends. At one of the ends, a colourless stieda body is present. The sporocyst measures 17-20.4 \(\mu m \) by 10.2-11.9 \(\mu m \) in size. A large sporocystic residuum present. Sporozoite elongate, with one end narrower than the other lying head to tail in position with 2-3 clear globules.

Sporulation time: 4-6 days at room temperature. Bhatia et al. (1978) studied the sporogony and found that the optimum temper. for completing the sporogony is 33°c and maximum is 38°c. lethal temper. varies between 40°c-43°c.

Type host: Domestic sheep, *Ovis aries* (= *Ovis* sp.)

Other hosts: From the type host and Rocky mountain high-horn sheep, *Ovis ammon* (Linnaeus); Domestic goat, *Capra hircus* (= *Capra* sp.) Roe deer, *Capreolus capreolus* (Linn.) Fallow deer, *Dama dama* (Linnaeus).

Distribution: Punjab, Uttar Pradesh; Bombay, Maharashtra; West Bengal; Orissa; Bihar and Madhya Pradesh.

Prevalence: Commonly found, Christensen (1938a) got infection in 14% of sheep from Maryland, Newyork and Weyoming; Jacob (1943) found in 13% of sheep from Germany; Balozet (1932) got it in 3% of sheep in Tunisia and Svanbaev (1957) obtained in 4% of sheep from Kazakhstan.

Location: Uncertain, likely to be in abomesum and small intestine. Bhatia et al. (1980) got the infection in the lumen of the crypts of Leiberkuhn in mid-small intestine of experimental lamb.

Endogenous stages: The schizont measures 32-37 \(\mu m \) by 21-25 \(\mu m \) and contain 25-40 spindle-shaped merozoites. Each merozoite measures 7-9 \(\mu m \) by 2.5-3 \(\mu m \). The largest schizont (gobidia) measuring 65-145 \(\mu m \) and contains large merozoites each measuring 19.5 \(\mu m \) by 40 \(\mu m \). The oocyst in the section measuring 36-46 \(\mu m \) by 25-37 \(\mu m \) with a mean of 41 \(\mu m \) by 30 \(\mu m \). The macrogamete measures 36-54 \(\mu m \) by 25-36 \(\mu m \) with a mean of 42 \(\mu m \) by 30 \(\mu m \). The fully developed microgametocyte measures 61-250 \(\mu m \) by 36-71 \(\mu m \) with a mean of 113 \(\mu m \) by 52 \(\mu m \). The microgamete measures 4.6-6 \(\mu m \) long. All these are known due to the contributions made by Davis and Bowman (1965), Pande Bhatia and Chauhan (1966) and Lotze and Leek (1970). The gobidia measured by these authors are 65 by 45 \(\mu m \), 32-37 \(\mu m \) by 21-25 \(\mu m \) and 56 \(\mu m \) by 30 \(\mu m \) respectively. The gametogenic stages were detected by Michel and Probert (1970). In India Bhatia et al. (1980) studied the endogenous stages of this parasite and found that all
the developmental stages are found in the lamina propria of jejunum and ileum of the small intestine with maximum concentration of the developmental stages in the first half of the ileum. Schizonts, micro and macrogametocytes and oocysts were found in the lumen of the crypts of Leiberkhun.

Types: Not known.

215. Eimeria irresidua Kessel and Jankiewicz

(Fig. 173)

Description: The oocyst ovoid in shape, measuring 31-43 μm in length and 22-27 μm in width with a mean of 38.8 μm by 25.6 μm. The wall gradually increases in thickness towards micropylar end so
as to form moderately distinct shoulder or only slightly prominent shoulder, or it is of the same thickness throughout-forming no 'shoulder' at all at the micropyle. Oocystic residual body absent. Sporocysts moderately pointed at the anterior end or slightly blunt, in a few, large, measuring 18 μm in length and 9 μm in width in average size. Sporozoites having refractile large globule, with a central nucleus.

Sporulation time: 72 hours.

Type host: ‘California rabbit’, (=Domestic) *Oryctolagus cuniculus* (Linn.).

Other hosts: Black-naped Hare, *Lepus ruficaudatus* [= *Lepus negricolis ruficaudatus* (Geoff.)]; Domestic rabbit, *Oryctolagus cuniculus* (Linn.) (= *Oryctolagus sp.*).

Distribution: Mukteswar, Kashipur, Uttar Pradesh; Ludhiana, Punjab.

Endogenous stages: The schizonts are found in the epithelial cells of the villi from the duodenum to the ileum. First generation schizonts are of two types (Rutherford, 1943) ‘Type A’ possesses 2-4 merozoites each measuring about 6.5-7.3 μm by 1.5-1.8 μm; ‘Type B’ about 13-17 μm in diameter and containing 36-48 merozoites each measuring about 11.5 μm by 1.8 μm. The second generation schizonts are also of two types. ‘Type A’ produces 8-16 merozoites each measuring about 7 μm by 2 μm but the ‘Type B’ having 48-75 merozoites each measures about 7 μm by 1 μm. Macrogamete measures 36 μm by 24 μm. The microgametocyte measures about 29 μm by 20 μm and produce a large number of biflagellate microgametes. The prepatent period is 9 days and the patent period is 17-21 days.

Types: Not known.

Remarks: Further information on this parasite may be had from Ray (1945b) and Gill and Ray 1960).

216. *Eimeria leporis* Nieschulz

(Fig. 174)

Description: The oocysts are cylindrical to slightly oval in shape, each measuring 22-28 μm in length and 15-26 μm in width with a mean of 28 μm by 18 μm. The shape index 1.2. The oocystic wall is of
uniform thickness without any micropyle. Oocystic residuum present as a spherical to oval mass, measuring 6-10 μm (mean 8 μm) in diameter. Sporocystic residuum appears as spherical or oval body measuring 1.5-

Fig. 174. Mature oocyst of *Eimeria leporis*.

4 μm (mean 3 μm) in diameter. Sporozoite is provided with a refractile globule of medium or large size.

Sporulation time: 2-3 days as per original describer.

Type host: East Greenland Hare, *Lepus arcticus greenlandicus* Rhoads.

Other hosts: Black-naped Hare, *Lepus ruficaudatus* [= *Lepus nigricolis ruficaudatus* (Geoff.)].

Distribution: Kashipur, Uttar Pradesh; Ludhiana, Punjab, Gill and Ray (1960).

Endogenous stages: Unknown.

Types: Not known.

168. *Eimeria leuckarti* (Flesch)

Description: The oocyst large, deep brown in colour and oval in shape with one end pointed than the other, measuring 84 μm in length and 56 μm in breadth. The oocystic wall is bilayered. The outer layer is thick, granular, brownish in colour, measuring 5-7 μm and slightly thinner towards the pointed end while the underlying layer is orange colour, thin and transparent. A distinct micropyle without a polar cap is visible on both the layers. Sporont 35-40 μm, circular and coarsely granular in consistency. The sporulated oocyst possesses neither a residuum nor a polar granule. The sporocysts are elongated in shape, each measuring 30-44 μm in length and 12-14 μm in width having two sporozoites. The sporozoites are spindle shaped, each measuring 20 μm in length and 5 μm in width with a small amount of sporocystic residuum.

Sporulation time: 15 days.

Type host: Donkey, Equus asinus.

Other hosts: Horse, Equus caballus.

Locality: Mangrol, Bombay, Maharashtra, Hiregaudar (1956b).

Endogenous stages: A large number of workers noticed ellipsoid bodies or globidia in the stroma of villi of the small intestine of horse. Dolenc (1966) noted endogenous stages in the medial and terminal segments of the jejunum and ileum. The youngest schizont lies within the parasitophorus vacuole with a central nucleus and few cytoplasmic granules. The growing schizont attains the size 200 by 130 μm. The mature one measures 220 by 70 μm with several thousands merozoites in each. The microgametocytes generally found in the lacteal of villi and the mature one measures 210 by 190 μm. The macrogametocytes are round each measuring 12-20 μm in diameter with a central nucleus.

Types: Not known.

Remarks: Pellerdy (1974) has vividly discussed about the Globidia which is very common in horse, sheep, goats, cows and buffaloes. These globidia or cysts are found in the small intestine, ranging 230-300 μm sometimes regarded as magaloschizonts or giant schizonts. The mature one is provided with a large number of merozoites occasionally with variable sizes. There are still some doubt to treat them as developmental stages of Eimeria. They are generally found in the abomesum and small intestine occasionally in the posterior intestinal segments, caecum, mesentric lymph nodes etc. On careful analysis of the literature the same author has synonymised the genus...
Globidium with the genus Eimeria but stated that the term 'Globidium' of 'Globidial' schizogony can be retained which is regarded as a pathological process arises from the establishment of many such Globidia in the organism. The present author has examined some globidia through the courtesy of Dr. B. B. Bhatia, Mathura Veterinary College, Uttar Pradesh, in sheep.

169. **Eimeria levinei** Krishnamurthy and Kshirsagar

(Fig. 175)

Description: The oocyst ovoid in shape measuring 36.0-40.0 µm in length with a mean of 38.64 µm and 26.0-29.6 µm in width with a mean of 27.86 µm. The single layered oocystic wall measuring about 1.6 µm thick, is transparent and colourless. There is no micropyle or a micropylar cap. One prominent and somewhat elongated polar granule is present. But the oocyst is lack of any oocystic residuum. The sporulated oocyst has four ovoid or elongated sporocysts. The sporocyst measures 16.0-19.2 µm in length with a mean of 16.65 µm and 11.2-12.8 µm in width with a mean of 11.95 µm. The length/width ratio of the sporocyst is 1.33-1.71 µm with a mean of 1.44. Each sporocyst possesses a very small stieda body. The sporocystic residuum is a very prominent spherical and granular mass, with a diameter of about 4.5 µm. The sporozoites are elongated or kidney shaped and each is slightly bent at one end. Each sporozoite possesses a refractile granule of moderate size at one end.

![Fig. 175. Mature oocyst of *Eimeria levinei*.](image-url)
Sporulation time: 80 to 90 hours.
Type host: Rat, Rattus rattus rattus.
Other hosts: Unknown.
Distribution: Aurangabad, Maharashtra.
Endogenous stages: Unknown.
Types: Not known.
Remarks: Eimeria levinei is already described by Bray, 1958 and as such, one of the authors viz., R. Krishnamurthy has been intimated for renaming the species, as 'levinei' is preoccupied. Moreover, the host subspecies, R. r. rattus is not found within the Indian subregion. There might be some error in identifying the host material at subspecific level.

219. Eimeria lomarii Dubey
(Fig. 176)

Description: Oocyst ellipsoidal in shape, measuring 24-29 µm by 19-22 µm, the length-width index ranges from 1.10-1.34. Oocyst wall 1.2 µm thick, composed of two layers, the outer thicker, greyish and inner darker with a shining inner contour. Sporont is as wide as the
Eimeriidae; Eimeria

Oocyst. Micropyle, polar cap, polar granule and oocystic residuum absent. Sporocyst broadly ovoid. Steida-body vestigeal and could be visible as a small thickening at the narrower end of the sporocyst measures 11-14 µm by 8-10 µm. Sporocystic residuum distributed throughout the sporocyst. The sporozoites comma-shaped, each with a central nucleus and a globule at the broader end, measuring 8-10 µm by 2-3 µm.

Sporulation time: 4 days.

Type host: Bengal fox, Vulpes bengalensis Shaw.

Other hosts: Unknown.

Distribution: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

220, Eimeria magna Perard
(Fig. 177)

Description: Oocyst ovoid or ellipsoidal, salmon pink or light yellowish-orange in colour. It is provided with double wall and appears truncated at the micropylar end due to collar-like thickening.

Fig. 177. Mature oocyst of Eimeria magna.
of the outer layer around the micropyle of 5-7.5 μm wide. The oocyst measures 31.5-40.5 μm in length with a mean of 37.66 μm and 18-25.5 μm in width with a mean of 23.28 μm. Oocystic residual mass large, measuring 7.5-12.5 μm in diameter. Sporocyst ovoid, measuring 15.5-18.0 μm in length and 7.00-8.5 μm in width. Sporocystic residuum present as a circular or oval large mass of 3-8.5 μm in diameter. Sporozoite elongated, lies head to tail with large refractile body at the broad end and a nucleus at the centre.

Sporulation time: About 3 day.

Type host: Tame Rabbit, Oryctolagus cuniculus (= Oryctolagus sp).

Other hosts: Tame Rabbit, Oryctolagus cuniculus angoriensis (= Oryctolagus sp.), Black-naped hare, Lepus ruficaudatus [= Lepus nigricollis ruficaudatus (Geoff.)], Gill and Ray (1960).

Distribution: Punjab.

Endogenous stages: Cheissin (1940) and Rutherford (1943) studied the endogenous stages. Schizonts at the first generation are of two types, one measures 14 μm by 10 μm and when fully developed possesses 2-10 curved merozoites each measuring 8.5 μm in length and 3 μm in width. Another schizont measures 24 μm by 17 μm and have 40-60 merozoites each measuring 8.5 μm in length and about 2 μm in width.

There are third type of schizont also measuring about 25-40 μm in diameter and possesses 25-80 merozoites. Fourth or fifth type of schizont measures 25-45 μm in diameter and possesses 30-125 merozoites each measuring 6 μm in length and 2 μm in width. The microgametocyte measures 25-40 μm in length and 20-30 μm in width and produce about 1000 microgametes with long flagellum in each.

Senaud and Cerna (1969) observed multinucleated merozoites during the asexual multiplication of E. magna for the first time during the EM study. Cheissin (1940) detected it, on the same species under light microscopy. Speer and Hammond (1971a) traced the schizogonic development in madin-Darby bovine kidney and epitheloid embryonic bovine liver cell cultures. Speer and Dunforth (1976) also studied the gametogenesis in kidney cell culture.

Types: Not known.

Remarks: Levine and Ivens (1972) discussed in detail about rabbit coccidia.
221. *Eimeaia malabaricus* Joseph

Description: Oocyst ellipsoidal to spherical with 2.5 to 3 μm thick wall consisting of 2 layers, outer yellowish brown, striated, and rough; inner smooth, transparent, of uniform thickness and comprising 1/3 of the total wall thickness. The outer layer apparently divided into thin superficial and deeper thick, brownish region, giving the oocyst wall three-layered appearance. Micropyle and oocystic residuum absent; polar granule sometimes present. Oocyst measures 35.0-45 μm in length with a mean of 29.8 μm and 24.0-37.0 μm in width with a mean of 32.1 μm. Sporocyst ovoid in shape measuring 16.0-18.0 μm in length and 11.0-12.0 μm in width with a stieda body and coarsely granular residuum. Sporozoites elongated, with large refractile body in each filling 2/3 portion. Each sporozoite measures 19.0-23.0 μm in length with a mean of 21.8 μm and 3.0-4.0 μm in width with a mean of 3.4 μm.

Sporulation time: 7 days at 32-34°C.

Type host: Indian tree squirrel, *Funambulus tristriatus* Waterhouse.

Distribution: Kottayam, Kerala.

Endogenous stages: Unknown.

Types: Not known.

222. *Eimeria mathurai* Dubey and Pande

Description: Oocyst ellipsoidal or broadly spindle shaped, measuring 20-28 μm by 16-20 μm with a mean of 22 μm by 19 μm, the length-width index ranged from 1.20-1.54. Oocyst wall 1-2 μm thick composed of two layers, the outer smooth, thicker, light yellowish green to pale yellow and inner darker with a shining inner contour. Sporont was nearly as wide as the oocyst. Polar cap, micropyle and oocystic residuum absent. Polar granule present. Sporocyst broadly ovoid, measuring 11-13 μm by 7-9 μm with a mean of 11 μm by 8 μm. Sporocystic residuum present. Stieda body prominently visible like a cap of the narrower end. Sporozoites comma-shaped, arranged length wise, each measuring 8-10 μm by 2-3 μm.
Sporulation time: 6 days.
Type host: Jungle cat, Felis chaus Guldensteadt.
Other hosts: Unknown.
Distribution: Mathura, Uttar Pradesh.
Endogenous stages: Unknown.
Types: Not known.
Remarks: As mentioned under E. cati.

223. *Eimeria matsubayashii* Tsunoda

Description: The oocyst ovoidal or ellipsoidal in shape, light-yellow in colour, measuring 23.5-29.5 μm in length and 14.5-19.25 μm in width with a mean of 26.25 μm by 16.5 μm. The shape-index is 1.65. The micropyle is distinct, 2-4 μm (mean 3 μm) wide in diameter. The oocystic wall is of same thickness throughout except about the micropyle towards which it increases in thickness. Oocystic residuum appears prominently as roundish body measuring 4 μm in diameter. Sporocysts are ovoid, each measuring 7 μm in length and 6 μm in width. Sporocystic residual body present as roundish mass. Sporozoite appears as usual with terminally placed refractile globule at the blunt end and a central nucleus.

Sporulation time: According to Tsunoda (1952) 32-48 hrs. at 28°c.

Type host: Tame (=Domestic) Rabbit, Oryctolagus cuniculus (Linn.). (=Oryctolagus sp.).

Other hosts: Domestic Rabbit, Oryctolagus (Lepus) (=Oryctolagus) sp.), Gill and Ray (1960).

Distribution: Kashipur, Uttar Pradesh and Ludhiana, Punjab.

Endogenous stages: Occurs primarily in the ileum, although the posterior half of the jejunum and rarely the caecum, colon and duodenum may be invaded due to heavy infection and corresponds to those of *E. media* and *E. magna*. Infection of a heavy dose of oocysts gives rise to mild ileitis and occasionally become serious. Rabbits are found diarrhoeic. The prepatent period is 7 days and the patent period is unknown.

Types: Not known.
224. **Emeria media** Kessel

Description: The oocysts are ovoid, each with a somewhat truncated anterior end and a micropyle. It measures 27-36 \(\mu \text{m} \) in length and 15-22 \(\mu \text{m} \) in width with a mean of 31.2 \(\mu \text{m} \) by 18.5 \(\mu \text{m} \) in size. The oocyst wall pinkish to orange-pink, is of uniform thickness except towards the micropyle where it becomes thinner. Prominent oocystic residual body about 4-5 \(\mu \text{m} \) in diameter is present. Sporocyst ovoidal with sporocystic residual bodies. It is small, round or oval or scattered. Sporozoite is provided with a medium sized refractile globule at the blunt end, and the nucleus is central in position.

Sporulation time: Within 52 hours.

Type host: Tame (= Domestic) rabbit, *Oryctolagus cuniculus* (Linn.) (= *Oryctolagus* sp.).

Other hosts: (i) Black-naped Hare, *Lepus ruficaudatus* (= *Lepus nigricolis ruficaudatus* (Geoff.)].

(ii) Domestic rabbit, *Oryctolagus cuniculus* (= *Oryctolagus* sp.).

Distribution: Mukteswar, Kashipur, Uttar Pradesh; Ludhiana, Punjab.

Endogenous stages: These stages are found above or below the host cell nuclei in the epithelial cells of the intestinal villi and also in the submucosa [Rutherford (1943), Pellerdy and Babos (1953)]. There are two types of schizogonic generations. The first one are of two types, mature 4 days after inoculation. 'Type A' produces 2-10 merozoites each measuring 6 by 1.5 \(\mu \text{m} \) and 'Type B' produces 12-36 merozoites each measuring about 5 by 1.4 \(\mu \text{m} \). Second generation schizonts are also of two types. ‘Type A’ measures about 7 by 6 \(\mu \text{m} \) and produce 2-8 merozoites each measuring 8 by 2 \(\mu \text{m} \). ‘Type B’ increases about 17 by 10 \(\mu \text{m} \) and produces unspecified number of merozoites each measuring about 4 by 1.2 \(\mu \text{m} \). The macrogamete measures about 25 \(\mu \text{m} \) by 14 \(\mu \text{m} \). The microgametocyte spherical about 17 \(\mu \text{m} \) in diameter and produce biflagellate microgametes each measuring about 2 \(\mu \text{m} \) in length. The prepatent period is 5-7 days and the patent period 15-18 days.

Types: Not known.

Remarks: The oocysts found in the *Lepus ruficaudatus* slightly varies in size i.e. length 24.5-39.5 \(\mu \text{m} \) width 16-26 \(\mu \text{m} \). Levine and Ivens (1972) expressed a doubt about the occurrence of this species in
Lepus ruficaudatus as reported by Gill and Ray (1960). Ray (1945b) reported this parasite from domestic rabbit.

225. Eimeria minima Carvalho
(Fig. 178)

Description: Oocyst sub-spherical, measuring 10-15.5 \(\mu \text{m} \) in length and 9-15 \(\mu \text{m} \) in breadth with a mean of 14 \(\mu \text{m} \) by 11.5 \(\mu \text{m} \). The shape index is 1.2. The colour of the oocyst varies from colourless to light yellow-pink. The oocystic wall is of even thickness without any micropyle. Polar granules distinct. Sporocyst oval or ovoidal, measuring 5 \(\mu \text{m} \) in length and 2.25 \(\mu \text{m} \) in width. Sporozoites are usually with terminal small refractile globules.

Sporulation time: According to describer 140-160 hours.

Type Host: Mearn’s Cottontail, Sylvilagus floridanus mearnsi (J. A. Allen).

Other hosts: Indian hare/Black-naped hare, Lepus ruficaudatus [= Lepus nigricolis ruficaudatus (Geoff.)], Gill and Ray 1960.

Distribution: Ludhiana, Punjab.

Endogenous stages: Unknown. Prepatent period 6 days and patent period 12 to 16 days.

Types: Not known.
Eimeriidae: Eimeria

226. Eimeria mrigai Pande, Chauhan, Bhatia and Arora

(Fig. 179)

Description: The ellipsoid-ovoid oocyst measuring 39-55 \(\mu m \) by 26-32 \(\mu m \) (mean 48.5 \(\mu m \) by 29.6 \(\mu m \)). The wall is smooth, 1.6-2.3 \(\mu m \) thick and consists of a light yellowish-green, 1.2-1.6 \(\mu m \) thick outer layer and yellowish-brown 0.4-0.7 \(\mu m \) thick layer. The micropyle is 5-8 \(\mu m \) wide and carries a prominent helmet-shaped cap, 13-18 \(\mu m \) to 2-3 \(\mu m \) in size (mean 15.6 \(\mu m \) 2.6 \(\mu m \)). Refractile granules occur both in the unsporulated and sporulated oocysts. Pyramid stage occurs during the sporogony. Oocystic residuum absent. The ellipsoid sporocyst measuring 19-23 \(\mu m \) by 9-10 \(\mu m \) (mean 21 \(\mu m \) by 9.8 \(\mu m \)) in size and possesses a stieda body. The sporocystic residuum consists of dark granules scattered between the comma-shaped, 16-18 \(\mu m \) by 3.9 \(\mu m \) (mean 17 by 3.9 \(\mu m \)) sporozoites.

Sporulation time: 7 days.

Type host: Black buck, Antilope cervicapra Linn.

Other hosts: Unknown.

Distribution: Mathura, Uttar Pradesh (at U. P. College of Veterinary Science Hospital).

Endogenous stages: Mature microgametocyte measures 33 \(\mu m \) by 31 \(\mu m \) in diameter produces many microgametes each measuring 2.2-5
μm long. The macrogamete measures 24-38 μm by 18-27 μm (average 27.5 μm by 22.2 μm). These developmental stages are found in the small intestine, the gametogonic stages are noticed in the jejunum as stated by the describer of the species.

Types: Not known.

227. **Eimeria nagpurensis** Gill and Ray (Fig. 180)

Description: Oocyst colourless or with slight tint, barrel-shaped, measuring 20.25-26.5 μm in length, 10-15 μm width; with a mean of 23 μm by 13 μm. The shape index is 1.8. The oocystic wall is thin but prominent and of even thickness throughout. The micropyle absent.

![Fig. 180. Mature oocyst of *Eimeria nagpurensis*.](image)

Sporocysts are oat-shaped, anterior-extremity of each is sharply pointed measuring 15 μm by 5 μm. Sporocystic residuum is distinct granular, lying in the centre of sporocyst. Sporozoites are elongated each measuring 12.5 μm by 2 μm. The nucleus is centrally placed. Many refractile globules (each 1.75 μm in diameter) are usually placed terminally at the blunt extremity of the sporozoites.

Type host: Domestic rabbit, *Oryctolagus cuniculus* (Linn.) (= *Oryctolagus sp.*).

Other hosts: Unknown.

Distribution: Nagpur, Madhya Pradesh.

Endogenous stages: Unknown.

Types: Not known.
228. **Eimeria neodebliecki** Vetterling

(Fig. 181)

Description: Oocyst ellipsoidal, occasionally ovoid in shape, measuring 17-26 μm in length and 14-19 μm in width with a mean of 22.1 μm by 16 μm. The length-width ratio ranges from 1.2 to 1.3 with a mean of 1.25. Oocystic wall double-layered, 0.9-1.4 μm in thickness. Outer layer smooth, colourless to pale yellow. The inner layer yello-

![Fig. 181. Mature oocyst of *Eimeria neodebliecki*.](image)

wish-brown. Micropyle and oocystic residuum absent. One or two polar granules occasionally present. Sporocyst broadly ovoid, measuring 9-13 μm by 6-8 μm with a mean of 10.4 μm by 6.6 μm. Stieda body and sporocystic residuum present. Sporozoite banana-shaped, usually lying length wise head to tail.

Sporulation time: 13 days (Pellerdy, 1974); 4-6 days (Upadhvay and Ahluwalia, 1977b).

Type host: Domestic pig, *Sub scrofa scrofa* (= *Sus scrofa* Linn.)

Other hosts: From the type host, Wild boar, *Sus scrofa scrofa* (Linn.).

Distribution: Madhya Pradesh; Aligarh, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.
Remarks: While discussing Vetterling (1965) stated that this species closely resembled to *E. debliecki* Douwes, 1921, but the sporocyst of the species dealt with was found symmetrical in contrast to the asymmetrical sporocyst of *E. debliecki*. Shrivastav and Shah (1968), Upadhyay, Ahuwalia and Asthana (1977) and Upadhyay and Ahuwalia (1977b) have contributed about this species from India.

