ABOUT THE BOOK

Earthworms play an important role in enhancing soil fertility and improving soils polluted with sewage sludge and toxic materials. The most comprehensive taxonomic account on the Indian earthworms was that of Stephenson (1923) published under the 'Fauna of British India' series which became obsolete due to nomenclatural changes and discovery of new taxonomic characters. This volume under the 'Fauna of India' series deals with the detailed taxonomic studies on the family Octochaetidae including descriptions of 6 new genera and 16 new species. Useful information on the classification, biogeography, biology, ecology and economic importance of earthworms has also been incorporated. It is intended to bring out more such volumes on the remaining families of the Indian earthworms.
THE FAUNA OF INDIA
AND THE ADJACENT COUNTRIES

MEGADRILE OLIBOCHAETA
(EARTHWORMS)

HAPLOTAXIDA : LUMBRICINA
MEGASCOLECOIDEA : OCTOCHAETIDAE

By
J.M. JULKA
Zoological Survey of India

Edited by the Director, Zoological Survey of India
1988
Published in October 1988

PRICE: Inland : Rs. 380.00
Foreign : £ 35.00, $ 50.00
Dedicated to Dr. G.E. Gates, the doyen of modern oligochaete taxonomy and to the memory of my parents.
Earthworms dominate macrofaunal biomass in the soil and their beneficial effects on the soil structure, aeration and fertility are well documented. Long ago, Aristotle and Darwin described them as 'the intestine of earth' and 'the nature's ploughman'. Recent studies show their capability in improving soils polluted with waste materials, sewage sludge and toxic materials.

The latest comprehensive taxonomic account on the Indian earthworms is that of Stephenson (1923), which is now outdated because of nomenclatural changes and discovery of new taxa. The present work is, therefore, a vital tool for those who are interested in the systematics of Indian earthworms. Besides taxonomic descriptions of species, including several new ones, the work also synthesizes valuable information on their biology and ecology. This will be of immense use to the soil biologists.

Dr. Julka has been actively working on the taxonomy of earthworms for the last 22 years. With his expertise in this field it is expected that he shall bring out more such works on the remaining earthworm families.

Calcutta
6th January, 1988

B.S. LAMBA
Acting Director
Zoological Survey of India
PREFACE

Stephenson (1923) published a taxonomic monograph on the earthworms of the Indian subcontinent in the 'Fauna of British India' series. But it became obsolete with the recognition of new taxa and new taxonomic characteristics, mainly through manifold publications by Gates. It was, therefore, felt to bring out an up-to-date comprehensive taxonomic account on the earthworms of India and adjacent countries (excluding Burma) in the 'Fauna of India' series. This volume is a first step in this direction and deals with 128 species belonging to 26 genera of the family Octochaetidae including 6 new genera and 16 new species. The 'types' of some species in the Zoological Survey of India are either immature or have become softened or macerated because of a prolonged period of preservation. For these reasons, topotypes of 14 species were collected and examined. Most of the illustrations in the text are either based on the fresh material or on the 'syntypes' in the Zoological Survey of India.

I am indebted to Dr. B.S. Lamba, Acting Director, Zoological Survey of India, Calcutta for his constant encouragement to complete this work and for providing necessary facilities. I am grateful to Dr. A.P. Kapur and Dr. B.K. Tikader, former Directors, and Dr. S. Khera, former Joint Director-in-Charge, Zoological Survey of India for their keen interest in my investigations on earthworms. I express my gratitude to Dr. Asket Singh and Dr. H. Khajuria, former Officers-in-Charge, High Altitude Zoology Field Station, Z.S.I., Solan for critically going through the manuscript.

My sincere thanks are due to Mr. Anil Gupta, Artist, High Altitude Zoology Field Station, Solan for his help in preparing the illustrations. My thanks are also due to all my colleagues, notably
Mr. R.N. Mukherjee and Mr. R. Paliwal for assisting in various ways during the preparation of the manuscript.

I express my indebtedness to Dr. G.E. Gates for his invaluable help and encouragement (through correspondence) which was mainly responsible in sustaining my interest in the taxonomy of these wonderful organisms. My thanks are due to Dr. M.C. Dash and Dr. B.K. Senapatl of Sambalpur University for providing valuable data on the biology of several species; Mr. E.G. Easton, British Museum, for examining the ‘types’ of *Octochaetona phillotti*; Dr. T. Chacko, New Science College, Hyderabad, for making available the ‘types’ of *Octochaetoides sudarshensis*; Dr. B.R.C. Rao of Moodabidri Mahavira College for his help in collecting topotypes of some species. I am grateful to Dr. A.K. Ghosh, Deputy Director, Dr. M. Hafeezullah, Superintending Zoologist and Mr. A.R. Bhoumik, Zoologist of Fauna of India Division, Z.S.I., Calcutta for taking pains in processing the manuscript for publication. Thanks are also due to Mr. G. Sivagurunathan, Publication Production Officer, Z.S.I., for his help in printing this publication.

Lastly, I would like to thank my wife Shashi who endured my late working hours in the laboratory and at home without which it would have not been possible to complete this book.

High Altitude Zoology Field Station,

Zoological Survey of India,

SOLAN - 173 212
CONTENTS

INTRODUCTION ... 1
CLASSIFICATION ... 3
BIOTOPIC AND ORIGIN 6
TERMINOLOGY AND TAXONOMIC CHARACTERS 7
BIOLOGY AND ECOLOGY 29
ECONOMIC IMPORTANCE 40
METHODS OF COLLECTION, PRESERVATION AND DISSECTION 44
FAMILIES AND HIGHER CATEGORIES OF CLASS Oligochaeta 47
KEY TO THE FAMILIES OF INDIAN MEGADRILE Oligochaeta 49
ORDER HAPLOTAXIDA 51
SUBORDER LUMBRICINA 51
SUPERFAMILY MEGASCOLECOIDEA 51
FAMILY OCTOCHAETIDAE 53
KEY TO THE GENERA OF INDIAN OCTOCHAETIDAE 61

Genus 1. Bahulla Gates
1. albida Gates .. 64

Genus 2. Barogaster Gates
2. annandalei (Stephenson) 68
3. barodensis (Stephenson) 70
4. prashadi (Stephenson) 72
<table>
<thead>
<tr>
<th>Genus 3. Calebiella Gates</th>
<th>73</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. parva Gates</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus 4. Celeriella Gates</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. bursata Jamieson</td>
<td>78</td>
</tr>
<tr>
<td>7. ditheca (Stephenson)</td>
<td>79</td>
</tr>
<tr>
<td>8. duodecimalis (Michaelsen)</td>
<td>81</td>
</tr>
<tr>
<td>9. kempi (Stephenson).</td>
<td>83</td>
</tr>
<tr>
<td>10. punctata Jamieson.</td>
<td>84</td>
</tr>
<tr>
<td>11. quadripapillata (Stephenson)</td>
<td>86</td>
</tr>
<tr>
<td>12. regularis (Stephenson)</td>
<td>87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus 5. Chaetocotoides gen. nov.</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. montanus (Stephenson).</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus 6. Dashiella gen. nov.</th>
<th>94</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. khandalaensis sp. nov.</td>
<td>94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus 7. Dichogaster Beddard</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. affinis (Michaelsen).</td>
<td>100</td>
</tr>
<tr>
<td>16. bolaui (Michaelsen).</td>
<td>103</td>
</tr>
<tr>
<td>17. curgensis Michaelsen</td>
<td>108</td>
</tr>
<tr>
<td>18. modiglianii (Rosa)</td>
<td>110</td>
</tr>
<tr>
<td>19. saliens (Beddard)</td>
<td>113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus 8. Eudichogaster Michaelsen</th>
<th>116</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. ashworthi Michaelsen</td>
<td>118</td>
</tr>
<tr>
<td>21. indicus (Beddard)</td>
<td>120</td>
</tr>
<tr>
<td>22. kinneari Stephenson</td>
<td>121</td>
</tr>
<tr>
<td>23. mullani Stephenson</td>
<td>122</td>
</tr>
<tr>
<td>24. poonensis (Fedarb)</td>
<td>124</td>
</tr>
<tr>
<td>25. prashadi Stephenson</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus 9. Eutyphoeus Michaelsen</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. aborianus Stephenson</td>
<td>131</td>
</tr>
<tr>
<td>27. annandalei Michaelsen</td>
<td>132</td>
</tr>
<tr>
<td>28. assamensis Stephenson</td>
<td>133</td>
</tr>
<tr>
<td>29. callosus Gates.</td>
<td>135</td>
</tr>
</tbody>
</table>
Genus 10. **Hoplochaetella** Michaelsen

48. *affinis* Stephenson
49. *anomala* Stephenson
50. *bifoveata* Stephenson
51. *inornata* Stephenson
52. *karnatakensis* sp. nov.
53. *kempi* Stephenson
54. *khandalaensis* *khandalaensis* (Stephenson)
55. *khandalaensis dichordarius* (Stephenson)
56. *kinneari* (Stephenson)
57. *kurmagarensis* Gates
58. *londensis* sp. nov.
59. *mullani* (Stephenson)
60. *panchganienensis* sp. nov.
61. *powelli* (Stephenson)
62. *righii* sp. nov.
63. *sanwrodemensis* sp. nov.
64. *stuarti* (Bourne)
65. *suctoria* Stephenson.
Genus 11. *Karmiella* Julka
 66. *karnatakensis* Julka

Genus 12. *Konkadrilus* gen. nov.
 67. *bahlī* (Soota and Julka)
 68. *stephensonii* (Soota and Julka)
 69. *tirthahalliensis* sp. nov.
 70. *zicsii* sp. nov.

 71. *gatesi* sp. nov.

 72. *chittagongensis* (Stephenson)
 73. *elongatus* Gates
 74. *falcifer* (Stephenson)
 75. *pusillus* (Stephenson)
 76. *trichochaetus* (Stephenson)
 77. *yeicus* (Stephenson)

Genus 15. *Mallehulla* Julka and Rao
 78. *indica* Julka and Rao

Genus 16. *Octochaetoides* Michaelsen
 79. *aitkeni* (Fedarb)

Genus 17. *Octochaetona* Gates
 80. *albida* (Gates)
 81. *barkudensis* (Stephenson)
 82. *barnesi* (Stephenson)
 83. *beatrix* (Beddard)
 84. *compta* (Gates)
 85. *excavata* (Stephenson)
 86. *maindroni* (Michaelsen)
 87. *paliensis* (Stephenson)
 88. *parva* (Gates)
 89. *pattoni* (Michaelsen)
 90. *philotti* (Michaelsen)
Genus 18. **Octonochaeta gen. nov.**
95. *rosea* (Stephenson) 299

Genus 19. **Pellogaster Gates**
96. *bengalensis* (Michaelsen) 304
97. *isabellae* Gates 306
98. *simsi* sp. nov. 308

Genus 20. **Priodochaeta Gates**
99. *pellucida* (Bourne) 311

Genus 21. **Priodoscolex Gates**
100. *montanus* Gates 313

Genus 22. **Ramiella Stephenson**
101. *bishambari* (Stephenson) 317
102. *heterochaeta* Michaelsen 320
103. *nainiana* Gates 321
104. *pallida* (Stephenson) 323
105. *sundargarhensis* Julka 325

Genus 23. **Rillogaster Gates**
106. *eastoni* sp. nov. 329
107. *matheranensis* (Stephenson) 332

Genus 24. **Scolioscolides Gates**
108. *bergteili* (Michaelsen) 335

Genus 25. **Travoscolides Gates**
109. *chengannures* (Aiyer) 339
110. *cochinensis* (Michaelsen) 340
111. *duodecimalis* (Stephenson) 341
112. *pilatus* (Stephenson) 341
Genus 26. **Wahoscolex** gen. nov.

113. *bidens* (Michaelsen) 346
114. *bouchei* sp. nov. 347
115. *corethrurus* (Michaelsen) 349
116. *curgensis* sp. nov. 352
117. *ditheca* (Michaelsen) 354
118. *horai* sp. nov. 356
119. *merkaraensis* (Michaelsen) 359
120. *nandiensis* sp. nov. 360
121. *veereshi* sp. nov. 362

SPECIES INCERTAE SEDIS

122. *Dichogaster* (?) *travancorensis* (Fedarb) 365
123. *Diplocardia* (?) *indica* Stephenson 366
124. *Diporochae~a* (?) *dorsochaeta* Jamieson 367
125. *Lennogaster* (?) *parvus* (Fedarb) 368
126. *Octochaetoides* (?) *castellanus* (Stephenson) 370
127. *Octochaetoides* (?) *kurmagarensis* Gates 371
128. *Octochaetoides* (?) *raoi* Gates 372

REFERENCES

375

ALPHABETICAL INDEX

393
INTRODUCTION

The Oligochaeta are bilaterally symmetrical coelomate invertebrates with internal and external metameric segmentation throughout the body. They lack suckers and parapodia but possess setae on all segments except the peristomium and pygomere. They are hermaphrodite and ova are fertilized in cocoons secreted by a clitellum; development being direct without the intervention of a free larval stage in the life cycle. On the basis of size and habitat, the oligochaetes are often divided into two convenient groups: Microdrili (small, mainly aquatic worms including the terrestrial family Enchytraeidae) and Megadrili (larger, mostly terrestrial worms and their aquatic representatives). It is the latter group that consists of earthworms and corresponds to the orders Moniligastrida and Haplotaxida excluding suborder Tubificina (Brinkhurst and Jamieson, 1971).

Systematic studies on the earthworms of the Indian subcontinent were initiated by Templeton (1844) when he described a new species, Megascolex caeruleus, from Sri Lanka. Subsequently, our knowledge was enriched by Schmarda (1861), Vaillant (1867), Beddard (1883-1902), Bourne (1886-1894), Rosa (1888-1894), Benham (1893), Ude (1893), Fedarb (1898a, 1898b) and Michaelsen (1897-1907). This scattered information in various journals was brought together in a systematic monograph by Michaelsen (1909a), which gave considerable impetus to serious taxonomic studies on the earthworms of this subcontinent. Michaelsen (1909b, 1913), Stephenson (1913-1922) and Rao (1922) further added several species to the earthworm fauna of the region. Stephenson (1923) consolidated the information available till that time and published a comprehensive taxonomic account in the Fauna of British India series. Between 1924 and 1972, although
some papers were published by Stephenson (1924-1931), Aiyer (1929), Cernosvitov (1937), Bhatti (1962a), Sims (1963), Khan (1966), Soota (1970), Soota and Julka (1970, 1972) and Sharma and Chacko (1970), the taxonomic studies on the earthworms of the Indian subcontinent were dominated by Gates who in a series of papers revised and erected several new genera and species on the basis of hitherto unrecognized but taxonomically important somatic characters which rendered Stephenson’s Fauna of British India obsolete. Gates’ studies culminated with the publication of an excellent monograph on the Burmese earthworms in 1972, but much remained to be done in consolidating the information on the earthworms of the other regions of the subcontinent.

During the last decade, the earthworms of the following underexplored areas in the Indian subregion have been surveyed to some extent: Eastern Himalayas (Julka, 1975a, 1976a, 1981; Julka and Halder, 1975b, 1977; Soota and Halder, 1977a, 1977b, 1981), Khasi and Garo Hills (Julka, 1977), Orissa (Julka, 1975b, 1976b, 1978), South India (Jamieson, 1977; Easton, 1982; Julka and Rao, 1982; Julka, 1983), Western Himalayas (Julka, 1979; Soota and Halder, 1980a), and Andaman and Nicobar Islands (Julka and Halder, 1975a; Soota and Halder, 1980b).
CLASSIFICATION

The oligochaetes are considered to have close affinities to the leeches and to indicate this relationship Michaelsen (1928) combined the orders Oligochaeta and Hirudinea in a Class, the Clitellata. This system was accepted by Stephenson (1930) and Gates (1972) in their monographic works. Recently, the group comprising oligochaetes has been assigned the status of a subclass (Brinkhurst and Jamieson, 1971; Reynolds and Cook, 1976) or a class (Gavrilov, 1981; Brinkhurst, 1982; Gates, 1982); the latter system is adopted in this work.

During the nineteenth century various classifications of the Oligochaeta were presented, notably by D’Udekem (1862), Vaillant (1868), Perrier (1872), Vejdovsky (1884), Benham (1890), Beddard (1895) and Michaelsen, 1896, 1899), but none of these were considered satisfactory. Michaelsen (1900) was the first to construct a comprehensive classification of the oligochaetes in which 11 families including about 1200 species and 152 genera were recognized. Michaelsen (1921) rearranged his earlier classification and grouped 21 families in 7 series and 2 suborders, Archioligochaeta and Neo-oligochaeta, the terms which he himself abandoned in 1928. Generic and suprageneric taxa were defined by the genital characteristics, especially the male genital system. Michaelsen’s system of classification was adopted by Stephenson (1930) with slight modifications which remained in use for quite a long time. Gates (1959) rejected Michaelsen’s ‘Classical’ system as he considered male genital characters variable and taxonomically of no value for defining suprageneric categories of earthworms. Instead, he recognized several somatic characters which were markedly resistant to variation and evolutionary conservative.
The most recent monograph on the Oligochaeta by Brinkhurst and Jamieson (1971) recognized its 3 orders based on the reproductive system and supported by ancillary somatic characters: Lumbriculida, Moniligastrida and Haplotaxida. This scheme excluded the Aeolosomatidae from the oligochaetes for various anatomical reasons. The Haplotaxida comprised all oligochaete families apart from the Lumbriculidae (Lumbriculida) and the Moniligastridae (Moniligastrida). It was subdivided into 3 suborders: Haplotaxina (stem family Haplotaxidae), Tubificina (microdriles) and Lumbricina (earthworms and their aquatic stem forms). The Tubificina comprised 2 superfamilies, Tubificoidea and Enchytraeoidea, and the Lumbricina consisted of 3 superfamilies, Alluroidoidea, Lumbricoidea and Megascolecoidea; the Alluroidoidea elevated to another suborder Alluroidina by Jamieson (1978). In a computer based investigation of the opisthophorous Oligochaeta, Jamieson (1978) proposed to reduce the Moniligastrida to a suborder in the order Haplotaxida. Sims (1980, 1982) disagreed with this proposal. The basic classification of the Oligochaeta into orders and suborders as proposed by Brinkhurst and Jamieson (1971) was accepted by various oligochaetologists, but much disagreement existed on the suprageneric constituents of the restricted suborder Lumbricina (excluding the Alluroidoidea). Sims (1980) considered Jamieson's (1978) composition of the superfamilies of the Lumbricina as artificial which was based on adaptive characters and the distributional implications were incompatible with zoogeographical knowledge. Instead, he defined superfamilies of the Lumbricina by using characteristics of the morphology of the ovaries and the budding of the oocytes and explained their distribution in accordance with the zoogeography.

Apart from the Eudrilidae, there are different views about the constituent families of the superfamily Megascolecoidea and these have been defined variously during the last 25 years. Omodeo (1958) recognized the megascolecoloid groups by the structure, number and location of the calciferous glands. Lee (1959) assigned
all the New Zealand megascolecoids into a single family, the Megascolecidae, dividing the latter into 2 subfamilies, the Megascolecinae and Acanthodrilinae, according to the position of the male and prostatic pores. Gates (1959) disagreed with these classifications and raised all the main groups to the familial rank, the Ocnerodrilidae, Acanthodrilidae, Octochaetidae and Megascolecidae on the basis of structure of the prostatic glands, location of calciferous glands and morphology of the excretory system. Sims (1966) using computer techniques examined these conflicting classifications from a selection of megascolecoid genera, and found that pattern of arrangement of the genera coincided to a large extent with the classification proposed by Gates, but he (1967) assigned them to 2 families, the Megascolecidae (sensu stricto) and Acanthodrilidae, dividing the latter into 3 subfamilies, the Ocnerodrilinae, Acanthodrilinae and Octochaetinae. Jamieson (1971a) questioned the taxonomic significance of the structure of the prostatic glands in the megascolecoids. He proposed another classification by retaining all megascolecoids in a single family, the Megascolecidae, dividing it into 3 subfamilies, the Ocnerodrilinae, Acanthodrilinae and Megascolecinae, according to the position of the calciferous glands, lateral hearts, male and prostatic pores, and the structure of the excretory system. The Acanthodrilinae and Megascolecinae were subdivided into tribes employing the characteristics of the excretory system. The morphology of the excretory system in several megascolecoid species and genera is not adequately known and these structures require further investigations before Jamieson's views could be accepted (Easton, 1979; Sims, 1980). Moreover, Jamieson's (1971a) grouping of megascolecoid species with two types of prostatic glands of different origin (tubular of ectodermal and racemose of mesodermal origin) in the same genus is not acceptable. In this work Brinkhurst and Jamieson's (1971) basic classification of the Oligochaeta as modified by Sims (1980, 1982), and Gates' (1959) convenient system of classification for the megascolecoides are adopted.
BIOGEOGRAPHY AND ORIGIN

The biogeography and evolution of earthworms are obscured due to paucity of fossil records. Nevertheless, attempts have been made to infer their origin by studies on the distribution and comparative anatomy of present day earthworms. On the basis of feeding habits of earthworms, Stephenson (1930) believed that they appeared in the Cretaceous when dicotyledonous plants came into existence. Michaelsen (1910) was of the opinion that they evolved in the upper Jurassic, while Arldt (1908) estimated their origin much earlier, as far back as the upper Triassic period. Sims (1980) assumed that ancestors of present day earthworms were widespread in the undivided palaeocontinent of Pangaea which was formed at the end of the Palaeozoic. The division of Pangaea in the Triassic resulted in the separation of a northern continent of Laurasia and a large southern land mass of Gondwana. These further broke up into smaller land masses during the subsequent periods and moved apart carrying with them the precursors of the present day earthworms. According to Sims (op. cit.) the continental drift theory adequately explains the patterns of biogeographical distribution of his superfamilies of the Lumbricina as observable today: Criodrilioidea and Lumbricoidea (Euramerica), Biwadrilioidea (Pacifica, eastern Gondwana), Glossoscolecoidea (western Gondwana), Megascolecoidea (Gondwana).

The biogeography of earthworms is sometimes not clear because of presence of widely distributed peregrine species which have been transported by man for culture or accidentally in soil around the roots of exotic plants. These species therefore must be disregarded for biogeographical considerations.
TERMINOLOGY AND TAXONOMIC CHARACTERS

Age groups: Details of sexual maturity of each earthworm specimen are usually given in the material examined. This may be in the form of 2C, 4A (2 clitellate, 4 aclitellate) or a set of figures united with dashes, e.g. 2-0-4-3 means 2 juveniles, 0 aclitellate, 4 clitellate or adults and 3 postsexual worms. Juveniles lack genital markings, tumescences, tubercula pubertatis or clitellum. Aclitellate worms are without clitellum but have genital markings, tumescences or tubercula pubertatis. Specimens with a clitellum are referred to the adults. Postsexual worms (a rarely used category) are difficult to distinguish but are usually characterized by the discolouration or absence of the clitellum, hardened seminal vesicles with 'black bodies' and small testes or ovaries.

External characters

Colour: The colour of the worms due to iridescence of the cuticle, blood vessels in the body wall, intestinal ingesta, etc. is of no importance. But pigmentation of the body wall may be of some taxonomic value and should be recorded in life since strong fixing fluids usually destroy the pigment.

Body form: Earthworms are elongate and vermiform. They are usually circular in cross-section and deviation to any other form (square or trapezoidal) may be of systematic importance. The anterior and posterior ends are, sometimes enlarged, and ventral surface flattened.

Size: The length and diameter of earthworms are of little taxonomic value, since they vary considerably within a species. Method of preservation, amputation and regeneration can also affect body dimensions to a great extent. Measurements are taken on strongly contracted worms, the diameter is usually taken in front of the clitellum.
Segmentation: An earthworm's body is divided externally into segments by furrows which coincide with the positions of septa dividing the body internally (Fig. 1). Some or all segments may be superficially subdivided into two or three or more annuli by secondary grooves. The first and the last body segments, usually asetal, are called the peristomium and pygomere respectively (Figs. 1-2). The number of segments vary intraspecifically. This character can be of taxonomic importance only when its limits of variations have been determined in each species. In the taxonomic descriptions, they are numbered in roman numerals, i.e. i, ii, iii...... (capitalized by some authors) beginning with the peristomium. The intersegmental furrows are designated by the numbers of segments on either side as 2/3, 3/4, 4/5, etc.

Figs. 1-3. Amynthas difficringens (Baird). Dorsal views of the anterior (1) and posterior (2) regions, ventral view of the anterior region (3) A-anus, C-clitellum, DP-dorsal pore, FP-female pore, Mp-male pore, P-prostomium, Per-peristomium, Pyg-pygidium, S-setae, Sp. P-spermathecal pores.
Prostomium: It is a small fleshy lobe, overhanging the mouth on the dorsal surface of the first segment. Its size may vary from rudimentary to an elongated proboscis-like structure. The different shapes of the prostomium, zygolobic, prolobic, proepilobic, epilobic, tanylobic, combined pro/epilobic and combined pro/tanylobic (Figs. 4-11), are sometimes of taxonomic importance. The tongue in the epilobic condition may be delimited posteriorly by a transverse groove (close epilobic) or without any posterior demarcation (open epilobic).

Dorsal pores: They are small openings located in intersegmental furrows on the mid-dorsal line leading to the coelomic cavity (Fig. 1). They are present in most earthworms, but are usually absent in worms with subaquatic or aquatic habitats. The position of the first functional dorsal pore is of very limited systematic importance as it is subject to intraspecific variations. Moreover, it is often difficult to distinguish between the first functional dorsal pore and a few anterior non-functional pore-like markings.

Clitellum: It is an epidermal swelling restricted to certain segments in sexually matured worms where gland cells secrete material to form the cocoon. It is either annular (extending all round the body, Fig. 12) or saddle-shaped (restricted to dorsal and lateral parts of the body, Fig. 13). The position and extent of clitellum may vary in certain families, genera and species, but are of specific importance in the Lumbricidae.