229. *Eimeria neoleporis* Carvalho

(Fig. 182)

Description: Oocyst elongate-ellipsoidal, measuring 30-54 μm in length and 16-22 μm in width, with a mean of 37.5 μm by 19 μm. The shape index is 2.0. Micropylar end slightly attenuated in width. Its colour is yellowish-pink to yellow. The micropyle is present and prominent. The oocyst wall is of same thickness throughout with micropylar end which slightly increases in thickness. Oocystic residuum absent. Sporocysts are ovoid each measuring 16.5 μm in length 8 μm in width. Sporocystic residuum is spherical, measuring 5-8 μm (mean 6.5 μm) in diameter. Sporozoite is provided with refractile globules of small size and a nucleus is centrally placed.

Sporulation time: 50-75 hours as per original describer.

Type host: Tame (= Domestic) rabbit, *Oryctolagus cuniculus* (Linn.) (= *Oryctolagus* sp.).
EIMERIIDAE : EIMERIA

Distribution: Kashipur, Uttar Pradesh and Ludhiana, Puniab.

Endogenous stages: The first generation schizont is found in the epithelial cell deep in the crypts of Lieberkuhn and produces 43-48 merozoites. Each schizont measures 20.5 by 3 \(\mu \text{m} \) with a residuum. The second generation schizont produces 59-70 merozoites and each measuring 27.5 by 1.5 \(\mu \text{m} \), which produce two types of 3rd generation schizonts after invading the new host cells. The smaller one measuring 18 by 3.5 \(\mu \text{m} \) with 14 merozoites and the larger one measuring 31.5 by 1.5 \(\mu \text{m} \) produces 60-86 merozoites. The macro and microgametocytes are found on the 12th day after infection. The microgametocytes produce many microgametes of biflagellate in nature. All these informations are due to the contributions made by Carvalho (1942, 1943) and Pellerdy (1974). The oocyst description is mainly on the basis of Gill and Ray (1960).

Types: Not known.

230. **Eimeria newali** Dubey and Pande

(Fig. 183)

Description: Oocyst ovoidal/ellipsoidal, measures 15-19 by 11-17 \(\mu \text{m} \) (mean 19 by 15 \(\mu \text{m} \), the length-width index ranging from 1.16-144. Oocyst wall 0.8-1.5 \(\mu \text{m} \) wide, composed of two layers, outer thicker and yellowish to orange in colour and the inner one darker with a shining contour. Sporont was centrally placed. Micropyle, polar cap, polar granule and oocystic residuum absent. A small unorganised mass is constantly seen in all the oocysts examined. Sporulation completed in 24 hours. Sporocyst nearly ovoid, measuring 8-10 by 6-8 \(\mu \text{m} \) (mean 10 \(\mu \text{m} \) by 8 \(\mu \text{m} \). Stieda body prominent, at the narrower end as a cap. Sporocysts residuum present. Sporozoite large, comma-shaped, measuring 8-9 by 2-3 \(\mu \text{m} \).

Fig. 183. A, immature and B, mature oocysts of *Eimeria newali*.
Type host: Indian grey Mongoose, *Herpestis mungo* (= *Herpestis edwardsi* Geoff.).

Other hosts: From the type host, Patnaik and Ray (1965).

Distribution: Mathura, Uttar Pradesh and Orissa.

Type: Not known.

231. **Eimeria nilgai** Pande, Bhatia, Chauhan and Garg

(Fig. 184)

Description: Oocyst subspherical in shape measuring 17-24 μm in length and 15-20 μm in width with a mean of 20.85 μm by 17.5 μm. The length-width ratio of the oocyst is 1.1-1.4 with a mean of 1.2. Bilayered oocystic wall is smooth and 1.3 μm thick, the outer layer is yellowish green and the inner one is brown in colour. Micropyle, polar cap, oocystic residuum and polar granule are absent. Sporocysts are broadly ellipsoidal in shape, each measuring 8.5-13.6 μm in length and 3.4-6.0 μm in width with a mean of 10.2 μm by 4.8 μm, with one end slightly narrower than the other. The anterior end is provided with a stieda body visible as a fine dark cap. Sporocystic residuum is present, as a few small granules around the sporozoites. Sporozoite measuring 13.5 μm by 2.6 μm in size, with one end broadly rounded and the other tapering and the former carrying a large refractile globule. The nucleus is centrally placed within the sporozoite.

Type hosts: Nilgai, *Boselapus tragocamelus* Pallas.

Other hosts: From the type host.
Eimeriidae : Eimeria

Distribution: Zoological Garden, Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973) reported this species from the Zoological Garden, Lucknow, Uttar Pradesh afterwards.

232. _Eimeria ninakhol-yakimovia_ Yakimoff and Rastegaieff

(Fig. 185)

1930. _Eimeria ninakhol-yakimovia_ Yakimoff and Rastegaieff, _Arch. Protistenk._, 70: 185.

Description: Ovoid to sub-spherical oocyst measures 20.4-26.8 μm in length with a mean of 22.2 μm and 17.0-20.4 μm in breadth with a mean of 18.08 μm. Shape index ranged from 0.83-0.91 (mean 0.84).

Very thin oocystic wall from light to pale yellowish brown or even dark in colour. The micropyle imperceptible and the sporont measures 13.6-14.1 μm at the maximum diameter. Oocystic residuum absent. Sporocyst elongate ovoid, of 9-14 μm by 4-10 μm in size. Stieda body present. Sporocystic residuum present. Sporozoite elongate, lying length wise, head to tail inside the sporocyst, with one or 2 clear globules.

Sporulation time: 60 hours at 20°C.

Dimension of oocysts reported by other authors are as follows:

Oocyst described as oval, measuring 20-22 by 14-16 μm mean 20.7 by 14.8 μm or egg-shaped, measuring 19-25 by 14-21 μm mean 23 by
16.1 μm, originally described from goat; 16-27 by 13-21 μm, mean 19.8 by 16.5 μm (Balozet, 1932); 23-28 by 18-23 μm, mean 25 by 21 μm (Shah and Joshi, 1963); 21-28 by 18-24 μm, mean 24.1 by 21.1 μm (Sayin, 1964); 20-27 by 15-21 μm, mean 23.6 by 18.3 μm, (Chevalier, 1965); from goat and sheep 20-28 by 15-22 μm, mean 23.1 by 18.3 μm (Christensen, 1938a); 27-20 by 22-27 μm, mean 28.7 by 24.5 μm (Prasad, 1960); 17-25 by 15-21 μm, mean 22.2 by 17.6 μm (Restani, 1966); from mouflon 22-29 by 19-22 μm, mean 25.2 by 19.5 μm (Yakimoff, Gousseff and Rastegaieff, 1933); 19-28 by 14-23 μm and 16-30 by 13-22 μm and mean 23 by 18 μm from sheep and goats respectively (Levine and Ivens, 1970).

Type host: Domestic goat, *Capra hircus* (Linn.) (=*Capra* sp.)

Other hosts: From the type host and domestic sheep, *Ovis* sp.; Wild goat; *Capra aegagrus* (Erxleben); Siberian Wild goat, *C. siberica* (Pallas) Alpine ibex, *C. ibex* Linnaeus; Rocky mountain Bighorn sheep, *O. canadensis* Shaw and some hosts other than *Ovis* and *Capra* which Levine and Ivens (1970) expressed a doubt.

Distribution: Punjab; Hissar, Haryana; Madhya Pradesh; Bombay, Maharashtra; Uttar Pradesh; Orissa and West Bengal.

Prevalence: Christensen (1938a) found infection in 3% of sheep from Maryland and Idaho, Jacob (1943) got infection in 5% of sheep from Germany. Balozet (1932) reported it in 35% of sheep and 34% of goats from Tunisia, Svánbaev (1957) obtained infection in 52% of sheep and 31% of goats Kazakhstan. Shah and Joshi (1963) got 12% infection in goats from Madhya Pradesh; Singh (1964) got 23% infection and Jha and Subramanian (1966) obtained 53% infection in goats of Uttar Pradesh from our country.

Endogenous stăges: Schizont measuring 15-35 μm in diameter and contain 40-200 merozoites each measuring 1.5-2 μm. First generation schizonts are globidia, each measuring 290 μm in diameter containing thousand merozoites each measuring 11.9 by 2.1 μm in size. Macrogamete measures 9-18 by 7-13 μm. The microgametocyte sometimes measures 45-50 μm or 20-25 by 15-18 μm. The microgamete is 3-4 μm long with a flagellum of 1-2 μm. All these are due to the work of Balozet (1932) and Sayin (1964) from goats and Lotze (1954) from sheep. Wacha and Hammond (1970) described also two types of schizonts. The giant or globidia measured 290 μm in diameter and second one measured 12 μm in diameter. Singh and Pande, (1967b) also studied them in sheep. The prepatent period 9-15 days on goat (Balozet, 1932);
Eimeridae : Eimeria

Types: Not known.

233. *Eimeria nycticebi* Patnaik and Acharjyo

(Fig. 186)

Description: Oocyst spherical in shape measuring 15-18 μm in length and 14.5-18 μm in width with a mean of 17 μm by 16.5 μm. The shape index is 1.03. The oocystic wall is smooth and colourless.

There is no evidence of micropyle. The sporont when fresh almost behind a small oocystic residuum. Each sporocyst measures 6-7 μm long and 4-5 μm in width. The almost curved sporozoites lay in a semicircular shape around the granular sporocystic mass.

Sporulation time: 10 days.

Type host: Slow Loris, *Nycticebus coucang* (Boddart).

Other hosts: Unknown.

Distribution: Nandankanan Zoological Garden, Orissa, the host was brought from Assam as stated by the authors.

Endogenous stages: Unknown.

Types: Not known.
234. **Eimeria oryctogali** Ray and Banik

Description: Oocyst ellipsoidal in shape measuring 28.5-46.8 \(\mu \text{m} \) in length with a mean of 38.7 \(\mu \text{m} \) and 12.5-28.5 \(\mu \text{m} \) in width with a mean of 19.1 \(\mu \text{m} \). The shape index is 1:2. It is provided with a double wall. Micropyle and oocystic residuum present. Sporocyst pyriform, measuring 8.5-14.5 \(\mu \text{m} \) in length with a mean of 10.00 \(\mu \text{m} \) and 4.5-8.5 \(\mu \text{m} \) in width with a mean of 6.00 \(\mu \text{m} \). Stieda body present at the narrow end. Granular sporocystic residuum present. Sporozoite elongated, tapering at one end and measuring 10.5 \(\mu \text{m} \) in length.

Sporulation time: 32-48 hours.

Type host: Domestic rabbit, *Oryctolagus cuniculus* Linn. (= *Oryctolagus* sp.)

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pellerdy (1974) questioned the validity of such incompletely described species made by Ray and Banik, (1965a, b) and noticed similarity with *E. neoleporis*, but the later one is described from Cotton tail, *Sylvilagus* sp., and Gill and Ray (1960) reported it from the domestic rabbit, *Oryctolagus cuniculus* Linn. Carvalho (1942) on the other hand transmitted *E. neoleporis* to the domestic rabbit. However, at present *E. oryctogali* can be treated as a distinct species of domestic rabbit till further studies.

235. **Eimeria ovina** Levine and Ivens

(Fig. 187)

Description: The oocyst typically elongated, with two longitudinal sides almost parallel to one another and measuring 23-36 \(\mu \text{m} \) in length and 16-24 \(\mu \text{m} \) in width a mean of 27 \(\mu \text{m} \) by 20 \(\mu \text{m} \). The oocystic wall is smooth and double layered and about 1.3 \(\mu \text{m} \) thick. The outer layer is yellowish brown and thicker, while the inner layer is darker and membranous. A micropyle is present, about 1-3 \(\mu \text{m} \) high and 4.5-10 \(\mu \text{m} \) wide with mean of 2 \(\mu \text{m} \) by 7 \(\mu \text{m} \) which is covered by a characteristic cone-shaped or dome-shaped micropylar cap. One or more oocystic
polar granules present sometimes as small scattered particles but devoid of any oocystic residuum. Sporocyst elongate-ovoid in shape with one end broader than the other, measuring 11–17 µm in length and 6-9 µm in width with a mean of 17.5 µm. Stieda body absent or rudimentary. Sporocystic residuum present as small granules arranged in rows, groups or rosettes. Sporozoites are elongated in shape lying head to tail within the sporocyst each provided with large clear globule at one end and a smaller one at the other.

Sporulation time: Two to four days.

Dimension of the oocysts reported by other authors are as follows:

29.00 by 21.00 µm (Kamalapur, 1961), 30.00 by 20.00 µm (Jackson, 1964); 25.00-36.00 µm by 15.00-45.00 µm (Norton et al. 1979) and 31.6-47.9 µm by 18.4-26.5 µm and 10.2-20.4 µm by 7.1-10.2 µm (Krishnamurthy and Bawazir, 1981).

Type host: Domestic sheep, *Ovis arius* (= *Ovis* sp.).

Other hosts: From the type host and (i) Rocky Mountain bighorn sheep, *Ovis canadensis* Shaw, (ii) Agarli, *O. ammon* (Linnaeus), (iii) Mouflon, *O. musimon* Shaw.

Prevalence: Infection commonly reported from sheep. Christansen (1938a) found 90% infection from Idaho, Maryland, New York and Wyoming; Hammond and Hamilton (1940, 1941) found 94%
infection from northern Utah Shah (1963) got 53% infection in sheep from Illinois and other States, Balozet (1932) got 52% of sheep from Tunisia; Jacob (1943) detected 58% and Chevalier (1965) reported 17% from Germany; Joyner et al. (1966) found 95% infection from England; Svanbaev (1957) found 52% from Kazakhstan; Patyk (1965) got 45% from lambs of aged 1-8 months in Poland; Merdivenci (1959) found 50% infection in Turkey; Wiesenhüter (1965) found 94% from Syria and Deom and Mortelmans (1956) found 69% infection from Belgian Congo.

Location: Small intestine.

Distribution: Marathwada, Maharashtra.

Endogenous stages: Lotze (1953) studied the endogenous stages of *E. ovina* (Syn. *E. arloingi*) in experimentally infected lambs and recorded that the sporozoites emerge from the oocysts in the small intestine, enter the crypts of Lieberkuhn, and penetrate through the tunica propria into the anterior of the villi.

Schizont attain maturity after 13-21 days, measuring about 122-146 μm in diameter. The mature one having merozoites each of 9 μm in length and 2 μm breadth. Merozoites come out and enter the epithelial cells of the small intestine. In case of heavy infection they infect all the epithelial cells of the villi. Some of the merozoites give rise to microgametocytes leaving a large residual mass. Most of the merozoites become macrogametes. After fertilization the macrogamete became oocyst and first appears in the faeces after 20 days.

Types: Not known.

Remarks: From India, Singh and Pande (1967b) found endogenous stages in the small intestine of lamb and thought to be that of the species dealt with. Krishnamurthy and Bawazir (1981) also reported this species from India.

236. **Eimeria ovoidalis** Ray and Mandal

(Fig. 188)

Description: Oocyst ovoidal, measuring 32.00-40.00 μm in length with a mean of 35.5 μm and 20-28 μm in width with a mean of 23.8 μm. Micropyle present. Oocystic residuum absent. Sporocyst
oval, measuring 14-16 µm in length and 8-9 µm in width. Sporocystic residual mass coarsely granular. Stieda body present at the narrow end. Sporozoite ovoidal measuring 8-9 µm in length and 4-6 µm in width.

Sporulation time: 90-120 hours.
Type host: Buffalo calf, Bubalus bubalis Linn.
Other hosts: Unknown.
Distribution: Dairy farm in Calcutta, West Bengal.
Prevalence: After obtaining a single infection from a buffalo calf, the authors described the present species from west Bengal. Patnaik (1965c) got 7% infection in the buffaloes at Agra, Uttar Pradesh.
Endogenous stages: Unknown.
Types: Not known.
Remarks: The validity of this species remains doubtful as stated by Levine and Ivens (1970). This species has got some resemblance with E. canadensis, but the authors Ray and Mandal (1961, 62) failed to compare while describing the species as new. Patnaik (1965c) considered this species as synonym of E. wyomingensis.

237. Eimeria pandei Patnaik and Ray
(Fig. 189)

Description: Oocyst ovoidal brownish in colour with thick wall, measuring 22.58-24.18 µm in length with a mean of 22.96 µm and
16.61-19.35 \(\mu m \) in width with a mean of 18.60 \(\mu m \). The length/width ratio varies from 1.05-1.25 with a mean of 1.27. Each sporocyst measures 11.25 \(\mu m \) in length, 6 \(\mu m \) in width without any stieda body but with sporocystic residuum. Sporozoites elongated in shape.

\textit{Sporulation time} : About 2 days.

\textit{Type host} : Indian grey mongoose, \textit{Herpestis edwardsi} Geoff.

\textit{Other hosts} : Unknown.

\textit{Distribution} : Orissa.

\textit{Endogenous stages} : Unknown.

\textit{Types} : Not known.

238. \textit{Eimeria parahi} Pande, Bhatia, Chauhan and Garg

(Fig. 190)

\textit{Description} : Oocyst subspherical, 16-19.5 \(\mu m \) by 13-15 \(\mu m \) in size (mean 17.7 \(\mu m \) by 14\(\mu m \)), with the length width ratio of 1.1-1.3 (mean 1.2). Oocystic wall double contoured, 1.3 \(\mu m \) thick, the outer layer is straw-coloured and the inner layer yellowish brown. Micropyle represented by thinning of the wall at one pole. Polar cap absent. Oocystic
residuum and polar granule absent. Sporocyst ellipsoidal, 9.8-10.4 μm by 4.5-5.3 μm in size, (mean 9.3 μm by 4.8 μm), with a minute stieda body at the narrower end. Sporozoite elongate-oval, 6.5-8 μm by 2.3 μm in size, with one end broad and the other pointed, the former carrying a large refractile globule with small centrally placed nucleus.

Type host: Hog deer, *Axis porcinus* (Zimmermann),

Other hosts: From the type host, Patnaik and Acharjyo (1971) and Bhatia, Chauhan, Arora and Agarwal (1973).

Distribution: Zoological Garden, Lucknow, Uttar Pradesh; Nandankanan Zoological Garden, Orissa.

Endogenous stages: Unknown.

Types: Not known.

239. *Eimeria parva* Koltan, Mocsy and Vajda
(Fig. 191)

Description: The oocyst measures 13.6-18.7 μm in length and 11.9-15.3 μm in breadth with a mean of 16.2 μm by 13.4 μm. The shape index ranges from 0.72-0.95 μm with a mean of 0.81. The oocyst ellipsoidal, ovoidal or subspherical in shape. The oocystic wall presenting a distinct double contour on account of the two darker refractile lines, measuring 0.8 μm in thickness. The colour of the wall
varying from a faint yellow to a dark brown or even orange. Micropyle and polar cap absent. The finely granular sporont measures 10.2 μm in the maximum diameter. The sporocyst ellipsoidal, having one end rounded and the other pointed with a definite stieda body. It measures 10.2 μm by 5 μm in size with large amount sporocystic residual body.

Sporulation time: 1-3 days.

Dimension of the oocysts reported by other authors are as follows:

12-23 by 10-19 μm (Christensen, 1938a); 11-14 by 9-12 μm (Kotlan Mocsy and Vajda, 1929); 17 by 13.5 μm (Balozet, 1932), 18 by 15 μm (Kamalapur, 1961); 15 by 14.5 μm (Svanbaev, 1957b); 16-23 by 14-22 μm (Shah and Joshi, 1963); 14-15 μm (Singh, 1964); 17 by 14.5 μm (Chevalier, 1965).

Type host: Domestic sheep. Ovis aries (= Ovis sp.).

Other hosts: From the type host and domestic goat, Copra hircus (= Capra sp.), Asiatic Mouflon, Ovis orientalis Gmelin; Mouflon, O. musimon Linnaeus, Argali, O. ammon (Linnaeus); Big horn sheep, O. canadensis Shaw; Siberian wild goat, Capra siberica (= Capra ibex siberica (Pallas), Alpine Ibex, Cibex Linnaeus.

Distribution: Hissar, Haryana; Punjab; Madhya Pradesh; Uttar Pradesh; Orissa; Bombay, Maharashtra and Bihar.

Prevalence: Christensen (1938a) obtained this species in 50% of sheep from Idaho, Maryland and Wyoming. Jacob (1943) got it from 52% sheep and 9% goats from Germany. Balozet (1932) reported it from 21% of sheep and 22% of goats in Tunisia. Svanbaev (1957) reported this species in 9% of sheep while examining them from Kazakhastan.

Endogenous stages: Found in the small intestine, caecum and colon. The schizonts are found as whitish bodies and visible to the naked eye.
EIMERIIDAE: EIMERIA

Each measuring 185-256 μm by 128-179 μm. They are found in the mucosa or far down upto muscularis mucosae. Each schizont produces thousands of merozoites each measuring 10-12 μm long. Smaller schizonts are also found in the superficial epithelial cells each measuring 10-12 μm in diameter and contain 10-12 merozoites each measuring 2.5-3.00 μm long. The Micro and macrogametocyte measuring about 15-19 μm and 10-16 μm, also occur mostly in the caecum and colon. [Kotlan, Pellerdy and Versenyi (1951a,b) and Singh and Pande (1967a,b)].

Types: Not known.

Remarks: Levine and Ivens (1970) expressed a doubt whether this species occurs both in sheep and goat. From India authors like Sharma (1951-52), Rao and Hiregaudar (1954a,b), Ray (1961), Patnaik (1963), Shah and Joshi (1963), Singh (1963, 64), Jha (1966), Jha and Subramanian (1965, 66), Bhatia and Pande (1970), Bali (1972), Misra and Mohapatra (1972) and Krishamurthy and Kshirsagar (1976) reported this species from sheep and goat.

240. Eimeria pellita Supperer
(Fig. 192)

Description: The oocysts are ovoid in shape, each measuring 36.2-40.9 μm in length by 26.5-30.2 μm in width with a micropyle on the flattened narrower end. The wall is of uniform thickness, dark

Fig. 192. Mature oocyst of Eimeria pellita.
brown in colour, with densely placed numerous protuberances-giving it a velvety appearance. Polar granule and oocystic residuum absent. The sporocysts elongate-ovoid each of 14-8 μm long and 6-8 μm broad. The sporocystic residual body is sharply delineated and measures 7 μm by 5 μm. Stieda body absent, sporocystic residuum present, usually compact. Sporozoite with 2 refractile globules.

Sporulation time: 10-12 days.

Type host: Ox, *Bos taurus* (Linn.).

Other hosts: Indian cattle, *Bos indicus* (= *Bos* sp.).

Distribution: Mathura, Uttar Pradesh; Bombay, Maharashtra.

Prevalence: From Austria, Supperer (1952) recorded this species in 5% cattle. Joyner et al. (1966) got 4.5% infection in England.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Bhatia et al. (1968) considered this species as a synonym of *H. bukidnonensis*. But the structure of the oocystic wall and shape of the oocyst are different and due to which Levine and Ivens (1970) denied the synonymy which is probably correct. Rao and Hiregaudar (1954a,b), Hiregaudar and Rao (1966) and Gill (1973) reported this parasite afterwards.

241. *Eimeria perforans* (Leuckart)

(Fig. 193)

1912. *Eimeria perforans* Sluiter and Swellengrebel, *De Dierlijke Parasiten den Mensch en van Onze Huisdiere*, 2nd ed. Amsterdam, p. ?

Description: The oocysts are ovoid to ellipsoidal in shape with a tendency to become slightly oval, both ends of each oocyst are equally rounded or one end slightly attenuated than the other. The oocysts are colourless to light pink, each measuring 17-32 μm in length and 12.5-19.5 μm in width mean 20.25 μm by 15 μm. The shape index is 1.47. The oocystic wall is thin and of same thickness throughout without any micropyle. Oocystic residual body present as
distinct spherical mass, measuring 2.4 μm (mean 3 μm) in diameter. Sporocyst ovoid to oval, measuring 7.75 μm by 3.75 μm. The sporocystic residual mass also appears as indistinct spherical body. Sporozoite is having a refractile globule of medium size placed at the blunt extremity and a centrally placed nucleus.

Sporulation time: 48 hours.

Type host: Tame (= Domestic) rabbit, Oryctolagus cuniculus (Linn.) (=Oryctolagus sp.).

Other hosts: (i) Black-naped Hare, Lepus ruficaudatus [=Lepus nigricolis ruficaudatus (Geoff.)], (ii) Domestic rabbit, Oryctolagus cuniculus Linn. (=Oryctolagus sp.).

Distribution: Mukteswar, Kashipur, Uttar Pradesh; Punjab.

Endogenous stages: The endogenous stages are found above the nuclei of the epithelial cells of the small intestine from the duodenum to the ileum. There are 2 generations of schizonts, the first one measures 57-10 μm in diameter produces 4-8 ‘Type A’ merozoites each measuring 7.2 μm by 1.5 μm. The second one measures 7-8 μm by 4-6 μm and produces 8-24 ‘Type B’ merozoites each measuring 4.3 μm by 1.0 μm. The mature microgametocyte measures 17 by 13 μm in diameter produces large number of microgametes each with 3 flagella (Rutherford, 1943). A striking ultrastructural resemblance between the merozoites of this species and Toxoplasma zoites were noted during the ultrastructural study (Scholtyseck and Piekarski, 1965). Other ultrastructural details may be had from Scholtyseck (1965a, b).
Types: Not known.

Remarks: Further report on this species from India may be had from Ray (1945) and Gill and Ray, 1960. Hassan (1970) reported this species from Bangladesh.

242. Eimeria perminuta Henry
(Fig. 194)

Description: Oocyst sub-spherical, sporulated oocyst measures 14-15 μm by 13.0 μm with a mean of 14.5 μm by 13.0 μm, the length-width ratio ranges from 1.0-1.1 with a mean of 1.05. Oocyst wall composed of two layers, about 1.0 μm in total thickness, the outer layer rough, yellow and the inner one smooth, dark yellowish-brown. Micropyle and micropylar cap absent. One or two oocystic polar granules present. Oocystic residuum absent. Sporocyst broadly ovoid, measuring 8 μm by 5-6 μm with a mean of 8 μm by 5.5 μm, the length-width ratio ranges from 1.3-1.6 with a mean of 1.4. Stieda body, sporocystic residuum present; sporozoite lies length wise, head to tail within the sporocyst; each containing 2 clear globules.

Sporulation time: 4-7 days (Upadhyay and Ahluwalia, 1977b).

Dimension of the oocysts reported by other authors are as follows:
11-16 by 9-12 μm (Yakimoff, 1933); 11-18 by 10-16 μm, (Boch, Pezenburg and Rosenfeld, 1961); 11-17 by 10-16 μm (Donciu, 1961); 12-15 by 10-13 μm with the mean of 13.3 by 11.7 μm (Vetterling, 1965); 11-16 by 10-13 μm (Pellerdy, 1974).
Type host: Domestic Pig, *Sus scrofa domestica* [= *Sus scrofa* (Linn.)].

Other hosts: From the type host.

Distribution: Orissa, Bihar, Uttar Pradesh and Madhya Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Authors like Gill (1960b), Patnaik (1963), Singh (1963), Mishra (1967a, b), Shrivastav and Shah (1968), Upadhyay, Ahluwalia and Asthana (1977) and Upadhyay and Ahluwalia (1977a) have reported this species from India.

243. **Eimeria perminuta mathurai** Mishra

(Fig. 195)

Description: Oocyst spherical or somewhat ovoid in shape, measuring 13.8-19.9 μm in length and 9.2-16.92 μm in width. The rough bilayered oocystic wall measures 1.0-1.54 μm in thickness. The outer layer of the oocyst is yellowish or greenish yellow while the inner one is greenish or brownish coloured. Oocystic residuum absent. Polar granules present. The sporocyst ellipsoidal in shape, measuring 8.35-11.97 μm in length and 5.38-6.18 μm in width with a mean of 10.77 μm by 6.13 μm. Stieda body absent. Sporocystic residuum present as globular mass.

Sporulation time: 7-9 days.

Type host: Domestic pig, *Sus scrofa* Linn. (= *Sus* sp.).

Other hosts: Unknown.
Locality: Mathura, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

244. *Eimeria petauristae* Ray and Singh

(Fig. 196)

Description: Oocyst flask-shaped with short neck and a dome-shaped “pseudo micropyle” which forms a transparent cap at the anterior end and disappears, becoming concave, on sporulation. Oocyst wall of two layers; the outer one rugged, deep brown, and 3.75-6.25 μm thick, the inner one thin, smooth and transparent. The outer layer is readily broken away from the inner one by pressure. Oocyst measures 46.5-52.5 μm in length 35.0-40.0 μm in width (mean 49.0 μm by 37.0 μm). The length/width ratio 1.3. Sporocyst naviculoid with one end slightly broader than the other, but without stieda-body. Sporocyst 25.5-31.25 μm in length and 8.75-10.0 μm in width, (mean 28 μm by 9 μm). Sporocyst contains two club-shaped sporozoites each with a vacuole at either end. Small oocystic residuum present but the polar granule is absent. Sporocystic residuum present.

Sporulation time: 10-12 days.
Type host: Common giant Flying squirrel, *Petaurista inornatus* (=*Petaurista petarista* (Pallas)).

Other hosts: Unknown.

Distribution: Mukteswar, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

245. **Eimeria polita** Pellerdy

(Fig. 197)

Description: Oocyst ellipsoidal or broadly ovoid, measuring 22-31 μm by 17-22 μm sometimes a little more. Oocystic residuum absent. The sporocysts are ellipsoidal in shape each measuring 13-19 μm in length with a mean of 16.3 μm and 6-9 μm in width with a mean of 7.6 μm. Sporocystic residuum present. Sporozoites are long each measuring 17-18 μm.

Sporulation time: 8-9 days (Pellerdy, 1974), 7.5 days (Vetterling, 1964).

Dimension of the oocysts reported by other authors are as follows :

- 24-10 by 20.27 μm and 29-34 by 17-22 μm (Boch, Pezenburg and Rosenfeld, 1961);
- 21-31 by 15-20 μm (Vetterling, 1964);
- 22-29 by
17-26 \(\mu m \) with the mean of 26.8 by 20.5 \(\mu m \) (Rommel, 1970); 22-31 by 17-22 \(\mu m \) and 23-27 by 18-21 \(\mu m \) (Pellerdy, 1974).

Type host: Domestic pig, *Sus scrofa domestica* (= *Sus scrofa* Linn).

Other hosts: From the type host.

Distribution: Izatnagar, Uttar Pradesh.

Endogenous stages: Vetterling (1964) studied the life-cycle (endogenous) and found that the first generation schizont develops in the jejunum and attain 8-12 \(\mu m \) in diameter, produces 8-12 \(\mu m \) long merozoite and a polar residuum. The second generation schizont measures 15-20 \(\mu m \) in diameter, produces 32 merozoites each measuring 12 \(\mu m \) but without any residuum. The microgametocyte measures 11-12 \(\mu m \) in diameter produces on maturation 1.5 \(\mu m \) long microgamete. The macrogamete measures 17-22 \(\mu m \) in diameter. Centurier (1970) experimentally infected with the pure strain of this species and traced the life-cycle having a little morphological differences in measurements of the different stages as obtained by Vetterling (loc. cit.).

Prepatent period: 8-9 days (Pellerdy, 1949) 9-11 days (Centurier, 1970).

Types: Not known.

Remarks: As in the remarks under *E. cerdonis*. Gill (1960) and Mishra (1967a,b) reported this parasite from India.

246. **Eimeria porci** Vetterling

(Fig. 198)

Description: Oocyst pear-shaped, distinctly narrow at the anterior end, measuring 20-27 \(\mu m \) by 14-18 \(\mu m \) with a mean of 23.5 \(\mu m \) by 16.7 \(\mu m \). The length-width ratio ranges from 1.4 to 1.5 with a mean of 1.45. Oocystic wall double layered about 1.2 \(\mu m \) thick with a smooth yellowish-brown outer and smooth, dark brown inner layer. Micropyle
and micropylar cap absent. Oocystic residuum absent. Polar granules present. Sporocyst broadly ovoid, measuring 9-11 μm by 7-8 μm with a mean of 9.5 μm by 7.3 μm. The length/width ratio ranged from 1.2 to 1.4 with a mean of 1.3. Stieda body present. Sporozoites lie length-wise, head or tail in sporocysts each with one or two clear globules.

Sporulation time: 9 days.

Type host: Domestic pig, *Sus scrofa domestica* [= *Sus scrofa* (Linn.)]

Other hosts: From the type host.

Distribution: Madhya Pradesh; Aligarh, Uttar Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: This is one of the species of ‘debliecki’ group and the author differentiates it from *E. debliecki* by its short, broadly ovoid sporocysts with a sparse and finely granular residuum. Pellerdy (1974) stated that the inclusion of *E. polita* as synonym of *E. porci* in his supplimentum I., catalogue of the suborder Eimeriidea published in (1969) was not valid and Vetterling (1965) did the similar mistake in synonymising the former with the latter. He further comented that the oocysts found by Shrivastav and Shah (1968) did not correspond to Vetterling’s species (*E. porci*). Mandal (1980) has suggested to treat this species as distinct. Further report on the occurrence of this species in swine from India may be had from Shrivastav and Shah (1968) and Upadhyay, Ahluwalia and Asthana (1977).
247. *Eimeria punjabensis* Gill and Ray

(Fig. 199)

Description: The oocyst almost spherical in shape, light yellow in colour, measuring 20-23.75 μm in length and 19.5-22.5 μm in width with a mean of 22.5 μm by 22 μm. The shape index is about 1.0. Micropyle absent. The oocystic wall is of even thickness throughout, light yellow or with salmon tint. The oocystic residuum present distinctly about 5 μm diameter. Sporocyst ovoidal, measuring 12.5 μm in length and 8.5 μm in width with a stieda body. Sporocystic residual body absent. Sporozoite elongated with one end wider than the other, lie length-wise head to tail within the sporocyst. Each wider end is provided with a large refractile globule measuring 5 μm in diameter. The nucleus is centrally placed.

Sporulation time: Unknown.

Type host: Indian hare/Black-naped hare, *Lepus ruficaudatus* = *Lepus nigricolis ruficaudatus* (Geoff.).

Other hosts: Unknown.

Distribution: Ludhiana, Punjab.

Endogenous stages: Unknown.

Types: Not known.
248. *Eimeria rajasthani* Dubey and Pande

(Fig. 200)

Description: Oocyst ellipsoidal, measuring 34-39 \(\mu \text{m} \) in length with a mean of 36.00 \(\mu \text{m} \) and 25-27 \(\mu \text{m} \) in width with a mean of 26 \(\mu \text{m} \). The shape-index varies from 1.30-1.44. Double layered, micropyle not visible provided with a well defined cap. Oocystic residuum absent.

![Image](image-url)

Fig. 200. A, immature and B, mature oocysts of *Eimeria rajasthani*.

Sporocyst almost ovoid with prominent stieda body. It measures 14-15 \(\mu \text{m} \) in length with a mean of 15 \(\mu \text{m} \) and 8-11 \(\mu \text{m} \) in with a mean of 11.00 \(\mu \text{m} \). Sporocystic residuum present. Sporozoite elongated measuring 10-14 \(\mu \text{m} \) in length and 3-4 \(\mu \text{m} \) in width with two or more prominent globules.

Sporulation time: About 7 days.

Type host: One humped camel, *Camelus dromedarius* (Linn.).

Other hosts: Unknown.

Distribution: Bikanir, Rajasthan.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Dubey and Pande (1964a) reported once more from India.
249. *Eimeria ramgai* Pande, Bhatia, Chauhan and Garg

(Fig. 201)

Description: Oocyst ovoid, measuring 17-24 μm by 14-20 μm in size, mean 20 μm by 16.8 μm. Length/width ratio 1.1-1.3, mean 1.2.

![Fig. 201. Mature oocyst of *Eimeria ramgai*.](image)

Oocystic wall 1-1.5 μm thick, double contoured, the outer layer is of light yellowish and the inner brown in colour. Micropyle and polar cap absent. Sporocyst broadly ellipsoidal, with one end narrower and 10-13 μm by 4-5 μm in size, mean 11 μm by 4.5 μm. Stieda body absent. Sporocystic residuum presents as scattered granules. Sporozoite measuring 9 μm by 2.4 μm in size, with one end broadly rounded and the other tapering, the former carrying a large refractile globule and a small centrally placed nucleus, with another smaller refractile globule, lying between it and the pointed extremity.

Type host: Mouse deer, *Tragulus minima* Erxleben.

Other hosts: From the type host, Patnaik and Acharjyo (1971).

Distribution: Zoological Garden, Lucknow, Uttar Pradesh, Nandankanan Zoological Garden, Orissa.

Endogenous stages: Unknown.

Types: Not known.

250. *Eimeria robertsoni* (Madsen)

(Fig. 202)

Distribution: The oocyst ovoid to ellipsoidal in shape, light pink with yellowish tint in colour, measuring 33-44 μm in length and 21-32.5 μm in width with a mean of 39.25 μm by 25.5 μm. The shape index 1.6. The micropyle present, prominent, large, measuring 5-8 μm, mean 6.5 μm in diameter. The oocystic wall gradually increases to about double the thickness towards the micropyle where it forms prominent shoulder. Oocystic residuum present as large spherical mass measuring 8-14 μm, mean 10.5 μm in diameter. Sporocyst ovoidal to oval, the anterior end relatively sharper, measuring 18.5 μm in length and 6.2 μm in width. Sporocystic residual body absent. Sporozoites are elongated, refractile globules large and terminal in position and the nucleus is central in position.

Sporulation time: 48 hours.
Type host: Greenland Hare, *Lepus arcticus groenlandicus* Rhoads.

Distribution: Kashipur, Uttar Pradesh; Ludhiana, Punjab.

Endogenous stages: Unknown.

Types: Not known.

251. *Eimeria ruficaudati* Gill and Ray

(Fig. 203)

Description: The oocyst cylindrical in shape and light yellowish-pink in colour, measuring 28-35 μm in length and 12-15 μm in width with a mean of 31.25 μm by 17.5 μm. The shape-index

Fig. 203. Mature oocyst of *Eimeria ruficaudati*.

2.3. The oocystic wall thin and evenly thick throughout except the micropylar end where it gradually tapers. The micropyle is distinctly present, bounded by a bent line, with fine pointed tip in the centre which in some specimens appears to form a triangular opening. The oocystic residuum present as round body measuring
4-6 μm in diameter with a mean of 5 μm. Sporocyst ovoidal, anterior end bluntly pointed. Sporocystic residual body present as spherical mass measuring 2 μm in diameter. Sporozoites are medium sized each with a refractile globule at the rounded end, nucleus central in position.

Sporulation time: 66 hours.

Type host: Black-naped Hare, *Lepus ruficaudatus [= Lepus nigricolis ruficaudatus (Geoff.)].

Other hosts: Unknown.

Distribution: Kashipur, Uttar Pradesh; Ludhiana, Punjab.

Endogenous stages: Unknown.

Types: Not known.

242. *Eimeria sardari* Bhatia, Chauhan, Arora and Agarwal

(Fig. 204)

Description: Oocyst elongate-ellipsoidal in shape, measuring 28-30.6 μm in length and 13.3-14.6 μm in width, mean 29.4 μm by 14.1 μm, with outer yellowish green and inner yellowish-brown layers. Micropyle and polar cap absent. Length–width ratio ranges between
2.0 and 2.3 (mean 2.1). Oocystic residuum and polar granule absent. Sporocyst ellipsoidal, measuring 10.6-12.0 μm in length 6.6-8.0 μm in width, mean 11.0 μm by 7.3 μm having a vestigeal stieda body at the narrower pole. Sporocystic residuum present as few scattered dark granules. Sporozoites elongated, with two refractile globules in each, one on either side.

Sporulation time : Unknown.

Type host : Barking deer, *Muntiacus muntjak* (Zimmermann).

Other hosts : Unknown.

Distribution : Zoological Garden, Lucknow, Uttar Pradesh.

Endogenous stages : Unknown.

Types : Not known.

253. *Eimeria sardinae* (Thelohan)

Description : Oocyst round to spherical in shape measuring 36 to 52 μm in diameter. Oocystic wall transparent and double layered, in natural light it is pale yellowish in colour. A small oocystic residual mass is always present. Sporocyst long, sharply pointed at both ends (naviculoid) and possessing a tough endospore and deciduous epispore, the remains of which gives the spore a frilled appearance. Sporocyst measures 30-32 μm in length and 5-7 μm in width. A sporocystic residuum present. Sporozoite spindle-shaped and tapering towards both ends, the posterior end containing the nucleus.

Sporulation time : Unknown.

Type host : Herring, *Clupea harengus*.

Distribution : India and Ceylon.

Endogenous stages : Unknown.
Types: Not known.

Remarks: Though the host of this species is a fish but Dobell (1919) reported it from man who had been in South Africa, India and Ceylon. Afterwards Thomson and Robertson (1926) did some experiments and found that the oocysts in case of human coccidiosis are identical to those of *E. sardinae*.

254. *Eimeria scabra* Henry

(Fig. 205)

Description: Oocyst ellipsoidal to somewhat ovoid, slightly flattened at the micropylar end. Sporulated oocyst measures 27-32 μm by 19-24 μm in size, with a mean of 28.2 μm by 20.3 μm, the length/width ratio ranges from 1.2-1.4 with a mean of 1.3. Oocyst wall composed of two layers about 1.5 μm in total thickness, with a rough pigmented brown outer layer, having radial striations and a smooth, brownish-yellow inner one. Micropyle present, 3.5-4.5 μm in size. Micropylar cap absent. In one or two oocysts, polar granules present. Oocystic residuum absent. Sporocyst ovoid with stieda body measuring 14-18 μm by 7-8 μm in size with a mean of 15.2 μm by 8 μm; the

![Fig. 205. Mature oocyst of *Eimeria scabra*.](image-url)
length width ratio ranges from 2.0-2.5, with a mean of 2.2. Sporocystic residuum present. Sporozoite elongated, lying head to tail within the sporocyst, each containing 2 clear globules.

Dimension of the oocysts reported by other authors are as follows:

- 25-36 by 17-25 µm (Kutzer, 1960);
- 24-42 by 20-24 µm with the mean of 31.9 by 22.5 µm (Vetterling, 1965);
- 22-36 by 16-26 µm (Pellerdy, 1974).

Type host: Domestic Pig, *Sus scrofa domestica* (=*Sus scrofa* (Linn.).)

Other hosts: From the type host.

Distribution: Mhow, Madhya Pradesh; Izatnagar, Aligarh, Uttar Pradesh; Orissa and Bihar.

Endogenous stages: The endogenous stages are known due to the contribution made by Rommel and Ipczynski (1967). The first generation schizont measures 12-19 µm by 11-17 µm and produces 16-24 merozoites each measuring 11-15 µm by 1.5-2 µm in size sometimes with residuum. Second generation schizont measures 10-20 µm by 9-15 µm produces 14-22 merozoites each measuring 9-17 µm by 2-4 µm with a large polar residuum. The third one measures 16-27 µm produces 14-28 merozoites each measuring 12-19 µm by 2-4 µm with residuum. The microgamocyte measures 17-34 µm by 14-22 µm. The comma-shaped microgamete measuring 4.4-2.5 µm by 6-1 µm possesses two flagella in each. The macrogamete measures 14-23 µm by 9-16 µm with a large nucleus and contain cytoplasmic granules.

Types: Not known.

Remarks: Though Pellerdy (1965, 1963) retained *E. romaniae* but Vetterling (1965) synonymised it with the species dealtwith. The present author is of same opinion to synonymise *E. romaniae* with *E. scarba* Henry. Further information on this species from India may be had from Gill (1960b), Patnaik (1963), Sinha (1963), Mishra (1967a), Shrivastav and Shah (1968) and Upadhyay, Ahuwalia and Asthana (1977).

255. *Eimeria spinosa* Henry

(Fig. 206)

Description: The oocysts ellipsoidal in shape and measuring 16-22.4 µm by 12.8-16 µm. The wall is brown and its entire surface
is covered by 1 \(\mu m \) high spines at 1 \(\mu m \) distance from one another. Following the contraction of the course-granulated cytoplasm to a rounded sporont a polar granule makes its appearance in the oocyst.

The sporont as a rule lies asymmetrically nearer to one of the poles. The sporocyst measures 9.1-11.7 \(\mu m \) by 5.2-6.5 \(\mu m \), sometimes difficult to observe due to the dark colour of the oocyst. Stieda body remains at one end. The sporocystic residual body is granular.

Sporulation time: At room temperature it begins on the 10th day and is completed by about 15th day.

Dimension of the oocysts reported by other authors are as follows:

14-26 \(\mu m \) by 14-21 \(\mu m \) (Boch, Pezenburg and Rosenfeld, 1961); 11-22 \(\mu m \) by 10-13 \(\mu m \) (Wiesenhuber, 1962a); 16-22 \(\mu m \) by 13-16 \(\mu m \) (Pellerdy, 1974).

Type host: Domestic pig, *Sus scrofa* (Linn.)

Other hosts: From the type host, Gill (1960), Patnaik (1963) and Shrivastav and Shah (1968).

Distribution: Karnal, Haryana; Madhya Pradesh; Orissa and West Bengal.

Endogenous stages: Wiesenhuber (1962a) found that the schizogonic development took place in the epithelial cells of the small intestine. Mature schizont measures 8-10 \(\mu m \) and produces nearly 20 merozoites, each measuring 4-6 \(\mu m \) by 1.15 \(\mu m \) in size. The microgametocyte measures 6-8 \(\mu m \) produces 3 \(\mu m \) long microgamete. The macrogametocyte measures 7-9 \(\mu m \) in diameter with centrally or eccentrically placed nucleus in each. The cytoplasm is coarsely granular, the macrogamete measures 10-12 \(\mu m \) in diameter.

Types: Not known.
256. **Eimeria stiedai** (Lindemann)

(Fig. 207)

1907. *Eimeria stiedai* Kisskalt and Hartmann, *Practteum der· Bakteriologie Protozoologie*, Jena, P. ?

Description: Oocyst ovoidal to ellipsoidal in shape with micropylar end slightly narrower, measuring 26-40 μm in length and 16-24 μm in width a mean of 35.75 μm by 21 μm. The shape index 1.85.

The colour of the oocyst is light pink to reddish orange, sometimes yellowish. The micropyle is present, prominent, thin, convex and continuous with the contour of the wall. The oocystic wall is thin, uniform throughout but thinning towards the micropyle. Oocystic residuum absent. Sporocyst ovoid to ellipsoid, measuring 17 μm in

![Fig. 207. Mature oocyst of *Eimeria stiedai*.

The colour of the oocyst is light pink to reddish orange, sometimes yellowish. The micropyle is present, prominent, thin, convex and continuous with the contour of the wall. The oocystic wall is thin, uniform throughout but thinning towards the micropyle. Oocystic residuum absent. Sporocyst ovoid to ellipsoid, measuring 17 μm in...
length and 9 \(\mu m \) in width. Sporocystic residuum present as oval to spherical body, measuring 6 \(\mu m \) in diameter.

Sporulation time: 72 hours.

Type host: Snowshoe, *Lepus americanus*.

Other hosts:
1. Tame rabbit, *Oryctolagus cuniculis* (= *Oryctolagus* sp.)
2. Alpine Hare (= Varying Hare) *Lepus timidus* Linn.
3. Eastern Cottontail, *Sylvilagus floridanus mallurus* (Thomas)

Distribution: Mukteswar, Uttar Pradesh; Kashmir and Ludhiana, Punjab.

Endogenous stages: The sporozoites after being excysted in the intestine pass through the lymph nodes ultimately reach the liver or reach via hepatic portal system. They enter the epithelial cells of the bile ducts and develop above the host cell nucleus. There are also 6 generations of schizogony. Each generation of schizont produces two types of merozoites, pulp ‘Type A’ and slender ‘Type B’. The prepatent period is 14 days and the patent period is uncertain.

(Metzner, 1903), Smetana, 1933, Minning 1936, Horton, 1967; Pellerdy and Durr 1970, Owen, 1970 and Fitzgerald, 1970). By means of Electron microscopy, while studying the schizogony, multinucleated merozoites have been observed in *E. stiedai* by Cerne and Senaud (1971) at the time of intestinal asexual reproduction. The reason is unknown to the authors. However they expressed a doubt in this regard and stated that it might be the furet microgamete or new schizont might be developed from the multinucleated merozoite.

Dasgupta (1958, 59, 60 and 1961a, b) studied the different cytochemical reactions in the developmental stages of *E. stiedai*. After obtaining the large number of Feulgen positive bodies in the sporoblast the author (1958, 59) suggested to believe that these bodies represent the nuclei corresponding to those of the hypothetical ancestral form.

Type: Not known.

Remarks: *E. stiedai* appears to be the first unicellular organism seen by Leeuwenhoek, 1674 in a rabbit liver. Authors like Ray (1945) and Gill and Ray (1960) have reported this parasite from India and Hassan (1970) reported it from Bangladesh.

Description: The oocyst colourless, subspherical (rarely spherical) in shape. The oocystic wall is smooth, pale yellowish sometimes double layered, 0.7-1.0 \(\mu \text{m} \) thick. The oocyst measures 9-14 \(\mu \text{m} \) in length and 8-12 \(\mu \text{m} \) in width with a mean of 11 \(\mu \text{m} \) by 10.4 \(\mu \text{m} \). Micro-

![Fig. 208. Mature oocyst of *Eimeria subspherica*.](image)

pyle, oocystic residuum, polar granules absent. The sporocyst elongate-ovoid with small stieda body, measuring 7-10 \(\mu \text{m} \) in length and 5-4 \(\mu \text{m} \) in width, with a mean of 8 \(\mu \text{m} \) by 3.5 \(\mu \text{m} \), containing no sporocystic residuum. Sporozoite wider at one end than the other, lying length-wise head to tail within the sporocyst. Each sporozoite is provided with a clear globule at the larger end.

Sporulation time: 4-5 days.

Type host: Ox, *Bos taurus* (Linn.)

Other hosts: (i) Buffalo, *Babulus bubalis* Linn. (ii) Indian Cattle, *Bos indicus* (= *Bos* sp.).

Distribution: Agra, Mathura, Izatnagar, Uttar Pradesh and Karnal, Haryana.

Prevalence: From Wisconsin, Hasche and Todd (1959a) detected 11% infection in cattle. Szanto, Mohan and Levine (1964) observed this species in 8% calves in Illinois. From Oregon 8% cattle was found to be infected with this species as detected by Nyberg, Halser and Knapp (1967). From Costa Rica, Ruiz and Ortiz (1961) obtained 3% infection. Balconi (1963) reported 12% infection in cattle from
Guatemala. Joyner et al. (1966) reported 28% infection in cattle from England and Vassiliades (1969) got 6% infection in cattle from Senegal. Patnaik (1965) got 21% infection from Buffalo at Agra, Uttar Pradesh; Bhatia et al. (1968) also reported 16% infection from the buffalo at Mathura, Uttar Pradesh. From Turkey, Sayin (1969) reported 15% infection in buffalo.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Authors like Gill (1960b, 68), Patnaik (1963), Patnaik and Pande (1965) and Bhatia, Pande, Chauhan and Garg (1971) reported this parasite from India.