Setae: They are bristle-like retractile structures borne on follicles and arranged in a single ring around the periphery of each segment. The normal setae are usually sigmoid in shape, each with a nodule at about the middle. The positions of the setae provide reference points for describing location of genital and nephridial pores, grooves, genital markings, etc. Their number, modifications and distance between them are of some taxonomic importance.

The arrangement of setae according to their number are expressed by the terms, lumbricine (8 setae per segment in 4 pairs, Figs. 14-16) or perichaetine (more than 8 setae per segment usually with a gap in the mid-dorsal and mid-ventral regions, Fig. 17). In taxonomic descriptions, individual setae on each side are designated by italicized letters, i.e. in the lumbricine arrangement by \(a, b, c, d\) beginning with the most ventral one and in the perichaetine arrangement by \(a, b, c, d, e, ...,\) beginning with the most ventral seta and \(z, y, x, ...,\) beginning with the most dorsal one irrespective of the actual number in the ring.

![Diagram](image-1)

FIGS. 14-17. Arrangements of setae (diagrammatic). 14-16. lumbricine, 14. closely paired, 15. widely paired, 16. separate. 17. perichaetine.
The distance between the setae is expressed in the form of an equation; in the lumbricine arrangement by $aa = 3\ ab = bc = 2\ cd = 0.5\ dd$ (meaning distance between setae aa is thrice ab, equal to bc, twice cd and half of dd) and in the perichaetine arrangement by $aa = 2ab = 1.5\ bc = 1.5\ yz = zz$ (meaning aa is twice ab, one and a half times bc and yz, and equal to zz). Some authors express it as a ratio of distance between setae a and b in the form of $aa: ab : bc : cd : dd = 3\ 1\ 2\ 1: 20$ in the lumbricine species and $aa : ab : bc : yz : zz = 2\ 1: 1. 1.2\ 1.5$ in the perichaetine species. The total number of setae in the perichaetine species are counted, usually on segments ii, vii or viii, xii and xx; these are expressed as $16/ii, 32/viii \ldots$ (meaning 16 setae on segment ii, 32 on viii and so on). The number of setae between the spermathecal and male pore lines are also given, but the figures are inverted as $vii/8, viii/12$ and $xviii/6$.

Genital pores: (Figs. 18-21). The segmental location and size of the openings of the vasa deferentia (male pores) and the oviducts (female pores) furnish useful taxonomic characteristics. Variation in their location within a species is regarded as an abnormality which may result due to regeneration. In the Ocnerodrilidae, Acanthodrilidae, Octochaetidae and Megascolecidae, the male pores are associated with the prostatic pores (openings of the ducts of prostates, accessory reproductive glands). The prostatic ducts and vasa deferentia may discharge to the exterior either separately or at combined male and prostatic pores. The basic conditions of these openings are sometimes termed as: acanthodriline (male pores on xviii, prostatic pores on xvii and xix, all pores in seminal grooves), microscolecine (prostatic pores along side or combined with male pores on xvii), balantine (prostatic pores along side or combined with male pores on xix) and megascolecine (prostatic pores along side or combined with male pores on xviii). Male pores are sometimes located on papillae of various shapes or at tips of intromittant organs, the penes. They may open directly on the body surface or into pouch-like invaginations of the ventral body wall, the copulatory pouches (also known as copulatory chambers or bursae copulatrixe), the external openings of which are often referred to as ‘male pores’
Table 1. Distribution of life stages and number of individuals collected per site.

<table>
<thead>
<tr>
<th>Site</th>
<th>Life Stage</th>
<th>Number of Individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adult</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>Larva</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>Egg</td>
<td>20</td>
</tr>
</tbody>
</table>

Summary:
- Site A had 5 adult individuals.
- Site B had 10 larval individuals.
- Site C had 20 egg individuals.

Notes:
- Additional notes on habitat preferences and conservation status.

The size, number and location of the spermathecal pores (openings of the spermathecae), as well as single or paired, are of taxonomic value. These characters, however, are known to vary intraspecifically as a result of regeneration or parthenogenesis. The spermathecal ducts may open directly on the body surface or into small chambers, the external openings of which, although secondary, are often called ‘spermathecal pores’

Genital markings, tumescences, tubercula pubertatis, etc. Certain areas of the epidermis on the ventral surface of sexually mature worms may be modified in the form of genital markings or papillae, genital and copulatory tumescences, pits and ridges. Their shape, number and location, although variable, are sometimes of systematic value. Tumescences are without distinct boundaries surrounding the modified setae; those around genital setae are known as genital tumescences and those around copulatory setae as copulatory tumescences. Genital markings (Figs. 3, 19) are usually more distinctly delimited and have slightly depressed central areas. Tubercula pubertatis (Fig. 20) are more or less swollen longitudinal ridges on the ventro-lateral margins of clitellum.

Nephridiopores: The external openings of nephridia are the nephridiopores (also called as nephropores or nephridial pores). They are very small and generally unrecognizable in the meronephric species, but may be obvious in the holonephric species (Fig. 22), in that case their axial position provides important distinguishing characters.

Internal characters

Pigmentation: The pigments are usually associated with the circular muscle layer of the body wall. In the preserved specimens, pigmentation can be observed to some extent at the dorsal incision of the body wall.

Septa: Absence of some septa in the gizzard region is of taxonomic value. Thickening (muscularization) of anterior septa is
FIGS. 20-21. Ventral view of anterior region. 20. Octolasion tyrtaeum (Savigny),
21. Glyphidrilus tuberosus Stephenson. C-giitellum, GM-genital marking,
MP-male pore, Sp. P-spermathecal pore, TP-tubercula pubertatis.
also considered important, but assessment of the degree of thickening is highly subjective.

Digestive system: The main characters of taxonomic importance in the alimentary canal (Fig. 23) are the gizzard (s), calciferous glands or lamellae, beginning of the intestine, intestinal caeca, supra-intestinal glands and typhlosole.

Fig. 23. Dorsal view of *Amynthas diffringens* (Baird) showing digestive, circulatory and reproductive systems. Br-brain, DV-dorsal vessel, Giz-gizzard, GMG-genital marking gland, H-hearts, Int-intestine, L.Int. C-lateral intestinal caeca, M-mouth, O-ovary, OD-oviduct, Oes-oesophagus, Ph-pharynx, Pr.G-prostatic gland, Sem.V-seminal vesicle, Sp-spermatheca, TS-testis sac, VD-vas deferens.
The number and position of the gizzard(s) have been used in distinguishing the earthworm genera, but their position should be determined carefully as some of the septa in this region are either absent or very delicate which may break as the worm is opened.

Calciferous glands are associated with oesophagus. They are whitish and highly vascular organs provided internally with lamellae. Their shape, number, segmental position as well as whether they are stalked or sessile, paired or unpaired, external (extramural; Figs. 25-27) or within the oesophageal wall (intramural; Fig. 24) provide useful distinguishing characters. In the absence of discrete calciferous glands, oesophagus may sometimes be markedly widened and provided internally with calciferous ridges or lamellae.

The beginning of the intestine seems to be usually constant within a species. However, it is sometimes difficult to recognize the posterior limit of oesophagus and anterior limit of intestine especially in the badly preserved specimens. These limits can be recognized by the presence of a valve at the posterior end of oesophagus. Intestinal caeca (Figs. 29-30) are small tubular outgrowths of the intestinal wall; their shape, position, number and whether single or paired are of systematic value. The internal surface of the intestine may be increased by a large dorsal fold, the typhlosole. Its absence or presence, shape, and anterior and posterior limits are of taxonomic importance. Its shape varies from a low ridge to a well-developed lamella which may be simple or ventrally bifid or trifid (Figs. 31-33). Several pairs of glands, the supra-intestinal glands (Fig. 28), are sometimes present on the
dorsal wall of the intestine in successive segments at the posterior end of the typhlosole. Their absence or presence is probably of generic importance, but their number vary intraspecifically.

Vascular system (Fig. 34): Gates (1972) emphasizes the importance of the dorsal, ventral, subneural, supra-oesophageal, extra-oesophageal (or latero-oesophageal) and latero-parietal vessels in earthworm taxonomy. But these characteristics should be used with caution as some of the vessels are drained of blood and unrecognizable in the preserved specimens.

The dorsal vessel is closely associated along the mid-dorsal line of the alimentary canal. The systematically useful characters of the dorsal vessel are: whether it is single or double, or aborted anteriorly. The ventral vessel lies immediately below the gut and is suspended from it by a mesentary. The subneural vessel is located beneath the nerve cord; its presence or absence is considered to be of generic importance. The supra-oesophageal vessel runs along the dorsal wall of the gut in the anterior segments; its presence or absence and whether single or double may be of taxonomic value.

![Diagram](image)

Extra-oesophageal and latero-parietal vessels are paired; the former are situated anteriorly on the latero-ventral aspects of the gut and the latter lie laterally on the body wall. Their presence or absence and connections to other longitudinal vessels may provide distinguishing characters at the generic level.

Paired commissural vessels connect the ventral vessel with the dorsal or supra-oesophageal or both these vessels. Some of these in the anterior region of the body are enlarged, contractile and provided with valves internally, and they are known as the 'hearts'. The hearts opening into the dorsal vessel are the lateral hearts, those opening into the supra-oesophageal vessel are the oesophageal hearts and those opening into both dorsal and supra-oesophageal vessels are the latero-oesophageal hearts. The number and position of the hearts are considered to be of taxonomic importance.

Reproductive system: The reproductive system comprising of testes, ovaries, seminal vesicles, spermathecae and prostates provide useful taxonomic characters. The basic arrangement of the gonads in the megascolecoid earthworms is paired testes in segments x and xi (holandry) and paired ovaries in segments xii and xiii (hologyny).

The number of testes may be reduced to a single pair (meroandry); the term proandry is used for one pair of testes in segment x or a homotic equivalent and metandry for one pair of testes in segment xi or a homotic equivalent. The number of ovaries may also undergo reduction, i.e. one pair of ovaries in segment xii (progyny) or in xiii (metagyny). The morphology of the ovaries and process of shedding oocytes have been used for defining suprageneric categories of earthworms.

The testes and male funnels may lie free in their segments or are enclosed in special coelomic chambers, the testis sacs. Their shape and whether paired or unpaired are of taxonomic value. Septa of the testis and ovarian segments may be evaginated, those of the testis segments forming the seminal vesicles and those of the ovarian segment form ovisacs. The shape, size, number and segmental position of seminal vesicles are of systematic importance. The male
funnels open into straight or coiled male ducts, the vasa deferentia. In holandric species, the anterior and posterior male ducts on each side run backwards; they may unite with each other before opening to the exterior or they may discharge independently on the body surface. The posterior end of the vas deferens is sometimes enlarged into an ejaculatory bulb (bulbus ejaculatrice).

Accessory reproductive organs, the prostates, are associated with the posterior ends of vasa deferentia in most megadrile families, and are of various types. They are tubular (Fig. 40) with a central canal and of ectodermal origin in the Ocnerodrilidae, Acanthodrilidae and Octochaetidae, and racemose (Figs. 41-42) without a central canal and of mesodermal origin in the Megascolecidae. In the Eudrilidae, they are in the form of outgrowths from the male ducts and are called as ‘euprostates’ In the Moniligastridae, the prostates (also termed as male atria) have an outer and inner glandular and a middle muscular layer, the latter forming a prostatic capsule and its various forms are useful in distinguishing species.

The spermathecae (Figs. 35-39), which receive sperms from another individual during copulation, are present in most earthworms. A spermatheca, typically, consists of an ental sac-like structure, the ampulla, and a duct by which it opens to the exterior. One or more diverticula may arise from the duct. Shape and size of the spermatheca and its various parts vary in different species.

Setae associated with genital tumescences, spermathecal and prostatic pores are sometimes modified to subserve a copulatory function; those associated with genital tumescences are called as genital, those with spermathecal pores as copulatory and those with prostatic pores as penial setae. The modified setae may be curved in different ways and usually variously ornamented or sculptured ectally. Their size, shape and ornamentation are of limited taxonomic importance, since they vary intraspecifically or may be similar in different species. But their presence or absence and distribution provide important specific characters.
Excretory system: The nephridia are the main organs of nitrogenous excretion in earthworms. They are of various kinds and have recently become increasingly important for megadrile taxonomy. For the study of nephridia, the whole worm is to be checked as different types of nephridia may occur within a species or they may be absent in a few anterior segments. The nephridia may be one pair (holonephridia, Fig. 43) or more than one pair (meronephridia, Fig. 44) in each segment. Either type of nephridia may be 'open' (stomate, Fig. 45), if nephrostomes persist or 'closed' (astomate), if nephrostomes are absent. Their ducts may open to

Fig. 43. *Perionyx sansibaricus* Michaelsen, holonephric, excretory system. Hn- holo nephridia, Ph-pharynx, Sp-spermatheca.
the exterior (exonephric) or into the alimentary canal (enteronephric), but astomate enteronephric holonephridia are not yet known in the earthworms. Meronephridia may be either very small (micromeronephridia, Figs. 46a, 46b) or relatively conspicuously enlarged into megameronephridia (Fig. 46). The ectal ends of the ducts of holonephridia are sometimes dilated into nephridial bladders or vesicles, which may be of various shapes. The terms vesiculate and avesiculate are used to describe the presence and absence of nephridial vesicles respectively.
Some species have tufted nephridia in some of the anterior segments. These may be of two or three distinct types: holonephridia which are incompletely branched into a number of meronephridium-like lobes with or without a single nephrostome and retain a single duct; meronephridia with ducts in a sheaf (composite ducts) or secondarily (?) united to form a single duct.

Accessory glands: Genital markings, tubercula pubertatis, copulatory and genital setae are sometimes associated with glands internally. The variations in the shape and size of these glands are of systematic interest.

BIOLOGY AND ECOLOGY

Reproduction: Earthworms are hermaphrodite and mating is required in most species to exchange sperm from one individual to another. Fertilization is external in the cocoon, although internal fertilization has been recorded in the Eudrilidae (Stephenson, 1930). Sims (1964) presumed self-fertilization in the Eudrilidae on the basis of anatomical evidence. Parthenogenesis is common in some species and is indicated by the reduction or absence of testes, seminal vesicles, vas deferens, copulatory chambers, penes, prostates, spermathecae, etc. Absence of iridescence on male funnels, vasa deferentia and spermathecae may indicate occasional or obligatory parthenogenesis. In introduced species, parthenogenesis is considered to be of advantage as a worm has not to find a mate to reproduce.

Copulation: In earthworms, copulation results possibly due to pheromonal attraction between two worms (Olive and Clark, 1978). It may occur above or below the surface of the soil, and may last as long as an hour. Some species copulate periodically throughout the year except during unfavourable conditions, while in others mating is restricted to a particular period of the year. During copulation, two
worms lie side by side with their anterior ventral surfaces firmly attached and their heads in opposite directions. In lumbricids like *Lumbricus terrestris* and *Eisenia fetida*, the spermathecal region of one worm is closely applied to the ventral clitellar region of the other and the two are enclosed in a mucous tube, and sperm are carried to spermathecae in seminal grooves. In megascolecids and octochaetids, the male pores are opposite to the spermathecal pores and sperm are directly deposited in the spermathecae. Bahl (1927) observed sperm transference through the insertion of "penes" into spermathecal pores in *Eutyphoeus waltoni*. After copulation, the two worms separate and around the clitellar region of each worm a mucous tube is secreted which hardens on exposure to the air. The worm moves backwards to wriggle out of this tube and discharges into it ova through the female pore (s) and the partner’s spermatozoa through the spermathecal pores as the tube moves forwards. The ends of the released tube close to form a lemon-shaped or ovoid cocoon, in which the embryonic development takes place. The colour and size of cocoons vary between species. The mode of copulation in a few Indian species is known from the works of Bahl (1927), Tembe and Dubash (1961), Menon et al. (1968), and Rao and Bhat (1978).

Life cycle:

Earthworms after copulation embark on a prolonged period of cocoon production which may be interrupted by adverse conditions or obligatory diapause. Cocoons, containing ova and nutrient albuminous fluid, are deposited usually near the surface of the moist soil, but are laid deeper if the soil is too dry. The cocoon production is markedly affected by environmental conditions, such as soil temperature, moisture and nutrition of the adult worms. It varies with species and is known only in a few Indian species. *Pheretima* sp. produces most cocoons from March to June and few during the rainy months of July and August (Bahl, 1950). On the other hand, cocoons laid by *Octochaetona surensis, Lampito mauritii* and *Drawida willsi* increase in number from August and
reach a peak density in October (Dash and Senapati, 1980). The incubation period varies interspecifically. Among the Indian species, it is 28-30 days for *Octochaetona surensis* and *Lampito mauritii*, and 14-18 days for *Drawida willsi* during October to December (Dash and Senapati, 1980) as compared to longer incubation period of 8.5 to 30 weeks in the European lumbricids as estimated by Evans and Guild (1948), Wilcke (1952), Nordstrom (1976) and Rundgren (1977). The short incubation period in the Indian species may be due to higher soil temperature (Dash and Senapati, 1980). Gerard (1967) also reported that temperature affected the incubation of cocoons in *Allolobophora chlorotica*, which was 36 days at 20°C, 50 days at 15°C and 112 days at 10°C. Soil moisture is another factor that seems to have a considerable influence on the hatching of cocoons; they do not hatch in complete hydric and very dry conditions (Dash and Senapati, 1980). Each cocoon contains one to twenty fertilized ova but only a few, usually one or two, survive and hatch (Edwards and Lofty, 1977). However, there are reports of one to six young worms hatching from cocoons of *Eisenia foetida* and *Bimastos tumidus* (Vail, 1974).

The period from hatching to sexual maturity is affected by temperature and the type of available food, and varies with species. It has been estimated as 18 to 74 weeks in the lumbricids (Evans and Guild, 1948; Wilcke, 1952), about 16 weeks in *Hoplochaetella suctoria* (Rao and Bhat, 1978) and 10-14 months in *Millsonia anomala* (Lavelle, 1971). The breeding season in earthworms occur at different times and is known only in few Indian species. In the Gangetic plain with a tropical climate, the peregrine species *Ocnerodrilus occidentalis*, *Ramiella bishambari*, *Perionyx sansibaricus*, *Dichogaster bolau*i and *Lampito mauritii* that are active throughout the year become sexually mature as early as July and have a long breeding season while the endemic species *Eutyphoeus incommodus*, *E. nicholsoni*, *E. waltoni*, *Pellogaster isabellae*, *Bahlia albida* and *Ramiella nainiana* with a restricted activity during the monsoons possess a short breeding season of 2-3 months.
(September to November) after the rains (Gates, 1945C). *Octolasion tyrtaeum*, a peregrine lumbricid, seems to breed in the Simla Hills (with a temperate-like climate) throughout the year, but the reproduction peak occurs in Autumn and winter (Julka and Mukherjee, 1984).

Diapause and Quiescence

Activity of many species of earthworms is interrupted when the soil becomes too dry or soil temperature is either very low or very high. To tide over these adverse periods, they move deeper into soil where the temperature and moisture conditions are adequate or they may become comparatively inactive and enter *diapause* or become *quiescent*. Edwards and Lofty (1977) use the general term 'aestivation' for this phenomenon of inactivity. Diapause is restricted to condition, when the worm stops feeding, empties the alimentary canal and constructs in the soil a spherical chamber lined with mucus, within which it rolls into a tight ball or a loose knot. In this condition, the worm loses weight but without any tissue dehydration (Olive and Clark, 1978). There are two states of diapause: *facultative* and *obligatory*. Facultative diapause occurs in response to adverse environmental conditions, but is terminated only after a certain critical period even when the conditions become favourable. Obligatory diapause takes place at a certain time of the year and is usually initiated by an internal rhythm or a certain sequence of environmental changes irrespective of current environmental conditions. In quiescence, the worms respond directly to deteriorating environmental conditions and become active as soon as the conditions are favourable. Unlike diapause, quiescence is accompanied by severe tissue dehydration (Olive and Clark, 1978).

Habitat and habits:

Earthworms can be found in all types of soils provided there is sufficient moisture and food. They occur in forests, grasslands, cultivated lands, orchards, gardens, plant nurseries and green
houses. They have been found living in caves. Organic materials like compost, manure, forest litter and humus, municipal dumps, soils wetted with effluents and kitchen drainage are highly attractive to some species. They are also found under stones and logs, and at the axils of tree leaves. Some earthworms are very hydrophilous and occur near bodies of fresh and salt water. A few species can live under snow on high mountains. The process of soil formation leads to horizontal layers and earthworms inhabiting different layers are usually divided into three groups: (i) soil surface or litter dwellers (epigés) which are deeply pigmented and very active, (ii) topsoil dwellers (endogés) which are less pigmented and also less active, and (iii) subsoil dwellers (aneciques) which are unpigmented or only light pigmented and slow-moving.

Earthworms construct burrows in the soil, ingest large amount of soil and deposit their faecal matter in the form of surface or subsurface castings. Surface or litter dwelling species do not have burrows and it is usually topsoil and subsoil species that make permanent burrows. The burrowing activity is generally restricted to top 30-45 cm layer of soil, but may be extended to deeper layers due to the scarcity of food or soil moisture. *Drawida grandis*, an Indian moniligastrid, is known to burrow to a depth of 2.7-3.0 m (Bahl, 1950). Burrows in some species are extensive, while in others they are simple, vertical or U- or Y-shaped, etc. The castings are of different forms often varying between species and are known in only a few Indian species. They are little heaps of individual spherical or oval pellets in *Metaphire posthuma*, *Hoplochaetella suctoria*, *H. anomália* and *H. powelli*. *Eutypheus incommmodus*, *E. nicholsoni* and *E. waltoni* excrete faeces in the form of small towers of coiled tubes. *Curgiona narayani* and *Thatonia* sp. produce casts that are thin and thread-like and are arranged in small mounds. The faeces of *Pithemera bicincta* look like beaded-strings. Large tower-like castings of *Tonoscolex birmanicus* may attain heights of 20-25 cm (Gates, 1961b). The annual wormcast production in India has been estimated at a few sites; it is 1.4-5.0 tonnes/ha in arable sandy loam soil (Roy, 1957) and 3.9-77.8
tonnes/ha in grasslands (Roy, 1957; Dash and Patra, 1979) as compared to larger amounts of 2100-2600 tonnes/ha in Africa (Edwards and Lofty, 1977).

Earthworms are omnivorous and use a wide variety of dead organic matter in their nutrition. Since the proportion of organic matter in soil is generally small they swallow large quantities of earth in order to obtain sufficient nourishment. They also consume nematodes, protozoans, rotifers, bacteria, fungi and other microorganisms. According to their feeding habits earthworms are generally divided into three groups: (i) litter feeding, (ii) geophagous and (iii) limipbagous. Most litter feeding species can distinguish between different kinds of leaves, but prefer senescent leaves to freshly fallen ones, and also show preference for particular shape and species of leaves. It has been shown that food preference in earthworms is dependent on chemoreception. Most subsoil dwelling species are geophagous that pass much soil through the intestine for obtaining sufficient nourishment since the subsoil horizon is usually poor in organic matter. The limipbagous species ingest large quantities of mud alongwith humified plant debris accumulated on the margin or bottom of water bodies. The amount of food taken by earthworms has been estimated to vary from 100 to 300 mg/g body weight/day (Edwards and Lofty, 1977).

Most earthworms respond to various kinds of stimuli in different ways. *Eutyphoeus waltoni* and *Lumbricus terrestris* when feeding on the soil surface keep their caudal ends in burrows, if touched or at the slightest vibration of ground, they retreat quickly into their burrows. *Metaphire posthuma*, if disturbed, slowly coils into a series of circles. The surface or litter feeding species usually respond vigorously to tactile stimuli; *Amythas diffringens*, *Hoplochaetella khandalaensis*, *H. inornata* and *H. powelli* move quickly in a serpentine manner; *Perionyx excavatus*, *Ramiella pallida* and *Hoplochaetella kinneari* produce a series of rapid lashing movements of anterior and posterior ends; other thigmotactic responses include autotomy of posterior segments as in
Hoplochaetella inornata, H. stuarti and H. suctoria, and death-feigning as in Pheretima sp. and Hoplochaetella suctoria. Most worms emerge onto the soil surface in response to vibrations, chemical and electrical stimuli. They also respond to light stimuli, some species, e.g. Lumbricus terrestris, are photopositive to very weak source of light and photonegative to strong ones, while other species such as Pheretima spp. are completely photonegative (Edwards and Lofty, 1977). Ultra-violet light is injurious to earthworms unless the intensity is very low. Some earthworms are known to produce luminescence when irritated by some chemical or electricity, or in response to vibration. Among Indian earthworms luminescence has been reported in a few species of Eutypheoeus and Ramiella nainiana by Gates (1944), and in Lampito mauritii by Ismail and Kaleemurrahman (1981). The luminescent system in earthworms may be due to the luciferin-lucifer reaction (Ismail and Kaleemurrahman, 1981).

Population distribution, density and seasonal abundance:

Several factors, often intercorrelated, are known to affect the distribution, density and seasonal abundance of earthworms. Most important of these are physico-chemical properties of soil, available food, reproductive potential and dispersive powers of the species.

Distribution of earthworms in the soil may be normal, random or aggregated and is sometimes influenced by the type of soil. For example, the endemic species of Eutypheoeus are mainly found in alluvial soil of the Indo-Gangetic plains and those of Hoplochaetella occur in laterite and red soils of the Western Ghats and the Peninsular plateaus, while most of the circummundai or peregrine species are able to live in different kinds of soils. Earthworms thrive best in moist soils and for this reason there are few worms in arid and semi-arid soils. Some worms (e.g. Glyphidrilus, Ocnerodrilus, Malabaria, Thatonia and Perionyx) are very hydrophilous and are usually associated with more or less submerged habitats. The soil pH has distinct influence on the distribution of worms. Most of them prefer neutral soils, but some can tolerate acid or alkaline soil.
and some are ubiquitous that can withstand both acid and alkaline soils. The availability of food supply (organic matter) greatly influences the distribution of these organisms. There are usually few worms in soils with little organic matter whereas some species (e.g. *Perionyx excavatus*, *Eisenia foetida*, *Dichogaster bolau*, *D. saliens*), that consume high amount of organic matter, aggregate in compost or under dungpats and forest litter. The proportion of carbon to nitrogen (C/N ratio) in soil may also regulate their distribution. Different soil horizons have different species of earthworms, but the vertical distribution of each species changes seasonally depending upon food, moisture and temperature.