258. *Eimeria suncus* Ahluwalia, Singh, Arora, Mandal and Sarkar (Fig. 209)

Description: Oocyst almost subspherical in shape measuring 18.2-21.8 μm in length with a mean of 19.50 μm and 15.5-16.8 μm in width with a mean of 15.2 μm. It is provided with smooth bilayered wall of yellowish in colour, measuring 1.9-1.65 μm in thickness and the outer being thinner. A clear micropylar cap is visible on the wall of the oocyst. Oocystic residuum and polar granules absent. Sporocyst lemon-shaped, measuring 9.5-11.2 μm in length with a mean of 10.5 μm and 6.5-8.8 μm in width with a mean of 7.8 μm. It is provided with a nipple like protuberance having a slightly thickened area at one end. Sporocystic residuum appeared as beaded like globular mass scattered within the sporocyst. Sporozoites are almost comma-shaped, each measuring 4.00-5.5 μm in length with a mean of 4.5 μm and 3.2-3.8 μm.

Fig. 209. Mature oocyst of *Eimeria suncus*.
in width with a mean of 3.5 μm. Each end of the sporozoite is provided with a clear refractile area and the bigger one is found at the wider end.

Type host: House-shrew, *Suncus murinus murinus* Linn.

Other host: Unknown.

Distribution: Mathura, Uttar Pradesh and Calcutta, West Bengal.

Endogenous stages: Ahluwalia *et al.* (1979) attempted to study the endogenous stages of *E. suncus* and noticed the macrogametocytes, each measuring 14 μm by 12.56 μm with large peripheral plastic granules, in the columnar epithelial cells of small intestine but could not trace the schizont.

Types: Lying in the Collection of Dept. of Parasitology, Mathura Veterinary College, Mathura, Uttar Pradesh.

259. *Eimeria sylvilagi* Carini

(Fig. 210)

Description: The oocyst ovoid or elongated with tapering towards both ends, more so towards the micropyle and light-yellowish to yellow in colour. It measures 21–39 μm in length and 16–24 μm in width with a mean of 31 μm by 19 μm. The micropyle present prominently,
measuring 6 μm in width. The oocystic wall thin uniformly thick but protrudes suddenly at the micropyle to form bordering lappets. No oocystic residuum present. Sporocyst ellipsoidal to oval in shape, measuring 16 μm in length and 7 μm in width. Stieda-body prominently present. Sporocystic residual body represented by a free scattered granules in the centre of the Sporocyst. In the sporozoite, the refractile globule large and nucleus centrally placed.

Sporulation time: 55-80 hours according to original describer.

Type host: Brasilian Hare, *Sylvilagus brasiliensis minensis*?

Other hosts: (i) Mearn’s Cotton tail, *Sylvilagus floridanus mearnsi* (J. A. Allen), (ii) Black-naped Hare, *Lepus ruficaudatus* [= *Lepus nigricollis ruficaudatus* (Geoff.)], (iii) Domestic Rabbit, *Oryctolagus cuniculus* (= *Oryctolagus* sp.).

Distribution: Kashipur, Uttar Pradesh; Ludhiana, Punjab.

Endogenous stages: All these are known due to the work of Hsuck (1970). There are two types of schizogonic generations in the epithelial cells and lamina propria of the jejunum and ileum. First generation schizont produces curved, banana-shaped 2-14 merozoites each measuring 9 μm by 2 μm and pointed at both ends. The second generation schizont produces 3-86 merozoites each measuring 12 μm by 3 μm. Mature microgametocytes are almost spherical each measuring 10-26 μm by 9-25 μm and produces many biflagellate microgametes. Mature macrogamete measures 15-26 μm by 10-12 μm. The prepatent period is 6-8 days and the patent period is 6-18 days.

Types: Not known.

Remarks: Gill and Ray (1960) reported this parasite from India.

260. **Eimeria tirupatiensis** Sivanarayan and Venkataratnam

(Fig. 211)

Description: The oocyst usually elongated ovoid, less often ellipsoid and 37-44 μm by 25-31 μm mean 40.1 μm and 28.5 μm in size. The oocyst wall is bilayered, with a smooth pinkish outer layer about 1 μm thick and a brownish inner layer about 0.9 μm. The mound-shaped micropylar cap is 1.5-4 μm high by 8.5-11 μm wide, mean 2.2 μm by 9.4 μm. The oocyst possesses one to three polar granules, but no residuum. The ellipsoid or ovoid sporocyst has a stieda body and
measures 11-16 μm by 9-11 μm, mean 14.1 μm by 9.6 μm. A granular sporocystic residuum is interspersed between the sporozoites. The

Sporulation time: 4 days.

Type host: Domestic goat, *Capra hircus* (= *Capra* sp.).

Other hosts: Not known.

Distribution: Tirupati, Andhra Pradesh.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Levine and Ivens (1970) in their monograph on 'The Coccidian Parasites (Protozoa : Sporozoa) on Ruminants', p. 270 stated that this species resembles to some extent with *E. christensenii* and *E. ahsata* but the present one is unique due to the presence of a stieda body in the sporocyst. Therefore it can be retained as distinct species.

261. *Eimeria tragocameli* Bhatia

(Fig. 212)

Description: Ovoid to ellipsoidal oocyst, 20-29 μm by 16-20 μm in size, mean 24.4 μm by 18.7 μm, the length-width ratio is 1.11-1.55 mean 1.3. The 1.3-1.5 μm thick oocystic wall, thin at the narrower end suggestive of a micropyle; the outer greenish-yellow layer of 1.0 μm thickness and a thin light-brown inner layer. The sporont is
full of globules of different sizes. Oocystic residuum and polar granule absent. [On the seventh day, the sporoblasts exhibited, at each end a prominent globule, the characteristic parachute-shaped cap which however, disappeared on differentiation on the sporozoites]. The ovoid sporocyst, with one end somewhat narrower, measured 10.0-13.3 μm by 5.3-6.6 μm, mean 11.6 μm by 6.2 μm in size. Steida body present as a flat-darkened cap. Sporocystic residuum occurred in two or three groups of scattered granules. The banana-shaped sporozoite, with one end tapering and other broadly rounded, measuring 9-10 μm by 2.6 μm in size, contained three or four refractile globules of different sizes, the largest one lying towards the broader end.

Sporulation time : 10 days.

Type host : Nilgai, Boselepus tragocamelus Pallas.

Other hosts : From the type host.

Distribution : Zoological Garden, Lucknow, Uttar Pradesh.

Endogenous stages : Unknown.

Types : Not known.

Remarks : Pande, Bhatia, Chauhan and Garg (1970) and Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973) reported this parasite from India afterwards.
262. **Eimeria tuberculata** Krishnamurthy and Kshirsagar
(Fig. 213)

Description: Oocyst subspherical in shape measuring 36.8-43.2 μm in length with a mean of 39.73 μm and 32.0-38.4 μm in width with a mean of 36.10 μm. The length/width ratio of the oocyst is 1.04-1.15 with a mean of 1.10. The oocystic wall is trilayered measuring about 3.2 μm in thickness. The transparent outer layer is comparatively thin than the darker middle layer measuring about 2 μm thick and it shows typically tuberculate with several small tubercules of slightly varying sizes distributed uniformly all over its surface. The inner wall is about 1.0 μm thick and yellowish brown in colour. The oocyst is devoid of micropyle and mycropylar cap. Polar granule and oocystic residuum absent. The sporulated oocyst contains four oval or egg-shaped sporocysts, each with one end rounded and the other slightly pointed. The sporocyst measures 19.2-22.3 μm in length with a mean of 20.00 μm and 12.0-14.4 μm in width with a mean of 13.10 μm. The length/width ratio of the sporocyst is 1.5-1.7 with a mean of 1.62. The sporocystic residuum is in the form of several granules distributed around the centre of sporozoites. The sporozoite is typically elongated, banana-shaped and carry a fairly large refractile body at one end.

Sporulation time: 80-86 hours.

Type host: Rat, *Rattus rattus rattus*.

Other host: Unknown.

Distribution: Aurangabad, Maharashtra.

Endogenous stages: Unknown.
Types: Not known.

Remarks: There is no such subspecies like (*rattus*) of rat which is found within the Indian limit.

263. *Eimeria wassilewskyi* Rastegaieff

(Fig. 214)

Description: Oocyst egg-shaped, measuring 17.5 μm-19.5 μm in length with a mean of 18.5 μm and 13.5 μm-15.5 μm in width with a mean of 14.24 μm. The shape index is 1.3. It is provided with double wall of 0.75-1.00 μm in thickness, the outer being thinner than the inner one and of yellowish in colour. The cytoplasmic mass is almost spherical, situated at the middle and appears like refractile globule of 7.5-8.5 μm in diameter. A micropyle is seen at the anterior end of the oocyst measuring 3.5-4.5 μm in the course of development, residual mass is seen as a spherical body measuring 3.75 μm in diameter and ultimately dispersed as 4-8 refractile bodies. The sporocyst is broadly elliptical in shape with tapering anterior end having a clear shiny area but without any distinct knob. The sporocyst measures 8.5-10.5 μm in length, mean 9.00 μm and 3.5-5.5 μm in width, mean 4.5 μm. The sporocystic residuum is present as globular concentrated central mass with a few scattered granules. The sporozoite elongated, tapering at anterior end, almost blunt at the posterior, measuring 7.00-8.0 μm in length (mean 7.5 μm) and 2.00-300 μm in diameter.
336 Mandal: Fauna of India: Protozoa

width; a hyaline refractile area is present at the broader end of the sporozoite, but the position of the nucleus is not clear.

Sporulation time: 2-3 days.

Type host: Spotted Deer, *Axis axis* (Erxleben).

Other hosts: From the type host and (i) Red Deer, *Cervus e. eliphus* Linnaeus (ii) Sika Deer, *Cervus nippon hortulorum* Temminck.

Distribution: Andaman Islands, Nandankanan Zoological Garden, Orissa.

Endogenous stages: Unknown.

Types: Not known.

Remarks: The details about the taxonomic status of this species can be had from Mandal and Nair (1974). Patnaik and Acharjyo (1971) reported this parasite from Orissa.

264. *Eimeria wyomingensis* Huizinga and Winger

(Fig. 215)

Description: Oocyst egg-shaped, 37-44 μm in length and 26-31 μm in width with a mean of 41 μm by 28 μm; length-width ratio 1.4-1.65, mean 1.48. Oocystic wall thick, yellowish brown, double layered the outer coat rough of 1.99 μm thickness, heavily and uniformly punctate and the inner one of 0.66 μm in thickness.

Fig. 215. Mature oocyst of *Eimeria wyomingensis*.

Micropyle present, measuring 4.0-6.5 μm mean 5.0 μm wide. Oocystic residuum and polar granules absent. Sporocyst elongate-ovoid, with one end narrower, measuring 21-24 μm by 8-9 μm; mean 22.0 μm by
8.6 μm in size. Sporocystic residuum granular, the granules lying along the sporozoites or concentrated towards pole. Sporozoite elongate, measuring 7-8 μm in length and 5 μm at the broadest diameter, with two large refractile globules—one at the wider end and the other towards the narrower end, with the nucleus between them.

\textbf{Sporulation time:} 6-7 days.

\textit{Dimension of the oocysts as reported by other authors are as follows:}

36-46 by 26-32 μm with the mean of 40 by 28 μm (Huizinga and Winger, 1942); 37-41 by 22-26 μm with the mean of 38.3 by 24.8 μm (Patnaik, 1965c); 37-45 by 26-31 μm with the mean of 40.3 by 28.1 μm (Pellerdy, 1974).

\textit{Type host:} Ox, Bos taurus (Linn).

\textit{Other hosts:} (i) Domestic buffalo, Bubalus bubalis Linn. (= Bubalus sp.), (ii) Indian cattle, Bos indicus (= Bos sp.).

\textit{Distribution:} Agra, Mathura, Izatnager, Uttar Pradesh; Karnal, Haryana.

\textit{Prevalence:} Szanto, Mohan and Levine (1964) found 60% infection in cow calves from Illinois, Patyk (1965) found 1% infection in calves from Poland, Joyner et al. (1966) found the same in 14% of cattle from England; Bhatia et al., (1968) obtained 5% infection in buffaloes from Mathura, Uttar Pradesh and Sayin (1969) got 0.7% infection in buffaloes from Turkey.

\textit{Endogenous stages:} Unknown.

\textit{Types:} Not known.

\textit{Remarks:} From India authors like Gill (1960a, 68 and 73) and Patnaik (1963) have reported further on this species.

265. \textbf{Eimeria yakimovi} Rastegaieff

(Fig. 216)

\textit{Description:} Oocyst egg-shaped measuring 27-36 μm by 20-25 μm in size, mean 32 by 23 μm; with the length-width ratio of 1.1-1.5, mean 1.3. Oocystic wall smooth, measuring 1.0-1.5 μm thick, mean 1.3 μm, double contoured, with the outer layer yellowish-green and the inner of dark yellow brown in colour. Micropyle perceptible as a thin area in the oocystic wall at the narrower end over an area of 5-7 μm, mean 6 μm. Polar cap absent. Oocystic residuum and polar granule absent. Sporulation completed in 7 to 12 days. Sporocyst ellipsoidal; with
slightly narrow extremities, and of 13-17 μm by 6-8 μm in size, mean 14 μm by 7μm. Stieda body present as a small dark cap. Sporocystic residuum is present as a few scattered granules around sporozoites.

![Fig. 216. Mature oocyst of Eimeria yakimovi.](image)

Sporozoite measures 11-15 μm by 4-5 μm in size, mean 12 μm by 4.5 μm, with one end broad and the other pointed, the former carrying a large refractile globule and a small nucleus in the centre.

Type host: Nilgai, *Boselapus tragocamelus* Pallas.

Other hosts: Unknown.

Distribution: Zoological Garden, Lucknow, Uttar Pradesh; Nandankanan Zoological Garden, Orissa.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pande, Bhatia, Chauhan and Garg (1970), Patnaik and Acharjyo (1971) and Chauhan, Bhatia, Arora, Agarwal and Ahluwalia (1973) reported this species from India.

266. *Eimeria zuernii* (Rivolta)

(Fig. 217)

Description: Oocyst spherical, subspherical or bluntly ellipsoidal-ovoidal in shape, measuring 14-22 μm in length and 13-19 μm in width.
with a mean of 17 \mu m by 16 \mu m and the length-width ratio is 1.0-1.2 with a mean of 1.12. Oocystic wall smooth, double-layered, light yellowish-green, 1.5 \mu m thick. Micropyle undetectable. Micropylar cap absent. Oocystic residuum and polar granule absent. Sporocyst elongate-ovoid, measuring 8.0-10.5 \mu m in length and 5.0-7.0 \mu m in width with a mean of 9.9 \mu m by 6.0 \mu m with rounded ends. Stieda body present as a faintly darkened cap over the narrower anterior end. Sporocystic residuum present at loosely scattered granules. Sporozoite measuring 9 \mu m by 3 \mu m in size, with a refractile globule lying behind the wider rounded end, the other end being abruptly pointed, having the nucleus in its middle. Prepatent period is about 19 days.

Sporulation time: 3-4 days.

Dimension of the oocyst reported by other authors are as follows:

15-22 by 13-18 \mu m with the mean of 17.8 by 15.6 \mu m (Martin, 1909); 13-29 by 12-20 \mu m with the mean of 20.9 by 16.4 \mu m (Wenyon, 1926); 17.6 by 15.5 \mu m (Richardson and Kendall, 1957); 12-26 by 12-16 \mu m with the mean of 17.6 by 14.6 \mu m (Davis and Bowman, 1957); 14-21 by 10-17 \mu m with the mean of 17.1 by 14.6 \mu m (Cordero del Campillo, 1960); 16-20 by 15-18 \mu m with the mean of 18 by 17 \mu m (Nyberg and Hammond, 1965); 12-29 by 10-21 \mu m with the mean of 17-20 by 14-17 \mu m (Levine and Ivans, 1970).

Type host: Ox, *Bos taurus* (Linn.).

Other hosts: (i) Domestic/Indian buffalo, *Bubalus bubalis* Linn. (=*Bubalus* sp.) (ii) Indian Cattle, *Bos indicus* (=*Bos* sp.).

Distribution: Izatnagas, Agra, Mathura, Uttar Pradesh; Orissa; Karnal, Haryana.

Prevalence: Tubangui (1931) found 11% infection in zebues and 9% in carabaos from Philippines; Yakimoff, Gouseff and Rastegaieff (1932) found 13% from oxen in Uzbekistan; Yakimoff (1933) found
18% in Oxen, 6% in zubues and 37% in buffaloes from Azerbaidzhnl. Marchenko (1937) found infection 20% from cattle in North Caucasus; Torres and Ramos (1939) got 38% in cattle from Brazil; Boughton (1945) obtained 42% in bovine from United States; Supperer (1952) observed 11% in cattle from Austria; Watanabe and Iwata (1956) got 3% infection in cattle from Japan; Hasche and Todd (1959a) received 26% infection in cattle from Wisconsin. Ruiz (1959) obtained 1% infection in cattle and Riu and Ortiz (1961) observed 2% in calves from Costa Rica; Balconi (1963) reported 25% in cattle from Guatemala; Szanto, Mohan and Levine (1964) observed 37% infection in cow calves from Illinois; Chroust (1964) got 83% infection in cattle from Czechoslovakia, Patnaik (1965c) reported 36% infection in buffalo from Agra, Uttar Pradesh; Patyk (1965) reported 16% infection in calves from Poland; Joyner et al. (1966) observed 64% in cattle from England; Nyberg, Helfer and Knaff (1967) reported 23% infection in cattle from Oregon; Svanbaev (1967a) received 30% infection in cattle from Kazakhastan; Bhatia et al. (1968) got 16% infection in buffaloes from Mathura, Uttar Pradesh; Jacobson and Werley (1969) observed 6% infection in calves and 5% in cattle from Montana; Sayin (1969) observed 49% in buffaloes from Turkey; Vassiliades (1969) got 38% infection in cattle from Senegal.

Endogenous stages: Davis and Bowman (1957) obtained mature schizont measuring about 13.2 μm by 9.6 μm with 24-36 merozoites arranged encircling the central residuum of 2.1 μm in diameter. Each merozoite measures 12.2 μm by 5.4 μm with a nucleus near the tapering end and two refractile globules. The schizonts are found mainly along the entire length of the small intestine including the caecum and colon. The macrogametes appeared 12 days after the inoculation and each measuring 13.5 μm by 10.6 μm with a centrally placed nucleus having irregular karyosome and cytoplasmic granules. The microgametocyte measures 13.8 μm by 9.7 μm with comma-shaped microgametes arranged in rows along the periphery. Both the macro and microgametocytes established in the terminal segment of the small intestine, caecum, colon and rectum. Mature oocysts appeared in the faeces 19-20 days after infection. Prepatent period was estimated about 18 days and 15 days by Pellerdy (1965) and Svanbaev (1967a) respectively.

Types: Not known.

Remarks: The controversy about the spelling of the specific name has vividly been discussed by Levine and Ivens (1967) and Pellerdy (1974). Hence instead of 'zurni' it should be spelt as 'zuernii' and
followed as such. Further information on this species may be had from Cooper (1926a,b), Wenyon (1926), Bhatia (1938), Gill 1960a, 68) and Levine and Ivens (1970).

267. *Eimeria* sp.

Description: A large and typically egg-shaped oocyst, with a size of 40 μm by 25.3 μm showing at the narrower end a distinct micropyle of 1.0 μm width. A thick but smooth oocystic wall consisting of the inner brownish layer of 0.65 μm thickness, with a slight thickening towards the micropyle, with the outer yellowish-green of 1.0 μm thickness. An oocystic residuum and a polar granule absent. Four spindle-shaped sporoblasts, each with bluntly narrower extremities, full of dark granules, each sporoblast measures 16.0-17.3 μm by 8.0-9.3 μm size, developed in three days.

Host: Spotted deer, *Axis axis* (Erxleben).

Other hosts: Unknown.

Distribution: Lucknow, Uttar Pradesh.

Endogenous stages: Unknown.

Remarks: It is very difficult to give any specific status of this parasite due to the inadequate description given by the author. Except *E. wassilewskyi* from the Spotted deer, other species from this host create doubt about their validity.

vii. **Genus Wenyonella** Hoare, 1933

Oocyst provided with four sporocysts each having four sporozoites.

Type host: *Boadon* (*Boadon*) *lineatus* Reptilia: Ophidia.

In total seven species from bird and one species from mammal have been reported.

(a) **Parasites of birds**

Key to the species

1. Oocyst pitcher-shaped ... *W. gogari*
2. Oocyst not pitcher-shaped
 (A) Sporocyst vial-shaped ... *W. gallinae*
 (B) Sporocyst oval or ovoid
 (i) Sporocyst with residuum
(x) Size of oocyst large 13-20 μm by 10-14 μm

(i) Size of sporocyst 10.5-12.8 μm ... W. columbae

(ii) Size of sporocyst 6.7-9.3 μm ... W. pellerdyi

(y) Size of oocyst small 11-18 μm by 7-11 μm W. anatis

(ii) Sporocyst without residuum

(a) Size of oocyst large above 19 μm by 18 μm W. mackinnoni

(b) Size of oocyst small below 19 μm by 16 μm W. bahli

2.8. **Wenyonella anatis** Pande, Bhatia and Srivastava

(Fig. 218)

Description: Oocyst oval, with double wall of equal thickness. It measures 11.5-17.5 μm in length with a mean of 14.5 μm and 7.5-10.5 μm in width with a mean of 8.8 μm. The shape index is 1.6. Cytoplasm coarsely granular and occupies the entire space of the oocyst. Micropyle and oocystic residuum present. Sporocyst ovoid in shape, measures 5.7-7.2 μm in length with a mean of 6.4 μm and 4.3-5.3 μm in width with a mean of 4.8 μm. The shape index is 1.3. Sporocystic residuum present as coarsely granular mass of dark appearance. Sporozoites are ovoid each with nucleus at the middle, having narrow anterior end with broad posterior end. Sporozoite measures 2.8 μm by 2 μm. The shape index is 1.4.

Sporulation time: 48-62 hours.

Dimension of the oocysts reported by other authors are as follows: 11-17 by 7-10 μm (Pellerdy, 1974).

Type host: Domestic duck, *Anas platyrhyncha domestica* (= *Anas* sp.).
Eimeriidae: Eimeria

Other hosts: From the type host, Mandal (1976).

Distribution: Mathura, Uttar Pradesh, Shillong, Meghalaya.

Endogenous stages: Unknown.

Types: Not known.

269. Wenyonella bhali Misra

(Fig. 219)

Description: Oocyst subspherical or ovoid with double envelop of equal thickness and measures 15.5-17.5 μm in length with a mean of 16.5 μm and 14.5-15.5 μm in width with a mean of 14.9 μm. The shape index is 1.1. Cytoplasm compact, rounded in shape with several refractile globule. Oocystic residuum and micropyle absent. Sporocyst egg-shaped without any knob, measures 5.7-7.8 μm in length with a mean of 6.5 μm and 3.5-4.8 μm in width with a mean of 4.3 μm. The shape index is 1.3. Sporocystic residuum absent. Sporozoite ovoid and measures 2.6-3.00 μm in length.

Sporulation time: 36-48 hours.

Type host: Common Quail, Coturnix communis [= Coturnix c. coturnix (Linn.)].

Other hosts: From the type host, Mandal (1976).

Distribution: Lucknow, Uttar Pradesh and Shillong, Meghalaya.
Endogenous stages: Unknown.
Types: Not known.

270. **Wenyonella columbae** Haldar and Ray Chaudhury
(Fig. 220)

Description: Oocyst spherical or slightly oval in shape measuring 21.3-26.5 μm in length with a mean of 23.8 μm and 20.6-25.8 μm in breadth with a mean of 23.0 μm. The oocystic wall is bilayered of which the inner one is slightly thicker than the outer wall. The cytoplasm is almost filled up with the fine as well as some coarse granules. Micropyle and oocystic residuum absent. Sporocysts four in number, each measuring 10.5-12.8 μm in length with a mean of 11.6 μm and 6.4-8.6 μm in width with a mean of 7.5 μm. Sporocystic residuum is present at the centre and appears as a small cluster or refractile granules while there is no trace of stieda body. There are four sporozoites in each sporocyst. The sporozoites are elongated bodies each with a broad posterior end and a gradually tapering, anterior extremity measuring 4.5 μm in length in the average.

Sporulation time: 144-192 hours.
Type host: Domestic pigeon, *Columba livia intermedia* Strickl.
Other host: Unknown.
Distribution: Calcutta and Kalyani, West Bengal.
Endogenous stages: Unknown.

Types: Likely to be present in the collection of the Protozoology Laboratory, Kalyani University, West Bengal.
271. Wenyonella gagari Sarkar and Ray

Description: Oocyst pitcher-shaped having three layers of 1.8 \(\mu m \) in thickness. The outer being yellow, middle greenish and the inner yellowish pink. At narrow pole there is a prominent micropyle of 4.8 \(\mu m \) in diameter with flunted 4-6 ridges at its outer broader. Oocyst measures 22.8-26.4 \(\mu m \) in length and 16.8-19.2 \(\mu m \) in width with a mean of 24.0 \(\mu m \) and 18.5 \(\mu m \) respectively. Oocystic residuum absent. Four sporocysts are vial-shaped each measuring 13.2-15.6 \(\mu m \) in length and 7.2-9.6 \(\mu m \) in width with a mean of 13.8 and 8.4 \(\mu m \) respectively. Sporocystic residuum present as a small cluster of minute refractile granules, 'Stieda' body present. Sporozoites club-shaped each measuring 9.6 \(\mu m \) in length and 3.6 \(\mu m \) in width at broader end. It possesses a large vacuole at the broader pole.

Sporulation time: 24-48 hours.

Dimension of the oocysts reported by other authors are as follows: 23-26 by 17-19 \(\mu m \) with a mean of 24 \(\mu m \) by 18.5 \(\mu m \) (Pellerdy, 1974).