Earthworm populations are commonly expressed in terms of numbers or biomass (wet weight) per unit area of soil. Their population density varies in different habitats depending upon a variety of physico-chemical factors. Most species attain higher densities in light and medium loams than in heavier clays or more gravelly sands or alluvial soils. They are abundant in mull soils than in mor and fallow soils and moorlands. Although an extensive literature is available on earthworm densities in temperate soils, the size of population of these organisms has been estimated in a few Indian ecosystems (Table 1). These estimates show that pasture soils contain more worms than woodland, orchard, arable and barren soils. The density is higher in barren land than in arable land, and mixed woodland has more worms as compared to pine woodland.

The seasonal abundance of earthworms is affected by many ecological factors and the two most important are soil temperature and moisture. In Indian subtropical climate, especially in the plains, earthworms are mainly active and abundant during the summer rains with maximum density occurring in September-October and minimum density in May-June (Gates, 1961b; Dash and Patra, 1977; Chauhan 1980). On the contrary, an introduced species of the Lumbricidae, *Octolasion tyrtaeum*, in temperate western Himalaya was active throughout the year in a mixed woodland and
the phases of high density coincided with early summer and winter rains in July and December respectively (Julka and Mukherjee, 1984). In a pine forest in Meghalaya, the maximum and minimum densities occurred in July and April respectively (Reddy and Alfred, 1978).

Dispersal:

Earthworms possess both active and passive means of dispersal, although mountains, deserts and oceans are effective physical barriers that impede their active dispersal. Some species emerge from the soil, often on a mass scale, during or after the periods of heavy rainfall, and move actively for a considerable distance on the soil surface. This may be in response to oxygen deficiency or increased concentration of hydrogen sulphide in soil. In some parts of the western Himalaya, *Perionyx excavatus* and *Amynthas diffringens* are usually seen migrating in large numbers at the end of the monsoons. This phenomenon may be triggered off due to rapid depletion of soil moisture, low temperature and structure of the subsoil stratum as suggested by Julka et al. (1984). Although mass emergence or migration of the worms involves heavy mortality of individuals because of desiccation or exposure to ultra-violet rays of the sun or trampling by animals and man, it may be a strategy for resource exploitation, rapid expansion of range distribution, genetic exchange among scattered populations of species and decreasing population pressure during peak reproduction (Schwert, 1980).

TABLE 1. Density (no/m²) and biomass (g/m²) of Indian earthworms in different habitats.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>no/m²</th>
<th>g/m²</th>
<th>Site</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasture</td>
<td>64-800</td>
<td>5.98- 60.95</td>
<td>Berhampur, Orissa</td>
<td>Dash & Patra, 1977</td>
</tr>
<tr>
<td>Pasture</td>
<td>25-936.1</td>
<td></td>
<td>Bangalore, Karnataka</td>
<td>Kale & Krishna-moorthy, 1978</td>
</tr>
<tr>
<td>Pasture</td>
<td>5.35-107.00</td>
<td></td>
<td>Sambalpur, Orissa</td>
<td>Senapati et al., 1979</td>
</tr>
</tbody>
</table>

Contd......
The passive means of dispersal are by stream drift and through mud on the feet of animals and birds. Man has also played an important role, though unintentional, in the passive dispersal of several widely distributed species by carrying them in mud around the roots of plants. A number of species are suspected to have been brought to India in this manner (Table 2).

Predators and parasites:

Earthworms are preyed upon by a variety of animals such as: leeches; flatworms (*Bipalium* spp.); slugs (*Testacella* spp.); carabid and staphylinid beetles, and ants; salamanders, toads; blackbirds, starlings, thrushes, gulls, crows, robins, common Myna and Shrike Babbler; snakes; hedgehogs, badgers and moles. They harbour several kinds of protozoan, helminth, rotatorian and dipterous larval parasites. The common protozoan parasites are *Monocystis, Distichopus, Nematocystis, Rhynchocystis, Echinocystis, Aikinetocystis, Grayallia, Nelloccystis, Craterocystis* and *Pleurocystis* amongst the gregarines, *Anoplophrya, Maupasella, Parabursaria, Hopliophrya, Plagiotoma* and *Metaradiophrya* amongst the ciliates, and a few sporozoans. The helminth parasites include *Taenia cuneata, Polycerus, Rhabditis, Heterakis, Syngamus, Dicelis, Dionyx, Stephanurus, Metastrongylus, Spiroptera* and *Synoecnema*. Amongst Diptera, the larvae of *Pollenia rudis*, the cluster fly, and some species of *Onesia* and *Sarcophaga* are parasitic on the worms. Cocoons of some worms are attacked by mites. Dash *et al.*
(1979) reported that a parasitic fungi, *Thielovia terricole*, caused the loss of weight, degeneration of clitellum and ultimate death of the senescent worms of *Octochaetona surensis*.

TABLE 2. List of peregrine (circum-mundane) earthworm species which are suspected to have been introduced to the Indian sub-continent, possibly by unintentional transportation by man.

<table>
<thead>
<tr>
<th>Family/species</th>
<th>Original home</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACANTHODRILIDAE</td>
<td></td>
</tr>
<tr>
<td>Microscolex dubius</td>
<td>South America</td>
</tr>
<tr>
<td>M. phosphoreus</td>
<td>"</td>
</tr>
<tr>
<td>Pontodrilus bermudensis</td>
<td></td>
</tr>
<tr>
<td>CRIODRILIDAE</td>
<td></td>
</tr>
<tr>
<td>Criodrilus lacuum</td>
<td>Europe</td>
</tr>
<tr>
<td>EUDRILIDAE</td>
<td></td>
</tr>
<tr>
<td>Eudrilus eugeniae</td>
<td>Central Africa</td>
</tr>
<tr>
<td>GLOSSOSCOLECIDAE</td>
<td></td>
</tr>
<tr>
<td>Pontoscolex corethrurus</td>
<td>Tropical America</td>
</tr>
<tr>
<td>LUMBRICIDAE</td>
<td></td>
</tr>
<tr>
<td>Aporrectodea trapezoides</td>
<td>Europe</td>
</tr>
<tr>
<td>A. tuberculata</td>
<td>"</td>
</tr>
<tr>
<td>A. turgida</td>
<td>"</td>
</tr>
<tr>
<td>Bimastos parvus</td>
<td>North America</td>
</tr>
<tr>
<td>Dendrobaena octaedra</td>
<td>Europe</td>
</tr>
<tr>
<td>D. rubida</td>
<td>"</td>
</tr>
<tr>
<td>Eisenia foetida</td>
<td>"</td>
</tr>
<tr>
<td>E. hortensis</td>
<td>"</td>
</tr>
<tr>
<td>E. rosea</td>
<td>"</td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>"</td>
</tr>
<tr>
<td>Lumbricus castaneus</td>
<td>"</td>
</tr>
<tr>
<td>L. rubellus</td>
<td>"</td>
</tr>
<tr>
<td>L. terrestris</td>
<td>"</td>
</tr>
<tr>
<td>‘L.’ eiseni</td>
<td>"</td>
</tr>
<tr>
<td>Octolasion cyaneum</td>
<td>Europe</td>
</tr>
<tr>
<td>O. tyraeum</td>
<td>"</td>
</tr>
<tr>
<td>MEGASCOLECIDAE</td>
<td></td>
</tr>
<tr>
<td>Amynthas alexandri</td>
<td>Southeast Asia</td>
</tr>
<tr>
<td>A. diffringens</td>
<td>China</td>
</tr>
</tbody>
</table>
Family/species

<table>
<thead>
<tr>
<th>Family/species</th>
<th>Original home</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. hawayanus</td>
<td>"</td>
</tr>
<tr>
<td>A. morrisi</td>
<td>"</td>
</tr>
<tr>
<td>A. robustus</td>
<td>"</td>
</tr>
<tr>
<td>Metaphire anomala</td>
<td>Southeast Asia</td>
</tr>
<tr>
<td>M. californica</td>
<td>China</td>
</tr>
<tr>
<td>M. houlleti</td>
<td>Southeast Asia</td>
</tr>
<tr>
<td>M. penguana</td>
<td>"</td>
</tr>
<tr>
<td>M. planata</td>
<td>(?) "</td>
</tr>
<tr>
<td>M. posthuma</td>
<td>"</td>
</tr>
<tr>
<td>Pithemera bicincta</td>
<td>Malay Archipelago or</td>
</tr>
<tr>
<td></td>
<td>Philippines</td>
</tr>
<tr>
<td>Polypheretima elongata</td>
<td>Borneo</td>
</tr>
</tbody>
</table>

OCNERODRILIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Original home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eukerria kukenthali</td>
<td>South America</td>
</tr>
<tr>
<td>E. salensis</td>
<td>"</td>
</tr>
<tr>
<td>Gordiodrilus elegans</td>
<td>Tropical Africa</td>
</tr>
<tr>
<td>Nematogenia panamaensis</td>
<td>Africa</td>
</tr>
<tr>
<td>Ocnerodrilus occidentalis</td>
<td>Central America</td>
</tr>
</tbody>
</table>

OCTOCHAETIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Original home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichogaster affinis</td>
<td>(?) West Africa</td>
</tr>
<tr>
<td>D. bolau</td>
<td>"</td>
</tr>
<tr>
<td>D. modiglianii</td>
<td>"</td>
</tr>
<tr>
<td>D. saliens</td>
<td>"</td>
</tr>
</tbody>
</table>

ECONOMIC IMPORTANCE

Usefulness of earthworms:

Effect on soil structure and fertility: Earthworms play a multisided role in enhancing the soil fertility by changing its physico-chemical properties. They form extensive burrows by literally eating their way through the soil and deposit the ingested material as surface or subsurface casts. In this way, they transport large quantities of soil from deeper layers to the surface and take down decaying organic matter into the soil. Soils rich in earthworms remain loose and have a greater capacity to retain air and
Formation of water-stable aggregates in soil is of great importance as such soils remain well aerated and drained. Most of the soil biologists agree that earthworm castings contain higher amount of stable aggregates than the surrounding soil. Earthworms also help to maintain the soil almost in the neutral pH range.

A large amount of organic matter accumulates on the soil surface with the decay of plant material, which must be degraded first into humus and then into simple products before it can be used by plants. Earthworms play a major role in breaking up organic matter, combining it with soil particles, and thus enhance microbial activity when humification is well advanced. Organic matter along with soil ingested by earthworms is pulverized and subjected to digestive enzymes in their alimentary canal, and excreted as a colloidal humus which is rich in plant nutrients. Although the bulk of humification process is due to the microbial activity, the process seems to be accelerated during the passage of organic matter through the digestive tracts of earthworms. Compared to parent soil, the wormcasts contain more available nitrate nitrogen, calcium, magnesium, phosphorus and potassium. Plants cannot assimilate mineral nitrogen unless the ratio of carbon to nitrogen (C N ratio) is around 20:1, which is much higher in freshly fallen litter. It has been shown that earthworms feeding on litter gradually lower its C N ratio. A large number of earthworms die during unfavourable period when the chemical demand in the soil is maximum due to growing plants. The microbial decomposition of the dead worms releases considerable amount of nitrogen and other nutrients. It has been estimated that the decomposed worm tissue releases nitrogen as 25% in the form of nitrate, 45% as ammonia, about 3% as soluble organic compounds, and the rest 27% is unaccounted (Satchell, 1967). Thus, introduction of earthworms in agricultural land improves the yield of most of the crops.

Earthworms and waste treatment: Pollution due to increase in the waste materials, especially with the growth of human population and industrialisation, is one of the major hazards for the maintenance of a clean environment. It is, therefore, very essential that
these waste materials are recycled into utilisable organic materials. Because of their food and feeding habits, earthworms are nature's most useful converters of wastes especially those of agricultural origin. Hartenstein et al. (1979) indicated that earthworms are able to process household garbage, city refuge, sewage sludge and wastes from wood, paper and food industries. These days sewage sludge and animal slurries are used as soil conditioners and fertilizers due to their organic constituents and high levels of inorganic nutrients. Addition of earthworms in sewage sludge and sludge amended soils hastens in sludge decomposition and stimulates metabolic activity of the bacterial populations (Mitchell and Horner, 1980). Earthworms can also be important in the redistribution of certain toxic heavy metals in sludge by their burrowing, feeding and excretory activities.

Earthworms as bioindicators: Soil is being polluted by an indiscriminate spray of pesticides, and release of toxic heavy metals and lethal radioactive materials, which adversely affect life in the soil. Since earthworms form a major component of the soil fauna as well as their sensitiveness to these toxic and lethal materials, they can serve as convenient bioindicators of polluted soils.

Earthworms as food: They are commonly used as bait for fish throughout the world. The tissues of earthworms contain high amount of protein. With suitable processing they could benefit the livestock and aquaculture industry by augmenting or even replacing traditional feeds. There are also reports of earthworms being used for human consumption. Maoris in New Zealand and natives of New Guinea consider worms a delicacy (Edwards and Lofty, 1977).

Earthworms in medicine: They are known to be associated with medicine since ancient times to cure various human diseases. In Indian Unani system of medicine, preparations from dried worms, when applied externally, have been used in treating wounds, chronic boils, piles, sore throat, hernia and impotency, and when taken internally, they are useful in curing chronic cough, diphtheria, jaundice, rheumatic pains, T.B., bronchitis, facial paralysis and
impotency. They have been used in folk-medicine to treat pyorrhoea and small pox and to enable mothers to nurse their children in Burma, and for hair growth and expulsion of stones from the bladder in Iran (Stephenson, 1930). The Cherokee Indians of the Great Smoky Mountains use earthworm poultices to draw out thorns (Reynolds and Reynolds, 1972).

Other benefits of earthworms: They are important in the dispersal of fungi or bacteria, which play a significant role in the decomposition of organic matter. The ascospores from the perithecia of a fungus *Ventura inaequalis* on overwinter-ing dead leaves of apple cause apple scab. Certain species of earthworms are known to carry these infected leaves from soil surface to subsoil horizon, thus preventing to some extent the spread of this serious disease in apple orchards. Earthworms are also known to prey upon soil nematodes and can be utilized to control both parasitic and non-parasitic nematodes in agrosystems (Dash *et al.*, 1980).

Earthworms carry pesticides absorbed in their tissues from soil surface into deeper soil where most pests live and control them more effectively. They are also killed by some kinds of pesticides, but can tolerate other kinds, and are considered to be sufficiently important test organisms to require pesticide firms to provide earthworm toxicity data (Edwards, 1980). Earthworms have been used in testing pregnancy. Their activity can increase the amount of vitamin B12 in soil upto seven times (Edwards and Lofty, 1977). Flooded areas that are subsequently drained and cultivated can be reclaimed by the addition of earthworms (Rhee, 1969).

Harmfulness of earthworms:

As enemies of plants: Certain habits of earthworms have been found to be responsible to damage plants in India as well as in other parts of the world. Some species seize the leaves of growing plants and pull them into their burrows, often killing the plants (Edwards and Lofty, 1977). A fungus, *Pythium aphanidermatum*, causes stem rot in *Carica papaya*, and a small species of earthworm *Megascolex insignis* has been observed to intensify the damage by feeding on the

As carriers of diseases: Earthworms are known to help in the spread and development of many parasites and diseases of both animals and plants. They may ingest spores of pathogenic fungi and eggs of parasites, which remain viable in their guts and throughout the soil. These pathogens and parasites are carried by the worms down to deeper soil, thus protecting them against adverse conditions and control measures used by man. The foot and mouth viral disease of domestic animals has been reported to be transmitted by these organisms (Dhennin et al., 1963). They also act as essential intermediate hosts to protozoan, cestode and nematode parasites of birds and mammals.

Adverse effects on soil: The castings of some species of worms on drying become cement like hard clods rendering the soil compact and hard. As a result, the normal percolation in the soil is affected and it becomes unproductive to raise vegetable crops, especially root crops like carrot, turnip, radish, etc. There are several reports that the worms cause soil erosion on hill slopes by bringing fine soil to the surface.

As carriers of toxic pesticides and heavy metals: Earthworms form an important component in the diet of various kinds of birds and mammals. Since they are known to accumulate certain pesticides and toxic heavy metals in their body tissues, they can become a serious threat to the animals feeding on them.

METHODS OF COLLECTION, PRESERVATION AND DISSECTION

The best method for collecting earthworms is by digging soil with a shovel or spade or any other suitable implement and
handsorting. The other commonly used method is by the application of 0.40% formalin or other chemicals, but this technique is not suitable for taxonomic purposes since deep burrowing and aestivating worms do not respond to chemicals. For a comprehensive survey of earthworms of an area, they should be collected from different ecological niches, viz., litter, kitchen drainage, manure heaps, different types of soils, margins of freshwater bodies, pastures, grasslands, forests, cultivated fields, etc.

The worms are killed by dropping them in 70% ethyl alcohol. When the movement stops, they are removed from alcohol and placed on a piece of blotting paper or any other absorbent paper in a straight position. They are then transferred to a flat-bottomed container with 10-15% formalin for fixation for a period of at least 24 hours. It is essential that the worms be straight because curled and twisted specimens are difficult to handle during dissection. The specimens are stored in suitable sized vials or bottles filled with 70% ethyl alcohol or 10-15% formalin. A label with locality and altitude data, name of collector and date of collection is to be added to each vial. For best results, the preservative should be changed within a week, especially for large worms. Sometimes for lack of adequate time in the field it is not possible to follow this programme, it is then recommended to preserve the specimens directly in 4-10% formalin depending on the size of the worm. Fixation of specimens in alcohol is not desirable as they become soft and macerated, and are unsuitable for dissection. Some workers anaesthetise and relax the worms before fixation by placing them in a container filled with water and gradually adding alcohol to it. The main disadvantage of this method is that length of the relaxed specimens may be twice, thrice or even more than the contracted specimens as obtained by dropping them directly into alcohol or formalin. The latter condition is preferable because uniform contraction is often more easily obtained than uniform relaxation of a worm.

Earthworms cannot be identified without resorting to dissection since their generic or even suprageneric identification is dependent on internal characteristics. Before dissecting a worm, its various
external characters like shape of prostomium, location of genital and nephridial apertures, and form and extent of clitellum should be recorded. It is then pinned in a dissecting dish, containing water, by fine entomological pins at the anterior and posterior ends, taking care to avoid injury to the prostomium. Using a fine scissors or scalpel or even a sharp shaving blade, the body is cut open longitudinally slightly to the left or right side of the mid-dorsal line in order to avoid damage to dorsal pores. By carefully cutting septa, the flaps of the body wall are slowly pinned out with a fine forceps, preferably first at the post-prostatic region and then continuing forward, care being taken to record exact location of missing and delicate septa in the gizzard region. To determine the presence of oesophageal calciferous lamellae and openings of calciferous glands, it is necessary to slit open the oesophagus along the mid-dorsal line. The beginning of intestine and form of typhlosole can be determined by giving a slit just below the mid-dorsal line on one side of the intestine. Penial and copulatory setae are easily removed along with their enlarged follicles from inside; they cannot be pulled from outside without some damage to them. After cleaning the adhering tissue, the setae are mounted on a slide in glycerine or any other media, provided the refractive index is sufficiently different from that of the setae. Canada Balsam is not satisfactory for this reason, unless the setae are stained.
FAMILIES AND HIGHER CATEGORIES
OF CLASS OLIGOCHAETA

Order LUMBRICULIDA
 1. Family Lumbriculidae

Order MONILIGASTRIDA
 *2. Family Moniligastridae

Order HAPLOTAXIDA
 Suborder HAPLOTAXINA
 3. Family Haplotaxidae

 Suborder TUBIFICINA
 Superfamily Enchytraeoidea
 *4. Family Enchytraeidae
 Superfamily Tubificoidea
 *5. Family Tubificidae
 *6. Family Naididae
 7. Family Phreodrilidae
 8. Family Opisthocystidae
 9. Family Dorydrilidae

Suborder ALLUROIDINA
 10. Family Alluroididae
 11. Family Syngenodrilidae

Suborder LUMBRICINA
 Superfamily Biwadriloidea
 12. Family Biwadrilidae
 Superfamily Criodriloida
 *13. Family Criodrilidae
 Superfamily Lumbricoidea
 14. Family Sparganophilidae
15. Family Ailoscolecidae
16. Family Hormogastridae
 i. Subfamily Hormogastrinae
 ii. Subfamily Vignysinae
*17. Family Lumbricidae
 *i. Subfamily Lumbricinae
 ii. Subfamily Diporodrilinae
18. Family Lutodrilidae
Superfamily Glossoscolecoidea
19. Family Kynotidae
20. Family Microchaetidae
*21. Family Glossoscoleidae
*22. Family Almidae
Superfamily Megascolecoidea
*23. Family Ocnerodrilidae
 i. Subfamily Ocnerodrilinae
 ii. Subfamily Malabarinae
*24. Family Acanthodrilidae
*25. Family Octochaetidae
*26. Family Megascoleidae
*27. Family Eudrilidae
 *i. Subfamily Eudrilinae
 ii. Subfamily Pareudrilinae

Families and subfamilies marked with an asterisk (*) have been reported from the Indian subcontinent. Families/ superfamilies marked with (1) are microdriles and (2) are megadriles.
KEY TO THE FAMILIES OF INDIAN MEGADRILE OLIGOCHAETA*

1. Testes and male funnels intraseptal, male pores at the posterior margin of the segments as their corresponding tests; clitellum single-cell thick; eggs large, yolkly ... O. MONILIGASTRIDA (MONILIGASTRIDAE)

 Tests and male funnels interseptal, male pores at least two segments posterior to the segment bearing testes; clitellum formed by multiple layers of cells; eggs small, not yolkly................. 2. O. HAPLOTAXIDA (S.O. LUMBRICINA)

2. Male pores anterior to or on segment xvi........... 3

 Male pores posterior to segment xvi (not easily recognizable in Glossoscolecidae and Almidae) 4

3. Dorsal pores present ... LUMBRICIDAE

 Dorsal pores absent .. CRIODRILIDAE

4. Prostatic glands present 5

 Prostatic glands absent 9

5. Spermathecal pores anterior to testis segments or mostly so located (not associated with ovaries or oviducts) .. 6

 Spermathecal pores in or posterior to testis segments (always? associated with ovaries or oviducts) .. EUDRILIDAE

6. Last pair of hearts in segment xi OCNERODRILIDAE

 Last pair of hearts posterior to segment xi........ 7

7. Prostatic glands racemose without central canal MEGASCOLECIDAE

 Prostatic glands tubular with central canal 8

*The key is not applicable to anatomically degraded parthenogenetic morphs of some ocnerodrilid and megascolecid species which may lack spermathecae, male pores and prostatic glands.
8. Holonephric .. ACANTHODRILIDAE
Meronephric .. OCTOCHAETIDAE

9. Extramural calciferous glands present................. GLOSSOSCOLECIDAE
Extramural calciferous glands absent ALMIDAE
COLLECTION, PRESERVATION, DISSECTION

Order HAPLOTAXIDIDA
Suborder LUMBRICINA
Superfamily MEGASCOLECOIDEA

Diagnosis: Earthworms with ovaries large, fan- to rosette-shaped, oocytes form several egg-strings; lateral line absent; supra-oesophageal vessel often present; some of hearts latero-oesophageal.

Distribution: Indigenous throughout tropics and southern Hemisphere (excluding Antarctica), also middle and western North America, eastern U.S.S.R., Japan, Korea and China.

ABBREVIATIONS USED FOR TYPE DEPOSITARIES

BLSS — Biological Laboratory, The Science Society of China, Shanghai.

BMNH — British Museum (Natural History), London.

HAZFS, **ZSI** — High Altitude Zoology Field Station, Zoological Survey of India, Solan (H.P.).

MNHU — Zoologisches Museum für Naturkunde der Humboldt Universitat, Berlin.

MZUT — Museo ed Instituto di Zoologia Sistematica dell Università di Torino, Torino.

NHRS — Naturhistoriska Riksmuseet, Stockholm.

RNHL — Rijksmuseum van Natuurlijke Historie, Leiden.

ZMUH — Zoologisches Institut and Zoologisches Museum Universität Hamburg, Hamburg.

ZSIC — Zoological Survey of India, Calcutta.
Family OCTOCHAETIDAE

Diagnosis: Body cylindrical; dorsal pores usually present; male pores posterior to segment xvi; spermathecae in pretesticular segments (sometimes the posteriormost pair in testicular segment), not associated with ovaries or oviducts; intestinal gizzards absent; last pair of hearts posterior to segment xi, supra-oesophageal vessel commonly present; prostatic glands tubular with central canal, ectodermal in origin; meronephric.

Distribution: Tropical America and Africa, Australasia, India and Burma. Peregrine species of Dichogaster, Ramiella and Octochaetona introduced into other regions. Geographical distributions of the Indian octochaetid genera are shown in Figs. 47-52.

Remarks: The Indian Octochaetidae comprises 26 genera (including 6 new described in this work), of which 25 are restricted in their distribution to the Indian subcontinent (excluding peregrine species) and one genus, Dichogaster, with endemicity in Africa and South America is represented by widely-distributed peregrine species. Attempts had been made in the past to establish relationships between the Indian and Malagassian octochaetids through Howascolex, but the Indian section of the genus is considered in this work as generically distinct on the characteristics of the excretory and digestive systems.