Type host: Domestic duck, *Anas boschus* Linnaeus [= *Anas p. platyrhyncha* (Lin.)] (= *Anas sp.*).

Other hosts: Unknown.

Distribution: Basirhat, West Bengal; known only from type locality, Sarkar (1968).

Endogenous stages: Unknown.

Types: Not known.

272. Wenyonella gallinae Ray

Description: Oocyst oval or egg-shaped with double envelop, the other being thicker than the inner one. Oocyst measures 28.5-34.5 \(\mu m \) in length with a mean of 31.5 \(\mu m \) and 19.5-21.5 \(\mu m \) in width with a mean of 20.5 \(\mu m \). The shape index is 1.5. Micropyle present. Oocystic residuum absent. Cytoplasm granular and fills up the oocyst. Sporocyst vial-shaped or pyriform in shape, measuring 17.5-19.5 \(\mu m \) in length with a mean of 18.5 \(\mu m \) and 7.5-9.2 \(\mu m \) in width with a mean of 8.3 \(\mu m \). The shape index is 2.2. Sporocystic residuum present as granular mass. Sporozoites club shaped.
Sporulation time: 4-6 days at 28°C.

Type host: Domestic fowl, Gallus gallus domesticus (= Gallus sp.)

Other hosts: Unknown.

Distribution: Mukteswar, Uttar Pradesh.

Endogenous stages: Unknown. The prepatent period lasts for 7 days and the patent period is about 3 days.

Types: Not known.

Remarks: Ray (1945a) infected three young chickens with sporulated oocysts of the species dealt with. It revealed that the prepatent period lasted for seven days in one bird and eight days in the rest two. Oocysts were discharged for three days. From the slight pastiness and discoloration of the dropping, the author inferred certain degree of pathogenicity.

273. Wenyonella mackinnoni Misra

Description: Oocyst spherical or ovoid in shape. The spherical form measures 19-23 μm and the ovoid from measures 23.8-26.2 μm by 18.0-21.5 μm. The cysts wall consists of two layers—an outer layer thin and colourless and an inner layer comparatively thicken and brownish in colour. Protoplasm of the freshly discharged oocysts is filled up with refractile granule of reserve materials but later on it becomes condensed and has a more or less spherical contour, measures on an average, 15.5 μm in diameter. Micropyle and the polar inclusion (granules ?) absent in the oocyst. No oocystic residuum is seen after formation of the sporocysts. Sporocysts ovoid, measures 10.2 by 7.4 μm with a lens-shaped knob at one end. Sporocystic residuum absent. Sporozoite measures 8.2 μm long, club-shaped and irregularly arranged.

Sporulation time: 4-6 days at room temperature.

Type host: Wagtail, Motacilla alba Linn.

Other hosts: From the type host, Mandal (1976).

Distribution: Lucknow, Uttar Pradesh; Shillong, Meghalaya.

Endogenous stages: The microgametocyte measures 20.5 μm by 15.6 μm in size, found in the small intestine. It produces many microgametes each measuring 3.8 μm in length and provided with double
flagella. The macrogamete measures 28.5 \(\mu \text{m} \) by 16 \(\mu \text{m} \) in size with a granular cytoplasm and a distinct nuclear karyosome (Misra, 1947).

Types: Not known.

274. *Wenyonella pellerdyi* Bhatia and Pande

Description: Oocyst ellipsoidal to ovoidal, punctate measuring 13.3-19.3 \(\mu \text{m} \) in length with a mean of 17.6 \(\mu \text{m} \) and 10.0-13.3 \(\mu \text{m} \) in width with a mean of 12.7 \(\mu \text{m} \). It is provided with double wall of 1.0-1.3 \(\mu \text{m} \) in thickness and colourless in nature. Micropyle broad, 2.0-2.5 \(\mu \text{m} \) wide. Oocystic residuum absent. A polar granule is present.

Sporocyst ovoid measuring 6.7-9.3 \(\mu \text{m} \) in length with a mean of 8.0 \(\mu \text{m} \) and 4.0-8.0 \(\mu \text{m} \) in width with a mean of 5.7 \(\mu \text{m} \). Stieda body absent. Sporocystic residuum is present as dark granules in a compact mass. Sporozoite elongated, measuring 5.0-7.0 in length with a mean of 6.0 \(\mu \text{m} \) and 2.0-3.0 \(\mu \text{m} \) in width with a mean of 2.5 \(\mu \text{m} \). A prominent globule is present at the broadly rounded end, the other end being pointed.

Sporulation time: 48 houts.

Type host: Blue-winged Teal (=Gargany) *Anas querquedula* (Linn.)

Other hosts: Unknown.

Distribution: Gorakhpur, Uttar Pradesh.

Endogenous stages: Some sections of the middle intestine show the characteristic oocysts and macrogametocytes in the cells of the villar epithelium. The former measuring 12.0-16.4 \(\mu \text{m} \) in length and 8.2-10.5 \(\mu \text{m} \) in width and the later 12.0-13.4 \(\mu \text{m} \) in length and 8.2-10.2 \(\mu \text{m} \) in width. The authors stated that this diminution in size is due to fixation.

Types: Not known.

(B) Parasites of Mammals

275. *Wenyonella hoarei* Ray and Das Gupta

(Fig. 221)

Description: Oocyst spherical, double layered, the outer thinner than the inner thick one. The cytoplasm vacular and appears highly
granular. It measures 14.5-18.5 \(\mu m \) in diameter with a mean of 16.8 \(\mu m \). Oocystic residuum absent, micropyle present. The sporocyst ovoid, with a lens-shaped knob at the pointed anterior end. It measures 9.5-11.5 \(\mu m \) in length with a mean of 10.5 \(\mu m \) and 7.4-9.3 \(\mu m \) in width with a mean of 8.4 \(\mu m \). The shape index is 1.2. The sporocystic residuum is present as a compact mass. The sporozoite elongated with bluntly pointed anterior end. It measures 7.4 \(\mu m \) in length and 1.5 \(\mu m \) in width. The shape index is 4.8. They lie in pairs on each side of the sporocystic mass a head to tail arrangement.

Sporulation time: 7 days.

Type host: Indian squirrel, *Sciurus* sp.

Other host: From the type host.

Distribution: Botanical Garden, Shibpur, West Bengal.

Endogenous stages: The schizonts lie in the epithelial cells and produce two types of merozoite one measuring 6 by 2 \(\mu m \). The dark staining granules are present near the nucleus and the cytoplasm is hyaline. The other measuring 8 by 2 \(\mu m \) having granular cytoplasm. Both are tapering at one end and broad at the other. The authors (Ray and Das Gupta (1935a)) suggested that the smaller merozoite may be the predecessors of male gamete and the bigger ones may produce female gamete. The microgametocyte produces biflagellated microgametes and left a distinct residuum. The microgametes were found congregate around the micropolar end of the mature macrogamete.
Types: Not known.

Remarks: The describers (1937a) reported this species again from India.

viii. Genus Octosporella Ray and Raghavachari, 1942

Oocyst having eight sporocysts each provided with two sporozoites.

Type host: Mabuya sp., Reptilia: Lacertilia

Monotypically represented only from reptiles.

276. Octosporella mabiae Ray and Raghavachari

Description: Oocyst develops eight sporocysts (octosporocystid) and each sporocyst is provided with 2 sporozoites (dizoic). Spherical oocyst measures 14-16 μm in diameter. No oocystic residuum is present. Sporocyst spindle-shaped, measuring 8.4 μm by 4.2 μm. Each sporocyst contains two sickle-shaped sporozoites and a central residual mass.

Sporulation time: 48 hours.

Type host: Skink, Mabuya sp.

Other hosts: Unknown.

Distribution: Calcutta, West Bengal.

Endogenous stages: Unknown.

Types: Not known.

Remarks: Pellerdy (1974) has made a comment that as no male stages had been traced out, this species might come under the genus Eimeria. Mandal (1976) further stated that he could not come across any such parasite after examining about thirty examples of Skink from different localities.

ix. Genus Pythonella Ray and Das Gupta, 1927

Oocyst having sixteen sporocysts each is provided with four sporozoites.
Type host: Python sp. Reptilia: Ophidia.
Monotypically represented, reported only from reptile.

(A) Parasite of Reptiles

277. Pythonella bengalensis Ray and Das Gupta

Description: Oocyst develops sixteen sporocysts (hecaidecasporocystid), each containing four sporozoites (tetraozic sporocyst). Spherical oocyst measures 25-30 μm in diameter and develops eight primary sporoblasts which divide again to form sixteen sporocysts. Each sporocyst measuring 8-10 μm by 6.7 μm with four syrozoites and a central residuum.

Sporulation time: 7 to 10 days.
Type host: Indian Python, Python sp.
Other hosts: Unknown.
Distribution: Calcutta, West Bengal.
Endogenous: Unknown.
Types: Not known.
Remarks: Mandal (1976) could not come across any specimen examining seventeen examples of Python from the type locality. Moreover 6 specimens of Python from Lucknow Zoo have also been examined afterward by the same author but could not come across this parasite. However, Duszynski (1969) recorded P. scoloporus the second species of the genus (Host: Scoloporus squamosus) from Costa Rica.

XII. HOST-PARASITE INDEX

Class: MYRIAPODA
Order: CHILOPODA

1. Mecistocephalus puntifrons Necop, Centipede: Eimeria mecirophi

Class: INSECTA
Order: DIPTERA

1. Aeteobatis narinari [= Aetobatus flagellum (Schn.)] Eagle Ray
 Eimeria southwelli

Order: **CLUPEIFORMES**

1. *Alosa sardina*......Herring: *Eimeria clupearum*
2. *Clupea harengus*......Herring: *Eimeria clupearum*, *Eimeria sardinae*
4. *Engraulis encrasicholus*......Anchovy: *Eimeria clupearum*
6. *Etrumeus micropus* Val., Round herring: *Eimeria clupearum*
7. *Notopterus notopterus* (Pallas), Feather Back: *Eimeria notopteri*
8. *Notopterus chitala* (Ham.), Humped Feather Back: *Eimeria notopteri*
9. *Sardina melanosticta*......Sardine: *Eimeria clupearum*
10. *Sardina* (= *Clupea* pilchardus), Sardine: *Eimeria clupearum*,
 Eimeria sardinae
11. *Sprattus* (= *Clupea* sprattus......Spart: *Eimeria clupearum*

Order: **PERCIFORMES**

2. *Epinephelus tauvina* (Forsskal), Greasy reef-cod: *Eimeria* sp.
3. *Scomber scomber*......Mackerel: *Eimeria clupearum*
4. *Sillago sihama* (Forsskal), Silver whiting: *Eimeria* sp.
5. *Trichurus sarala* Cuvier, Small headed ribbon fish: *Eimeria* sp.
6. *Otolithus ruber* Schneider, Rosy few fish: *Eimeria* sp.

Order: **CYPRINIFORMES**

1. *Burbus ambassis* [= *Puntius ambassis* (Day)], Barb: *Eimeria ambassi*
2. *Glossogobius guris* (Hamilton), Gobid fish: *Eimeria glossogobii*

Order: **LAIMINIFORMES**

1. *Scoliodon sorrakowah* (Cuvier), Light Tip Shark: *Eimeria southwelli*
2. *Zygaena* (= *Sphyrna* blochii) (Cuvier), Arrow headed or Hammer headed shark: *Eimeria zygaenae*

Order: BATRACHIIDFORMES

1. *Batrachus grunniens* (Einn.), Form fish: *Eimeria* sp.

Order: MYCTOPHIFORMES

1. *Harpodon nehereus* (Ham.) Bombay Duck: *Eimeria harpodoni*

Order: SILURIFORMES

Class: AMPHIBIA
Order: ANURA

1. *Bufo himalayanus* Baulenger, Himalayan Toad: *Eimeria himalayana*
2. *Bufo melanostictus* Schn., Indian Common Toad: *Eimeria laminata, Isospora wenyoni*
3. *Bufo stomaticus* Lutken, Morbed Toad: *Isospora stomaticae*
4. *Rana cyanophlyctis* Schn., Skipping frog: *Eimeria cyanophlyctis*

Class: REPTILIA
Order: SQUAMATA

(A) Sub-order: LACERTILIA

1. *Calotes versicolor* (Daudin), Garden Lizard or Blood Sucker: *Isospora caloteni*
2. *Gekko gecko* (Linn.), Takhak: *Caryospora gekkonis, Eimeria bongaonensis*
3. *Hemidactylus flaviviridis* (Ruppell), House lizard: *Eimeria flaviviridis, Eimeria hemidactyi, Eimeria knowlesi, Isospora knowlesi*
4. *Mabuya* sp., Skink: *Eimeria minetti, Octosporella mabuai*
5. *Ptyctolaemus* sp., Lizard: *Isospora rayi*
6. *Varanus monitor* [= *Varanus bengalensis* (Daudin)], Monitor Lizard: *Eimeria varani*
EIMERIIDAE : EIMERIA

(B) Sub-order: OPHIDIA

1. *Enhydris* enhydris (Schn.), Fresh water snake: *Caryospora bengalensis*, *Eimeria fibrilosa*
2. *Naja naja* (Linn.), Asiatic or Indian Cobra: *Isospora minuta*, *Eimeria najae*
3. *Natrix (= Xenochrophis) piscator* (Schn.), Checkered Keelback: *Eimeria gupti*, *Eimeria piscatori*
4. *Natrix platyceps* (Blyth.), Gass snake: *Isospora dirumpens*
5. *Natrix stolata [= Amphiesma stolata* (Linn.)], Striped Keelback: *Eimeria stolatae*
6. *Python* sp., Indian Python: *Pythonella bengalensis*

Order: CHELONIA

1. *Emyda granosa [= Lissemys punctata granosa* (Schoepff)], Indian Flap-shelled Turtle: *Eimeria legari*
2. *Lissemys punctata* (Bonnaterre), Fresh water Turtle; *Eimeria innominata*, *Eimeria irregularis*, *Eimeria koormae*
3. *Trionyx gangeticus* (Cuvier), Gangetic Turtle, *Eimeria trionyxae*, *Eimeria triangularis*

Order: CROCODILIA

1. *Gavialis gangeticus* (Gamelin), Gharial: *Eimeria kermoganti*

Class: AVES

Order: CICONIFORMES

1. *Pseudobis papilosa* (Temminck), Black Ibis; *Eimeria bazi*

Order: ANSERIFORMES

1. *Aix galericulata* (Linn.), Mandrin Duck: *Isospora mandari*
2. *Anas platyrhynchos platyrhynchos* (Linn.) Mallard: *Eimeria battakhi*, *Wenyonella anatis*, *Eimeria anatis*
3. *Anas boschus (= Anas sp.), Domestic Duck, Wenyonella gagari*
4. *Anas querquedula* (Linn.), Blue winged Teal/Gargany Teal *Wenyonella pellerdyi*
5. *Anas sp.*, Khaki Cambel duck (Domestic duck): *Isospora* sp.,
6. *Anas strepera* (Linn.) Gadwall: *Tyzzeria pellerdyi*
7. *Anser indicus* (Latham), Wild goose/Bar-headed goose: *Tyzzeria pellerdyi*

8. *Aythya nyroca*, White-eyed Pochard: *Tyzzeria pellerdyi*

9. *Chenicus (= Nettapus) coromandelianus* (Gmelin), Cotton Teal: *Tyzzeria aleni, Tyzzeria chenicusae*

10. *Nettapus coromandelianus* (Gmelin), Cotton Teal: *Tyzzeria aleni*

Order: FALCONIFORMES

1. *Gyps bengalensis* (Gmelin), Indian White-backed Vulture: *Isospora gypsi*

2. *Milvus migrans* (Boddaert), Pariah Kite: *Isospora cheeli*

Order: GALLIFORMES

1. *Agriocharis ocellata* (Cuvier), Ocellated Turkey: *Eimeria gallopaonis*

2. *Alectoris graeca* (Meisner), Chuker Partridge: *Eimeria alectorae*

3. *Caecobis chukor* (J. E. Gray) = *Alectoris graeca* (Meisner) Chuker Partridge: *Eimeria teetari*

4. *Chrysolophus amherstiae* (Lead beater), Lady Amherst's Pheasant: *Eimeria adenooides, Eimeria meleagridis, Eimeria meleagritnis*

5. *Chrysolophus pictus* (Linn.), Golden Pheasant: *Eimeria picta*

6. *Colinus v. virgeneanus* (Linn.), Bobwhite: *Eimeria acervulina Eimeria dispersa*

7. *Coturnix coturnix coturnix* (Linn.), Common Grey Quail: *Eimeria coturnicis, Eimeria bateri, Eimeria dispersa, Wenyonella bahli*

8. *Francolinus francolinus* (Linn.), Black Partridge: *Eimeria teetari, Eimeria sp., Eimeria francolini*

9. *Francolinus pondicerianus* (Gmelin), Grey Partridge: *Eimeria teetari*

* Mentioned as a report but the species is doubtful (vide Pellerdy, 1974)
11. *Gallus gallus* (Linn.), Red Jungle Fowl: *Eimeria dubeyi, Eimeria vanmurghavi*

12. *Gallus soneratti* (Temminck), Grey Jungle Fowl: *Isospora choudari, Eimeria vanmurghavi*

13. *Gennaecus horsefieldi* [= *Lophura leucmelana* (Latham)], Kalij Pheasant: *Eimeria gennaecus*

14. *Lophortyx californica californica* (Shaw), California Valley Quail: *Eimeria acervulina*

15. *Lophura leucmelana* (Latham), Kalij Pheasant: *Eimeria lophuri, Eimeria sp.*

16. *Lophura nycthemera nippon* (= *Lophura* sp.), Kalij Pheasant: *Eimeria picta*

17. *Meleagris gallopavo gallopavo* Linn. (= *Meleagris* sp.), Domestic Turkey: *Eimeria meleagridis, Eimeria meleagrimitis, Eimeria adenoeides, Eimeria dispersa, Eimeria innocua, Eimeria gallopavonis*

19. *Numida meleagris* Linn., Guinea Fowl: *Eimeria gorakhpuri* (= *Eimeria gorakhpurensis*)

20. *Oreortyx picta picta* (Douglas), Plumed Quail: *Eimeria acervulina*

22. *Pavo muticus* (Linn.), Burmese Pea Fowl: *Isospora mayuri, Eimeria mayuri*

24. *Phasianus colchicus torquatus* Gmelin, Chinese Ring-necked Pheasant: *Eimeria dispersa*

26. *Polyplectron bicoloratus bakeri* (Linn.), Peacock Pheasant: *Eimeria bhutanensis*

27. *Tetrastes bonasia* Linnaeus, Hazel hen: *Eimeria dispersa*

Order: GRUIFORMES

1. *Amaurornis phoenicurus* (Pennant), White breasted Water-hen: *Eimeria dauki*

2. *Anthropoides vergo* (Linn.), Demoiselle Crane: *Eimeria grusi*
3. *Bellercia regulorum* (= *Belearica pavonina regulorum* (Bennett))
Crowned Crane: *Isospora bellericae*

5. *Grus antigone* (Linn.), Sarus Crane: *Eimeria grusi*

Order: CHARADRIIFORMES

1. *Charadrius asiaticus* (Pallas), Sand Plover: *Eimeria charadrii*

2. *Gallinago gallinago* [= *Capella gallinago gallinago* (Linn.)] Fantail Snipe: *Eimeria gallinagoi*

3. *Numenius arquata* (Linn.), Curlew: *Eimeria numenii*

4. *Pluvialis apricaria* (Linn.), Golden Plover: *Eimeria roscoviensis pluvialina*

5. *Prophyrio prophyrio* (Linn.), Purple Moorhen: *Eimeria* sp.

6. *Vanellus malabaricus* (Boddaert), Yellow-wattled Lapwing: *Eimeria vanelli*

Order: CLUMBIFORMES

1. *Columba domestic* (= *Columba* sp.), Domestic Pigeon: *Eimeria labbeana, Eimeria* sp.

2. *Columba intermedia* [= *Columba livia intermedia* (Strickland)], Blue rock pigeon: *Eimeria columbae, Eimeria tropicalis, Eimeria kapotci, Eimeria columberum, Eimeria labbeana, Wenyonella columbae*

3. *Sphenocercus sphenocercus* (= *Treron* sp.), Kokla green Pigeon: *Eimeria sphenocercae*

4. *Streptopelia decaota* (Frivaldszky), Indian Ring Dove: *Eimeria choudari*

5. *Streptopelia orientalis* (Latham) Rufous Turtle Dove, *Eimeria labbeana*

Order: CORACIIFORMES

1. *Upupa epops orientalis* (Reichenbach) Hoope/Hudhud: *Isospora upupae*

Order: PSITTACIIFORMES

2. *Psittacula eupatria nepalensis* Hodgson, Large Indian Parakeet: *Isospora psittaculae*

Order: PICIFORMES

1. *Cyanops (=Megalaima) asiatica asiatica* (Latham), Blue throated Barbet: *Eimeria barbeta*
2. *Megalaima haemacephala* (Muller), Crimson breast Barbet: *Isospora megalaimae*
3. *Thereicryx zeylanicus caniceps [=Megalaima zeylanica caniceps (Franklin)]* Northern Green Barbet: *Isospora zosteropis*

Order: PASSERIFORMES

1. *Acridotheres ginginianus* (Latham), Bank Mayna: *Isospora ginginiana*; *Isospora lacazei*
2. *Acridotheres tristis tristis* (Linn.), Common Mayna: *Isospora ginginiana, Isospora gingiana tristis, Isospora lacazei, Isospora rajuli*
3. *Aethiopsar(=Acridotheres) fuscus fuscus* (Wagler), Jungle Mayna: *Dorisa aethiopsaris*
7. *Corvus macrorhyncus intermedius* (Adams), Jungle crow: *Isospora corvae*
8. *Corvus splendens* (Vieillot), House crow: *Isospora bengalensis*
9. *Crypsirina(=Dendrocitta) vagabunda* (Latham), Indian Tree Pie: *Dorisa vagabandae*
10. *Culicicapa ceylonensis catochrysea* Oberholser, Common Himalayan grey headed flycatcher: *Isospora ceylonensis*
11. *Dicrurus macrorcercus (=D. adsimilis) macrorcarcus* (Vieillot), Black Drongo: *Isospora upupae*
12. *Elathea (=Pycnonotus) jocosus emeria* (Linn.), Red Whiskered Bulbul: *Isospora psittaculae*
13. *Emberiza bruniceps* (Brandt.), Red headed Buntings: *Isospora emberizae*
14. *Grrulax lineatus lineatus* (Vigors), Streaked Laughing Thrush; *Isospora garrulae*
15. *Garrulus glandarius bispecularis* (Vigors), Jay: *Isospora garrulhsae*
17. *Leioptila capistrata*, Brck headed Sibia, *Isospora capistrata*
18. *Lonchura malabarica* (Linn.), Whitethroated Munia: *Dorisa chakrabartyi, Shivatoshella lonchurae*
19. *Lonchura punctulata* (Linn.), Spotted Munia: *Isospora lonchurae Dorisa chakrabartyi, Shivatoshella lonchurae*
21. *Munia atricapilla (=Lonchura malacca) rubroniger* (Hodgson), Chestnut bellied Munia (=Nepal Black headed Munia): *Dorisa hareni*
22. *Munia (=Lonchura) malacca malacca* (Linn.), Black headed Munia: *Dorisa hareni, Eimeria malaccae, Isospora muniae*
23. *Purus dichrous* (Hodgson), Brown crested Tit: *Isospora parusae*
24. *Passer domesticus* (Linn.), House sparrow: *Isospora lacazei, Dorisa passeris*
25. *Ploceus philippinus* (Linn.), Baya/Weaverbird: *Isospora lacazei*
26. *Pycnonotus cafer* (Linn.), Red-Vented Bulbul: *Isospora lacazei*
28. *Seicercus xanthochistos* (Gray headed Flycatcher: *Eimeria sp., Isospora seicercusae*
29. *Sturnia malabarica malabarica [=Sturnus malabaricus malabaricus* (Gmelin)], Grey headed Mayna: *Isospora struniae, Isospora malabaricae*
30. *Sturnia (=Sturnus) contra* (Linn.), Pied Mayna: *Isospora lonchurae, Isospora lacazei*
31. *Temenuchus (=Sturnus) pagodrum* (Gmelin), Black headed/ Brahminy Mayna: *Isospora temenuchii*
32. *Uroloncha (=Lonchura) malabarica* (Linn.), Whitethroated Munia: *Dorisa hareni*
33. *Uroloncha (=Lonchura) punctulata* (Linn.)/Spotted Munia: *Dorisa hareni*
34. *Zosterops palpebrosa palperosa* (Timminck), White eye: *Isospora zosteropis, Dorisa mandali*
EIMERIIDAE : EIMERIA

Class: MAMMALIA
Order: INSECTIVORA

1. Suncus murinus soccatus (Hodgson), House Shrew: *Eimeria darjeelingensis*
2. Suncus m. mnrinus Linn., House Shrew: *Eimeria suncus*

Order: CHIROPTERA

1. Taphozous melanopogon (Temminck , Black headed Tomb bat: *Eimeria andamanensis*
2. Harpicephalus harpia lasyurus (Hodgeon) Hairywinged Bat: *Dorisa harpia*

Order: RODENTIA

1. Funambulus palmarum (Linn.), Indian Plam Squirrel: *Eimeria malabaricus*
2. Funambulus tristrlatus Water House, Indian Tree Squirrel: *Eimeria malabaricus*
3. Sciurus sp, Squirrel, Wenyonella hoarei
4. Petaurista inornatus [=Petaurista petaurista (Pallas)], Common giant flying Squirrel: *Eimeria petauristae*
5. Rattus rattus rattus, Common Rat. *Eimeria levinei, Eimeria tuberculata, Isospora krishuamurthyi, Isospora aurangabadensis*