Barring Eutyphoeus, Scolioscolides and Bahlia, the Indian octochaetids are endemic in the peninsular India. It therefore appears that they originated and had subsequent development in the peninsular India - an ancient land mass that has never been submerged under the sea. Eutyphoeus, Scolioscolides and Bahlia are morphologically closely related to each other. Eutyphoeus has endemic species in Burma, Eastern Himalayas and North-east Ranges, and Indo-Gangetic plains, while monospecific Scolio-
FIG. 47. Distribution of *Eutyphoeus*, *Scolioscolides* and *Bahlia*.
Fig. 48. Distribution of *Dichogaster* and *Octochaetoides*.
Fig. 49. Distribution of *Ramiella*, *Mallehulla*, *Konkadrilus*, *Celeriella* and *Wahoscolex*.
FIG. 50. Distribution of *Lennogaster*, *Barogaster*, *Eudichogaster*, *Pellogaster*, *Rillogaster* and *Dasihella*.
Fig. 51. Distribution of *Hoplochaetella, Karmiella, Priodochaeta, Kotegeheria* and *Calebiella*.
FAMILY OCTOCHAETIDAE

IN 0 I A

PHYSIOGRAPHIC DIVISIONS
1. HIMALAYAS
2. GREAT PLAINS
3. CENTRAL HIGHLANDS
4. PENINSULAR PLATEAUS
5. E.COAST. PLAINS
6. W.COAST. PLAINS
7. ISLANDS

Octochaetona
Octonochaeta
Chaetocotoides
Priodoscolex
Travosclides
scolides and Bahlia are restricted to small areas, the former near Darjeeling in the Eastern Himalayas and the latter near Allahabad in the Gangetic plain. According to Gates (1972), these genera are the culmination of one of the major octochaetid lines that also evolved in the Indian Peninsula and may have crossed over the Rajmahal Gap to the North-east Ranges. Geological evidence is available in support of a land bridge formed during the Miocene times by a Rajmahal spur between the Satpura Hills of the peninsula and North-east Ranges (Hora, 1938).
Key to the genera of Indian OCTOCHAETIDAE

1. Oesophagus with a single gizzard ... 2
 Oesophagus with 2 gizzards... 19

2. Discrete calciferous glands present 3
 Discrete calciferous glands absent 15

3. Stomate megameronephridia present at least in caudal segments; micromeronephridia astomate throughout the body ... 4
 Megameronephridia absent; micromeronephridia stomate, at least in caudal segments 11

4. Megameronephridia exonephric 5
 Megameronephridia enteronephric 10

5. Calciferous glands intramural 6
 Calciferous glands extramural .. 8

6. Calciferous glands one pair, in xii 7
 Calciferous glands 2 pairs, in xi-xii Bahlia

7. Combined male and prostatic pores on xviii; typhosole rudimentary .. Scolioscolides
 Male pores slightly posterior to prostatic pores on porophores or in fissures or invaginated into vestibula, on xvii, typhosole well-developed Eutypheous

8. Calciferous glands one pair, in xv 9
 Calciferous glands more than one pair Kotegeharia

9. Calciferous glands 3 pairs, in xiv-xvi; typhosole rudimentary .. Priodochaeta
 Calciferous glands 4 pairs, in x-xiii; typhosole well-developed, ventrally bifid Calebielia

10. Calciferous glands one pair, each gland bilobed, one lobe in xv and the other in xvi Karmiella
Calciferous glands 4 pairs, in x-xiii Hoplochaetaella 12
11. Calciferous glands one pair 14
12. Calciferous glands 4 pairs Octonochaeta 13
13. Typhlosole simple ... Octochaetona
Typhlosole ventrally bifid .. Chaetocotoides
14. Calciferous glands asymmetrical, one gland in xv and the other in xvi; clitellum annular, xiii-xvi, xvii, xviii.......................... Octochaetona
Calciferous glands symmetrical, each gland bilobed, one lobe in xv and the other in xvi; clitellum saddle-shaped, extending xii-xix Travoscolides
15. Oesophagus with calciferous lamellae in viii-xi, Priodoscolex
Oesophagus with calciferous lamellae posterior to xi Ramiella
16. Megameronephridia in caudal segments exonephric Mallehulla
Megameronephridia in caudal segments enteronephric Konkadrilus
17. Oesophagus enlarged and with calciferous lamellae, in xiv-xv ... Celeriella
Oesophagus enlarged and with calciferous lamellae in xvi, slightly extending to adjacent segments ... Wahoscolex
18. Oesophagus enlarged and with calciferous lamellae, in xii-xiv; typhlosole absent; prostates very long extending to several segments........ Celeriella
Oesophagus enlarged and with calciferous lamellae, in xvi, extending slightly to adjacent segments; typhlosole present; prostates short, extending to 1-3 segments ... Wahoscolex
OCTOCHAETIDAE: KEY TO GENERA

19. Calciferous glands anterior to xiv 20
 Calciferous glands posterior to xiii 25

20. Calciferous glands 2 pairs, in xi-xii; supra-intestinal glands or 'grid-like' thickening at the posterior end of typhlosole present 21
 Calciferous glands more than 2 pairs; supra-intestinal glands or 'grid-like' thickening absent 22

21. Intestinal roof with 'grid-like' thickening at posterior end of typhlosole; combined male and prostatic pores on xviii, seminal grooves absent. Barogaster

 Intestinal roof with equatorially separated supra-intestinal glands at posterior end of typhlosole; male pores on xviii, prostatic pores or xvii and xix at the ends of seminal grooves ... Eudichogaster

22. Calciferous glands 3 pairs, in x-xii or xi-xiii 23
 Calciferous glands 4 pairs, in x-xiii 24

23. Calciferous glands in x-xii; setae lumbricine...... Lennogaster
 Calciferous glands in xi-xiii; setae perichaetine.. Dashiella

24. Gizzards in v-vi; male pores on xviii, prostatic pores on xvii and xix, at the ends of seminal grooves ... Pellogaster
 Gizzards in vi-vii, combined male and prostatic pores on xix, seminal grooves absent Rillogaster

25. Typhlosole present; calciferous glands one pair, each gland trilobed, one vertical lobe in each of segments xv-xvii ... Dichogaster
 Typhlosole absent; calciferous glands not so lobed or placed .. Octochaetoides
Genus 1. **Bahlia** Gates, 1945

Diagnosis: Lumbricine. Male and prostatic pores paired, in seminal grooves, on xvii. Oesophagus with a single gizzard in vi and 2 pairs of discrete intramural calciferous glands in xi-xii; supra-intestinal glands present; typhlosole lamelliform, simple. Micromeronephridia astomate; paired, exonephric, small tufts on the body wall in iii-ix; few, exonephric on the body wall in x and posteriad segments. Paired, stomate, exonephric megameronephridia in each of segments posterior to the supra-intestinal glands' region.

Type species: *Bahlia albida* Gates, 1945.

Description: As for the only species, *albida*.

Distribution: Southernmost portion of the Gangetic plain in Uttar Pradesh, India.

1. **Bahlia albida** Gates

(Figs. 53-56)

Length 50-70 mm, diameter 3-3.5 mm, 155-174 segments. Prostomium tanylobic. First dorsal pore 8/9, sometimes 7/8 or 9/10. Clitellum saddle-shaped, xiii-xix, xx. Setae lumbricine throughout the body, $aa = 2.2$ $ab = bc = 1.8$ $cd = 0.23$ dd on xii, $aa = 2.5$ $ab = 0.8$ $bc = 2.2$ $cd = 0.23$ dd on xxiv, a and b on iii-x enlarged, and on ix copulatory being surrounded by an unpaired tumescence. Prostatic and male pores paired, minute, at anterior and posterior ends of short seminal grooves respectively, on xvii, at about b; seminal grooves crescent-shaped from the setal arc of xvii to 17/18. Female pores paired, presetal, within a lines on xiv. Spermathecal pores paired, large, transverse slits in or slightly posterior to 8/9, at or just median to b. Genital markings unpaired and median but with 2 central translucent areas, postsetal on xviii-xix, sometimes on xvi, xx, xxi, at aa or bb. Nephridiopores not recognized.
Figs. 53-56. Bahlia albida Gates. 53. spermatheca, 54. genital region, 55. penial seta, 56. copulatory seta (all drawn from a syntype).
Septa 4/5 slightly muscular, 5/6/7 thickly muscular, 7/8/9/10 muscular. Oesophagus with a single gizzard in vi and two pairs of intramural calciferous glands in xi-xii. Intestine begins in xv; supra-intestinal glands 6-8 pairs in lxxii-xcii; intestinal caeca absent; typhlosole simple, lamelliform, xix-xxi to the region of supra-intestinal glands. Dorsal vessel single and complete; supra-oesophageal vessel in xi-xiii and may be double in all or any of these segments but the two vessels unite with each other at points of attachment of septa with the oesophagus; extra-oesophageal vessels paired, united mesially in ix or x; latero-parietal vessels paired, joining the extra-oesophageal vessels in xiii; subneural vessel absent; lateral hearts originating from supra-oesophageal with delicate connectives to the dorsal vessel in xi-xiii; last pair of hearts in xiii. Metandric, testes and male funnels free, in xi; seminal vesicles in xii, extending posteriorly to xiii. Prostates one pair, in xvii. Penial setae ornamented with 20-30 complete or interrupted circles of triangular spine-like teeth, tip slightly indented, lateral margins curved, 1 mm long, c. 40 μ diameter. Spermathecae one pair, each with a lateral, flattened, disc-shaped diverticulum at about the middle of a short duct. Copulatory setae ornamented with shallow depressions, tip claw-shaped, 0.65-0.7 mm long, 23-26 μ diameter. Genital marking glands absent. Micromeronephridia astomate; exonephric, small paired tufts on body wall in iii-ix, 5-8 on each side in x-xvi arranged in transverse rows, 4 on each side arranged in longitudinal rows in post-prostatic region. Megameronephridia stomate, exonephric, paired, in each segment posterior to the supra-intestinal glands’ region, funnels close to the nerve cord.

Type locality: Allahabad, Uttar Pradesh, India.

Type specimens: In ZSIC, W 3461/1, W 3629/1.

Material examined: 0-0-1, 0-0-2, syntypes, W 3461/1, W 3629/1, in ZSIC.

Biology: Its activity is restricted to April, and July to October.
Genus 2. **Barogaster** Gates, 1939

Diagnosis: Lumbricine. Combined male and prostatic pores paired, on xviii, seminal grooves absent. Oesophagus with 2 gizzards in v-vi and 2 pairs of discrete extramural calciferous glands in xi-xii; supra-intestinal glands present; typhlosole lamelliform, simple. Micromeronephridia astomate; paired exonephric tufts on the body wall in iii; numerous, exonephric on the body wall in iv and posteriad segments. Paired, stomate, exonephric megamero­nephridia in each of few posteriormost segments.

Type species: *Eudichogaster barodensis* Stephenson, 1914.

Description: Setae lumbricine throughout the body. Clitellum annular. Combined male and prostatic pores paired, on xviii. Female pore single, median, on xiv. Spermathecal pores paired, in or close to 7/8. Genital markings present. Nephridiopores not recognized.

Septa all present from 4/5, slightly to moderately muscular. Gizzards 2, in v-vi. Calciferous glands discrete, extramural, ovoidal, 2 pairs, in xi-xii, opening into oesophagus through short stalks dorsolaterally. Intestine begins in xv; intestinal caeca absent; supra-intestinal glands in the form of a longitudinal 'grid-like' thickening on the roof of the intestine at the posterior end of typhlosole, which is simple and a folded lamella. Dorsal vessel single and complete; supra-oesophageal vessel single, viii-xiii; extra-oesophageal vessels paired, passing posteriorly into the calciferous glands in xii; latero-parietal vessels paired, uniting with the supra-oesophageal vessel in xiii. subneural vessel absent; lateral hearts originating from the supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xii. Holandric. Vasa deferentia join the ectal ends of the prostatic ducts beneath the longitudinal muscle layer. Prostates one
pair, in xviii, extending posteriorly usually to a few segments. Penial setae present, sometimes absent. Spermathecae paired, in vii. Ovisacs paired, in xiv. Micromeronephridia astomate, exonephric, paired tufts on the body wall in iii, numerous on the body wall in iv and posteriad segments, arranged in c. 6-10 longitudinal rows on each side from about middle of the body to caudal end; paired stomate exonephric megamerone-phridia in caudal segments, funnels close to the nerve cord.

Distribution: Peninsular India.

Key to the species of Barogaster

1. Penial setae present ... 2
 Penial setae absent .. B. prashadi

2. Penial setae ornamented with circles of fine spines, genital markings in a single transverse row on segments xviii and xix B. barodensis
 Penial setae unornamented, genital markings in two transverse rows on xviii B. annandalei

2. **Barogaster annandalei** (Stephenson)
 (Figs. 57-59)

Length 95-115 mm, diameter 4-5 mm, 130 segments. Prostomium prolobic, retracted. First dorsal pore 12/13. Clitellum xiii-xvii. Setae $aa = 2.4-3.6 \ ab = 1.2-2.1 \ bc = 2.2-3.6 \ cd = 0.18 \ dd$ on xii, $aa = 3.6-4.7 \ ab = 1.5-1.6 \ bc = 2.5-3.5 \ cd = 0.2 \ dd$ on xxiv. Male genital field transversely depressed, on xviii. Combined male and prostatic pores minute, discharging on oval porophores, at b. Female pore slightly anterior to the setal arc. Spermathecal pores minute, on anterior margin of viii, slightly posterior to 7/8, at or
FIGS. 57-59. Barogaster annandalei (Stephenson). 57. spermathecal pore region, 58. genital region, 59. spermatheca (all drawn from a syntype).
just lateral to \(b \). Genital markings small, oval, 3-6 in transverse rows, at \(bb \), 2 rows, pre- and postsetal, on xviii, sometimes additional single rows, presetal on vii, postsetal on viii and xvii.

Supra-intestinal ‘grid-like’ thickening extends through 6(+) or 10 segments, lxii or lxxxvi to lxvi (+) or xcv; typhlosole in xxvii-xxix to the last ‘grid’ segment. Testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Penial setae unornamented, 0.58-0.66 mm long, 16-22 μ diameter. Each spermatheca with a median flattened ental diverticulum, adherent to the duct, which is shorter than ampulla. Genital marking glands absent.

Type locality: Dowlaishweram, Godavari district, Andhra Pradesh, India.

Type specimens In ZSIC, W 562/1, BMNH, 1933: 5: 5: 25: 1340.

Material examined: 0-0-5, syntypes, W 562/1, in ZSIC.

Distribution: So far known from the type locality.

3. **Barogaster barodensis** (Stephenson)

(Figs. 60-63)

Length 65-100 mm, diameter 3-4 mm, 138-167 segments. Prostomium prolobic. First dorsal pore 12/13. Clitellum 1/3 xii, xiii-xvii, 1/3 xviii. Setae \(aa = 4 \ ab = 1.4 \ bc = 2.4 \ cd = 0.24 \ dd \) on xii, \(aa = 5.3 \ ab = 1.4 \ bc = 2.7 \ cd = 0.24 \ dd \) on xxiv. Combined male and prostatic pores minute, discharging on oval porophores, at \(b \). Female pore presetal. Spermathecal pores minute, on oval tumescences, in 7/8, at or just lateral to \(b \). Genital markings small, circular to oval, 2-11, in single transverse rows, at \(aa \) or \(bb \), presetal or on setal arc on viii, postsetal on vii, xvi-xix, rarely on setal annulus of ix.
FIGS. 60-63. *Barogaster barodensis* (Stephenson). 60. spermathecal pore region, 61. genital region, 62. penial seta, 63. spermatheca (all drawn from a syntype).
Supra-intestinal ‘grid-like’ thickening extends through 8-12 segments, in lxviii-lxxix to lxxviii-lxxxix; typhlosole in xxiv-xxvi to the last ‘grid’ segment. Testes and male funnels free, in x and xi; seminal vesicles in ix, x and xii, those of x vestigeal. Penial setae ornamented with 6-11 circles of fine spines, tip bluntly rounded, 0.43-0.59 mm long, 11-16 μ diameter. Each spermatheca with a cauliflower-shaped sessile ental diverticulum, duct shorter than ampulla. Genital marking glands absent.

Type locality: Baroda, Gujarat, India.

Type specimens: In ZSIC, W 27/1; BMNH, 1925: 5: 12: 64.

Material examined: In ZSIC: 0-3-9, syntypes, W 27/1; 0-0-1 Nowgong, coll. Prof. G.E. Gates, W 3630/1.

Distribution: India: Gujarat: Baroda; Madhya Pradesh: Nowgong, Chaubara, Baraila.

4. Barogaster prashadi (Stephenson)

Length 42 mm, diameter 4 mm, 140 segments. Prostomium prolobic. First dorsal pore 12/13. Clitellum xiii-xvii. Setae \(aa = 3.7 \ ab = bc = 3 \ cd = 0.23 \ dd \) on xii, \(aa = 3.7 \ ab = bc = 2.5 \ cd = 0.21 \ dd \) on xxiv. Combined male and prostatic pores minute, on oval, slightly raised porophores, at b. Female pore presetal (?). Spermathecal pores tiny, transverse slits, in 7/8, a little lateral to b. Genital markings small, 4-7, in single transverse rows, at about \(bb \), postsetal on viii, xix and xx, on setal annulus on xvii.

Supra-intestinal ‘grid-like’ thickening extends from about lxx to (?); typhlosole from (?) to the last ‘grid’ segment. Testes and male funnels free, in x and xi; seminal vesicles in ix, x and xii, those of x vestigeal. Penial setae absent. Each spermatheca with an anteroposteriorly flattened ental diverticulum, adherent to the duct,
which is slightly shorter than ampulla. Genital marking glands absent.

Type locality: Sakarwari, Maharashtra, India.

Type specimens: In ZSIC, W 291/1.

Material examined: 0-0-1, holotype, W 291/1, in ZSIC.

Distribution: So far known from the type locality.

Remarks: The holotype in the Zoological Survey of India, Calcutta is in poor condition and anterior portion of its intestine has been removed. The beginning of the typhlosole and the extent of the supra-intestinal ‘grid-like’ thickening can only be determined from the fresh material.

Genus 3. Calebiella Gates, 1945

Diagnosis: Lumbricine. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Oesophagus with a single gizzard in vi and 4 pairs of discrete extramural calciferous glands in x-xiii; supra-intestinal glands absent; typhlosole lamelliform, bifid ventrally at the anterior portion. Micromeronephridia astomate; paired, exonephric, large tufts on the body wall in iv; few, exonephric on the body wall in x and posteriad segments. Paired, stomate, exonephric megameronephridia in each of few posteriormost segments.

Type species: *Calebiella parva* Gates, 1945.

Description: As for the only species, *parva*.

Distribution: Uttar Pradesh, India.

5. **Calebiella parva** Gates

(Figs. 64-67)

Length 65 mm, diameter 2.5 mm, 140-143 segments. Prostomium prolobic or pro/epilobic. First dorsal pore 9/10, 10/11. Clitellum annular, xiii-xvii. Setae lumbricine throughout the body, \(aa = 3.7 \ ab = 1.6 \ bc = 3.7 \ cd = 0.33 \ dd \) on xii, \(aa = 4.8 \ ab = 1.7 \ bc = 4.8 \ cd = 0.36 \ dd \) on xxiv, \(a \) and \(b \) on ix copulatory being surrounded by an unpaired tumescence. Male pores paired, minute, in seminal grooves on the setal arc of xviii, slightly median to \(b \); prostatic pores paired, minute, at the ends of slightly concave seminal grooves on setal arcs of xvii and xix, at \(ab \). Female pores paired, presetal, within \(a \) lines, on xiv. Spermathecal pores paired, minute, presetal, on viii and ix, at \(b \). Genital markings possibly represented by paired, presetal, translucent areas on xvii and xix, at \(aa \). Nephridiopores not recognized.

Septa 4/5/6/7 thickly muscular, 7/8-13/14 muscular. Oesophagus with a single large gizzard in vi. Calciferous glands 4 pairs, in x-xiii, discrete, extramural, reniform, stalkless, opening directly into oesophagus laterally, each gland bilobed. Intestine begins in xv; supra-intestinal glands and intestinal caeca absent; typhlosole bifid ventrally (T or Y-shaped in cross section) at the anterior portion, simple at the posterior portion, in xvii to xcix-ciii. Dorsal vessel simple and complete; supra-oesophageal vessel single, in x-xiii; extra-oesophageal vessels paired, latero-parietal vessels paired, from xiii to some distance behind prostatic region; subneural vessel absent; lateral hearts originating from supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xiii. Holandric, testes and male funnels free, in x and xi; seminal vesicles small, acinous, in ix and xii. Prostates 2 pairs in xvii and xix, extending posteriorly to 5-6 segments. Penial setae ornamented with a few, scattered, small teeth in the basal half of the ectal scoop-shaped portion, \(c \) 3 mm long, 10 \(\mu \) diameter. Spermathecae paired, in vii and ix, each with a short ental diverticulum, duct longer than ampulla. Copulatory setae ornamented with longitudinally placed gouges, tip claw-shaped, 0.4-0.45 mm long, 12-16 \(\mu \) diameter. Genital marking glands sessile. Micromeronephridia
Figs. 64-67. *Calebiella parva* Gates, 64. copulatory seta, 65. spermatheca, 66. tip of a penial seta, 67. genital region (all drawn from a syntype).
astomate, exonephric, large paired tufts on the body wall in iv, 2-3 on each side on the body wall, arranged in longitudinal rows in x and posteriad segments; paired stomate, exonephric megameronephridia in caudal segments, funnels close to the nerve cord.

Type locality: Partabgarh, Uttar Pradesh, India.

Type specimens In ZSIC, W 3635/1.

Material examined 0-1-2, syntypes, W 3635/1, in ZSIC.

Distribution: India: _Uttar Pradesh_: Partabgarh, Jhangai, Jhusi, Rae Bareli.

1923. _Spenceriella_ (in part), Stephenson, _Fauna Br. India, Oligochaeta_: 190.

Diagnosis: Perichaeine. Combined male and prostatic pores paired, on xviii. Oesophagus with a single gizzard in vi and lacking discrete calciferous glands but with calciferous lamellae in enlarged portions or pouches in xiii-xiv; supra-intestinal glands and typhlosole absent. Micromeronephridia astomate; paired, enteronephric tufts in ii and iii, larger in iv and v; paired, exonephric tufts in vi; few, exonephric on the body wall in vii and posteriad segments; stomate with preseptal funnels at least in caudal segments. Stomate, paired enteronephric megameronephridia in each of caudal segments.

Type species: _Spenceriella duodecimalis_ Michaelsen, 1907.

Description: Setae perichaeine throughout the body. Clitellum annular. Combined male and prostatic pores paired, on xviii. Female pores paired, presetal, on xiv. Spermathecal pores paired, in 7/8 or 7/8/9.

Gizzard large, in vi. Oesophagus tubular, enlarged (or with paired pouches) and with calciferous lamellae in xiii-xiv; discrete
calciferous glands, intestinal caeca, supra-intestinal glands and typhlosole absent. Dorsal vessel single and complete; supra-oesophageal vessel single, viii-xiii; extra-oesophageal vessels paired, joining the latero-parietal vessels in xii; subneural vessel absent; lateral hearts originating from supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xii. Holandric, testes and male funnels free, in x and xi. Prostates paired, in xviii, extending posteriorly through several segments; vasa deferentia on each side joins the prostatic duct entally. Penial setae absent. Spermathecae paired, in viii or viii and ix. Ovisacs paired, in xiv. Micromeronephridia astomate, paired enteronephric tufts in ii and iii, larger in iv and v, paired exonephric tufts in vi, few exonephric on the body wall in vii and posteriad segments, stomate with preseptal funnels at least in caudal segments; stomate, paired enteronephric megameronephridia in each of caudal segments, with large nephrostomes close to the nerve cord and loops extending laterally.

Distribution: Palni Hills, S. India.

Remarks: In *Celeriella*, the loops of stomate, median, enteronephric megameronephridia in the caudal segments are often embedded in the coelomic coagulum. This may possibly be the reason that Jamieson (1977) could not recognize the megameronephridia in this genus.

Key to the species of Celeriella

1. Setae paired, 10-12 per segment, at least in the anterior part of the body ... 2

 Setae not paired, c. 40-50 per segment, throughout the body ... 6

2. Spermathecal pores 2 pairs, in 7/8/9 3

 Spermathecal pores one pairs, 7/8 4

3. Spermathecal pores at or close to a lines, longitudinal tubercula pubertatis each with a longitudinal row of minute orifices, in xvii-½xix *C. punctata*
Spermathecal pores at \(bc \), tubercul a pubertatis absent .. \(C. \) ditheca

4. Spermathecal pores at or slightly lateral to \(b \) lines ... 5

Spermathecal pores at or close to \(d \) lines \(C. \) quadripapillata

5. Setae in 12 regular rows throughout the body ...

Setae \(a, b \) in regular rows throughout the body; in the posterior region other rows irregular and number increased to 14-17 per segment \(C. \) duodecimalis

6. Male porophores medianly contiguous; male pores in a transverse midventral groove \(C. \) kempi

Male porophores not medianly contiguous, male pores each at the anterior end of a comma-shaped seminal groove.......................... \(C. \) bursata

6. Celeriella bursata Jamieson

Length 82 mm, diameter 2.6 mm, 110 segments. Prostomium epilobic, tongue open. First dorsal pore 5/6. Clitellum (?). Setae \(aa = 3 \ ab = 3 \ bc = 2 \ yz = c \). 0.6 \(zz \) on xii, 40 on xii, 42 on xx. Combined male and prostatic pores on conspicuous, hemisperoidal paired porophores, at \(d \), \(c \). 0.11 body circumference apart, each pore at the anterior end of a broad, comma-shaped seminal groove, which extends posteromedianly to the posterior margin of xviii. Female pores within \(a \) lines. Spermathecal pores minute, in 7/8/9, at \(ab \), \(c \). 0.04 body circumference apart. Genital markings absent.