Order: LAGOMORPHA

1. Campanius ruficudatus [=Lepus nigricolis ruficudatus (Geoff.)], Black napp ed Hare: *Eimeria robertsoni*
2. Lepus americanas Erxleben, Snowshoe Rabbit: *Eimeria stiedai*
3. Lepus arcticus groenlandicus Rhoads, Greenland Hare: *Eimeria robertsoni, Eimeria hungarica*
4. Lepus europaeus Pallas, European Hare: *Eimeria robertsoni; Eimeria hungarica*
5. Lepus timidus Linn., Alpine (Varying) hare: *Eimeria stiedae*
6. Lepus townsendi campanius (Hollister), White-tailed Jack rabbit: *Eimeria robertsoni*
7. Lepus ruficudatus [=Lepus nigricollis ruficudatus (Geoff.)] Indian hare [=Black-napped hare]: *Eimeria irresidua, Eimeria leporis, Eimeria media, Eimeria minima, Eimeria perforans, Eimeria Punjabensis, Eimeria ruficudati, Eimeria sylvilagi, Eimeria magna*

9. *Sylvilagus brasiliensis minensis*, Brazilian hare: *Eimeria sylvilagi*

10. *Sylvilagus floridanus mallurus* (Thomas), Eastern Cotton tail: *Eimeria stiedae*

11. *Sylvilagus floridanus mearnsi* (J. A. Allen), Mearn’s Cotton tail: *Eimeria minima, Eimeria sylvilagi, Eimeria stiedae, Eimeria neoleporis*

12. *Sylvilagus nuttalli* (G. floridanus) granger...Cotton tail: *Eimeria stiedae*

Order: CARNIVORA

1. *Ailurus fulgens* S. cuvier, Red Panda, *Eimeria ailuri*

2. *Canis aureus* Linn., Asiatic Jackal: *Isospora tropicalis*

3. *Canis aureus naria*, Jackal: *Eimeria aurei*

4. *Canis familiaris* Linn. (=*Canis* sp.), Domestic dog: *Eimeria canis, Isospora bigemina, Isospora canis, Isospora revolta*

5. *Canis dingo* Link, Dingo: *Isospora rivolta*

6. *Felis catus* (=*F. domestica* Linn = *Felis* sp.), Domestic cat: *Eimeria cati, Isospora bigemina, Isospora felis, Isospora rivolta*

7. *Felis bengalensis* Keer, Leopard Cat: *Isospora nandankananeni, Isospora felina*

8. *Felis chaus* (Guldenstaedt), Jungle Cat: *Eimeria cati, Eimeria hammondi, Eimeria mathurai, Eimeria felina, Isospora rivolta*

10. *Herpestes auropunctatus* Hodgson, Small Indian Mongoose: *Eimeria pandei*

12. *Hyaena striata* (=*Hyaena hyaena* Linn.), Striped Hyaena: *Isospora levinei*

14. *Neofelis nebulosa* Linn., Clouded Leopard: *Isospora leopardi*

17. *Panthera pardus* (Linn.), Leopard: *Isospora pardusi*

18. *Vulpes bengalensis* Shaw, Bengal Fox: *Isospora buriatica*, *Eimeria lomarii*

19. *Vulpes corsac* (Linnaeus), Corsac Fox, *Isospora buriatica*

Order: Artiodactyla

1. *Ammotragus lervia* (= *Ovis tragelaphus*) (Paller), Barbary sheep: *Eimeria faurei*, *Eimeria parva*

2. *Antilope cervicapra* (Linn.), Black buck: *Eimeria antilocervi*, *Eimeria cheetali*, *Eimeria mrigai*

3. *Axis axis* (Erxleben), Chital or Spotted deer: *Eimeria wasielewskyi*, *Eimeria cheetali*, *Eimeria cervis*, *Eimeria sp.*

4. *Axis porcinus* (Zimmermann), Hog deer: *Eimeria paraha*

6. *Bos gaurus* (H. Smith), Gaur or Indian Bison: *Eimeria bovis*, *Eimeria gaurusi*

9. *Boselaphus tragocamelus* Pallas, Nilgai; *Eimeria tragocamelii*, *Eimeria nilgai*, *Eimeria yakimovi*

10. *Camelus bactrianus* (Linn.), Becterian or Two humped Camel: *Eimeria cameli*, *Eimeria dromedarii*

11. *Camelus dromedarius* (Linn.) One humped Camel: *Eimeria rajasthanii*, *Eimeria dromedarii*, *Eimeria cameli*

12. *Capra aegagrus* (Erxleben) Wild goat: *Eimeria ninakholuyakimovi*, *Eimeria crandallis*

14. *Capra ibex* (Linn.), Ibex/Ladakh goat/Alpine Ibex: *Eimeria arloingi*, *Eimeria crandallis*, *Eimeria ninakohlyakimovi*, *Eimeria parva*, *E. faurei*

15. *Capra siberica* (Pallas) Siberian Wild goat: *Eimeria ninakohlyakimovi*, *Eimeria parva*, *Eimeria crandallis*, *E. faurei*

16. *Capreolus capreolus* (Linn.), Roe deer: *Eimeria intricata*

18. *Cervus nippon hortulorum* Temminck, Sika Deer: *Eimeria wasielewskyi*

20. *Gazella gazella* (Pallas), Mountain Gazell: *Eimeria chinkari*, *Eimeria cheetali*

22. *Ovis ammon* Linnaeus, Argali: *Eimeria arloingi*, *Eimeria parva*, *Eimeria intricata*, *Eimeria crandallis*, *Eimeria faurei*

23. *Ovis aries* (Linn.) (=*Ovis* sp.), Domestic sheep: *Eimeria faurei*, *Eimeria crandallis*, *Eimeria intricata*, *Eimeria parva*, *Eimeria ninakohlyakimovi*, *Eimeria granulosa*, *Eimeria arloingi*, *Eimeria ovina*, *Eimeria ahsata*

25. *Ovis musimon* (Pallas), Mouflon: *Eimeria arloingi*, *Eimeria parva*, *Eimeria intricata*, *Eimeria crandallis*

26. *Ovis orientalis* (Gmelin), Asiatic Mouflon Oriental sheep: *Eimeria parva*, *Eimeria faurei*

27. *Rupicapra rupicapra* (Linn.), Chamois: *Eimeria faurei*

28. *Sus scrofa domesticus* (=*Sus* sp.1) Domestic Pig: *Isospora suis* *Isospora sp.* *Eimeria cerdonis*, *Eimeria debliecki*, *Eimeria polita*, *Eimeria perminuta*, *Eimeria scabra*, *Eimeria spinosa*, *Eimeria porci*, *Eimeria neodebliecki*

29. *Sus scrofa* Linn., Wild bore: *Isospora suis*, *Eimeria neodebliecki*

30. *Tetracerus quadricornis* Blainville, Four horned antelope/Chousingha: *Eimeria chousinghi*

31. *Tragulus minima* Erxleben, Mouse deer: *Eimeria ramgai*
Order: PERISSODACTYLA

1. *Equus asinus* Linnaeus; Donkey: *Eimeria leuckarti*
2. *Equus caballus* Linnaeus: Domestic horse: *Eimeria leuckarti*
3. *Hippopotamus amphibius* Hippopotamus: *Isospora hippopotami*

Order: PRIMATE

1. *Nycticebus coucang* (Bosdant), Slow loris: *Eimeria chousinghi, Eimeria nycticebi*

XIII PARASITE-HOST INDEX

 Host: *Nettapus cromandelianus*, Cotton Teal, Aves: Anseriformes
 Host: *Chenicus (=Nettapus) cromandelianus*, Cotton Teal, Aves: Anseriformes
 Host: (i) *Anser indicus*, Wild goose/Bar-headed goose, Aves: Anseriformes
 (ii) *Anas strepera*, Gadwall, Aves: Anseriformes
 (iii) *Anthya nyroca*, White-eyed Pochard, Aves: Anseriformes
 Host: *Enhydris enhydris*, Fresh-water snake, Reptilia: Ophidia
 Host: *Gekko gecko*, Takhak, Reptilia: Lacertilia
 Host: *Rattus rattus rattus* Linn., Common Rat, Mammalia: Rodentia
 Host: *Bellerica regulorum (=Belearica pavonina regulorum)*, Crowned Crane, Aves: Gruiformes
 Host: *Homo sapiens*, Man, Mammalia: Primate
 Host: *Corvus splendens*, House crow, Aves: Passeriformes.

Host:
- (i) *Canis familiaris* (= *Canis* sp.), Domestic dog
- (ii) *Felis catus* (= *F. domestica* = *Felis* sp.), Domestic cat and Pap, white Alsatian.

Mammalia: Carnivora

11. *Isospora buriatica* Yakimoff and Matschoulsky, 1940.

Host:
- (i) *Vulpes bengalensis*, Bengal Fox
- (ii) *Vulpes corsac*, Corsac Fox

Mammalia: Carnivora

Host: *Calotes versicolor*, Garden Lizard/Blood sucker, Reptilia: Lacertilia

Host: *Acquithalos concinnus rubricapillus*, Sikkim Red-headed Tit, Aves: Passeriformes

Host: *Canis familiaris* (= *Canis* sp.), Domestic dog, Mammalia: Carnivora

Host: *Leioptila capistrata*, Black headed Sibia, Aves: Passeriformes

Host: *Culicicapa ceylonensis caochrysea*, Common Himalayan grey headed flycatcher, Aves: Passeriformes

Host: *Milvus migrans*, Pariah Kite, Aves: Falconiformes

Host: *Gallus soneratti*, Grey jungle fowl, Aves: Galliformes

Host: *Corvus macrorhynchus intermedius*, Jungle Crow, Aves: Passeriformes

Host: *Natrix platyceps*, Grass snake, Reptilia: Ophidia

Host: *Herpestes mungo* (= *Harpestes edwardsi* Geoff.) Indian Grey Mongoose, Mammalia: Carnivora.

Host: *Felis bengalensis*, Leopard cat, Mammalia : Carnivora

Host: *Felis catus* (= *Felis* sp.), Domestic Cat, Mammalia :

Host: *Gallus domesticus* (= *Gallus* sp.), Domestic Fowl, Aves : Galliformes.

26. *Isospora garnhami* Bary, 1954,
Host: (i) *Herpestis mungo* (= *Herpestis edwardsi*), Indian Grey Mangoose, Mammalia : Carnivora.
(ii) *Halogala ungulata rufula* (= *Halogel permula undulata*), Dwarf Mongoose, Mammalia : Carnivora.

29. *Isospora ginginiana* Chakravarty and Kar, 1944,

Host: *Acridotheres tristis tristis*, Common Mayna, Aves : Passeriformes

Host: *Gyps bengalensis*, Indian white-backed Vulture, Aves : Falconiformes.

* Mentioned the species, but the entity of this species is doubtful (vide Pellerday, 1974) due to which the species has not included in the description part.
34. *Isospora hoarei* Bray, 1954.
Host: (i) *Halogale ungulata rufula* (= *Halogale pervula ungulata*), Dwarf Mammalia: Carnivora Mongosse
(ii) *Herpestis mungo* (= *Herpestis Edwardsii*), Indian Grey Mongoose
35. *Isospora hominis* (Railliet and Lucet, 1891), Wenyon, 1923.
Host: *Homo sapiens*, Man, Mammalia: Primate
37. *Isospora knowlesi* Ray and Das Gupta, 1937.
38. *Isospora locazei* (Labbe, 1893).
Host: (i) *Ploceus philippinus* Baya/Weaver bird, Aves: Passeriformes.
Host: *Rattus r. rattus* Rat: Mammalia: Rodentia.
Host: *Panthera leo*, Indian Lion, Mammalia: Carnivora.
Host: *Neofalis nebulous*, Clouded Leopard, Mammalia: Carnivora.
42. *Isospora levinei* Dubey, 1963.
Host: *Hyaena striata* (= *Hyaena hyaena hyaena*), Striped Hyaena Mammalia: Carnivora.
Host: (i) *Lonchura punctulata*, Spotted Munia, Aves: Passeriformes.
44. *Isospora malabaricae* Swarup and Chauhan, 1975.
Host: *Sturnia malabarica malabarica* [= *Sturnus malabaricus malabaricus*] Grey headed Mayna, Aves: Passeriformes.

* There is no subspecies like 'rattus' in India.
Host: Aix galericulata, Mandarin Duck, Aves: Anseriformes.

Host: (i) Pavo cristatus Common Pea fowl (ii) Pavo muticus Burmese Peafowl
 \{ \text{Aves} : \text{Galliformes} \}

47. Isospora megalaimae Mandal, Chakravarty, 1964.
Host: Megalaima haemacephala, Crimson breasted Barbet, Aves: Piciformes.

Host: Melopsittacus undulatus, Budgrigar, Aves: Psittaciformes.

49. Isospora minuta Mitra and Das Gupta, 1938.
Host: Naja naja, Asiatic or Indian Cobra, Reptilia: Ophidia.

Host: Panthera leo Lion, Mammalia: Carnivora.

51. Isospora muniae Chakravarty and Kar, 1944.
Host: Munia (= Lonchura) malacca, Black headed Munia, Aves: Passeriformes.

Host: Fellis bengalensis, Leopard Cat, Mammalia: Carnivora.

Host: Panthera leo Lion, Mammalia: Carnivora.

Host: Panthera pardus, Leopard, Mammalia: Carnivora.

55. Isospora parusae Ray and Shivanani, Oommen and Bhaskaran, 1952.

Host: (i) Psittacula eupatria nepalensis Large Indian Parakeet, Aves: Psittaciformes.

Host: Acridotheres tristis tristis, Common Mayna, Aves: Passeriformes
Host: *Ptyctolaemus* sp. Lizard, Reptilia: Lacertilia.

60. *Isospora rivolta* (Grassi, 1879) Wenyon, 1923.
Host: (i) *Canis dingo*, Dingo.
(ii) *Canis familiaris* (=*Canis* sp.), Domestic dog.
(iii) *Felis catus* (=*F. domestic* =*Felis* sp.), Domestic cat.
(iv) *Felis chaus*, Jungle Cat.

Host: *Gallus domesticus* (=*Gallus* sp.), Domestic fowl, Aves: Galliformes

Host: *Anas* sp. Khaki Camble duck, Aves: Anseriformes.

64. *Isospora* sp. Cooper and Gulati, 1926.
Host: *Bos taurus*, Domestic cattle, Mammalia: Artiodactyla.

Host: *Panthera leo*, Lion, Mammalia: Carnivora.

68. *Isospora* sp. Srivastava and Shaw, 1968.
Host: *Sus scrofa* (=*Sus* sp.), Domestic Pig, Mammalia: Artiodactyla.

Host: *Panthera leo*, Lion, Mammalia: Carnivora.

Host: *Panthera tigris*, Tiger, Mammalia: Carnivora.

Host: *Phasianus colchicus versicolor*, Japanese Green Pheasant.

* Reported but description not available.

75. *Isospora stomaticae* Chakravarty and Kar, 1944.
Host: *Bufo stomaticus*, Morbed Toad, Amphibia: Anura.

76. *Isospora sturniae* Chakravarty and Kar, 1947.

77. *Isospora suis* Biester and Murray, 1934.
Host: (i) *Sus scrofa domestica* (= *Sus* sp.), Domestic pig.
(ii) *Sus scrofa scrofa*, Wild Bore, Mammalia: Artiodactyla.

78. *Isospora temenuchii* Chakravarty and Kar, 1944.

Host: *Canis aureus*, Asiatic Jackle, Mammalia: Carnivora.

Host: (i) *Upupa epops orientalis* Hoope/Hudhud, Aves: Coraciiformes.
(ii) *Dicrurus macrocercus* (= *adsimilis*) *macrocarcus*, Black Drongo, Aves: Passeriformes.

82. *Isospora wenyoni* Ray and Das Gupta, 1935.
Host: *Bufo melanostictus*, Indian Common toad, Amphibia: Anura.

83. *Isospora zosteropis* Chakravarty and Kar, 1947.

* Reported but description not available.

47

Host: (i) *Lonchura malabarica*, White throated Munia, Aves: Passeriformes.

86. *Dorisa hareni* Chakravarty and Kar, 1944.
Host: (i) *Munia (=Lonchura) malacca*, Black headed Munia.
 (ii) *Munia atricapilla (=Lonchura malacca) rubroniger*, Chestnut Bellied Munia (=Nepal Black headed Munia).
 (iii) *Amandava amandava (=Estrilda amandava)*, Red Munia.
 (iv) *Uroloncha (=Lonchura) malabarica*, White throated Munia.
 (v) *Uroloncha (=Lonchura) punctulata*, Spotted Munia.

Host: *Harpicephalus harpia lasyurus*, Hairy Winged Bat, Mammalia: Chiroptera.

Host: *Cryptirina (=Dendrocitta) vagabunda*, Indian tree pie, Aves: Passeriformes.

Host: (i) *Lonchura punctulata*, Spotted Munia, Aves: Passeriformes.

Host: (i) *Gallus domesticus (=Gallus sp.)* Domestic fowl, Aves: Galliformes.
 (ii) *Colinus v. virgineus*, Bobwhite, Aves: Galliformes.
 (iii) *Lophortyx c. californica*, California Valley Quail, Aves: Galliformes.
 (iv) *Oreortyx picta picta*, Plumed Quail, Aves: Galliformes.
 (i) *Chrysolophus amherstiae*, Lady Amherst's Pheasant.
 (ii) *Meleagris g. gallopavo* (=*Melea­
 gris* sp.), Domestic Turkey.

Host: (i) *Ovis canadensis*, Rocky Mountain bighorn sheep.
 (ii) *Ovis* sp. Domestic sheep.
 (iii) *Capra hircus* (=*Capra* sp.) Do­mestic goat.

Host: *Ailurus fulgens* S. Cuvier, Red Panda, Mammalia: Carnivora.

96. *Eimeria alabamensis* Christensen, 1941.
Host: (i) *Bos taurus*, Domestic cattle.
 (ii) *Bos indicus* (=*Bos* sp.) Indian cattle.
 (iii) *Bubalus bubalis*, Indian Buffalo.

Host: *Burbus ambassi* (=*Puntius ambassi*), Barb, Pisces : Cyprini­formes.

Host: *Taphozoas melanopogon*, Black-headed Tombbat, Mammalia : Chiroptera.

Host: *Antilope cervicapra*, Black buck, Mammalia : Artiodactyla.

Host: (i) *Capra hircus* (=*Capra* sp.), Do­mestic goat.
 (ii) *Ovis* sp., Domestic sheep.
 (iii) *Capra ibex*, Ladakh goat/ Alpine Ibex.
 (iv) *Ovis canadensis*, Rocky moun­tain bighorn sheep.
 (v) *Ovis musimon* Mouflon.
 (vi) *Ovis ammon*, Argalie.
103. *Eimeria auburnensis* Christensen and Porter, 1939.
Host: (i) *Bos taurus*, Domestic cattle.
(ii) *Bos indicus* (=Bos sp.)
(iii) *Bubalus bubalis*, Indian Buffalo.

Host: *Canis aureus mara*, Jackal, Mammalia: Carnivora.

Host: *Funambulus palmerum*, Indian Plam Squirrel, Mammalia: Rodentia.

106. *Eimeria barbeta* Kar, 1944.
Host: *Cyanops (=Megala im a asiatica asiatica)*, Blue throated Barbet, Aves: Piciformes.

Host: (i) *Bubulus bubalis*, Indian buffalo, Mammalia: Artiodactyla.
(ii) *Bos indicus* (=Bos sp.) Indian cattle.

Host: *Coturnix coturnix coturnix*, Common Grey Quil, Aves: Galliformes.

Host: *Anas p. platyrhynchos domesticus* (= *Anas platyrhynchos platyrhynchos*) Mallard, Aves: Anseriformes.

Host: *Pseudobis papillosa*, Black Ibis, Aves: Ciconiformes.

Host: *Polypelectron bicoloratus bakeri*, Peasant, Aves: Galliformes.

Host: *Gekko gecko Takhok*, Reptilia: Lacertilia.

Host: (i) *Bos taurus*, Domestic cattle.
(ii) *Bos indicus* (=Bos sp.), Indian cattle.
(iii) *Bubalus bubalis*, Indian Buffalo.
(iv) *Bos gaurus*, Indian Bison or Gour.

Host: (i) *Bos taurus*, Domestic cattle.
(ii) *Bos indicus* (=Bos sp.) Indian cattle.
(iii) *Bubalus babalis*, Indian Buffalo.
Host: *Gallus domesticus* (= *Gallus* sp.) Domestic fowl, Aves : Galliformes.

Host:
(i) *Bubalus bubalis*, Indian Buffalo.
(ii) *Bos indicus* (= *Bos* sp.), Indian cattle.

Host:
(i) *Camelus dromedarius*, One humped Camel.
(ii) *Camelus bactrianus*, Bacterian or Two-humped Camel.

118. *Eimeria canadensis* Bruce, 1912.
Host:
(i) *Bos indicus* (= *Bos* sp.), Indian cattle.
(ii) *Bos taurus* Domestic cattle.
(iii) *Bubalus bubalis*, Indian Buffalo.

Host:
(i) *Canis familiaris* (= *Canis* sp.), Domestic dog.
(ii) *Felis catus* (= *F. domestica* = *Felis* sp.) Domestic cat.

120. *Eimeria catti* Yakimoff, 1933.
Host:
(i) *Felis catus* (= *F. domestica* = *Felis* sp.) Domestic cat.
(ii) *Felis chaus*, Jungle cat, Mammalia : Carnivora.

Host: *Sus scrofa domestica*, (= *Sus* sp.) Domestic pig, Mammalia : Artiodactyla.

Host: *Axis axis* Spotted deer, Mammalia : Artiodactyla.

Host: *Charadrius asiaticus*, Sand plover, Aves : Charadriiformes.

Host: *Tetracerus quadricornis*, Four horned antelope/Chausiingha, Mammalia : Artiodactyla.

Host: (i) *Antilope cervicapra*, Black buck.
(ii) *Axis axis*, Spotted deer or Chital.
(iii) *Gazella gazella*, Mountain Gazell

Mammalia: Artiodactyla

Host: *Gazella gazella*, Mountain Gazell, Mammalia: Artiodactyla.

Host: *Streptopelia decaocto*, Indian Ring Dove, Aves: Columbiformes.

Host: *Capra hircus (=Capra sp.*), Domestic goat, Mammalia: Artiodactyla.

Host: (i) *Alosa sardina*, Herring.
(ii) *Clupea harengus*, Herring.
(iii) *Sardina (=Clupea pilchardus)*, Sardine.
(iv) *Sparattus (=Clupea sprattus)*, Spart.
(v) *Engraulis encrasicolus*, Anchovy.
(vi) *Etrumeus micropus*, Round herring.
(vii) *Sardina melanosticta*, Sardine.
(viii) *Scomber scomber*, Mackerel, Pisces: Perciformes
(ix) *Homo sapiens*, Man, Mammalia: Primate

Pisces: Clupeiformes

Host: *Columba intermedia (C. livia intermedia)*, Blue rock Pigeon.
Aves: Columbiformes.

Host: *Columba livia intermedia*, Blue rock Pigeon, Aves: Columbiformes.

Host: *Coturnix coturnix coturnix*, Common Grey Quail, Aves: Galliformes.

Host: *Nycticebus coucang*, Slow loris, Mammalia: Primate.

Host:
(i) *Capra ibex*, Ladakh goat/Alpine Ibex/Ibex
(ii) *Ovis aries* (= *Ovis* sp.) Domestic sheep.
(iii) *Ovis c. canadensis*, Rocky Mountain bighorn sheep
(iv) *Capra hircus* (= *Capra* sp.), Domestic goat.
(v) *Capra aegagrus*, Wild goat.
(vi) *Capra siberica* Siberian Wild goat.
(vii) *Ovis amon*, Argali.
(viii) *Ovis musimon*, Mouflon.

Host:
(i) *Bos indicus* (= *Bos* sp.) Indian cattle.
(ii) *Bos taurus*, Domestic cattle.
(iii) *Bubalus bubalis*, Indian Buffalo.

Host: *Suncus murinus* House Shrew, Mammalia: Insectivora.

Host: *Amaurornis phoenicurus*, White-breasted Water-hen, Aves: Gruiformes

Host: *Muntiacus muntjak*, Barking deer, Mammalia: Artiodactyla.

140. *Eimeria debliecki* Douwes, 1921.

Host: *Sus scrofa* (= *Sus* sp.), Domestic pig, Mammalia: Artiodactyla.

Host:
(i) *Meleagris g. gallopavo* (= *Meleagris* sp.), Domestic Turkey
(ii) *Phasianus colchicus tarquatus*, Chinese Ring-necked pheasant
(iii) *Tetrastes bonasia*, Hazel hen.
(iv) *Colinus v. virgeneanus*, Bobwhite.
(v) *Coturnix c. coturnix*, Common Grey Quail.
(vi) *Gallus domesticus* (= *Gallus* sp.), Domestic fowl.
(vii) *Meleagris mexicana*, Mexican Turkey.
(viii) *Phasianus c. colchicus*, Common Ring-necked Pheasant.
142. *Eimeria dromedarii* Yakimoff and Matschoulsky, 1939.
Host: (i) *Camelus dromedarius*, One humped camel.
(ii) *Camelus bactrianus* Bactrian or two humped camel.
Mammalia: Artiodactyla.

Host: (i) *Bos indicus* (= *Bos* sp.), Indian cattle.
(ii) *Bos taurus*, Domestic cattle.
(iii) *Bubalus bubalis*, Indian Buffalo.
Mammalia: Artiodactyla.

Host: (i) *Capra hircus* (= *Capra* sp.), Domestic goat.
(ii) *Ovis aries* (= *Ovis* sp.), Domestic sheep.
(iii) *Ammotragus lervia* (= *Ovis tragelaphus*). Barbary sheep.
(iv) *Capra ibex*, Ladakh goat/Alpine Ibex/Ibex.
(v) *Capra siberica*, Siberian Wild goat.
(vi) *Ovis ammon*, Argali.
(vii) *Ovis musimon*, Mouflon.
(viii) *Ovis orientalis*, Oriental sheep.
(ix) *Rupicapra rupicapra*, Chamois.
Mammalia: Artiodactyla.