Septa 4/5-9/10 slightly muscular (?), 10/11/12 muscular. Oesophagus with paired pouches with calciferous lamellae, in xiii-xiv. Intestine begins in xvii. Testes and male funnels free, in x and xi; seminal vesicles racemose, in xi and xii. Prostates extend posteriorly to xxxiii. Spermathecae paired, in viii and ix, each with a digitiform ental diverticulum which is about as long as the combined length of the duct and ampulla, duct very short.
Type locality: Vandaravu Range, border between Kerala and Tamil Nadu, Palni Hills, S. India.

Type specimens: In Paris Museum, holotype, AH 328.

Distribution: So far known from the type locality.

Biology: It inhabits montane, humic, ferralite soil with high organic matter (up to 25%) and pH 4.9 in upper horizon, at 2490 m altitude.

7. Celeriella ditheca (Stephenson)

(Figs. 68-70)

Length 70-92 mm, diameter 2-3 mm, 97-137 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum xiv-xvii. Setae aa = 2-2.1 ab = 1.4-1.6 bc = 1.4-1.6 yz = 1.2-1.3 zz on xii, aa = 1.7-2 ab = 1.3-1.6 bc = 1.1 yz = 0.9-1.1 zz on xxiv, 7-10 on ii, 10-12 on iii, 12 on iv and posteriad segments arranged in longitudinal rows, number increasing to 13-14 in caudal segments. Combined male and prostatic pores minute, discharging at the centres of large, circular, paired porophores, on the setal arc of xviii, at c. b lines, 0.18-0.20 body circumference apart, each porophore depressed in the middle, between 17/18 and 18/19, extending laterally to c. Female pores within a lines. Spermathecal pores minute, on small oval papillae, in 7/8/9, at or just lateral to b, 0.17-0.18 body circumference apart. Genital markings absent.

Septa 4/5/6 delicate, 6/7-11/12 slightly muscular. Oesophagus with paired pouches with calciferous lamellae, in xiii-xiv. Intestine begins in xvi. Testes and male funnels free, in x and xi; seminal vesicles racemose, in xi and xii. Prostates extend posteriorly to xxxvi-xxxvii. Spermathecae paired, in viii and ix, each with a digitiform ectal diverticulum which is about as long as combined length of the duct and ampulla, duct shorter than ampulla.
FIGS. 68-70. Celeriella diitheca (Stephenson). 68. genital region, 69. spermatheca, 70. spermathecal pore region.
Type locality: Kodaikanal, Palni Hills, S. India.

Type specimens: In ZSIC, W 1118/1.

Distribution: So far known from the type locality.

Remarks: Stomate caudal megameronephridia discharge into rectum through lateral canals.

8. Celeriella-duodecimalis (Michaelsen) (Figs. 71-73)

Length 32-82 mm, diameter 1.5-2.5 mm, 94-127 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5, sometimes 5/6. Clitellum ½xiii-½xvii, xvii, rarely xiv-½xvii, xvii. Setae aa = 1.5-1.8 ab = 1-1.1 bc = 1.2-1.8 yz = 1.2-1.3 zz on xii, aa = 1.6-2 ab = 1.2-1.3 bc = 1.6-1.7 yz = 1.5 zz on xxiv, 7-12 on ii, 12 on iii and posteriad segments, arranged in longitudinal rows, number increasing to 14-18 and irregularly arranged in a few to several caudal segments. Combined male and prostatic pores minute, discharging at the centres of paired, spheroidal porophores, on the setal arc of xviii, slightly median to b, 0.15-0.17 body circumference apart. Female pores within a lines. Spermathecal pores minute, in 7/8, slightly lateral to b, 0.22 body circumference apart. Genital markings absent.

Septa 4/5/6 delicate, 6/7-11/12 slightly muscular. Oesophagus much enlarged and with calciferous lamellae, in xiii-xiv. Intestine
FIGS. 71-73. *Celeriella duodecimalis* (Michaelsen). 71. genital region, 72. spermathecal pore region, 73. spermatheca.
begins in xvi. Testes and male funnels free, in x and xi; seminal vesicles racemose, in xi and xii. Prostates extend posteriorly to xxxiv-xlii. Spermathecae paired, in viii, each with a digitiform ectal diverticulum which is about three-fourth as long as combined length of the duct and ampulla, duct about one third as long as ampulla.

Type locality: Kodaikanal, Palni Hills, S. India.

Type specimens: In ZSIC, ZEV 2950/7; in ZMUH, 7148.

Distribution: So far known from the type locality.

Remarks: Stomate megameronephridia in caudal segments discharge into intestine in each segment on either side of the dorsal blood vessel (? through paired longitudinal excretory canals).

9. **Celeriella kempi** (Stephenson)

Length 58 mm, diameter 2.5 mm, 112 segments. Prostomium epilobic, tongue closed. First dorsal pore 5/6. Clitellum (?). Setae $aa = 2.5\ ab$, $zz = 2\ yz$ on anterior segments, 28 on ii, 51 on xii, 49 on xix, not paired. Combined male and prostatic pores minute, discharging in a groove (?), on xviii, at cd or d. Female and spermathecal pores (?).

Septa 4/5/6/7 delicate, 7/8/9 slightly muscular, 9/10-12/13 muscular. Oesophagus enlarged and with calciferous lamellae, in xiii-xiv. Intestine begins in xvii. Testes and male funnels free, in x and xi; seminal vesicles racemose, in xi and xii. Prostates extend posteriorly to xxix-xxx. Spermathecae (?).

Type locality: Marian Shola, Palni Hills, S. India.

Type specimens: In ZSIC, W 1119/1.
Material examined: 1-0-0, holotype, W 1119/1, in ZSIC.

Remarks: C. kempii cannot be characterized adequately as its description is based on a juvenile holotype.

Distribution: So far known from the type locality.

10. Celeriella punctata Jamieson
(Figs. 74-76)

Length 75-84 mm, diameter 1.8-2.1 mm, 127-139 segments. Prostomium epilobic, tongue closed. First dorsal pore 5/6. Clitellum ½xiii-xvii. Setae aa = 2.2-2.4 ab = 1.5-1.7 bc = 1.3-1.8 yz = 0.4-0.6 zz on xii, aa = 2.6-3 ab = 1.3-2 bc = 1.8 yz = 0.5-0.6 zz on xxiv, arranged in 12 longitudinal rows throughout the body. Combined male and prostatic pores minute, discharging on indistinct porophores on the setal arc of xviii, at a, 0.11-0.13 body circumference apart; a pair of longitudinal tumescences (tubercula pubertatis) including the male porophores extend from the setal arc of xvii to c. setal arc of xix, at ab, each bearing a longitudinal row of about 15 orifices of hemispheroidal muscular organs. Female pores within a lines. Spermathecal pores minute, in 7/8/9, slightly lateral to a, 0.10-0.11 body circumference apart. Genital markings absent.

Septa 4/5/6 delicate, 6/7 slightly muscular, 7/8-10/11 muscular. Oesophagus with paired pouches with calciferous lamellae, in xii-xiv. Intestine begins in xvi. Testes and male funnels free, in x and xi; seminal vesicles racemose, in xi and xii. Prostates extend posteriorly to xxvii. Spermathecae paired, in viii and ix, each with a median clavate diverticulum which is c. one-third the combined length of the duct and ampulla, and joins the duct at mid-length (rarely one of the spermathecae may be bidiverticulate -abnormality ?).

Type locality: Gundar Shola, Palni Hills, S. India.

Type specimens: In Paris Museum: holotype, AH 329, 2
FIGS. 74-76. *Celeriella punctata* Jamieson. 74. spermatheca (abnormal), 75. spermatheca (normal), 76. genital region.

Distribution: India: Tamil Nadu: Gundar Shola, Kodaikanal, Palni Hills.

Biology: It inhabits forest montane ferrallitic gibbsite soil with high organic matter and pH 6.3 at 2100 m altitude.

Remarks: Stomate caudal megaomeronephridia discharge into intestine in each segment on either side of the dorsal vessel (through paired longitudinal excretory canals).

11. *Celeriella quadripapillata* (Stephenson)

Length 27-84 mm, diameter 1.4-1.75 mm, 81-105 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5, sometimes 3/4, 5/6. Clitellum annular, ½xiii-xvi, ½xvii. Setae paired, in 12 longitudinal rows throughout the body, \(aa = 2.2 \) \(ab = 1.7 \) \(bc = 1.8 \) \(yz = 1.1 \) \(zz \) on xii. Combined male and prostatic pores minute, at the centres of spheroidal tumescences on xviii, at \(ab \), each pore almost concealed by a pair of small papillae. Female pores within \(a \) lines. Spermathecal pores minute, in 7/8, at \(d \). Genital markings absent.

Septa 4/5/6 delicate (?), 6/7/8 muscular. Oesophagus enlarged and with calciferous lamellae, in xiii-xiv. Intestine begins in xvi. Testes and male funnels free, in x and xi; seminal vesicles racemose, in xi and xii. Prostates extend posteriorly to xxvi-xxix. Spermathecae paired, in viii, each with a digitiform ectal diverticulum which is longer than the combined length of the duct and ampulla, duct shorter than ampulla.
Type locality: Kodaikanal, Palni Hills, S. India.

Type specimens: In ZSIC, W 1117/1.

Distribution: India: Tamil Nadu: Kodaikanal. Outside India: Burma.

12. *Celeriella regularis* (Stephenson)

(Figs. 77-78)

Length 26(+)-84 mm, diameter 1-1.25 mm, 85(+)-125 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum annular, ⅛xiii, xiv-xvi, ⅜xvii. Setae aa = 1.8-2.4 ab = 1.3-1.7 bc = 1.3-1.4 yz = 0.8-0.9 zz on xii, aa = 2.1-2.2 ab = 1.4-1.6 bc = 1.4-1.6 yz = 0.7-0.9 zz on xxiv, 3-4 on ii, paired and in 12 longitudinal rows from iii to the posterior end. Combined male and prostatic pores minute, discharging on slightly raised circular porophores, on xviii, at b, 0.13-0.14 body circumference apart. Female pores within a lines. Spermathecal pores minute, in 7/8, at b, 0.16 body circumference apart. Genital markings absent.

Septa 4/5/6 delicate, 6/7-11/12 slightly muscular. Oesophagus much enlarged and with calciferous lamellae, in xiii-xiv. Intestine begins in xvi. Testes and male funnels free, in x and xi; seminal vesicles racemose, in xi and xii. Prostates extend posteriorly to xxix-xxxiv. Spermathecae paired, in viii, each with a clavate ectal diverticulum which is about one-third as long as combined length of the duct and ampulla, duct longer than ampulla.

Type locality: Kodaikanal, Palni Hills, S. India.

Type specimens: In ZSIC, W 1115-1116/1.

Distribution: So far known from the type locality.

Remarks: Stomate caudal megameronephridia discharge into rectum through lateral paired longitudinal excretory canals.
Figs. 77-78. *Celeriella regularis* (Stephenson). 77. genital region, 78. spermatheca.
Genus 5. *Chaetocotoides* gen. nov.

Diagnosis: Lumbricine. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Oesophagus with a single gizzard in vi and one pair of discrete, extramural, symmetrical calciferous glands, each gland bilobed, one lobe in xv and the other in xvi, opening into gut in xv slightly anterior to septum 15/16; supra-intestinal glands absent; typhlosole lamelliform, ventrally bifid. Micromeronephridia astomate, paired enteronephric tufts in iv, several exonephric on the body wall in v and posteriad segments; stomate, exonephric with preseptal funnels in caudal segments; megameronephridia absent.

Type species: *Octochaetus montanus* Stephenson, 1920.

Description: As for the only species, *montanus*.

Etymology: *Chaetocotoides*, anagram of *Octochaetoides* in which the species was assigned.

Remarks: Gates (1962b) restricted the genus *Octochaetoides* Michaelsen, 1901 to include *O. aitkeni* (Fedarb, 1898b) with 2 oesophageal gizzards and referred most of its other species (with a single oesophageal gizzard) to his genus *Octochaetona*. However, he retained *O. montanus* (Stephenson, 1920) along with *O. kurmagarensis* Gates, 1945, *O. raoi* Gates, 1945 and *O. castellanus* (Stephenson, 1917a) with a single oesophageal gizzard in *Octochaetoides* but pointed out that each of them deserved a separate generic status by the characteristics of the calciferous glands and typhlosole.

A re-examination of the type material of *O. montanus* in ZSI, Calcutta and several other specimens from the type locality (Panchgani) reveals: “one pair of discrete, extramural, symmetrically placed calciferous glands, each gland being bilobed, one lobe in xv and the other in xvi, the two lobes open into oesophagus through a common duct in xv, slightly anterior to septum 15/16; typhlosole lamelliform, ventrally bifid; stomate, exonephric micromeronephridia in caudal segments; megameronephridia absent”
O. montanus, herein assigned to a new genus Chaetocotoides, belongs to a group of octochaetid genera with a single oesophageal gizzard, one pair of discrete extramural calciferous glands and stomate exonephric micromeronephridia in caudal segments, and lack megameronephridia. It can be distinguished from other members of the group, Octochaetona Gates, 1962 and Octonochaeta gen. nov. (described elsewhere in this work) by the characters given in Table 3.

Octochaetoides kurmagarensis, O. raoi and O. castellanus are to be regarded as species incertae sedis till more is known about their digestive and excretory systems.

13. Chaetocotoides montanus (Stephenson)
 (Figs. 79-83)

Length 60-100 mm, diameter 3-4 mm, 143-181 segments. Prostomium epilobic, tongue closed and narrowed posteriorly. First dorsal pore 10/11. Clitellum saddle-shaped, xii-xix. Setae lumbricine, \(aa = 2.1-2.3 \ ab = 0.9-1 \ bc = 1.1 \ cd = 0.09-0.11 \ dd \) on xii, \(aa = 3.1-3.4 \ ab = 1.2 \ bc = 1.5-1.7 \ cd = 0.13-0.14 \ dd \) on xxiv, \(a, b \) on `viii and ix not copulatory. Male genital field somewhat rectangular, slightly depressed. Male pores paired, minute, in seminal grooves, on the setal arc of xviii, at \(a \); prostatic pores paired, minute, at the ends of seminal grooves, on xvii and xix, at \(a \); seminal grooves almost straight, between setal arcs of xvii and xix. Female pores paired, presetal, within \(a \) lines, on xiv. Spermathecal pores paired, minute, on viii and ix, slightly posterior to 7/8 and 8/9, at \(a \). Genital markings oval, unpaired and median, on 20/21, 21/22, sometimes on 22/23, at \(aa \), sometimes paired, on setal annulus of viii, at \(aa \) (one of the pair may be absent). Nephridiopores not recognized.
FIGS. 79-83. *Chaetocotoides montanus* (Stephenson). 79. spermathecal pore region, 80. genital region, 81. spermatheca, 82. seta a on ix, 83. penial setae.
TABLE 3. A comparison between *Chaetocotoides*, *Octonochaeta* and *Octochaetona*.

<table>
<thead>
<tr>
<th>Character</th>
<th>Chaetocotoides</th>
<th>Octonochaeta</th>
<th>Octochaetona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clitellum</td>
<td>saddle-shaped, xii-xix (8 segments)</td>
<td>annular, xiii-xvii (5 segments)</td>
<td>annular, xiii-xvi, xvii, xviii (4-6 segments)</td>
</tr>
<tr>
<td>Calciferous glands</td>
<td>one pair, symmetrical, each gland bilobed, one lobe in xv and the other in xvi, opening into oesophagus in xv</td>
<td>one pair, symmetrical, in xvi, opening into oesophagus in the same segment</td>
<td>one pair, asymmetrical, one gland in xv and the other in xvi, opening into oesophagus close to attachment of septum 15/16</td>
</tr>
<tr>
<td>Typhlosole</td>
<td>bifid ventrally</td>
<td>simple</td>
<td>bifid ventrally</td>
</tr>
<tr>
<td>Caudal micromeronephridia</td>
<td>with preseptal funnels</td>
<td>with preseptal and intra-segmental funnels</td>
<td>with preseptal and intra-segmental funnels</td>
</tr>
<tr>
<td>Extraoesophageal vessels</td>
<td>v-xiii, without any connection to supra-oesophageal vessel</td>
<td>v-xv, with branches to supra-oesophageal vessel in viii</td>
<td>v-viii, opening into supra-oesophageal vessel in viii.</td>
</tr>
<tr>
<td>Lateroparietal vessels</td>
<td>join extra-oesophageal vessels in xiii</td>
<td>bifurcate in xiii, one branch to supra - oesophageal and the other to extra-oesophageal vessels</td>
<td>join supra - oesophageal vessel in xiii</td>
</tr>
</tbody>
</table>
Septa 4/5, 7/8-9/10 muscular, 5/6/7 delicate, aborted ventrolaterally. Gizzard large, in vi; discrete, extramural calciferous glands one pair, each gland bilobed, one lobe in xv and the other in xvi, both opening into oesophagus through a short common duct laterally, in xv, just anterior to septum 15/16; caeca and supra-intestinal glands absent; intestine begins in xviii; typhlosole lamelliform, ventrally bifid, xxii to cxx-cxxxiv. Dorsal vessel single and complete; supra-oesophageal vessel single, viii-xiii; extra-oesophageal vessels paired, v-xiii; latero-parietal vessels paired, joining the extra-oesophageal vessels in xiii; subneural vessel absent; lateral hearts originating from supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xii. Holandric, testes and male funnels free, in x and xi; seminal vesicles racemose, in ix and xii. Prostates paired, in xvii and xix. Penial setae ornamented with a few longitudinal rows of small and sharp teeth, ectal end slightly undulating, tip pointed, 1.02-1.52 mm long, 5-7 μ diameter. Spermathecae paired, in viii and ix, each with a digitiform diverticulum at about the middle of duct, which is as long as or slightly shorter than ampulla. Setae a, b on viii and ix sigmoid, with a nodulus at the middle, ornamented with a few scattered, small spines, 0.19-0.22 mm long, 24 μ diameter. Ovisacs paired, in xiv. Genital marking glands absent. Micromeronephridia astomate, paired enteronephric tufts in iv, several to numerous exonephric on the body wall in v and posteriad segments, slightly enlarged, stomate with preseptal funnels, exonephric in caudal segments; megameronephridia absent.

Type locality: Panchgani, Western Ghats, Maharashtra, India.

Type specimens: In ZSIC, W 259/1; BMNH, 1933: 5: 25: 904-5.

Distribution: So far known from the type locality.
Genus 6. **Dashiella** gen. nov.

Diagnosis: Perichaetine. Combined male and prostatic pores paired, on xvii; seminal grooves absent. Oesophagus with 2 gizzards in v-vi and 3 pairs of discrete extramural calciferous glands in xi-xiii; supra-intestinal glands absent; typhlosole lamelliform, simple. Micromeronephridia astomate, exonephric paired tufts in ii-x, several exonephric on the body wall in xi and posteriad segments. Paired, stomate, exonephric megameronephridia in each segment posterior to the typhlosole region.

Type species: *Dashiella khandalaensis* sp. nov.

Description: As for the only species, *khandalaensis*.

Distribution: Western Ghats, Maharashtra, India.

Etymology: *Dashiella*, gender feminine, named after Dr. M.C. Dash, Sambalpur University, Orissa, India for his considerable contributions on the ecology of Indian earthworms.

Remarks: *Dashiella* gen. nov. belongs to a group of octochaetid genera with 2 oesophageal gizzards and more than 2 pairs of discrete extramural calciferous glands anterior to segment xiv, and without supra-intestinal glands or ‘grid-like’ supra-intestinal thickening. It can be distinguished from the other members of the group, *Rillogaster, Pellogaster* and *Lennogaster*, all of Gates (1939b), by the characters noted in Table 4.

14. **Dashiella khandalaensis** sp. nov.

(Figs. 84-88)

Length 44-107 mm, diameter 2-3 mm, 94-139 segments. Prostomium tanylobic. First dorsal pore 11/12, sometimes 10/11. Clitellum annular, ½xiii-xvi. Setae perichaetine, \(\frac{aa}{bc} = 1.6-2.3 \), \(\frac{ab}{bc} = 1.3-2.3 \), \(\frac{yz}{yz} = 0.17-0.18 \) on xii, \(\frac{aa}{ab} = 2.5-3 \), \(\frac{ab}{bc} = 2.3-2.9 \), \(\frac{yz}{yz} = 0.23-0.28 \) on xx, 8-13 on ii, 11-12 on vii, 12 on xii, 16-22 on xx, setae \(a, b \) and sometimes \(c \) ornamented and enlarged on preclitellar, clitellar and some of postclitellar segments,
those on xvi much enlarged and located at the centres of genital markings. Combined male and prostatic pores paired at the centres of circular porophores, on xvii, at or slightly lateral to b, c. 0.13-0.15 body circumference apart. Female pore single, median, presetal, on xiv. Spermathecal pores in paired batteries of 1-4 (polythecal), on 6/7/8, the ventralmost pair c. 0.08-0.10 body circumference apart. Genital markings circular to oval, paired, presetal, on xvi and xvii, at ab. Nephridiopores not recognized.

Septa 4/5, 8/9-11/12 slightly muscular, 5/6/7/8 delicate. Oesophagus with 2 large gizzards, in v-vi, and 3 pairs of discrete, extramural, reniform calciferous glands, in xi-xiii, opening dorso-laterally into gut through short stalks; intestine begins in xv, caeca and supra-intestinal glands absent; typhlosole lamelliform, simple, xxiii-xxv to ci-cv. Dorsal vessel single, complete; supra-oesophageal vessels paired, x-xiii, connected with each other by transverse commissures anterior to septa 11/12 and 12/13; extra-oesophageal vessels paired, iii-xiii; latero-parietal vessels paired, joining the extra-oesophageal vessels in xiii; lateral hearts originating from the supra-oesophageal vessels with delicate connectives to the dorsal vessel in x-xii; subneural vessel absent. Holandric, testes and male funnels free, in x and xi; seminal vesicles racemose, in ix, x and xii, those of x small. Vasa deferentia uniting before opening into the enlarged ectal end of the prostatic duct in xvii below the longitudinal musculature. Prostates paired, tubular, in xvii, extending posterior to xix-xx. Penial setae ornamented with short transverse rows of fine spines, tip with a short spine, 0.81-0.84 mm long, 9-11 μ diameter. Ovisacs paired, in xiv. Spermathecae in paired batteries of 1-4 (usually 3), in vii and viii, each with a median and a lateral club-shaped diverticula, at about the middle of a short duct. Micromeronephridia astomate; small paired exonephric tufts on the body wall in ii-iv, slightly larger on septa in v-x; several exonephric on the body wall in xi and posteriad segments, c. 16-20 on each of clitteral segments, fewer in other segments. Paired, stomate, exonephric megameronephridia in each segment posterior to the typhlosolar region, funnels close to the nerve cord.
FIGS. 84-88. *Dashiella khandalaensis* gen. et sp. nov. 84. spermathecal pore region, 85. genital region, 86. spermatheca, 87. penial seta, 88. genital seta on xvi.
TABLE 4. A comparison of *Dashiella* with related genera.

<table>
<thead>
<tr>
<th>Character</th>
<th>Dashiella</th>
<th>Pellogaster</th>
<th>Rillogaster</th>
<th>Lennogaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setae</td>
<td>Perichaetine</td>
<td>lumbricine</td>
<td>lumbricine</td>
<td>lumbricine</td>
</tr>
<tr>
<td>Male terminalia</td>
<td>one pair of combined male and prostatic pores on xvii</td>
<td>one pair of male pores on xviii; 2 pairs of prostatic pores on xvii and xix</td>
<td>one pair of combined male and prostatic pores on xix</td>
<td>one pair of male pores on xviii or 17/18; 2 pairs of prostatic pores on xvii and xix or one pair of prostatic pores on xvii</td>
</tr>
<tr>
<td>Seminal grooves</td>
<td>absent</td>
<td>present</td>
<td>absent</td>
<td>present</td>
</tr>
<tr>
<td>Calciferous glands</td>
<td>3 pairs, in xi-xiii</td>
<td>4 pairs, in x-xiii</td>
<td>4 pairs, in x-xiii</td>
<td>3 pairs, in x-xii</td>
</tr>
<tr>
<td>Gizzards</td>
<td>v-vi</td>
<td>v-vi</td>
<td>vi-vii</td>
<td>v-vi</td>
</tr>
<tr>
<td>Typhlosole</td>
<td>lamelliform</td>
<td>lamelliform</td>
<td>a low ridge</td>
<td>lamelliform</td>
</tr>
</tbody>
</table>
Genital marking glands absent. Genital setae a, b on xvi ornamented with short transverse serrated ridges, tip pointed, follicles long with 1-2 reserve setae, 0.43-0.55 mm long, 27-32 \(\mu \) diameter.

Distribution: India: *Maharashtra*: Khandala, Western Ghats.

Genus 7. Dichogaster Beddard, 1888

Diagnosis: Lumbricine. Male pores paired, in seminal grooves, on xviii or 17/18; prostatic pores 2 pairs, at the ends of seminal grooves, on xvii and xix, or one pair on xvii. Oesophagus with 2 gizzards anterior to septum 8/9 and one pair of discrete extramural calciferous glands, each gland trilobed, a vertically reniform lobe in each of segments xv-xvii with a common duct opening into the gut in xvi; supra-intestinal glands absent; typhlosole lamelliform,
simple. Micromeronephridia astomate; paired enteronephric tufts in ii-iv; several, exonephric on the body wall in v and posteriadi segments. Paired, stomate, exonephric megameronephridia in each of few posteriormost segments.

Type species: Dichogaster damonis Beddard, 1888.

Description: Setae lumbricine throughout the body. Clitellum annular though often thinner ventrally between setae aa. Male pores paired, in seminal grooves on xviii, prostatic pores paired at the ends of seminal grooves on xvii and xix, or male pores at posterior ends of short seminal grooves in 17/18 and prostatic pores one pair at anterior ends of seminal grooves on xvii. Female pore(s) single or paired, on xiv. Spermathecal pores paired, at or near 7/8/9. Genital markings sometimes present. Nephridiopores not recognized.

Some of the septa in the gizzard region absent. Oesophagus with 2 gizzards in front of the septum 8/9. Calciferous glands one pair, discrete, extramural, trilobed; each lobe reniform, vertical, in each of xv-xvii, the common duct of the three lobes opening into oesophagus dorsolaterally in xvi. Intestine begins in xix; caeca and supra-intestinal glands absent; typhlosole simple, lamelliform. Dorsal vessel single and complete; supra-oesophageal vessel single, ix-xiii; extra-oesophageal vessels paired with connectives to the supra-oesophageal vessel in x-xii, latero-parietal vessels paired, joining the supra-oesophageal vessel (and/or extra-oesophageal vessels) in xiii; subneural vessel absent; lateral hearts originating from the supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xii. Holandric. Ovaries paired, fan-shaped, in xiii, ovisacs paired, in xiv. Prostates one pair in xvii or 2 pairs in xvii and xix. Spermathecae paired in viii and ix. Micromeronephridia astomate, enteronephric paired tufts in ii-iv, several exonephric on the body wall in v and posteriadi segments, arranged in 3-5 longitudinal rows on each side in postclitellar region; paired stomate exonephric megameronephridia in each of few posteriormost segments, funnels close to the nerve cord.
Distribution: Tropical Africa and America, India. Species of *bolau* group widely transported to various parts of the world.

Remarks: The genus *Dichogaster* cannot be adequately characterized due to the paucity of information on somatic anatomy in most of over 200 species, including the type species *D. damonis* Beddard, 1888. However, Gates (1958a, 1972) recognizes a *bolau* group comprising Asiatic species, and the above diagnosis and description for the genus is based on this group.

Key to the species of *Dichogaster*

1. Prostates 2 pairs, in xvii and xix 2
 Prostates one pair, in xvii *D. saliens*
2. Female pore single, median *D. bolau*
 Female pores paired .. 3
3. Median genital markings present *D. affinis*
 Genital markings absent 4
4. Spermathecal duct bulbous *D. modiglianii*
 Spermathecal duct not bulbous *D. curgensis*

Note: Two species, *D. parva* (Michaelsen, 1896) and *D. travancorensis* (Fedarb, 1898), are omitted from the above key. The description of *D. parva* from Sri Lanka is inadequate but appears to be similar to *curgensis*. *D. travancorensis* from Kerala in South India is regarded as species incertae sedis, described elsewhere in this work.

15. *Dichogaster affinis* (Michaelsen)
 (Figs. 89-92)

Length 27-60 mm, diameter 1-2 mm, 105-140 segments. Prostomium epilobic, tongue closed. First dorsal pore 5/6. Clitellum xiii, xiv-xxi, xxii. Setae \(aa = 3 \) \(ab = bc = 3 \) \(cd = 0.07 \) \(dd \) on xii, \(aa = 4.5-4.7 \) \(ab = 1.4-1.5 \) \(bc = 4.5-4.7 \) \(cd = 0.14 \) \(dd \) on xxiv.

Male pores minute, in seminal grooves on the setal arc of xviii, at \(a \); prostatic pores minute, at the ends of seminal grooves on xvii and xix, at \(a \); seminal grooves almost straight or slightly concave between the setal arcs of xvii and xix. Female pores paired, presetal, at or just lateral to \(a \). Spermathecal pores minute, at or close to \(a \). Genital markings often present, unpaired and median on 8/9/10, sometimes on 7/8, 10/11/12.

Septa 4/5, 7/8-12/13 slightly muscular, 5/6/7 absent. Gizzard between septa 4/5 and 7/8; typhlosole xxi to lxviii-lxxvi (?). xc-xci. Last pair of hearts in xii. Testes and male funnels in unpaired sacs, in x and xi, formed by the peripheral apposition of septa 9/10/11/12; seminal vesicles vestigeal, in xi and xii. Prostates 2 pairs, in xvii and xix. Penial setae slightly sinuous ectally, ornamented with scale-like markings or teeth in the sinuousities, tip bluntly rounded, knobbled or truncate, 0.29-0.43 mm long, 4-7 \(\mu \) diameter. Each spermatheca with a shortly stalked ental diverticulum. Genital marking glands circular to slightly dome-shaped, concealed beneath the longitudinal muscle layer.

Type locality: Quilimane, Zanzibar.

Type specimens: *Benhamia affinis*: in ZMUH, 303; *D. sinuosus* in BMNH, 1930: 5: 9: 22-4.

FIGS. 89-92. Dichogaster affinis (Michaelsen). 89. spermathecal pore region, 90. genital region, 91. spermatheca, 92. penial seta.

Outside India: Sri Lanka, Burma, Thailand, Pacific Ocean Islands, Cape Verde Island, Southwest Africa, Madagascar, Zanzibar, Comoro Island, Mexico, El Salvador, French Guiana, Brazil, West Indies (Haiti, St. Thomas).

Biology: It inhabits soil on river bank and sea shore, in rotten wood, under decaying leaves and soils rich in organic matter. It has also been recorded from caves (Pickford, 1938).

Remarks: *D. affinis* is a circummundane species and has successfully colonized in several countries.

16. **Dichogaster bolaii** (Michaelsen)
(Figs. 93-96)

Length 19-23 mm, diameter 1-3 mm, 70-98 segments. Prostomium epilobic, tongue closed. First dorsal pore 5/6, sometimes 6/7. Clitellum xiii, xiv-xviii, xix, xx, ½xxi. Setae *aa* = 2.5-3.3 *ab* = 0.8 *bc* = 2.5-3.3 *cd* = 0.08-0.09 *dd* on xii, *aa* = 2.3-2.8 *ab* = 0.9 *bc* = 2.3-2.8 *cd* = 0.1 *dd* on xxiv. Male pores minute, in seminal grooves on the setal arc of xviii, at *a*; prostatic pores minute, at the ends of seminal grooves on xvii and xix, at *a*; seminal grooves slightly concave between the setal arcs of xvii and xix. Female pore single, median, presetal. Spermathecal pores at or near *a*. Genital markings absent.

Septa 4/5, 7/8-12/13 slightly muscular, 5/6/7 absent. Gizzards between septa 4/5 and 7/8; typhlosole xxi-xxii to lxviii-lxxvi. Last pair of hearts in xii. Testes and male funnels in unpaired sacs, in x and xi, formed by the peripheral apposition of the septa 9/10-11/12; seminal vesicles acinous, vestigeal, in xi and xii. Prostates 2 pairs, in xvii and xix. Penial setae unornamented or ornamented with a few to several triangular teeth, tip hooked or widened then scalpel-, oar-, spatula- or spoon-shaped, 0.23-0.4 mm long, 3-7.5 μ diameter. Each spermatheca with a small, digitiform to pyriform, ventrally directed, ental diverticulum, duct rather barrel-shaped, as long as or longer or smaller than ampulla.

Type locality: Bergedorf, Hamburg, Germany.
Figs. 93-96. *Dichogaster bolaui* (Michaelsen). 93-94. penial setae, 95. genital region, 96. spermatheca.

Distribution: India: *Andaman & Nicobar Islands*: Nancowry vill., Car Nicobar; *Arunachal Pradesh*: Chowkham, Wakro, Taliha, Ayumuring; *Meghalaya*: Siju Cave in Garo Hills, Barapani, Cherrapunji in Khasi Hills; *West Bengal*: Sibpur, Calcutta; *Sikkim*: Rimbi; *Uttar Pradesh*: Saharanpur, Dehra Dun, Moghul Serai, Jhusi, Allahabad, Lucknow, Bara Banki, Fatehpur; *Himachal Pradesh*: Deli, Nurpur; *Madhya Pradesh*: Rewa, Nowgong, Jubbulpore; *Rajasthan*: Bayana; *Orissa*: Paradip, Puri, Balugaon, Sundargarh, Sankara village, Jharsuguda, Sambalpur, Bolangir,
Harishankar, Kantabanji, Bhawanipatna, Kesimal, Atabaria, Bargarh, Burla, Kharmunda; **Gujarat**: Datar Hill nr. Junagarh, Baroda, Surat; **Maharashtra**: Bombay, Bassein Road, Poona; **Goa**: Yelle village; **Andhra Pradesh**: Hyderabad; **Karnataka**: Bangalore, Nandi Hills, Londa, Kotegehar, Shimoga, Mercara, Bhagamandala, Somwarpet, Gokak Head Works; **Tamil Nadu**: Coonoor, Nilgiri Hills, Courtallam; **Kerala**: Ernakulum, Trivandrum, Terkumalai, Neyattinkara.

Biology: *D. bolaui* has been recorded from a wide variety of habitats: top 5 cm soil with high organic matter (~10 g%), soil around roots of potted plants, green houses, plant nurseries, gardens, river banks, sea shore, drainage ditches, bath tubs, fermenting bark of a tannery, trees, a bundle of ‘pan’ leaves (*Piper betle*), soils watered with sewage drains, kitchen waste, compost pits, rotten wood, in tree holes, in soil around palm and coconut leaves, thatched roof of a house and caves. Its altitudinal range extends from the plains to an elevation of c. 2200 m.

Activity is usually restricted to 2-3 months from early rainy to post-rainy period in mid-June to mid-September, but may be year round under favourable conditions of adequate moisture. Population in a thatched roof of a house upto 800/m² has been recorded. Reproduction is biparental; copulation occurring during heavy rains in July. Cocoons are small, thin-walled, light coloured and oval in shape with distinct ornamentations. Clitellum degenerates during
post-reproductive period. This species undergoes diapause during unfavourable period. Young worms hatch in about 12-18 days of incubation. Casts are deposited on the soil surface in small heaps of tiny globular pellets.

A heterotrichous ciliate, *Plagiotoma dichogasteri*, has been recorded from its body cavity (Mandal and Nair, 1975). Mishra and Dash (1980) report a decomposing enzyme like cellulase from its gut. Regeneration of the lost head and tail parts is possible in this species (Gates, 1972).

Remarks: *D. bolai* is a circummundane species which has successfully colonized different habitats in several countries. The original home of the species is believed to be somewhere in West Africa.

17. *Dichogaster curgensis* Michaeelsen

(Figs. 97-99)

Length 21-75 mm, diameter 1-2.5 mm, 81-110 segments. Prostomium epilobic, tongue closed. First dorsal pore 5/6, sometimes 4/5. Clitellum xii, xiii-xx. Setae \(aa = 2.3 \ ab = 0.9 \ bc = 2.3 \ cd = 0.09 \ dd \) on xii, \(aa = 2.3 \ ab = 0.6 \ bc = 1.8 \ cd = 0.08 \ dd \) on xxiv. Male pores minute in seminal grooves on the setal arc of xviii, at \(a \); prostatic pores minute, at the ends of seminal grooves on xvii and xix, at \(a \); seminal grooves almost straight between the setal arcs of xvii and xix. Female pores paired, presetal and slightly within \(a \) lines. Spermathecal pores at or close to \(a \). Genital markings absent.

Septa 4/5, 7/8-12/13 slightly muscular, 5/6 absent, 6/7 delicate. Gizzards between septa 4/5 and 6/7; typhlosole xx to lxviii-lxxvi. Last pair of hearts in xii. Testes and male funnels free,
110 JULKA : FAUNA OF INDIA : MEGADRILE OLIGOCHAETA

in x and xi; seminal vesicles absent or vestigeal in xi and xii or in xii only. Prostates 2 pairs, in xvii and xix. Penial setae irregularly sinuous ectally, ornamented with tooth-like projections at ental sides of sinuosities or double series of scars at the proximal border of which is a single tooth, 0.58-1 mm long, 3-6.5 μ diameter. Each spermatheca with a ventrally directed ental diverticulum, duct sinuous, much longer than ampulla.

Type locality: Moonad, Coorg, Karnataka, India.

Type specimens: _D. curgensis_: In ZMUH, 9152-3. _D. curgensis_ var. _unilocularis_: In BMNH, 1930: 5: 9: 15-6.

Distribution: India: _Karnataka_: Moonad, Bhagamanola (presumably misprinted for Bhagamandla); _Tamil Nadu_: Coonoor, Yercaud.

Outside India: Burma.

Remarks: _D. curgensis_ obviously is exotic in India and Burma, but it has yet to be recorded from the domain of the genus in tropical Africa and America.

18. **Dichogaster modiglianii** (Rosa)

(Figs. 100-102)

1923. _Dichogaster modiglianii_, Stephenson, _Fauna Br. India, Oligochaeta_: 477.

Length 20-60 mm, diameter 1-2.2 mm, 76-120 segments.

Prostomium proepilobic. First dorsal pore 4/5 or 5/6. Clitellum xii-xx. Setae $aa = 3.5$ $ab = 0.7$ $bc = 2.8$ $cd = 0.08$ dd on xii, $aa = 5$ $ab = 1.2$ $bc = 5$ $cd = 0.15$ dd on xxiv. Male pores minute, in seminal grooves on the setal arc of xviii, at or close to a; prostatic pores minute, at the ends of seminal grooves, on xvii and xix, at a; seminal grooves straight or slightly concave between setal arcs of xvii and xix. Female pores paired, slightly median or posteromedian to a setae. Spermathecal pores minute, at or close to a. Genital markings absent.

Septa 4/5, 7/8-12/13 slightly muscular, 5/6/7 delicate. Gizzards between septa 4/5 and 7/8; typhlosole xxii-xxiii to lxxvii-lxxxii. Last pair of hearts in xii. Testes and male funnels in unpaired sacs, that of x ventral and that of xi formed by the peripheral apposition of septa 10/11/12; seminal vesicles vestigial in xii or absent. Prostastes 2 pairs, in xvii and xix. Penial setae ornamented with scale-like markings, tip slightly knobbed or truncated or narrowed to a short filament, 0.31-0.42 mm long, 5-9 μ diameter. Each spermatheca with a shortly, stalked diverticulum at about the middle of barrel-shaped duct, which is longer than ampulla.

Type locality: Pedang, Sumatra, Indonesia.

Distribution: India: Andaman & Nicobar Islands: Port Blair, Haddo, Pachargaon; West Bengal: Calcutta, Kalimpong; Meghalaya: Tura, Garo Hills; Orissa: Sundargarh.
Outside India: Pakistan, Burma, Malay Peninsula, Indonesia, Philippines, Pacific Ocean Islands (New Caledonia, New Britain, New Hebrides, Banks Island, Hawaiian Islands), Angola, Colombia, French Guiana, Brazil, Venezuela, ? Ecuador, Mexico.

Biology: It has been recorded from soils watered by sewage drains, rich in humus, on banks of water channels, edges of drains, sea shore, flower pots, plant nurseries, gardens, under bark of a rotten tree. Bhatti (1962a) stated that its activity is restricted to March-October at Lahore, Pakistan.

Remarks: *D. modiglianii* is also a circummundane species, which has successfully colonized in several countries.

19. **Dichogaster saliens** (Beddard)

(Figs. 103-105)

Length 17-70 mm, diameter 1.5-2.5 mm, 65-122 segments. Prostomium proepilobic. First dorsal pore 5/6, sometimes 3/4 or 4/5 or 6/7. Clitellum xiii-xix, ½xx. Setae $aa = 2.5-3.5$ $ab = 0.7$ $bc = 2.5-3.5$ $cd = 0.06-0.09$ dd on xii, $aa = 3.2-3.7$ $ab = 0.7-0.9$ $bc = 3.2-3.7$ $cd = 0.11-0.16$ dd on xxiv. Male pores minute, at posterior ends of seminal grooves, on or close to 17/18, at a; prostatic pores minute, at anterior ends of seminal grooves on the setal arc of xvii, at a; seminal grooves almost straight between the setal arc of xvii and 17/18, on protuberances from a transverse diamond-shaped male genital field. Female pores paired, presetal or setal or slightly
posterior to setal arc, within a lines. Spermathecal pores minute, at or close to a. Genital markings, when present, unpaired, median, on 15/16.

Septa 4/5, 7/8-12/13 slightly muscular, 5/6/7 absent. Gizzards between septa 4/5 and 7/8; typhlosole xxii-xxiii to lxxxi-lxxxviii. Last pair of hearts in xii. Testes and male funnels in unpaired sacs formed by the peripheral apposition of septa 9/10/11/12, in x and xi; seminal vesicles vestigeal in xi and xii or xii only or absent. Prostates one pair, in xvii. Penial setae sinuous ectally, ornamented with scale-like markings or faint ridges in sinuosities, tip knobbed or pointed, 0.4-0.71 mm long, 6-13 μ diameter. Each spermatheca with a shortly stalked, ventrally directed diverticulum at about the middle of slightly bulbous duct, which is longer than ampulla. Genital marking glands enclosed in thin capsules, concealed beneath the longitudinal muscle layer.

Type locality: Undesignated (?). Types supposedly from Penang, Singapore and Java, but were obtained from earth in Wardian cases at the Kew Gardens.

Distribution: India: Arunachal Pradesh: Chowkham, Wakro, Taliha; Meghalaya: Mawphlang, Barapani, Sumer, Tura; Sikkim: Rongli, Makaibari, Rimbi; West Bengal: Pashok; Karnataka: Bhagamandla.
Figs. 103-105. *Dichogaster saliens* (Beddard). 103. penial seta, 104. genital region, 105. spermatheca.
Outside India: Sri Lanka, Burma, Malay Peninsula, Java, Christmas Island, Australia, U.S.A., El Salvador, Panama, Brazil, Argentina, Mexico, Uganda, Zaire, Angola, Swaziland, South Africa.

Biology: It has been recorded from different kinds of habitats: sandy clay soil, elephant dung, manure, under stones on banks of streams, edges of drains, gardens, around roots of potted plants in green-houses. Reproduction is presumably biparental (Gates, 1972).

Remarks: *D. saliens* like other members of the *bolaui* group is a circummundane species.

Genus 8. Eudichogaster Michaelsen, 1902

Diagnosis: Lumbricine. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Oesophagus with 2 gizzards, in v-vi and 2 pairs of discrete extramural calciferous glands, in xi-xii; supra-intestinal glands present; typhlosole lamelliform, simple. Micromeronephridia astomate; paired, enteronephric tufts on the body wall in iii; several exonephric on the body wall in iv and posteriad segments, fewer and arranged in longitudinal ranks behind the clitellum. Stomate; paired, exonephric megameronephridia in each of caudal segments.

Type species: *Benhamia indica* Beddard, 1896.

Description: Setae lumbricine throughout the body. Clitellum annular. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Female pore single and median, presetal, on xiv. Spermathecal
pores paired, on viii and ix or 7/8/9 (?). Genital markings present. Nephridiopores not recognized.

Septa present from 4/5, 5/6/7/8 (at least) muscular. Gizzards 2, in v-vi. Calciferous glands discrete, extramural, ovoidal to retort-shaped, 2 pairs, in xi-xii, opening into oesophagus dorsolaterally close to the attachment of septum 11/12, through short stalks. Intestine begins in xv; caeca absent; supra-intestinal glands present at the posterior end of typhlosole, which is lamelliform and simple. Dorsal vessel single and complete; supra-oesophageal vessel single, in ix-xii; extra-oesophageal vessels paired, entering the calciferous glands in xi; latero-parietal vessels paired, joining the supra-oesophageal vessel in xiii, subneural vessel absent; lateral hearts originating from the supra-oesophageal vessel with delicate connec-tives to the dorsal vessel in x-xii. Prostates paired, in xvii and xix, coiled, extending posteriorly to a few segments. Spermathecae paired, in viii and ix. Micromeronephridia astornate; paired, enteronephric tufts on the body wall in iii, several; scattered, exonephric on the body wall in iv and posteriad segments, fewer, arranged in longitudinal ranks in postclitellate segments. Stomate, paired, exonephric megameronephridia in each of caudal segments, funnels close to the nerve cord.

Distribution: Western India from Poona to Central India just in Rajasthan and east to Jubbalpore and Nagpur.

Remarks: Gates (1939b) restricted the genus *Eudichogaster* to include 6 species, *ashworthi*, *indicus*, *kinneari*, *mullani*, *poonensis* and *prashadi* with supra-intestinal glands, 2 pairs of calciferous glands in xi-xii and acanthodrine condition of the male genitalia, and absence of penial setae. Gates (1960b) considered the location of spermathecal pores and seminal vesicles of taxonomic importance in distinguishing the species of the genus. The descriptions of these characteristics in the original accounts of all the species are suspected to be incorrect as these are based on juvenile or immature specimens. Although 2 species, *ashworthi* and *prashadi* have been redefined with reference to spermathecal pores
and seminal vesicles by Gates (1960b), the following key utilizing these and variable characteristics of genital markings should be considered as provisional.

Key to the species of Eudichogaster

1. Seminal vesicles in ix, x and xii \(E. \) ashworthi
 - Seminal vesicles absent in x \(2 \)
2. Seminal vesicles in ix and xii \(3 \)
 - Seminal vesicles in xii \(5 \)
3. Paired genital markings on xvi and xx, at \(ac \) or \(bc \) ... \(4 \)
 - Paired genital markings on xvi, xx absent \(E. \) mullani
4. Paired genital markings postsetal on xvi and xx
 - Paired genital markings postsetal on xvi and
 presetal on xx .. \(E. \) prashadi
5. Genital markings in a transverse row, in 9/10
 and 10/11; paired markings on xvii and xix
 absent .. \(E. \) indicus
 - Genital markings in the region of ix and x
 absent; paired markings postsetal on xvii,
 presetal xix .. \(E. \) poonensis

20. Eudichogaster ashworthi Michaelsen

Length 84-210 mm, diameter 4-7 mm, 163-192 (+) segments. Prostomium prolobic. First dorsal pore 12/13. Clitellum \(\frac{1}{2} \)xiii-xvi. Setae \(aa = 4.3-5 \ ab = 1.3-1.4 \ bc = 2.5-2.6 \ cd = 0.19-0.20 \ dd \) on xii,
aa = 6.6 ab = 1.5 bc = 3.3 cd = 0.23 dd on xxiv, a, b on viii-xxxiv enlarged (absent on xvii-xix). Male genital field with a pair of crescentic longitudinal tumescences, each with a seminal groove, between setal arcs of xvii and xix, slightly lateral to b. Male pores minute, in seminal grooves, on the setal arc of xviii; prostatic pores minute, at the ends of seminal grooves, on xvii and xix, at b. Spermathecal pores minute, at ab, those of viii on setal annulus (equatorial), those of ix on presetal annulus, slightly nearer to 8/9 than to the setal arc and within genital markings. Genital markings tiny, circular, greyish trans-lucent areas, in transverse rows of 4-9 on a postsetal area of epidermal tumescence on xvi, at bb. In addition, similar rows or single markings on some of the following locations: postsetal on xvii, xviii and presetal on xix between seminal grooves, postsetal on ix, xx at aa, presetal and postsetal on viii at ab, presetal on ix at ab, postsetal on ix at ab or bc, presetal and postsetal on xx in median half of bc; single and paired markings, postsetal on viii, xix at aa, setal on xvi at lateral to bc, setal annulus on xviii, xix between seminal grooves, presetal on xx at median half of bc; single and unpaired markings, postsetal or setal on ix, presetal and postsetal on x, at aa.

Supra-intestinal glands 8 pairs, in lxxviii-lxxxvii to lxxxv-xciv. Testes and male funnels in x and xi, male funnels all of same size; seminal vesicles in ix, x and xii. Each spermatheca with a flat, disc-like, vertically placed ental diverticulum. Enlarged setae a, b on viii-xxxiv ornamented with short transversely placed ridges or rows of very fine thorn-like teeth, 0.20-0.47 mm long. Genital marking glands absent.

Type locality: Nagpur, Maharashtra, India.

Type specimens: In MNHU, 5202; BMNH, 1912: 11: 8: 112.

Material examined: 2-4-0 Betul, 28 June 1949, coll. B.S. Chauhan & G. Ramakrishna, An 723, HAZFS, ZSI, Solan.

Distribution: India: Maharashtra: Nagpur; Madhya Pradesh: Betul.
Remarks: Gates (1939b) pointed out that Michaelsen's (1902) original account of the species was inadequate and erroneous in some respects. After an examination of 4 specimens in the Indian Museum from the same batch that formed the types of the species, he observed that they were distinguishable from the types of *ashworthi* (as known from Michaelsen's original description) in the location of spermathecal pores, genital markings and seminal vesicles. Gates (1960b) also examined another specimen (syntype ?) from the part of the type material in the British Museum, and he found it morphological similar with those in the Indian Museum. Since the types of the species in the Hamburg Museum could not be examined by Gates, a new species for the specimens in the Indian and British Museums was not erected. Pending further information on the types in the Hamburg Museum, the species is defined in this work as characterized by Gates (1939b, 1960b).

21. *Eudichogaster indicus* (Beddard)

Length 75-100 mm, diameter c. 4 mm. Segments, prostomium and first dorsal pore (?). Clitellum xiii-xvi. Setae *ab* closely paired, *cd* = 2.5 *ab*, *a*, *b* on ix copulatory being surrounded by epidermal tumescences. Male genital field tumescent, xvii-xix, with a transverse oval depression on xviii. Male pores in seminal grooves (?), on xviii; prostatic pores at the ends of seminal grooves (?), on xvii and xix, at *a*, each pair connected across the middle line by a transverse groove. Spermathecal pores probably on viii and ix. Genital markings tiny, circular, in a transverse row, on 9/10, 10/11, at *aa*.
Supra-intestinal glands (?). Metandric, but with small funnels in x; seminal vesicles in xii. Spermathecae paired, in viii and ix, each with an inconspicuous, apparently tri- or quadrifid ectal diverticulum. Copulatory setae on ix ornamented with semicircular ridges.

Type locality: Thana, near Bombay, Maharashtra, India.

Type specimens: Presumably lost.

Distribution: So far known from the type locality.

Remarks: The above characterization of the species is inadequate and perhaps incorrect in certain aspects. The metandric condition of the testes requires confirmation. The species is to be treated as dubius until clitellate specimens from the type locality are studied.