146. *Eimeria felina* Nieschulz, 1924.
Host: (i) *Panthera leo*, Lion.
(ii) *Felis chaus*, Jungle cat.
Mammalia: Carnivora.

Host: *Enhydris enhydris*, Fresh water snake, Reptilia: Ophidia.

Host: *Francolinus francolinus* Black Partridge, Aves: Galliformes.

Host: *Gallinago gallinago* (= *Capella gallinago gallinago*), Fantail Snipe, Aves: Charadriiformes.
Host: (i) *Meleagris g. gallopavo* (= *Meleagris* sp.), Domestic Turkey, Aves: Galliformes.
(ii) *Agriocharis ocellata*, Ocellated Turkey, Aves: Galliformes.

Host: *Bos gaurus* Gaur or Indian Bison, Mammalia: Artiodactyla.

Host: *Gennaeusc horsfieldi* (= *Lophura leucomeleina*), Kalij Pheasant, Aves: Galliformes

Host: *Glossogobius guiris*, Gobid fish, Pisces: Cypriniformes.

Host: *Numida meleagris*, Guinea Fowl, Aves: Galliformes.

Host: (i) *Ovis canadensis*, Rocky Mountain Bighorn sheep
(ii) *Ovis aries* (= *Ovrs* sp.) Domestic sheep.
(iii) *Capra hircus* (= *Capra* sp.), Domestic goat.

Host: (i) *Grus antigone*, Sarus crane
(ii) *Anthropoides vergo*, Demoiselle crane

Host: *Natrix (= Xenochrophis) piscator* Checkered Keelback, Reptilia: Ophidia.

Host: *Gallus domesticus* (= *Gallus* sp.), Domestic hen, Aves: Galliformes

Host: *Felis chaus*, Jungle Cat, Mammalia: Carnivora.

Host: *Harpodon nehereus*, Bombay duck, Pisces: Myctophiformes.

Host: *Bufo himalayanus*, Himalayan toad, Amphibia: Anura.

Host: (i) *Lepus europaeus*, European Hare. (ii) *Oryctolagus cuniculus* (= *Oryctolagus sp.*), Domestic rabbit.

Host: *Meleagris g. gallapavo* (= *Meleagris sp.*), Domestic turkey, Aves: Galliformes.

166. *Eimeria innominata* Kar, 1944.
Host: *Lissemys punctata*, Fresh Water Turtle, Reptilia: Chelonia.

Host: *Oryctolagus cuniculus* (= *Oryctolagus sp.*), Domestic rabbit, Mammalia: Lagomorpha.

Host: *Lissemys punctata*, Fresh Water Turtle, Reptilia: Chelonia.

Host: (i) *Lepus ruficaudatus* (= *Lepus nigricollis ruficaudatus*), Indian hare, Black-napped hare, Mammalia: Lagomorpha. (ii) *Oryctolagus cuniculus* (= *Oryctolagus sp.*), Domestic hare, Mammalia: Lagomorpha.

Host: *Columba livia intermedia*, Blue rock Pigeon, Aves: Columbiformes.

172. *Eimeria kermoganti* (Simond, 1901,) Braun, 1908.
Host: *Gavialis gangeticus*, Gharial, Reptilia: Crocodilia.
Host: Hemidactylus flaviviridis, House lizard, Reptilia: Lacertilia.

Host: Lissemys punctata, Fresh Water Turtle, Reptilia: Chelonia.

175. Eimeria lobbeana (Labbe, 1896), Pinto, 1938.
Host: (i) Columba domestica (=Columba sp.), Domestic Pigeon.
(ii) Columba intermedia (=Columba livia intermedia), Blue rock Pigeon.
(iii) Streptopelia orientalis, Rufous Turtle Dove.

Host: Bufo melanostictus, Indian Common Toad, Amphibia: Anura.

177. Eimeria legari (Simond, 1901), Reichenow, 1921.
Host: Emyda granosa (=Lissemys punctata granosa), Indian flap-shelled Turtle, Reptilia: Chelonia.

178. Eimeria leporis Nieschulz, 1923.
Host: Lepus ruficaudatus (=Lepus nigricollis ruficaudatus) Indian Black-napped hare, Mammalia: Lagomorpha.

179. Eimeria leuckarti (Flesch, 1883).
Host: (i) Equus asinus, Donkey. Mammalia:
(ii) Equus caballus, Horse. Perissodactyla.

Host: Rattus rattus rattus, Mammalia: Rodentia.

Host: Vulpes bengalensis, Bengal Fox, Mammalia: Carnivora.

Host: Lophura lucomelana, Aves: Galliformes.

Host: Motacilla alba alba, Pied White Wagtail, Aves: Passeriformes.

184. Eimeria magna Perard, 1925.
Host: (i) Oryctolagus cuniculus (=Oryctolagus sp.), Domestic Rabbit.
(ii) Lepus ruficaudatus (=L. nigricollis ruficaudatus), Indian hare/Black-napped hare.

Host: Pavo cristatus, Common peafowl, Aves: Galliformes.
Host: *Funambulus tristriatus* Indian Tree Squirrel, Mammalia: Rodentia.

Host: *Felis chaus*, Jungle Cat, Mammalia: Carnivora.

189. *Oryctolagus cuniculus (=Oryctolagus sp.), Domestic Rabbit,* Mammalia: Lagomorpha.

Host: *Gallus* sp. Chick, Aves: Galliformes.

Host: (i) *Mecistocephalus puntifrons* Centipede, Myriapoda: Chilopoda.

Host: (i) *Lepus ruficaudatus (=Lapus nigrigollis ruficaudatus)*, Indian hare/Black-napped hare, Mammalia: Lagomorpha. (ii) *Oryctolagus cuniculus (=Oryctolagus sp.), Domestic rabbit,* Mammalia: Lagomorpha.

Host: (i) *Meleagris gallopavo gallopavo* (=*Meleagris* sp.) Domestic Turkey. (ii) *Meleagris mexicana* Wild Turkey (iii) *Chrysolophus amherstiae* Lady Amherst’s Pheasant Aves: Galliformes.

Host: *Mabuya* sp., Skink, Reptilia: Lacertilia.
197. *Eimeria minima* Carvalho, 1943.
Host: (i) *Sylvilagus floridanus mearnsii* Mearn’s Cotton Tail
(ii) *Lepus ruficaudatus* (= *Lepus migricollis ruficaudatus*), Indian hare, Black napped hare.

Host: *Gallus domesticus* (= *Gallus sp.*), Domestic Fowl, Aves: Galliformes

Host: *Gallus domesticus* (*Gallus sp.*), Domestic fowl, Aves: Galliformes

Host: *Antilope cervicapra*, Black buck, Mammalia : Artiodactyla.

Host: *Oryctolagus cuniculus* (= *Oryctolagus sp.*), Domestic Rabbit, Mammalia : Lagomorpha.

Host: *Naja naja*, Asiatic or Indian Cobra, Reptilia ; Ophidia.

Host: *Gallus domesticus* (= *Gallus sp.*), Domestic fowl, Aves : Galliformes

Host: (i) *Sus scrofa domestica* (*Sus scrofa* = *Sus sp.*), Domestic pig, Mammalia : Artiodactyla.
(ii) *Sus scrofa*, Wild Bore, Mammalia : Artiodactyla.

205. *Eimeria neoleporis* Carvalho, 1942.
Host: (i) *Oryctolagus cuniculus* (= *Oryctolagus sp.*), Domestic Rabbit
(ii) *Sylvilagus floridanus mearnsi*, Mearn’s Cotton Tail

Host: (i) *Herpestes mungo* (= *Herpestes edwardsi*), Indian Grey Mongoose, Mammalia : Carnivora.

Host: *Bosilepus tragocamelus*, Nilgai, Mammalia : Artiodactyla.
208. *Eimeria ninakohlyakimovi* Yakimoff and Rastegaieff, 1930.
 Host: (i) *Ovis aries* (= *Ovis* sp.), Domestic sheep.
 (ii) *Capra hircus* (= *Capra* sp.) Domestic goat
 (iii) *Capra aegagrus*, Wild goat.
 (iv) *Capra siberica*, Siberian Wild goat.
 (v) *Capra ibex*, Alpine Ibex/Ladakh goat
 (vi) *Ovis canadensis*, Rocky Mountain Bighorn sheep

 Mammalia: Artiodactyla.

 (i) *Notopterus notopterus*, Feather Back.
 (ii) *Notopterus chitala*, Humped Feather Back.

 Pisces: Clupeiformes

 Host: *Numanius arquata*, Curlew, Aves: Charadriiformes.

 Host: *Nycticebus coucang*, Slow loris, Mammalia: Primate.

 Host: *Oryctolagus cuniculus* (= *Oryctolagus* sp.), Domestic Rabbit,
 Mammalia: Lagomorpha

 Host: *Ovis aries* (= *Ovis* sp.), Domestic sheep,
 Mammalia: Artiodactyla.

 Host: *Bubalus bubalis*, Indian Buffalo (calf), Mammalia: Artiodactyla.

 Host: (i) *Herpestes mungo* (= *Herpestes Edwardsi*), Indian Grey Mongoose.

 Mammalia: Carnivora.

Host: (i) *Ammotragus lervia* (*Ovis tragelaphus*), Barbary Sheep.
(ii) *Ovis aries* (*Ovis* sp.), Domestic sheep.
(iii) *Ovis orientalis*, Mouflon.
(iv) *Ovis ammon*, Argali.
(v) *Ovis canadensis*, Rocky Mountain Bighorn sheep.
(vi) *Capra siberica*, Siberian Wild goat.
(vii) *Capra ibex* Alpine Ibex/Ladakh goat.
(viii) *Capra hircus (= Cupra sp.*) Domestic goat.

Host: *Pavo cristatus*, Common peafowl, Aves: Galliformes.

Host: *Pavo cristatus*, Common peafowl, Aves: Galliformes.

Host: (i) *Bos indicus (= Bos sp.*), Indian cattle.
(ii) *Bos taurus* Domestic cattle.

Host: (i) *Lepus ruficaudatus (= Lepus nigrigollis ruficaudatus*), Indian hare/Black-napped hare, Mammalia: Lagomorpha.
(ii) *Oryctolagus cuniculus (= Oryctolagus sp.*), Domestic Rabbit, Mammalia: Lagomorpha.

Host: *Sus scrofa domestica (= Sus scrofa = Sus sp.*), Domestic pig.
Mammalia: Artiodactyla.

Host: *Sus scrofa* Linn. (*Sus sp.*), Domestic pig.
Mammalia: Artiodactyla.

Host: *Petaurista inornatus (= Petaurista petaurista*), Common giant flying Squirrel, Mammalia: Rodentia.

Host: (i) *Chrysolophus pictus*, Golden Pheasant.
(ii) *Lophura nycthemia nippone (= Lophura sp.*), Kalij Pheasant.
Host: *Natrix* (= *Xeochrophes* piscator, Checkered Keel Back, Reptilia : Ophidia.

Host: *Sus scrofa domestica* (= *Sus* sp.), Domestic pig, Mammalia : Artiodactyla.

Host: *Sus scrofa domestica* (= *Sus scrofa* = *Sus* sp.), Domestic pig, Mammalia : Artiodactyla.

Host: *Gallus domesticus* (= *Gallus* sp.) Domestic Fowl, Aves : Galliformes.

Host: *Lepus ruficaudatus* (= *Lepus nigricollis ruficaudatus*), Indian hare/Black-napped hare, Mammalia : Lagomorpha.

Host: *Camelus dromedarius*, One humped Camel, Mammalia : Artiodactyla.

Host: *Tragulus minima*, Mouse deer, Mammalia : Artiodactyla.

234. *Eimeria robertsoni* (Madsen, 1938), Carvalho, 1943:
Host: (i) *Lepus arcticus groenlandicus* Greenland Hare.
(ii) *Lepus townsendi campanius*, Whi
tailed Jack rabbit
(iii) *Lepus europaeus*, European Hare.
(iv) *Campanius ruficaudatus* (= *Lepus nigricollis ruficaudatus*), Indian hare/Black-napped Hare.

Host: (i) *Pluvialis apricaria*, Golden Plover, Aves : Charadriiformes.
(ii) *Motacilla a. alba* Pied or White Wagtail, Aves : Passeriformes.

Host: *Lepus ruficaudatus* (= *Lepus nigricollis ruficaudatus*), Indian hare/Black-napped hare, Mammalia : Lagomorpha.

238. *Eimeria sardinae* (Thelohan, 1890).
Host: (i) *Clupea harengus*, Herring, Pisces; Clupeiformes.
(ii) Sardina (= *Clupea pilchardus*, Sardine, Pisces; Clupeiformes.

Host: *Sus scrofa domestica* (= *Sus scrofa* = *Sus* sp.), Domestic pig, Mammalia: Artiodactyla.

Host: (i) *Aetobatis narinari* (= *Aetobatis flagellum*, Eagle Ray, Pisces: Rajiformes.
(ii) *Scoliodon sorarakowah*, Light Tip Shark, Pisces: Lamniformes.

241. *Eimeria* sp.
Host: *Culex* sp., Mosquito, Insecta: Diptera.

Host: *Axis axis*, Spotted deer, Mammalia: Artiodactyla.

243. *Emerla* sp., Cooper and Gulati, 1926.
Host: *Bos taurus*, Domestic Cattle, Mammalia: Artiodactyla.

Host: *Prophyrio prophyrio*, Purple Moorhen Aves: Charadriiformes.

Host: *Epinephelus tauvina*, Greasy reef cod, Pisces : Perciformes.

Host: *Plotossus canius* Canine cat-fish/Ell, Pisces : Siluriformes.

Host: *Engraulis mystax*, Must ached anchovy, Pisces : Clupeiformes.

Host: *Sillago sihima*, Silver Whiting, Pisces : Perciformes.

Host: *Batrachus grunniens*, Frog fish, Pisces : Batrachidiformes.

Host: *Otolithus ruber*, Rosy few fish, Pisces : Perciformes.
Host: *Francolinus franocolinus*, Black partridge, Aves: Galliformes.

Host: *Pycnonotus jocosus*, Red whiskered Bulbul, Aves: Passeriformes

*257. *Eimeria* sp.
Host: *Seicercas xanthostictos*, Grey headed flycatcher, Aves: Passeriformes

Host: *Columba* sp., Nagab pigeon/White pigeon, Aves: Columbiformes.

Host: *Muntiacus muntjak*, Barking deer, Mammalia: Artiodactyla.

Host: *Sphenocercus sphenocercus* (=*Treron* sp.), Kokla Green Pigeon. Aves: Columbiformes.

Host: *Sus scrofa domesticus* (=*Sus scrofa* =*Sus* sp.), Domestic pig, Mammalia: Artiodactyla.

263. *Eimeria stiedai* (Lindermann, 1865) Kisskalt and Hartmann, 1907.
Host: (i) *Lepus americanus*, Snowshoe Rabbit.
(ii) *Lepus timidus* Alpine hare (=Varying hare).
(iii) *Oryctolagus cuniculus* (=*Oryctolagus* sp.), Domestic Rabbit
(iv) *Sylvilagus floridanus mearnsii* Mearn’s Cotton tail.
(v) *Sylvilagus floridanus mallurus*, Eastern Cotton tail.
(vi) *Sylvilagus nuttalli* (=*floridanus*) grangeri, Cotton tail.

Mammalia: Lagomorpha
Host: *Natrix stolata* (= *Amphiesma stolata*), Striped Keelback, Reptilia : Ophidia.

265. *Eimeria subspherica* Christensen, 1941.
Host: (i) *Bos indicus* (= *Bos* sp.), Indian cattle.
(ii) *Bubalus bubalis*, Indian Buffalo.
(iii) *Bos taurus*, Domestic cattle.
Mammalia : Artiodactyla.

Host: *Suncus murinus*, House Shrew, Mammalia : Insectivora.

(i) *Lepus ruficaudatus* (= *Lepus nigricollis ruficaudatus*), Black naped hare/Indian hare.
(ii) *Oryctolagus cuniculus* (= *Oryctolagus* sp.), Domestic Rabbit.
(iii) *Sylvilagus brasiliensis minensis*, Brasilian hare.
(iv) *Sylvilagus floridanus mearnsi*, Mearn’s Cotton tail.
Mammalia : Lagomorpha.

Host: (i) *Francolinus francolinus*, Black partridge.
(ii) *Caccobis chukor* (= *Alectoris graeca*), Chuker partridge.
(iii) *Francolinus pondicerianus*, Grey Partridge.

269. *Eimeria tenella* (Railliet and Lucet, 1891), Fantham, 1909.
Host: *Gallus domesticus* (= *Gallus* sp.), Domestic Fowl, Aves : Galliformes.

Host: *Capra hircus* (= *Capra* sp.), Domestic goat, Mammalia : Artiodactyla.

Host: *Boselepus tragocamelus* Nilgai, Mammalia : Artiodactyla.

Host: *Trionyx gangeticus*, Gangetic Turtle, Reptilia : Chelonia.

Host: *Trionyx gangeticus*, Gangetic turtle, Reptilia : Chelonia.

Host: *Columba livia intermedia*, Blue rock Pigeon, Aves : Columbiformes.

Host: *Vanellus malabaricus*, Yellow Wattled Lapwing, Aves: Charadriiformes

Host: *Varanus monitor* (= *Varanus bengalensis*), Monitor lizard, Reptilia: Lacertilia.

Host: (i) *Bos indicus* (= *Bos* sp.), Indian cattle. (ii) *Bos taurus*, Domestic cattle. (iii) *Bubalus bubalis*, Indian Buffalo.

Host: *Boselepus tragocamelus*: Nilgai, Mammalia: Artiodactyla.

Host: (i) *Bos indicus* (= *Bos* sp.), Indian cattle. (ii) *Bos taurus*, Ox, Domestic cattle. (iii) *Bubalus bubalis*, Indian Buffalo.

Host: *Zygaena (= Spyrna) blochii*, Arrow header of Hammar headed Pisces: Lamniformes.

Host: *Anas platyrhynchos domesticus* (= *Anas platyrhynchos platyrhynchos*), Mallard, Aves: Anseriformes.

Host: *Coturnix coturnix*, Common Grey Quial, Aves: Galliformes.

Host: *Columba livia intermedia*, Blue rock Pigeon, Aves: Columbiformes.
Host: *Anas boschus* (= *Anas* sp.), Domestic duck, Aves: Anseriformes.

Host: *Gallus domesticus* (*Gallus* sp.), Domestic Fowl, Aves: Galliformes.

Host: *Sciurus* sp. Squirrel, Mammalia: Rodentia.

Host: *Mabuya* sp., Skink, Reptilia: Lacertilia.

Host: *Python* sp., Indian Python, Reptilia: Ophidia.

XIV. References

Bhatia, B. B. 1971b. Sporulated oocysts of eleven eimerian species in Indian cattle—a comparative study. *Bengal vet.*?

CHATTON, E. 1910. (Gastrocystis gilruthi n. g. n. sp.), *Bull. Soc. zool. Fr.* 35 : 197-198.

Das Gupta, M. 1938d. Observation on a coccidium Eimeria columbae n. sp. from the intestine of Indian pigeon, *Columba intermedia* Arch. *Protistenk.*, 91 : 105-110.

Doran, D.J. and Farr M.M. 1965. Susceptibility of 1 and 3 day—old chicks to infection with the coccidium, Eimeria acervulina. J. Protozool., 12 : 160-166.

EIMER, T. 1870. Über die ei-und Kugelonmigen sogenannten Psorospermien der wirbeltiere. Wurzburg.

GERARD, P. 1913. Le cycle evolutif d’ une nouvelle coccidie aviaire,

GILL, B. S. 1954a. Speciation and viability of poultry coccidia in 120
feecal samples preserved in 2.5 percent potassium dichromate

GILL, B. S. 1954b. Transmissibility of turkey coccidia (*Eimeria meleagrides*, *E. meleagritmis* and *E. gallopavonis*) to chickens. *Indian

GILL, B. S. 1954c. On the pathogenicity of *Eimeria acervulina* (Tyzzer,

GILL, B. S. 1955. Review on the differential characters of poultry

GILL, B. S. 1956a. *Coccidia and Coccidiosis of bovines in India*. An
unpublished paper presented before the Disease Investigation
Officers and Research workers, Izatnagar.

GILL, B. S. 1961. Incidence of *Eimeria necatrix* infection in Indian

GILL, B. S. 1968. The coccidian oocysts (Protozoa : Sporozoa) of

GILL, B. S. 1973. On the validity of *Eimeria bombayensis* Rao and
Hiregaudar, 1953-1954, *E. khurodensis* Rao and Hiregaudar,
munduragi* Hiregaudar, 1956, *E. wyomingensis* Huizing and
Winger, 1942 and *E. bukidnonensis* Tubangui, 1931 of cattle and

GILL, B. S. and BAJWA, R. S. 1979. Drug resistance in field isolates
of chicken coccidia from Punjab State. *Indian J. Parasit.*, 3(2) ;
131-134.

HAKE, J. G. 1839. A treatise on varicose, capillaries, as constituting the structure of charchinoma of the hepatic ducts, and developing the law and treatment of morbid growths with an account of a new from of pus globule. London 4.

Kisskalt, K. J. and Hartmann, M. 1907. *Practicum der Bakteriologie und protozoologie*, Jena. p.?

EIMERIIDAE 415

Munjrekar, S. L. 1954. Annual progress report of Assistant disease Investigation officer (Sheep and goats), Bombay State. 1.

NIESCHULZ, O. 1923. Uber Hasenkakakzidien (*Eimeria leporis* n. sp.). *Dtost. tieriinztl. Wschr.*, 31 : 245-247,

Patnaik, M. M. 1965b. *Eimeria pavonis* n. sp. and *E. cristata* n. sp. from Indian Peacock (*Pavo cristatus*). *Indian J. Microbiol.*, 5 (4) : 45-47.

SCHOLTYSECK, E. 1965a. Elektronemkroskopische Untersuchungen über
die Schizogonie bei Coccidien (E. perforans und E. stiedai). Z.
Parasitkde., 26 : 50-62.

SCHOLTYSECK, E. 1965b. Die Microgametenentwicklung von Eimeria

SCHOLTYSECK, E. 1968. Neue Einblicke in die Parasit-Wirt-Beziehungen

SCHOLTYSECK, E., HAMMOND, D. M. and CHOBOTAR, B. 1967. Pinocy­
tosis in the coccidium Eimeria auburnensis from cattle. J.

structure of the macrogametes of Eimeria perforans. E. stiedae, E.

SCHOLTYSECK, E., KEPKA, O. and PIEKARSKI, G. 1970. Die Feinstruktur
der Zoiten aus reifen cysten des sog. M. Organismus (Frenkelia

SCHOLTYSECK, E. and STROUT, R. G. 1968. Feinstrukturuntersuchungen
über die Nahrungsaufnahme bei Coccidien in Gewebkulturen

SCHOLTYSECK, E., STROUT, R. G. and HABERKORN, A. 1969. Schizonten
und Merozoiten von Eimeria tenella in Marrophagen. J. Para­

SCHOLTYSECK, E., VOLKMAN, B., and HAMMOND, D. M. 1966. Spezi­
fische Feinstrukturen bei Parasit und Wirt als Ausdruck ihrer
Wechselwirkungen and Beispiele von Coccidien. Z. Parasitkde.,
28 : 78-94.

et de la schizogonic des Coccidies (Eimeriana) : Eimeria magna
(Perard, 1925) de L intestin des lapins et Eimeria tenella
(Railliet et Lucet, 1891) des cocciums des prontets. J. Protozool.,
16 : 155-165.

Sharma, R. M. 1951-52. Annual Report Asstt. Disease investigation officer (sheep and goat), Punjab, pp. 43-44.

MANDAL : FAUNA OF INDIA : PROTOZOA

Wasielewsky, T. 1904. Studien und Mikrophotogramme zur kenntnis der pathogenen protozoen. Leipzing. p ?

XV. GLOSSARY

Anisogamy: Conjugation between dissimilar gametes.

Association: A group formed by the attachment of two or more sporonts.

Binaryfission: A mode of reproduction in which the division of the nucleus into two is followed by the division of the cell.

Coccidia: Telosporidia in which the mature trophozoite is intracellular and small, the zygote is non-motile, and the sporozoites are developed within a spore.

Coccidiomorpha: Term used by Doflein to include coccidia and Haemosporidia.

Coelozoic: Parasites that live in the lumen of the alimentary canal or other cavities in the body of the host.

Conjugation: Union of two organisms leading to reproduction by germs or spores.

Cyst: Impervious membrane surrounding an organism or a pair of associated sporonts at the beginning of reproduction.

Cytozoic: Parasites that are lodged inside a cell.

Eimeridea: Coccidia in which the gametocytes are similar in size and develop independently.

Encystment: The phenomenon of becoming motionless, excreting a membranous cyst.

Episore: The outer covering of a spore.

Gamete: Specialized cells tend to meet and fuse in conjugation.

Gametocyst: The cyst formed round two associated sporonts or gametocytes.

Gametocyte: The mother-cell which gives rise to a number of gametes.

Gamogony: The process of production of gametocytes or gametes by a gamont.

Gamont: An individual tend to form gametes; also known as sporont.

Histozoic: Parasites that occur in the spaces between groups of cells.

Holozoic: Animals which are entirely dependent for food on other organisms, which they capture, devour and digest.
ISOGAMETES: Gametes which are similar in shape and size.
ISOGAMY: Conjugation between similar gametes.
KARYOSOME: A chromatic mass surrounded by plastin within the nucleus.
MACROGAMETE: The larger or inactive gamete in anisogamous conjugation.
MABROGAMETOCYTE: The mother-cell of the macrogametes.
MERozoites: A product of asexual reproduction or schizogony.
MICROGAMETOCYTES: The mother-cell of microgametes.
MITOCHONDRIA: Minute cytoplasmic inclusions, occurring in the form of spherical granules or rod-shaped or criscentic bodies inside the cell.
MITOTIC: Indirect division of the nucleus, which is accompanied by the formation of spindle of threads.
MONOSPOROUS: Developing into a single spore.
MULTINUCLEATE: Possessing many nuclei.
MUltIPLE FISSION: A mode of reproduction in which the division of the nucleus is not immediately followed by the division of the cell, but, after repeated nuclear division, the cell divides into as many parts as there are nucleus.
NUCLEOUS: A minute, more solid particle developed singly or in varying number within the nucleus of an animal or vegetable cell.
NUCLEUS: More densely granular body within the substance of an animal or vegetable cell.
OCTOSPOROBLASTIC: Producing eight sporoblasts.
OCTOSPOROUS: Producing eight spores.
OCTOZOIC SPORE: A spore containing eight sporozoites.
OOCYST: A cyst containing the conjugated gametes.
PARASITE: An organism living in or upon the body of another organism and dependant for its existence on that organism or a limited group of organisms.
SCHIZOGONY: A sexual or agamic reproduction by equal, unequal or multiple division.
SCHIZONT: The stage which is about to divide into a number of parts called merozoites.
Spore: The body into which the zygote develops after the acquisition of a resistant outer coating.

Sporoblast: A product of the initial reproduction of the zygote, including both capsule and contents; a cell which develops directly into a spore.

Sporocyst: The covering or coverings of the spore. Sometimes used in the same sense as a spore.

Sporogony: The development of spores from the sporont.

Sporont: An adult sporozoan which is destined to form gametes or to give rise to sporoblasts.

Sporoplasm: The protoplasmic mass inside the spore.

Sporozoite: Each of the small falciform bodies which are released when the spore-wall is absorbed.

Syngamy: Sexual union or conjugation involving a complete fusion of two gametes.

Trophozoite: The young feeding and growing parasite.

Vacuolate: Having a number of clear spaces or vacuoles.

Vermicular: Resembling a worm in shape.

Zygote: The cell resulting from the complete fusion of two gametes.
XVI. SUBJECT INDEX

A

Acridotheres 65, 66, 70, 83, 119

ginginianus 65, 70, 357

ginginiana 64, 65

tristis tristis 66, 357, 83

fuscus 119

Aetobatus 135, 351

flagelum 135

narinari [= Aetobatus] 135, 351

Aethiopsar 119

fuscus fuscus 119

Aegithalos 59, 357

concinnus rubricapillus 59, 357

Agriocharis 354

cellata 354

Ailurus 225, 360

fulgens 225, 360

Aix 74, 353

galericulata 74, 353

Alectoris 165, 354

graeca 165, 354

Alosa 351

sardina 257, 351

Amandava 121, 357

amandava 121, 357

Amaronis 180, 355

phoenicurus 180, 355

Ammatragus 270, 361

lervia 270, 361

Anas 345, 353

boschus 345, 353

platyrhyncus platyrhyncus 166, 170, 343, 353

domesticus 38

strepera 41

querquedula 347, 353

Anas sp. 90, 166, 353

Amphiesma 353

stolata 156, 353

Anser 41, 354

indicus 41, 354

Antilope 229, 254, 291, 361

cervicapra 229, 254, 291, 361

Anthropoides 187, 355

vergo 187, 355

Axis 252, 254, 336, 341, 361

axis 252, 254, 336, 341, 361

porcinus 305, 361

Aythya 41, 354

nyroca 41, 354

B

Batrachus 139, 352

grunniens 139, 352

Bellerica 54, 356

regulorum 54, 356

Bos 240, 272, 361

gaurus 240, 248, 272, 361

indicus 226, 233, 240, 245,

248, 361

taurus 226, 233, 361

Boselaphus 296, 333, 338, 361

tragocamelus 296, 333, 338, 361

Bubalus 226, 233, 238, 240, 244,

245, 248, 361

bubalis 226, 233, 238, 240, 244,

245, 248, 361

Bufo 142, 352

himalayanus 142, 352

melanostictus 143

stomaticus 45, 352

Burbus 131, 351

ambassis 131, 351
Coccobis 212, 354
 chukor 212, 354
Calotes 48, 352
 versicolor 48, 352
Camelus 247, 361
 bactrianus 247, 266, 361
 dromedarius 247, 266, 317, 361
Campanius 320, 359
 ruficaudatus 320, 359
Canis 360
 aureus 114, 360
 aureus naria 236, 360
 familiaris 94, 112, 249, 360
 dingo 2, 112, 249, 360
 Canis sp. 94, 249
Capra 361
 aegagrus 259, 361
 hircus 259, 362
 ibex 259, 362
 siberica 259, 362
 Capra sp. 259
Capreolus 278, 362
 capreolus 278, 362
Caryospora 41
 bengalensis 42
 gekkonis 41
Cervus 362
 elephus elephus 336, 362
 nippon hortulorum 336, 362
Charadrius 175, 356
 asiaticus 175, 356
Chenicus 354
 coromandelianus 39, 40, 354
Chrysophorus 354
 amherstiae 164, 354
 pictus 354
Clupea 351
 harengus 322, 257, 351
 pilchardus 322, 257, 351
 sprattus 257, 351
Colia 137, 351
 dussumieri 137, 351
Colinus 162, 181, 354
 v. virgeneanus 162, 181, 354
Columba 356
 domestica 191, 356
 intermedia 177, 356
 livia 178, 356
 livia intermedia 177, 344, 190, 178, 356
 Columba sp. 178, 190, 356
Copsychus 70, 357
 saularis 70, 357
Corvus 54, 357
 macrorhyncus intermedius 61, 357
 splendens 357
Coturnix 354
 coturnix 354
 coturnix coturnix 169, 179, 181, 343, 354
Crypsirina 357
 vagabunda 123, 124, 357
Culex 350
 Culex sp. 130, 350
Culicicapa 357
 ceylonensis calochrus 56, 357
Cyanops 357
 asiatica asiatica 167, 357
Dama 278, 362
 dama 357
Dicrurus 87, 357
 macrocercus (= adsimilis) 87, 357
 macrocercus 87, 357
 adsimilis macrocercus 87, 357
Dendrocitta 357
 vagabunda 123, 124, 357
Dorisiella (= Dorisa) 118, 370
 aethopsaris 118, 370
 chakrovartyi 119, 370
 hareni 120, 370
 harpia 124, 370
 mandali 122, 370
 passeres 122, 370
 vagabundae 123, 370

E

Eimeria 126, 370
 acervulina 161
 adenoeides 163
 ahsata 222
 aituri 224
 alabamensis 225
 alectorae 165
 ambassi 131
 anatis 165
 andamensis 227
 antelocervi 229
 arloingi 229
 auburnensis 232
 aurei 235
 bandipurenensis 236
 barbeta 166
 bareillyi 237
 bateri 168
 battaki 169
 bazei 170
 bhutanensis 171
 bonganensis 144
 bovis 239
 boehmi 243
 brasiliensis 243
 brunetti 174
 bukidnonensis 244
 cameli 246
 canadensis 247
 canis 248
 cati 249
 cerdonis 250
 cervis 251
 charadrii 173
 cheetal 253
 chinkari 254
 choudaryi 175
 chousinghi 252
 christensenii 255
 clupearum 256
 columbae 176
 colombarum 177
 coturnicis 178
 coucangi 257
 crandallis 258
 cyanophlyctis 140
 cylindrica 260
 darjeelingensis 261
 dauki 179
 dawari 263
 debliecki 264
 dispersa 180
 dromedarii 266
 dubeyi 181
 ellipsoidalis 267
 faurei 269
 felina 271
 fibrilosa 145
 flaviviridis 146
 francolins 182
 gallinagoi 183
 gallopavonis 184
 gaurusi 271
 gennaeus 185
 glossogobii 133
 gorakhpurii 185
 gorakhpurenensis 185
 granulosa 272
 grusi 187
gupti 147
hagani 188
hammondii 254
harpodoni 132
hemidactyl 148
himalayanum (= himalayana) 144
hungarica 259
innocua 189
innominata 149
intestinalis 275
intricata 277
irregularis 148
irresidua 279
kapotei 189
kermoganti 151
knowlesi 151
koormae 150
labbeana 190
laminata 142
legari 152
leporis 280
leuckarti 281
lomari 284
lophurae 191
lucknowensis 192
levinei 283
magna 285
mandali 193
malabaricus 287
malaccae 192
mathurai 287
matsubayashii 288
maxima 199
mayuri 195
mecistophori 127
media 284
meleagridis 197
meleagrismitis 198
minetti 153
minima 290
mitis 200
mivati 201
mrigai 291
nagpurensis 292
najae 153
necatrix 203
neodebliecki 293
neoleporis 294
newalai 295
nilgai 296
ninakohlyakimov 297
notopteri 134
numenii 204
nycticebi 299
oryctolagi 300
ovina 300
ovoidalis 302
pandei 303
parahi 304
patnaiki 205
parva 305
pavonina 206
pavonis 206
pellita 307
perforans 308
perminuta 310
perminuta mathurai 311
petauristae 312
picus (= pica) 207
piscatori 154
polita 313
porci 314
praecox 208
punjabensis 316
rajasthanii 317
ramgai 318
robertsoni 318
roscoviensis pluvialina 207
ruficaudati 320
sardari 321
sardinae 322
scabra 323
southwelli 135
sphenocercae 211
spinosa 324
stiedae 326
stiedai 326
stolatae 155
subspheric 328
suncus 329
sylvilagi 330
teetari 211
tenella 213
tirupatiensis 331
tragocameli 332
triangularis 157
trionyxae 156
tropicalis 334
tuberculata 216
vanelli 217
vanburghavi 158
varani 335
wesielewskyi 336
wyomingensis 337
yakimovi 338
zuernii 338
zygaenae 137
Eimeria sp. 137, 138, 139, 218, 341

Enhydris 353
enhydris 42, 145, 353
Epinephelus 351
diacanthus 138, 351
tauvina 139, 351
Estrilda 357
amandava 121, 357
Etrumeus 351
micropus 257, 351
Equas 363
asiatus 282, 363
caballus 282, 363

F
Felis 360
catus 98, 271, 360
bengalensis 360
chaus 112, 271, 249, 274, 288, 360
domestica 94, 98, 249, 271, 360

Francolinus 354
francolinus 183, 354
pondicerianus 212, 354

Fulica 356
atra atra 218, 356

Funambulus 359
palmarum 359
tristriatus 287, 359

G
Gallinago 356
gallinago 183, 356

Gallus 354
domesticus 354
gallus 182, 218, 355
soneratti 58, 218, 355

Garrulus 358
lineatus lineatus 63, 358
Garrulus 358
glandarius bispecific 64, 358
Gavialis 353
gangeticus 151, 353
Gazella 362
gazella 254, 255, 362
Gekko 352
gcko 42, 144, 352
Gennaecus 355
horsefieldi 185, 355
Glossogobius 351
giuris 133, 351
Gracula 358
religiosa 67, 358
Grus 356
antigone 356
Gyps 354
bengalensis 68, 354
H
Halogale 360
ungulata rufula 99, 102, 360
Harpadon 352
nehereus 192, 352
Harpicephalus 359
harpia lasyurus 125, 359
Hemidactylus 352
flaviviridis 49, 147, 148, 152, 352
Herpestes 360
mungo 97, 100, 296, 304, 360
edwardsi 97, 100, 102, 296, 360
auropunctatus 360
Hippopotamus 363
amphibius 101, 363
Homo 363
sapiens 93, 103, 257, 322, 363
Hyaena 360
striata (hyaena hyaena) 107, 360
I
Isospora 43, 363
aurangabadensis 92
bellericae 54
meleopsittacus 76
minuta 50
mohini 108
muniae 77
nandankananensis 109
pantheri 109
pardusi 78
parusae 78
psetaculæ 79
pycnonota 81
pycnonotusi 81
rajuli 82
rayi 51
rivolta 111
scicercusae 83
stomaticae 44
sturniae 84
suis 112
temenuchii 85
tropicalis 114
upupe 86
ursi 114
wenyonii 45
zosteropis 87
Isospora sp. 88, 89, 90, 115, 116, 117

L
Leioptila 358
capistrata 55, 358
Lepus 359
americanas 327, 359
arcticus groenlandicus 320, 359
europæus 275, 359
timidus 359
tounsendi campanius 320, 359
ruficauðatus 359
nigricolis ruficauðatus 359
Lissemys 353
punctata 149, 150, 151, 353
punctata granosa 153, 353

Lonchura 358
malacca malacca 358
malabarica 120, 126, 358
punctulata 72, 120, 126, 358
Lophoryx 355
californica californica 162, 355
Lopha 355
leucome 192, 355
nycthemera nippon 208, 355
(= Lopha 355)

M
Mabuya 352
Mabuya sp. 153, 349, 352
Macaca 363
radiata 117, 363
Mecistocephalus 350
puntifrons 128, 350
Megalaima 357
asiatica asiatica 167, 357
haemacephala 76, 357
zeylanica caniceps 88, 357
Meleagris 355
gallopavo gallopavo 164, 188,
mexicana 197, 355
Melopsittacus 356
undulatus 77, 356
Melursus 360
ursinus 115, 360
Milvus 354
migrans 58, 354
Motacilla 358
alba alba 358
alba 90, 192, 346
Munia 358
atricapilla 121, 358
malacca malacca 78, 193, 121,
muntjak 263, 322, 362
Muntiacus 362
Muntjilak 263, 322, 362
N
Naja 353
 naja 50, 154, 353
Natrix 353
 (= Xenochrophis) = piscator
 platyceps 48, 353
 stolata 156, 353
Neofelis 360
 nebulosa 106, 360
Nettapus 354
 coromandelianus 39, 354
Notopterus 351
 notopterus 134, 351
 chitala 135, 351
Numanius 356
 arquata 205, 356
Numida 355
 meleagris 186, 355
Nycticebus 363
 coucang 299, 363

O
Octosporella 349, 389
 mabuiae 349, 389
Oreotryx 355
 picta picta 162, 355
Oryctolagus 360
 cuniculus 360
 Oryctolagus sp. 360
Otolithus 351
 ruber 351
Ovis 362
 ammon 362
 aries 362
 canadensis 362
 musimon 362
 orientalis 362
 Ovis sp. 362

P
Panthera 361
 tigris 360
 leo 105, 108, 110, 271, 361
 pardus 111, 361
Parus 358
 dichrous 79, 358
Passer 358
 domesticus 70, 122, 358
Pavo 355
 cristatus 74, 196, 355
 muticus 196, 355
Petaurista 359
 inornatus 313, 359
 petaurista 313, 359
Phasianus 355
 colchicus 181, 355
 colchicus torquatus 181, 355
 (= colchicus) versicolor 69, 355
Pluclus 358
 philippinus 70, 358
Plotosus 352
 canius 137, 352
Pluvialis 336
 apricaria 210, 356
Polyplectron 355
 bicoloratus bakert 172, 355
Prophrio 356
 prophyerio 219, 356
Pseudibis 353
 papilosa 171, 353
Psittacula 357
 eupatria nepalensis 80, 357
Ptyctolaemus 352
 Ptyctolaemus sp. 51, 352
Puntius 351
 ambasis 131, 351
Pycnonotus 358
 cafer 70, 358
 jocosus 81, 358
Python 353
 Python sp. 350, 353
Pythonella 349, 353
 bengalensis 350, 353

R
Rana 352
cyanophlyctis 141, 352
tigrina 46
limnocharis 46
Rattus 359
 rattus 359
 rattus rattus 92, 104, 284, 334, 359
Rupicapra 362
 rupicapra 270, 362
Sardina 351
 melanosticta 257, 351
 (= pilchardus)

S
Sciurus 359
 Sciurus sp. 348, 359
Scoliodon 351
 sorarakowah 135, 351
Scomber 351
 scomber 257, 351
Sicercus 358
 xanthoschistos 84, 358
Shivatoshella 126, 370
 lonchurae 126, 370
Sillago 351
 sihama 138, 351
Shpanocercus 356
 sphenocercus 211, 356
Sphyrna 352
 blochii 137 352
Sparattus 351
 sprattus 275, 351

Streopelia 356
 decaota 175, 356
 orientalis 191, 356
Sturnia 358
 malabarica malabarica 73, 85, 358
 contra 70, 72, 358
Sturnus 358
 pagodrum 86, 358
Suncus 359
 murinus sociatus 262, 359
 m. murinus 330, 359
Sus 362
 scrofa domestica 362
 scrofa scrofa 362
Sylvilagus 360
 brasilienensis minensis 360
 floridanus mearnsii 360
 nuttali grangeri 360
 floridanus mallurus 360
 floridanus grangeri 360

T
Taphozous 359
 melanopogon 228, 359
Temenechus 358
 pagodrum 86, 358
Tetracerus 362
 quadricornis 252, 362
Tetrastes 355
 bonasia 181, 355
Thereiceryx 357
 zeylanicus caniceps 88, 357
Tragulus 362
 minima 318, 362
Trichiurus 351
 sarala 139, 351
Trionyx 353
 gangeticus 157, 353
Tyzzeria 38, 363
 alleni 39, 363
 chenicusae 39, 363
 pellerdyi 40, 363

U
Upupa 356
 eppopos orientalis 87, 356
Uroloncha 358
 malabarica 121, 358
 punctulata punctulata 121, 358

V
Vanellus 356
 malabaricus 217, 356
Varanus 352
 monitor 159, 352
Vulpes 361
 bengalensis 285, 361
 corsac 95, 361

W
Wenyonella 341
 anatis 342, 388
 columbae 344, 388
 gagari 345, 389
 hoaeri 347, 389
 pellerdyi 347, 389
 bahli 343, 388
 gallinae 345, 389
 mackinnoni 346, 389

X
Xenochrophis 353
 piscator 353

Z
Zosterops 358
 palpebrosa palpebrosa 88, 122, 358
Zygaena 352
 blochii 137, 352
ERRATA

<table>
<thead>
<tr>
<th>Page</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>15th, 17th & 19th line from top</td>
</tr>
<tr>
<td>40</td>
<td>11th Line from top</td>
</tr>
<tr>
<td>41</td>
<td>4th line from top</td>
</tr>
<tr>
<td>48</td>
<td>9th line from top, 11th line from top & 5th line from below</td>
</tr>
<tr>
<td>56</td>
<td>12th line from top & 13th line from top</td>
</tr>
<tr>
<td>80</td>
<td>6th line from top</td>
</tr>
<tr>
<td>81</td>
<td>8th line from top</td>
</tr>
<tr>
<td>100</td>
<td>9th line from top</td>
</tr>
<tr>
<td>104</td>
<td>2nd line from top</td>
</tr>
<tr>
<td>105</td>
<td>4th line from top</td>
</tr>
<tr>
<td>112</td>
<td>14th line from top & 16th line from top</td>
</tr>
<tr>
<td>132</td>
<td>with in figure</td>
</tr>
<tr>
<td>142</td>
<td>4th line from top</td>
</tr>
<tr>
<td>147</td>
<td>10th line from below & 13th line from below</td>
</tr>
<tr>
<td>148</td>
<td>3rd line from below</td>
</tr>
<tr>
<td>149</td>
<td>6th line from top</td>
</tr>
<tr>
<td>163</td>
<td>20th line from top</td>
</tr>
<tr>
<td>165</td>
<td>last line</td>
</tr>
<tr>
<td>167</td>
<td>3rd line from below</td>
</tr>
<tr>
<td>173</td>
<td>24th line from top</td>
</tr>
<tr>
<td>185</td>
<td>17th line from top</td>
</tr>
<tr>
<td>196</td>
<td>3rd line from top & 3rd line from below</td>
</tr>
<tr>
<td>202</td>
<td>18th line from below</td>
</tr>
<tr>
<td>205</td>
<td>19th line from top</td>
</tr>
<tr>
<td>208</td>
<td>9th line from top</td>
</tr>
<tr>
<td>213</td>
<td>1st line</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Printed as</th>
<th>Read as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dasgupta</td>
<td>Das Gupta</td>
</tr>
<tr>
<td>A.C.S.</td>
<td>Sarkar</td>
</tr>
<tr>
<td>esch</td>
<td>each</td>
</tr>
<tr>
<td>meaozoites</td>
<td>merozoites</td>
</tr>
<tr>
<td>residud</td>
<td>residual</td>
</tr>
<tr>
<td>Puff (Ital)</td>
<td>Puff (Roman)</td>
</tr>
<tr>
<td>author's</td>
<td>collections of the describer</td>
</tr>
<tr>
<td>Sinha, Chottoraj</td>
<td>Sinha, Sinha, Chottaraj</td>
</tr>
<tr>
<td>Fig. 52B, mature</td>
<td>Fig. 52A mature</td>
</tr>
<tr>
<td>Dubey and Pande (1963)</td>
<td>Dubey and Pande (1963c)</td>
</tr>
<tr>
<td>Bubl,</td>
<td>Bull.</td>
</tr>
<tr>
<td>Aiyar (1937)</td>
<td>Aiyar (1937a, b)</td>
</tr>
<tr>
<td>(1963)</td>
<td>(1963a)</td>
</tr>
<tr>
<td>1 2</td>
<td>A B</td>
</tr>
<tr>
<td>Schizonrs</td>
<td>Schizonts</td>
</tr>
<tr>
<td>qupti</td>
<td>gupti</td>
</tr>
<tr>
<td>microphle</td>
<td>micropyle</td>
</tr>
<tr>
<td>i</td>
<td>is</td>
</tr>
<tr>
<td>1945c & 1959a, b</td>
<td>1945b & 1954a, c</td>
</tr>
<tr>
<td>Sphetiale</td>
<td>spherical</td>
</tr>
<tr>
<td>Chakrrvarty</td>
<td>Chakravarty</td>
</tr>
<tr>
<td>intensline</td>
<td>intestine</td>
</tr>
<tr>
<td>Eimoria</td>
<td>Eimeria</td>
</tr>
<tr>
<td>granule</td>
<td>granule</td>
</tr>
<tr>
<td>gamate</td>
<td>gamete</td>
</tr>
<tr>
<td>Prodes</td>
<td>Pradesh</td>
</tr>
<tr>
<td>Culcutta</td>
<td>Calcutta</td>
</tr>
<tr>
<td>refractile</td>
<td>refractile</td>
</tr>
<tr>
<td>Simulteniously</td>
<td>Simalteniously</td>
</tr>
</tbody>
</table>
Errata

<table>
<thead>
<tr>
<th>Page</th>
<th>Line</th>
<th>Printed as</th>
<th>Read as</th>
</tr>
</thead>
<tbody>
<tr>
<td>215</td>
<td>12th line from top</td>
<td>Pettillo</td>
<td>Pattillo</td>
</tr>
<tr>
<td></td>
<td>19th & 20th lines from top</td>
<td>1945 1966</td>
<td>1945b, Gill (1954a) 1966a</td>
</tr>
<tr>
<td>218</td>
<td>6th line from top & 5th line from below</td>
<td>residuum</td>
<td>residuum</td>
</tr>
<tr>
<td></td>
<td>ovidal</td>
<td>ovidal</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>9th line from below</td>
<td>layer in</td>
<td>layer is</td>
</tr>
<tr>
<td>226</td>
<td>17th line from below</td>
<td>Patnaik (1965)</td>
<td>Patnaik (1965c)</td>
</tr>
<tr>
<td>229</td>
<td>5th line from below</td>
<td>Recl</td>
<td>Rec</td>
</tr>
<tr>
<td>230</td>
<td>12th line from top</td>
<td>Ray (1952, 61)</td>
<td>Ray (1952b, 61)</td>
</tr>
<tr>
<td>231</td>
<td>18th line from top</td>
<td>1967b</td>
<td>1967a.</td>
</tr>
<tr>
<td></td>
<td>6th line from below & 9th line from below</td>
<td>1966, 69</td>
<td>1966d, 69</td>
</tr>
<tr>
<td></td>
<td>1954</td>
<td>1954b.</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>5th line from top</td>
<td>Bordjochki</td>
<td>Bordjochki</td>
</tr>
<tr>
<td>257</td>
<td>18th line from top to 22nd line</td>
<td>The occurrence ...from India. }</td>
<td>Delete</td>
</tr>
<tr>
<td>281</td>
<td>4th line from below</td>
<td>168</td>
<td>217</td>
</tr>
<tr>
<td>283</td>
<td>7th line from top</td>
<td>169</td>
<td>218</td>
</tr>
<tr>
<td>342</td>
<td>14th line from below</td>
<td>Eimeria anatis</td>
<td>Wenyonella anatis</td>
</tr>
<tr>
<td>349</td>
<td>5th line from below</td>
<td>1927</td>
<td>1937</td>
</tr>
<tr>
<td>358</td>
<td>1st line from top</td>
<td>Garrulax garrulinae</td>
<td>Garrulax garrulinae</td>
</tr>
<tr>
<td></td>
<td>Purus tristriatus</td>
<td>Purus tristriatus</td>
<td></td>
</tr>
<tr>
<td>359</td>
<td>13th line from top</td>
<td>Purus tristriatus</td>
<td>Purus tristriatus</td>
</tr>
</tbody>
</table>
Anil Krishna Mandal, born in Shohalia, a village in the District Khulna under Satkhira Sub-division, now in Bangladesh, was educated at the University of Calcutta. Dr. Mandal was awarded the degree of Ph.D. in 1966 and D.Sc. in 1983 from Calcutta University for his outstanding contribution in the field of Protozoology.

He has been actively associated in taxonomic and ecological research on parasitic protozoa of Indian subcontinent for about three decades.

Two of his monographic accounts namely Coccidia and Coccidiosis of Poultry and farm animals of India and Haematozoa of fishes of commercial importance from India are well recognized and brought him to the national and international level in the field of parasitic protozoa.

Dr. Mandal is at present working in the capacity of Scientist ‘SD’ in the Zoological Survey of India.