22. *Eudichogaster kinneari* Stephenson

Length 80 mm, diameter 5 mm, 120 segments. Prostomium prolobic. First dorsal pore 12/13. Clitellum xiii-xvi. Setae $aa = 3-4$, $ab = 1-2$, $bc = 2.2-3$, cd posterior to the clitellum, a, b (at least) copulatory, on viii and ix, being surrounded by epidermal tumescences. Male genital field H-shaped, on xvii-xix. Male pores in seminal grooves (?), on xviii, at about b; prostatic pores on papillae in corners of H-shaped depression, at the ends of laterally biconvex seminal grooves, at about b. Spermathecae presetal, at the centres of low, square papillae, on the setal annuli of viii and ix, at a. Genital markings paired, oval, postsetal, on xvi and xx, at ac; unpaired and median, circular, on xvi, xx, presetal on x-xii; one or two in lateral portion of bd on viii and ix.

Supra-intestinal glands (?). Holandric, testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Each spermatheca
with a shortly stalked, acinous, multiloculate ental diverticulum, duct shorter than ampulla. Copulatory setae ornamented with longitudinal rows of excavations, tip claw-shaped, 0.73-0.83 mm long, 25 μ diameter.

Type locality: Nasik, c. 128 km from Bombay, Maharashtra, India.

Type specimens: In BMNH, 1933: 5: 25: 341-3.

Distribution: So far known from the type locality.

Remarks: *E. kinneari*, at present, is distinguished from *E. prashadi* by the postsetal location of paired genital markings on xx, which in the latter are presetal. Since individual variations in the position of genital markings in *kinneari* are not known, its distribution from *prashadi* is considered doubtful.

23. **Eudichogaster mullani** Stephenson

(Figs. 106-108)

Length 134 mm, diameter 6 mm, 200 segments. Prostomium prolobic. First dorsal pore 11/12 or 12/13. Clitellum (?). Setae \(aa = 4.2 \ ab = 1.1 \ bc = 2.1 \ cd = 0.14 \ dd \) on xii, \(aa = 5 \ ab = 1.4 \ bc = 2.3 \ cd = 0.15 \ dd \) on xxiv, \(a, b \) on viii copulatory, being surrounded by slight epidermal tumescences. Male genital field indistinct. Male pores minute, in seminal grooves, on xviii, at \(b \); prostatic pores minute, at the ends of laterally convex seminal grooves, on xvii and xix, slightly median to \(b \). Spermathecal pores minute, on or slightly anterior to the setal arcs of viii and ix, slightly lateral to \(a \). Genital markings circular, unpaired and median, postsetal on xvii and xix; paired, presetal on xvii, postsetal on xix, just lateral to seminal grooves.
Supra-intestinal glands 10 pairs, in xc-xcix. Holandric, testes and male funnels free in x and xi; seminal vesicles in ix and xii, x (?). Each spermatheca with a small, wart-like ental diverticulum, duct much shorter than ampulla. Copulatory setae unornamented, tip bluntly pointed, 0.7 mm or (+) long, 16 μ diameter. Genital marking glands absent.

Type locality: Bombay, Maharashtra, India.

Type specimens: In ZSIC, W 705/1, BMNH, 1933: 2: 25: 1383-4.

Distribution: So far known from the type locality.

24. Eudichogaster poonensis (Fedarb)

Length 134 mm, diameter 3 mm, 157 segments. Prostomium, first dorsal pore and clitellum (?). Setae bc rather less than aa, cd = 1.33 ab. Male genital field, male pores, seminal grooves (?); prostatic pores paired, on tiny, conical porophores (?), on xvii and xix, at ab. Spermathecal pores on 7/8/9 (?). Genital markings small, paired, postsetal on xvii, presetal on xix including setae a, b on xx.

Supra-intestinal glands (?). Metandric; seminal vesicles in xii. Spermathecae paired in viii and ix, each with a multiloculate ental diverticulum, duct as long as ampulla, relatively very thin and sinuous near its ectal end. Copulatory setae ornamented with a small number of relatively stout spines, 3-4 times as long as ordinary setae.

Type locality: Poona, Maharashtra, India.
Type specimens: ?

Distribution: So far known from the type locality.

Remarks: The original description of the species is inadequate and perhaps partly incorrect. The metandric condition of the testes and location of spermathecal pores in 7/8/9 need confirmation. The species is regarded as dubius until more specimens from the type locality are studied.

25. Eudichogaster prashadi Stephenson

(Figs. 109-112)

Length 35, 60-145 mm, diameter 3, 4-7 mm, 140-190 segments. Prostomium prolobic. First dorsal pore 12/13. Clitellum xiii-xvi, xvii. Setae $aa = 3.3-3.7$ $ab = 1.4-1.8$ $bc = 2.5-2.6$ $cd = 0.22-0.23$ dd on xii, $aa = 4.3-5.3$ $ab = 1.5-1.6$ $bc = 2.5-3.5$ $cd = 0.22$ dd on xxiv, usually a, b on viii and ix, sometimes c on ix copulatory, being surrounded by epidermal tumescences. Male genital field tumescent without special demarcation, on xvii-xix, with or without a deep slit-like depression along eq/xviii, and with a deep longitudinal depression on xvii and xix. Male pores minute, in seminal grooves, on the setal arc of xviii, at ab; prostatic pores minute, at the ends of seminal grooves, on xvii and xix, at ab; seminal grooves biconcave, wide and shallow or narrow and deep. Spermathecal pores minute, on the setal arcs of viii and ix, at ab. Genital markings circular to
oval, with 1-9 small circular translucent areas that are irregularly distributed or in transverse rows. They are located as follows: unpaired and median, at \(a \), primarily presetal on \(\text{x, x, xi, xxi} \) and some of posteriad segments, primarily postsetal on \(\text{xiv, xv, xvi} \); paired, extending from \(a \) or \(b \) well into \(bc \), primarily postsetal on \(xvi \), primarily presetal on \(xx \).

Supra-intestinal glands 7-9 pairs, in \(\text{lxxvi-lxxxix} \). Holandric, testes and male funnels free, in \(x \) and \(xi \); seminal vesicles in \(ix \) and \(xii \), pseudovesicles in \(\text{xiii-xiv} \). Each spermatheca with a flat, disc-like, multiloculate ental diverticulum, duct about as long as or slightly shorter than ampulla. Copulatory setae ornamented with several longitudinal rows of excavations, tip claw-shaped, 0.47-0.74 mm long, 16-19 \(\mu \) diameter.

Type locality: Palia, between Indore and Ujjain, Madhya Pradesh, India.

Type specimens: In ZSIC, W 282/1; BMNH, 1925: 5: 12: 100-2.

Remarks: There are several clitellate specimens, labelled as *Eudichogaster barailanus* Gates, W 3653/1, in the Zoological Survey of India, Calcutta. These were collected by Prof. G.E. Gates from Jubbalpore. A perusal of the literature shows that the description of this species has not been published, and it is to be regarded as a museum species. However, an examination of the specimens reveals that they belong to *prashadi*.
Genus 9. Eutyphoeus Michaelsen, 1900

Diagnosis: Lumbricine. Male pores paired, just posterior to prostatic pores, on xvii; seminal grooves absent. Oesophagus with a single gizzard between septa 5/6 and 8/9, and one pair of discrete intramural calciferous glands in xii; supra-intestinal glands present; typhlosole lamelliform, simple. Micromeronephridia astomate; 4-5 pairs of enteronephric tufts in iii; numerous exonephric on the body wall in v and posteriad segments. Paired, stomate, exonephric megameronephridia in each of segments behind supra-intestinal glands region.

Type species: *Typhoeus orientalis* Beddard, 1883.

Description: Setae lumbricine throughout the body. Clitellum annular. Prostatic and male pores paired near the setal arc of xvii, discharging within vestibula or directly into the body surface; male pores near but slightly posterior to the prostatic pores. Female pores minute, paired, presetal on xiv, sometimes the pore of the right side rudimentary or absent. Spermathecal pores large, paired, in 7/8. Genital markings usually present. Nephridiopores not recognized.

Septa 4/5/6, 8/9-10/11 muscular, 6/7/8 absent. A single large oesophageal gizzard between septa 5/6 and 8/9. Discrete calciferous glands one pair, intramural, longitudinally hemiellipsoidal with flat faces mesially, in xii, each gland with numerous vertical lamellae, the interlamellar spaces communicating dorsally with the oesophageal lumen. Intestine begins in xv; typhlosole lamelliform, ending posteriorly with a short series of supra-intestinal
glands; unpaired, anteriorly directed, midventral intestinal caeca anterior to supra-intestinal glands present; paired, lateral intestinal caeca sometimes present. Dorsal vessel single, complete or aborted anteriorly; supra-oesophageal vessel single, x-xiii; extra-oesophageal and latero-parietal vessels paired, passing to anterior and posterior ends of calciferous glands respectively; subneural vessel absent; lateral hearts with connectives to the dorsal and supra-oesophageal vessels in xi-xiii, last pair of hearts in xiii. Prostates paired; vas deferens enlarged ectally into bulbus ejaculatorius. Spermathecae paired, diverticulate. Ovisacs absent. Micromerenephridia astomate, 4-5 pairs of enteronephric tufts in iii, numerous, biramous and y-shaped, exonephric on the body wall in v and posteriad segments; paired stomate, exonephric, megameronephridia in each segment posterior to the supra-intestinal glands, funnels close to the nerve cord.

Distribution: India (from Burma border into the Gangetic plain and west through the Himalayas, and Orissa), Burma, Bangladesh, Nepal, Pakistan.

Key to the species of Eutypheus

1. Holandric; seminal vesicles in ix and xii........... 2
 Metandric; seminal vesicles in xii...................... 5

2. Spermathecal pores at ab.............................. 3
 Spermathecal pores at bc.............................. 4

3. Spermathecae unidiverticulate; seminal vesicles in xii extend posteriorly at most into xiv; lateral intestinal caeca present ...
 Spermathecae polydiverticulate; seminal vesicles in xii very long, extending posteriorly at least into xxiv-xxx; lateral intestinal caeca absent ...
 E. manipurensis
 manipurensis
 E. quadripapillatus
 E. annandalei
 E. incommodus

4. Spermathecae bidiverticulate
 Spermathecae polydiverticulate

OCTOCHAETIDAE: GENUS EUTYPHEUS
5. A vestibulate ... 6
 Vestibulate ... 15

6. Spermathecae bidiverticulate................................. 7
 Spermathecae polydiverticulate 13

7. Lateral intestinal caeca present 8
 Lateral intestinal caeca absent 10

8. Lateral intestinal caeca in xxiv.............................. E. lippus
 Lateral intestinal caeca in xxviii 9

9. Female pores paired; genital markings paired ... E. turaensis
 Female pore single, on the left side; genital markings paired and unpaired... E. gigas

10. Spermathecal pores at ab 11
 Spermathecal pores lateral to b 12

11. Genital markings preclitellar, segmental E. comillahnus
 Genital markings postclitellar, intersegmental ... E. festivus

12. Genital markings paired, segmental on xvi E. assamensis*
 Genital markings unpaired, intersegmental on 15/16 E. scutarius

13. Seminal vesicles in xii very long, extending posteriorly into xxxiii E. pharpingianus
 Seminal vesicles in xii shorter, at the most extending into xx 14

14. Genital markings intraclitellar, on xvi E. nainlanus
 Genital markings intra- and post- clitellar, on xiv-xv, 18/19-21/22 E. nepalensis

15. Univestibulate .. 16
 Bivestibulate ... 17

16. Spermathecal pores at ab; penes conical E. kherai
 Spermathecal pores at median half of bc; penes annular E. gammiei

17. Penes present ... 18
 Penes absent .. E. assamensis*
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Key (Step 18)</th>
<th>Key (Step 19)</th>
<th>Key (Step 20)</th>
<th>Key (Step 21)</th>
<th>Key (Step 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Penes annular</td>
<td>19</td>
<td>Penes elongate</td>
<td>21</td>
<td>Penes annular</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Genital markings present on xv, usually also on xvi</td>
<td>E. orientalis</td>
<td>Genital markings on xv-xvi absent</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Genital markings preclitellar, on 9/10</td>
<td>E. aborianus</td>
<td>Genital markings pre- and post-clitellar, on 10/11-12/13, 18/19-21/22</td>
<td>E. callosus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Spermathecal pores at ab</td>
<td>E. nicholsoni</td>
<td>Spermathecal pores at bc</td>
<td>22</td>
<td>Spermathecae bidiverticulate; genital markings pre-, intra- and post-clitellar</td>
<td>E. waltoni</td>
</tr>
<tr>
<td>22.</td>
<td>Spermathecae polydiverticulate; genital markings post-clitellar or absent</td>
<td>E. kemp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The description of E. assamensis is based on immature types, possibly of two species (Gates, 1938a, 1972), and characterization of the vestibular region is still uncertain. In order to include assamensis in the key, it is grouped with both avestible and vestibulate species until clitellate specimens are studied from the type locality.

26. **Eutyphoeus aborianus** Stephenson

Length 210 mm, diameter 6 mm. First dorsal pore 11/12 (?). Clitellum 2/3 xiii-xvii. Setae $aa = 1.3$ $ab = 0.9$ $bc = 1.3$ $cd = 0.09$ dd on xii, $aa = 3.1$ $ab = 1.5$ $bc = 2cd = 0.12$ dd on xxi. Male pores discharge into small paired vestibula (bivestibulate) opening onto the surface through large apertures with centres at b, penes annular. Female pore single, on the left side, slightly anterior to a. Spermathecal pores transverse slits, just lateral to b. Genital markings paired, on 9/10, at ab.

Lateral intestinal caeca absent; median ventral intestinal caeca and supra-intestinal glands (?). Dorsal vessel aborted anterior to vii (?). Metandric, testis sac ventral, seminal vesicles in xii extending posteriorly to xiv. Penial setae, sparsely ornamented with short transverse rows of fine spines, tip slightly S-shaped, 3.3 mm long, 32 μ diameter. Each spermatheca with a median and a lateral ental diverticulum which are directed posteriorly and bound together by a connective tissue, duct very short. Genital marking glands absent.

Type locality: Kobo, Abor Hills, Arunachal Pradesh, India.

Type specimens: In ZSCI, ZEV 6068/7.

Material examined: 0-0-1, holotype, in ZSIC, ZEV 6068/7.

Distribution: So far known from the type locality.

Remarks: Stephenson (1923) discussed close relationship of *E. aborianus* with *E. gammiei* (Beddard), but stated that these might be united after further studies. Gates (1938a, 1972) treated *E. aborianus* as a distinct species, clearly distinguishing it from *E. gammiei* (Beddard), *E. orientalis* (Beddard) and *E. callosus* Gates on the basis of the shape of vestibulum and location of genital markings. The holotype of *E. aborianus* in National Zoological Collections, Zoological Survey of India, Calcutta is in a poor state of preservation and the intestine is ruptured, and the location of supra-intestinal glands, intestinal caeca and typhlosole cannot be ascertained. The exact status of this inadequately described species can only be determined when more material from the type locality is available for study.

27. Eutypheus annandalei Michaelsen

Length 65 mm, diameter 1.7-2.3 mm, 91 segments. Prostomium indistinctly tanylobic. First dorsal pore (?). Clitellum xiii-xvii. Setae
aa = 2 \ ab = 0.8 \ bc = 1.3 \ cd \ on \ postclitellate \ segments. \ Avestibulate, \ male \ pores \ on \ paired, \ oval \ porophores, \ each \ pore \ in \ a \ transverse \ fissure, \ at \ or \ near \ a, \ penes \ absent \ (?). \ Female \ pores \ paired, \ slightly \ within \ aa, \ anterior \ to \ the \ setal \ ring. \ Spermathecal \ pores \ transverse \ slits, \ at \ lateral \ portion \ of \ bc. \ Genital \ markings \ paired \ at \ ab, \ on \ 13/14 \ and \ 14/15.

Dorsal \ vessel \ complete \ (?) \ with \ lateral \ commissures \ in \ v \ and \ vi \ (?). \ Holandric, \ testis \ sacs \ (?), \ seminal \ vesicles \ in \ ix \ and \ xii, \ those \ of \ xii \ extending \ posteriorly \ to \ xviii. \ Penial \ setae, \ length \ (?), \ c. \ 20 \ \mu \ diameter. \ Each \ spermatheca \ with \ a \ median \ and \ a \ lateral \ ental \ diverticula, \ duct \ short. \ Genital \ marking \ glands \ (?).

Type locality: \ Bhim \ Tal, \ Kumaon \ Hills, \ Uttar \ Pradesh, \ India.

Type specimens: \ In \ ZMUH, \ 3040.

Distribution: \ So \ far \ known \ from \ the \ type \ locality.

Remarks: \ The \ original \ description \ of \ this \ species \ provides \ no \ information \ about \ several \ important \ taxonomic \ characteristics \ viz., \ vestibulum, \ penes, \ intestinal \ caeca, \ supra-intestinal \ glands, \ dorsal \ vessel, \ testis \ sacs, \ etc. \ Its \ relationship \ with \ other \ species \ can \ only \ be \ determined \ after \ studying \ more \ material \ from \ the \ type \ locality.

28. Eutyphoeus assamensis Stephenson
(Figs. 113-115)

Length 185-245 mm, diameter 4 mm, 255 segments. Prostomium pro/tanylobic. First dorsal pore 11/12. Clitellum \(\frac{1}{2}\)xiii-xvii. Setae \(aa = 3\ ab = 0.9\ bc = 1.5\ cd = 0.17\ dd\) on xii, \(aa = 4.7\ ab = 1.1\ bc = 2.4\ cd = 0.18\ dd\) on xxiv. Avestibulate (?) or bivestibulate but apenile (?), male pores (?). Female pores paired, presetibulate, within \(a\) lines. Spermathecal pores small, transverse slits, at or just lateral to \(b\). Genital markings paired, postsetal on xvi, at \(ab\).
Figs. 113-115. *Eutyphoeus assamensis* Stephenson. 113. genital region, 114. penial seta, 115. spermatheca (all drawn from a syntype).
Lateral intestinal caeca absent, median ventral intestinal caeca 10-11 in xxxvi-xlvi, supra-intestinal glands 4-6 pairs in ciii-cxii, typhlosole begins in xxvii. Dorsal vessel extends anterior to gizzard, at least to 4/5. Metandric, testis sac annular, seminal vesicles in xii. Penial setae ornamented with irregular circles of fine spines, tip bluntly rounded or with a bluntly rounded terminal spine, 2 mm long, 40 μ diameter. Each spermatheca with a median and a lateral ental diverticula, duct more than 1 mm long. Genital marking glands absent.

Type locality: Katlicherra, S. Cachar, Assam, India.

Type specimens: In ZSIC, W 1951/1; BMNH, 1933: 2: 23: 510-1.

Material examined: 0-17-0, syntypes, W 1951/1, in ZSIC.

Distribution: So far-known from the type locality.

Remarks: The description of this species is not adequate, as it is based on aclitellate types in which the male genitalia has not fully developed. The types probably belong to two species (Gates, 1938a).

29. _Eutypheus callosus_ Gates

(Figs. 116-118)

Length 247-320 mm, diameter 7-8 mm, 216 segments. Prostomium tanylobic. First dorsal pore 11/12. Clitellum 2/3 xiii-xvii. Setae _aa_ = 2.8 _ab_ = 1.2 _bc_ = 1.7 _cd_ = 0.14 _dd_ on xii, _aa_ = 3.1 _ab_ = 1.1 _bc_ = 2.3 _cd_ = 0.14 _dd_ on xxiv. Male pores discharge into paired vestibula (bivestibulate) opening onto the surface through large oval apertures, penes annular. Female pore (functional) on left side. Spermathecal pores, slightly lateral to _b_. Genital markings paired, circular, at _a—midbc_, on 10/11-12/13, rectangular, closely paired, margins united at mid-ventral line, on 18/19-21/22.
Lateral intestinal caeca absent, median ventral intestinal caeca 12-30, in xxxvii-lxvi, supra-intestinal glands 5-6 pairs, in xciv-ci. Dorsal vessel terminates posterior to gizzard in vii. Metandric, testis sac ventral, seminal vesicles in xii, extending posteriorly to xiv. Penial setae ornamented with irregularly interrupted circles of fine spines, tip spoon-shaped, 2-2.5 mm long, 30-40 μ diameter. Each spermatheca with a median and a lateral ental diverticula which may be in contact or united with each other posteriorly, duct short. Genital marking glands absent.

type locality: Dumpep, Khasi Hills, Meghalaya, India.

type specimens: In ZSIC, W 3325/1.

material examined: 0-2-3, syntypes, W 3325/1, in ZSIC.

distribution: So far known from the type locality.

30. _Eutypheus comillahnus_ Michaelsen

1923. _Eutypheus comillahnus_ (? in part), Stephenson, _Fauna Br. India, Oligochaeta:_ 432.

Length 65-90 mm, diameter 3-4 mm, c. 240 segments. Prostomium tanylobic. First dorsal pore 11/12. Clitellum xiv-xvii. Setae _aa_ = 3_ab_ = 0.9 _bc_ = 1.7 _cd_ = 0.15 _dd_ on xii, _aa_ = 3 _ab_ = 0.75 _bc_ = _cd_ on xviii. Avestibulate, male pores discharge onto the body surface in fissures, on small, paired porophores, at _ab_, penes absent. Female pores paired, presetal, at _c. a_ (as indicated in Figure by Michaelsen, 1909a). Spermathecal pores at or slightly lateral to _a_. Genital markings unpaired, median, postsetal, on xii and xiii, at _bb_.

Lateral intestinal caeca absent, median ventral, intestinal caeca (?), supra-intestinal glands 4 pairs in xxxv-xxxxviii, typhlosole (?). Dorsal vessel extends anterior to gizzard, at least into v. Metandric, testis sac ventral, seminal vesicles in xii, extending posteriorly to xiv.
Penial setae ornamented with irregular transverse rows or circles of triangular teeth, tip broadened and hollowed on one side, 2 mm long, 40 μ diameter. Each spermatheca with a median and a lateral ental diverticula, duct short. Genital marking glands absent.

Type locality: Comillah, Bangla Desh.

Type specimens: In ZSIC, ZEV 2837/7; ZMUH, 2292.

Distribution: So far known from the type locality.

31. _Eutyphoeus festivus_ Gates

(Figs. 119-121)

Length 85-235 mm, diameter 4-6 mm, 124-271 segments. Prostomium prolobic. First dorsal pore 11/12, sometimes 10/11. Clitellum xiii, ½xiii-xvii, xviii. Setae \(aa = 2.6-3.5 \quad ab = 0.8-0.9 \quad bc = 1.2-1.7 \quad cd = 0.15 \quad dd \) on xii, \(aa = 3.6-5.7 \quad ab = 1.2-1.5 \quad bc = 1.6-2.1 \quad cd = 0.18-0.21 \quad dd \) on xxiv. Avestibulate, male pores discharge onto the body surface in fissures on small, paired porophores, at \(ab \), penes absent. Female pores paired slightly within \(a \) lines and anterior to the setal ring. Spermathecal pores small, transverse slits, at \(ab \). Genital markings unpaired, median, on 19/20, at \(bb \), sometimes on 18/19, 20/21, 22/23/24, at \(aa \) or \(bb \).

Lateral intestinal caeca absent, median ventral intestinal caeca 4-6 in xxxvi-xliii, supra-intestinal glands 3-4 pairs in lxxxii-xcv, typhlosole begins in xxiv or xxv. Dorsal vessel complete, extends anterior to gizzard into iii. Metandric, testis sac ventral, seminal vesicles in xii, extending posteriorly to xiv. Penial setae ornamented with irregularly broken circles of fine spines, tip spoon-shaped, 1.05-1.32 mm long, 20-35 μ diameter. Each spermatheca with a median and a lateral posteriorly directed ental diverticula, duct short. Genital marking glands sessile, circular.

Type locality: Dumpep, Khasi Hills, Meghalaya, India.

Type specimens: In ZSIC, W 3324/1.
FIGS. 119-121. *Eutyphoeus festivus* Gates. 119. genital region, 120. penial seta, 121. spermatheca.

Distribution: India: Meghalaya: Dumpee, Umsing, Sumer near Shillong, Cherrapunji, Shillong, Mawphlang in Khasi Hills, Umshling in Garo Hills.

32. Eutyphoeus gammiei (Beddard)

(Figs. 122-124)

1900. Eutyphoeus gammiei, Michaelsen, Tierreich, 10: 323.

Length 182-405 mm, diameter 5-10 mm, 195-282 segments. Prostomium prolobic. First dorsal pore 11/12, sometimes 10/11. Clitellum ½xiii-xvii. Setae \(aa = 2-2.6 \), \(ab = 0.9-1.2 \), \(bc = 1.5-1.9 \), \(cd = 0.13-0.14 \), \(dd \) on xii, \(aa = 3.5-4.2 \), \(ab = 1.4-1.7 \), \(bc = 2.5-3.4 \), \(cd = 0.15-0.17 \), \(dd \) on xxiv. Male pores discharge into an unpaired, median, vestibulum (univestibulate) opening onto the surface through a transverse aperture, anterior margin of the vestibular aperture lobed and posterior margin straight, penes annular. Female pore single, on the left side, presetal, at or just median to \(a \). Spermathecal pores small, transverse slits, at or slightly lateral to \(b \).
Genital markings unpaired and median or closely paired with margins united, on 13/14, 19/20/21, sometimes on 9/10-12/13, 21/22-23/24, at bb.

Lateral intestinal caeca absent, median ventral intestinal caeca 32-75 in xxv-xcix, supra-intestinal glands 4-6 pairs in xcvi-cxl, typhlosole begins in xxix-xxx. Dorsal vessel terminates posterior to gizzard in vii. Metandric, testis sac ventral, seminal vesicles in xii, extending posteriorly to xiv. Penial setae ornamented with closely crowded circles of fine spines, tip spoon-shaped, 2-5 mm long, 20-40 µm diameter. Each spermatheca with a median and a lateral posteriorly directed ental diverticula, sometimes bound together by a connective tissue to form a semi-circle of seminal chambers, duct short. Genital marking glands absent.

Type locality: Darjiling, W Bengal, India.

Distribution: India: West Bengal: Darjiling, Sureil, Nam Ting Pokri, Sukiapokri; Assam: Katlicherra, Amingaon; Meghalaya: Tura, Siju Cave; Arunachal Pradesh: Upper Rotung, Kobo, Lokra in Balipara Frontier Tract.

Outside India: Bangla Desh: Comillah.

Biology: The species is found in sandy loam soil usually in the forests. It has also been recorded from caves and an island in a lake.

33. _Eutyphoeus gigas_ Stephenson
 (Figs. 125-127)

1923. _Eutyphoeus gigas_, Stephenson, _Fauna Br. India, Oligochaeta_: 436.

Length 160-290 mm, diameter 7-11 mm, 155-212 segments. Prostomium tiny, prolobic. First dorsal pore 11/12. Clitellum $\frac{1}{2}$xiii-xvii. Setae $aa = 2$ $ab = 0.9$ $bc = 1.4$ $cd = 0.12$ dd on xii, $aa = 4$ $ab = 1.4$ $bc = 2$ $cd = 0.17$ dd on xxiv. Avestibulate, male pores discharge on the body surface on posterior retractile flap-like lobes of annular penes, each at the centre of a slightly depressed or folded, circular to longitudinally oval porophore. Female pore single, on the left side, presetal, at or median or lateral to a. Spermathecal pores small, transverse slits, slightly lateral to b, sometimes extending into ab. Genital markings paired, presetal or postsetal on some of segments viii-xvi, xviii-xx, 18/19-21/22, at aa or ab or bc, unpaired, median on some of 11/12-15/16, 18/19-21/22.

Lateral intestinal caeca digitiform, usually ventrally directed, in xxviii, median ventral intestinal caeca 24-29 in xxxii-lxi, suprapenal glands 4-7 pairs in lxxxi-xcv, typhlosole begins in xxvii-xxviii. Dorsal vessel terminates posterior to gizzard in vii. Metandric, testis sac ventral, seminal vesicles in xii, extending posteriorly to xiii-xiv. Penial setae ornamented with numerous, short, crowded, transverse rows of spine-like teeth, tip pointed to a spine, 5-8.5 mm long 52-61 μ diameter. Each spermatheca with a median and a lateral, stalked ental diverticula, duct 1-2 mm long. Genital marking glands sessile.

Type locality: Rangamati, Chittagong Hill Tracts, Bangla Desh.

Type specimens: In ZSIC, W 73/1.

Material examined: 0-0-1, type, W 73/1, in ZSIC; 0-0-1 Bhungtilang, 16 km from Aijal, Mizoram, 19 Oct 1960, coll. T.G. Vazirani, An 489, HAZFS, ZSI, Solan.

Distribution: India: Mizoram: Bhungtilang, c. 16 km from Aijal. Outside India: Bangla Desh, Burma.
Biology: Elongate gregarines and nematodes have been observed to parasitize in its coelomic cavity (Gates, 1972).

34. *Eutypbeus incommodus* (Beddard)

(Figs. 128-130)

Length 25-147 mm, diameter 2.5-6 mm, 92-189 segments. Prostomium combined pro/epilobic or pro/tanylobic. First dorsal pore 11/12, sometimes 10/11 or 12/13. Clitellum xiii, ½xiii-xvii, xviii. Setae \(aa = 1.8-2.5 \) \(ab = 0.9 \) \(bc = 1.3-1.4 \) \(cd = 0.14 \) \(dd \) on xii, \(aa = 2.3-3.2 \) \(ab = 1.4 \) \(bc = 2-2.5 \) \(cd = 0.2 \) \(dd \) on xxiv. Avestibulate, male pores discharge on body surface in fissures on low, circular, paired porophores at or close to \(b \), penes absent. Female pores paired, presetal, at or slightly median to \(a \). Spermathecal pores transverse slits, slightly lateral to \(b \). Genital markings paired, postsetal, usually on xiii-xvi at \(ab \) (one of the paired markings occasionally absent), sometimes on xii, rarely all markings absent.

Lateral intestinal caeca absent, median ventral intestinal caeca 3-9 in xxvii-xxxvi, supra-intestinal glands 3-6 pairs in lxii-lxxv. Dorsal vessel extends anterior to gizzard into iii. Holandric, testes and male funnels in annular sacs, seminal vesicles in ix and xii, those of xii extending posteriorly to xiii. Penial setae sparsely
ornamented with widely separated rows or circles of fine spines, tip bluntly rounded or with a terminal spine, 0.5-1.4 mm long, 15-17 μ diameter. Each spermatheca with 2 median and 2 lateral, shortly stalked, ental diverticula or in the form of a circle of 10-18 seminal chambers with 4-6 openings into a short duct. Genital marking glands absent.

Type locality: Calcutta, West Bengal, India.

Distribution: India: Punjab: Basi Muda in Hoshiarpur district, Nangal; Jammu & Kashmir: Changram in Kathua district; Haryana: Ambala; Himachal Pradesh: Kasauli in Solan district, Kandhar, Maijpur, Goalthui, Bherighat in Bilaspur district, Jaritika, Dehra,
Nurpur, Jasoor, Gangwal in Kangra district, Paonta in Sirmour district, Rajpura, Chamba in Chamba district, Harabagh, Ner Chowk, Sundar Nagar in Mandi district; Chandigarh; Uttar Pradesh: Agra, Rurki, Allahabad, Anwargunj, Tanda Falls, Sohagi, Chakia, Ahraura, Varanasi, Chunar, Mirzapur, Madho Singh, Zafarabad, Jaunpur, Janghai, Jhusi, Bhita, Ghoorpur, Pratabgarh, Sultanpur, Fyzabad, Fatehpur, Rae Bareli, Lucknow, Bara Banki, Lakhaoti, Gorakhpur, Saharanpur, Dehra Dun, Robertsganj; Rajasthan: Bharatpur; Madhya Pradesh: Rewa, Nowgong; Bihar: Patna, Pusa, Rajmehal; W. Bengal: Calcutta.

Outside India Pakistan

Biology: It inhabits alluvial soil with a pH range of 7.2-7.6 in agricultural fields, plant nurseries, gardens, orchards, grasslands, under stones on the banks of ponds and streams in the plains to an altitude of c. 1830 m. Activity is restricted to the rainy season from July to September. Reproduction is biparental and breeding occurs in August-October. Vermicelliform casts are deposited on the soil surface in the form of small towers. Bioluminescence has been reported in this species (Gates, 1944). Mukherjee (1980) has recorded a ciliate parasite, Anoplophrya marylandensis, from its gut contents.

35. Eutyphoeus kherai Julka
(Figs. 131-133)

Length 90-222 mm, diameter 4-7 mm, 137-214 segments. Prostomium prolobic. First dorsal pore 11/12. Clitellum $\frac{1}{2}$xiii-xvii. Setae $aa = 1.9$ $ab = 0.6$ $bc = 1.4$ $cd = 0.1$ dd on xii, $aa = 2.9$ $ab = 1.2$ $bc = 2.7$ $cd = 0.11$ dd on xxiv. Male pores discharge into a median deep vestibulum (univestibulate) opening onto the body surface through a circular to transversely oval aperture, at bb, penes short and conical. Female pore single on the left side, presetal, at or slightly lateral to a. Spermathecal pores small, transverse slits, at ab. Genital markings paired, usually on 19/20-22/23, sometimes
on 18/19 and 23/24/25; one of the paired markings may occasionally be absent.

Lateral intestinal caeca absent, median ventral intestinal caeca 25-26 in xxxiv-lix, supra-intestinal glands 4-5 pairs in lxxi-lxxxvii, typhlosole begins in xxvii-xxviii. Dorsal vessel terminates posterior to gizzard in vii, sometimes extending anterior to gizzard in vi. Metandric, testis sac ventral, seminal vesicles in xii, extending to xiv. Penial setae ornamented with 3-4 spines in each of 2-3 rows, tip spoon-shaped, 1.6-1.7 mm long, 21-30 μ diameter. Each spermatheca with ental diverticula in the form of 4-5 seminal chambers on posterior surface of duct, opening into the duct lumen through 2 apertures. Genital marking glands sessile, oval.

FIGS. 131-133. *Eutyphoeus kherai* Julka. 131. genital region, 132. penial seta, 133. spermatheca. (all drawn from the holotype).
Type locality: Bisoi, Mayurbhanj district, Orissa, India.

Type specimens: In ZSIC: Holotype, An 305/1; 31 paratypes, An 306/1.

Distribution: So far known from the type locality.

36. Eutyphoeus lippus Gates
(Figs. 134-139)

Length 112-129 mm, diameter 4-6 mm, 176-184 segments. Prostomium tanylobic. First dorsal pore 10/11, sometimes 7/8-9/10. Clitellum xiii-xvi, ½xvii. Setae \(aa = 2.3 \), \(ab = 1.1 \), \(bc = 1.5 \), \(cd = 0.16 \), \(dd \) on xii, \(aa = 3.5 \), \(ab = 1.9 \), \(bc = 2.1 \), \(cd = 0.18 \), \(dd \) on xxiv. Avestibulate, male pores discharge on the body surface in fissures at or close to \(b \), penes absent. Female pores paired, presetal, slightly within setal lines \(aa \). Spermathecal pores large, transverse slits, at \(ac \). Genital markings paired, postsetal on x, pre- or post-setal on xvii, at c. ab.

Lateral intestinal caeca dorsally directed flaps with rounded tips in xxiv, median ventral intestinal caeca 4-7 in xxx-xxxvii, supra-intestinal glands 3-5 pairs in lxvi-lxx. Dorsal vessel extends anterior to gizzard into iii. Metandric, testis sac annular or horse-shoe-shaped, seminal vesicles in xii, extending to xiv. Penial setae ornamented with short transverse rows of fine spines, tip bluntly rounded, 0.74 mm long, 18 \(\mu \) diameter. Each spermatheca with a median and a lateral digitiform ental diverticula, duct short. Genital marking glands sessile, oval.

Type locality: Gurjung, Khare and Phoktey villages, Remechap district, Nepal.

Type specimens: In ZSIC, W 3045/1.

Material examined: 0-0-2, syntypes, W 3045/1, ZSIC.

Distribution: Nepal.
Figs. 134-139. Eutyphoeus lippus Gates. 134. penial seta, 135. penial setae (redrawn, after Gates 1934), 136-137. spermatheca, posteroventral view (136), antero-dorsal view (137), 138. genital region, 139. spermathecal pore region (all drawn from a syntype).
Biology: Found in dark brown soil intermixed with rocks and stones, thin layer of mud on rocks covered with lichens at an elevation of 1220 m to 4575 m (1). Sporozoan parasites have been reported in the coelom of post-prostatic region (Gates, 1934).

37. Eutypheus manipurensis manipurensis Stephenson
(Figs. 140-143)

1923. Eutypheus manipurensis, Stephenson, Fauna Br. India, Oligochaeta: 441.

Length 120 mm, diameter 5 mm, 162 segments. Prostomium tanylobic. First dorsal pore 10/11. Clitellum 2/3 xiii-2/3 xvii. Setae $aa = 2.2$ $ab = 0.9$ $bc = cd = 0.12$ dd on xii, $aa = 3.2$ $ab = 1.2$ $bc = 1.6$ $cd = 0.14$ dd on xiv. Avestibulate, male pores discharge on the body surface on paired porophores, at ac, penes absent. Female pores paired, presetal, slightly median to a lines. Spermathecal pores transverse slits, at ab. Genital markings unpaired and median, on setal annuli on viii and ix, pre- or postsetal on xvi, paired, on setal annulus or presetal on viii, pre- or postsetal on xvi, at ab, presetal on xvi and xvii at aa; 4 postsetal markings in a transverse row on xvi.

Lateral intestinal caeca digitiform, ventrally directed in xxvii, median ventral intestinal caeca 23-24 in xxxii-lvi, supra-intestinal glands 3-5 pairs in lxxiii-lxxviii, typhlosole begins in xxvii. Dorsal vessel extends anterior to gizzard into iii. Holandric, testis sacs annular, seminal vesicles in ix and xii, those of xii extending to xiv. Penial setae ornamented with fine triangular teeth, tip bluntly rounded, 1.5 mm long, 45μm diameter. Each spermatheca with a shortly stalked, lateral, ental diverticulum, duct short and stout. Genital marking glands sessile, each with a strong but transparent capsule.
Figs. 140-143. *Eutyphoeus manipurensis manipurensis* Stephenson. 140. spermathecal pore region, 141. genital region, 142. penial seta, (redrawn, after Stephenson 1923), 143. spermatheca (all drawn from a syntype).
Type locality: Thonga Island, Loktak Lake, Manipur, India.

Type specimens: In ZSIC, W 555/1; BMNH, 1933: 5: 25: 1344.

Material examined: 0-0-2, syntypes, W 555/1, in ZSIC.

Distribution: So far known from the type locality.

38. Eutyphoeus nainianus Michaelsen

(Figs. 144-145)

Length 60 mm, diameter 3-4.5 mm, 138 segments. Prostomium tanylobic. Clitellum xiii-xvii. Setae $aa = 2$ $ab = 0.8$ $bc = 1.1$ $cd = 0.14$ dd on xii, $aa = 2.2$ $ab = 1.3$ $bc = 1.4$ $cd = 0.14$ dd on xxiv. Avestibulate, male pores discharge on the body surface in fissures on oval porophores, at b, penes absent. Female pores paired, presetal, slightly median to a. Spermathecal pores transverse slits, at bc. Genital markings closely paired with median margins united, postsetal, on xvi, at aa.

Lateral intestinal caeca digitiform, dorsally directed in xxiii or xxiv (?), median ventral intestinal caeca 5 in xxv-xxix, supra-intestinal glands 4 pairs in lxvi-lxix. Dorsal vessel extends anterior to gizzard at least into v. Metandric, testis sac annular, seminal vesicles in xii, extending to xx. Penial setae absent (?). Each spermatheca with ental diverticula in the form of an interrupted circle of c. 6-7 seminal chambers around short duct, opening into the duct lumen individually. Genital marking glands sessile.

Type locality: Naini Tal, Kumaon Hills, Uttar Pradesh, India.

Type specimens: In ZSIC, ZEV 2842/7.

Material examined: 0-0-1, holotype, ZEV 2842/7, in ZSIC.
FIGS. 144-145. *Eutyphoeus nainianus* Michaelsen. 144. genital region (based on holotype), 145. spermatheca (redrawn, after Stephenson 1923).
Distribution: So far known from the type locality.

Remarks: Penial setae are stated to be absent in *E. nainianus*. It is probable that they are very small and deeply embedded in the body wall.

39. *Eutypheoeus nepalensis* Michaelsen
(Figs. 146-148)

Length 110-140 mm, diameter 6 mm, 150-180 segments. Prostomium tanylobic. First dorsal pore 10/11. Clitellum xiii-xvii. Setae $aa = 1.7-1.9$ $ab = 1.1-1.2$ $bc = 1.3-1.4$ $cd = 0.16$ dd on xii, $aa = 2.8-3$ $ab = 1.5-2.1$ $bc = 1.5-2.3$ $cd = 0.17$ dd on xxiv. Avestibulate, male pores discharge on body surface in fissures, on oval porophores, at or just lateral to b, penes absent. Female pores paired, presetal, slightly median to a. Spermathecal pores large, transverse slits with centres at c. Genital markings closely paired, postsetal on xiv, xv, intersegmental on 18/19-21/22, at ab.

Lateral intestinal caeca small, conical, dorsally directed in xxiv, median ventral intestinal caeca 5 in xxxi-xxxvi, supra-intestinal glands 4 pairs in lxxvii-lxxx. Dorsal vessel extends anterior to gizzard into iii. Metandric, testis sac annular, seminal vesicles in xii, extending to xiv. Penial setae deeply embedded in the body wall, ornamented with transverse rows of fine spines, length and diameter (?). Each spermatheca with median and lateral rows of ental seminal chambers on a short duct, opening into the duct lumen at least through 2 apertures on each side. Genital marking glands sessile.

Type locality: Chitlong, Nepal.

Type specimens: In ZSIC, ZEV 2880/7; ZMUH, 7131.
FIGS. 146-148. *Eutyphoeus nepalensis* Michaelsen, 146. spermatheca, 147. genital region, 148. penial seta, tip broken (all drawn from a syntype).
Material examined: 0-0-3, syntypes, ZEV 2880/7, in ZSIC.

Distribution: So far known from the type locality.

Remarks: The location of the ventral intestinal caeca needs confirmation as it was determined from a softened syntype in the National Zoological Collections, Zoological Survey of India, Calcutta.

40. Eutyphoeus nicholsoni (Beddard)

(Figs. 149-152)

Length 141-270 mm, diameter 5-10 mm, 172-225 segments. Prostomium prolobic or pro/tanylobic. First dorsal pore 11/12, sometimes 12/13. Clitellum xiii-xvii. Setae $aa = 1.9-2.3$ $ab = 0.9-1$ $bc = 1.4-1.6$ $cd = 0.11-0.12$ dd on xii, $aa = 2.7-3$ $ab = 1.4-1.5$ $bc = 2.3-2.5$ $cd = 0.14-0.15$ dd on xxiv. Male pores discharge into paired, deep, well-like vestibula (bivestibulate) opening onto the surface through slit-like apertures at $c. ab$, penes elongate, tubular, 1.25-1.5 mm long, each with a slit-like to crescentic aperture at the tip. Female pore single, on the left side, presetal, at a. Spermathecal pores small, transverse slits, at or slightly lateral to a. Genital markings closely paired, margins in contact or united at mid-ventral line, extending laterally into bc, on 15/16, sometimes an additional marking, either on left or right side, on 14/15, 16/17 and 18/19.

Lateral intestinal caeca absent, median ventral intestinal caeca 24-30 in xxxv-lxix, supra-intestinal glands 4-7 pairs in lxxx-lxxxix, typhlosole begins in xxviii-xxix. Dorsal vessel terminates posterior
FIGS. 149-152. *Eutyphoeus nicholsoni* (Beddard). 149. posterior view of penis, 150. spermatheca, 151. penial seta, 152. genital region.
to gizzard in vii, rarely extending anteriorly to vi. Metandric, testis sac ventral, seminal vesicles in xii, extending to xiv. Penial setae ornamented with sparse, shallow pits, tip bluntly rounded, 3.6-4.4 mm long, 26-33 μ diameter. Each spermatheca with ental diverticula in the form of one or two fan-shaped clusters or a semicircle row of 5-11 digitiform seminal chambers on posterior face of duct, opening into the duct lumen through 2 (?), 4-6 apertures, duct comparatively long (usually more than 2 mm). Genital marking glands sessile, protuberant into the body cavity.

Type locality: Calcutta, West Bengal, India.

Type specimens Typhoecus nicholsoni: Typus amissus; Eutyphoecus khani: In ZSIC, ZEV 2841/7; ZMUH, 7162.

Biology: E. nicholsoni inhabits alluvial soil in the paddy fields and pastures. It has also been recorded from the flower pots and manure heaps. Soota (1970) reported it from soils with 7.5-8 pH, 27.07% moisture and 2.06% organic matter. Its altitudinal range is from plains to an elevation of c. 150-300 m.
Activity in this species is possible from May-June to October in Pakistan (Bhatti, 1962b) and from July to December (Gates, 1945c) in the Gangetic Plains. It undergoes diapause in November at c. 30 cm depth of soil in the Doon Valley (Soota, 1970). It is usually found crawling aimlessly in large numbers on the soil surface at the end of the rainy season in October-November (Gates, 1945c). Copulation takes place above the soil surface in July-August (Menon et al., 1968) and from late August to November (Gates, 1945c). Vermicelliform tower-like casts are deposited on the soil surface. Gates (1944) records bioluminescence in this species.

Monocystid protozoan parasites have been reported from its coelomic cavity by Gates (1938a).

41. Eutyphoeus orientalis (Beddard)
(Figs. 153-157)

Length 130-250 mm, diameter 4.5-10 mm, 130-217 segments. Prostomium pro/tanylobic. First dorsal pore 11/12. Clitellum xiii, 1/2-1/3 xiii-xvii. Setae \(aa = 1.8-2.2\ ab-bc = 1.6-1.8\ cd = 0.12-0.13\ dd\) on xii, \(aa = 2.4\ ab = 1.1\ bc = 1.8\ cd = 0.13\ dd\) on xxiv. Male pores discharge into paired vestibula (bivestibulate) opening onto the body surface through circular to oval or slit-like apertures at a-mid bc, penes annular. Female pore single, on the left side, presetal at a. Spermathecal pores small, transverse slits, at bc. Genital markings paired, segmental, postsetal, usually on xv and xvi, sometimes on ix-x, xii-xiv, intersegmental usually on 18/19/ 20/21, sometimes on 21/22-26/27, at ab.

Lateral intestinal caeca absent, median ventral intestinal caeca 31-34 in xxiv-lxvii, supra-intestinal glands 4-7 pairs in lxxxvi-xcvi, typhlosole begins in xxviii. Dorsal vessel terminates posterior to gizzard in vii. Metandric, testis sac ventral, seminal vesicles in xii, extending to xiv-xvi. Penial setae ornamented with closely crowded circles of spines, tip simple or spoon-shaped, 4-5 mm long, 32-36 \(\mu\) diameter. Each spermatheca with a median and a lateral ental diverticula, usually directed posteriorly, duct 0.8-1.5 mm long. Genital marking glands sessile, slightly protuberant into the body cavity.

Type locality: Calcutta, West Bengal, India.

Distribution: India: *West Bengal*: Calcutta; *Bihar*: Sirsiah, Saripur, Pusa; *Uttar Pradesh*: Katwari Bazar, Buzru Kurme, Mowaie, Dehra Dun, Chhitauni.
Biology: It has been recorded from a pasture soil with 6.0 pH, 2.06% organic matter and 27.07% moisture (Soota, 1970). Its altitudinal range is from plains to an elevation of c. 610 m (Gates, 1938a). Its maximum population was recorded in the Doon Valley from June to September, juveniles occurring in June-July and sexually matured worms in August-September (Soota, 1970). It undergoes aestivation during the summer drought and winter cold. It deposits vermicelliform tower-like casts on the soil surface.

Monocystid protozoan parasite, *Aikinetocystis* sp., has been recorded from the lateral wall of the gut and also in the coelomic cavities of xii-xiv (Gates, 1938a).

42. *Eutypheus kempi* Stephenson

(Figs. 158-159)

Length 230 mm, diameter 6 mm, 254 segments. Prostomium probbic. First dorsal pore 11/12. Clitellum 1/3 xiii-xvii. Setae *aa* = 1.7 *ab* = *bc* = 1.5 *cd* = 0.17 *dd* on xii, *aa* = 3.1 *ab* = 1.2 *bc* = 2.1 *cd* = 0.18 *dd* on xxiv. Male pores discharge into paired, deep, vestibula (bivestibulate), at *ab*, penes elongate, tubular. Female pore single, on the left side, presetal, just lateral to *a*. Spermathecal pores paired, small transverse slits, at median part of *bc*. Genital markings unpaired and median (?), on 21/22, 22/23 (?).

Lateral intestinal caeca absent, median ventral intestinal caeca (?), supra-intestinal glands 6 pairs in cxiii-cxviii. Dorsal vessel terminates posterior to gizzard in vii. Metandric, testis sac ventral, seminal vesicles in xii, extending to xiii. Penial setae ornamented with interrupted circles of very fine teeth, tip slightly spoon-shaped, 2.3-2.9 mm long, 34 µ diameter. Each spermatheca with numerous
FIGS. 158-159. *Eutyphoeus kempi* Stephenson 158. genital region, 159. spermatheca.
ental diverticula arranged in a semicircle on posterior face of a short duct, opening into the duct lumen through two groups of 5-6 apertures. Genital marking glands absent.

Type locality: Kobo, Abor Hills, Arunachal Pradesh, India.

Type specimens: In ZSIC, ZEV 5150/7; BMNH, 1933: 5: 25: 262.

Material examined: 0-0-1, syntype, ZEV 5150/7, in ZSIC.

Distribution: So far known from the type locality.

43. _Eutyphoeus pharpingianus_ Michaelsen

(Figs. 160-162)

1923. _Eutyphoeus pharpingianus_, Stephenson, _Fauna Br. India, Oligochaeta_: 450.

Length 130 mm, diameter 4.5 mm, 118 segments. Prostomium tanylobic. First dorsal pore 11/12. Clitellum xiii-xvii. Setae _aa_ = 1.8 _ab_ = 0.7 _bc_ = _cd_ = 0.09 _dd_ on xii, _aa_ = 2.6 _ab_ = 1.5 _bc_ = 1.5 _cd_ = 0.11 _dd_ on xxiv. Avestibulate, male pores discharge on body surface in fissures on somewhat circular porophores, at or close to _b_, penes absent. Female pores paired, presetal, at _a_. Spermathecal pores small, transverse slits, centres at _b_. Genital markings paired, postsetal, on xiii-xvi, at _ab_.

Lateral intestinal caeca absent, median ventral intestinal caeca 6 in xxviii-xxxiii, supra-intestinal glands 4 pairs in lxviii-lxxi. Dorsal vessel extends anterior to gizzard. Metandric, with male funnels in _x_, testis sac annular (?), seminal vesicles in _xii_, extending to xxxiii. Penial setae ornamented with sparse, small, irregularly toothed ridges or rows of short teeth, tip bluntly rounded, c. 1.66 mm long, 24 µ diameter. Each spermatheca with ental diverticula in the form of an interrupted circle of seminal chambers with more than 2 (?) openings into a very short duct. Genital marking glands (?).
Type locality: Pharping, nr. Kathmandu, Nepal.

Type specimens: In ZSIC, ZEV 2863/7.

Distribution: So far known from the type locality.

Remarks: A dissected clitellate specimen in the Zoological Survey of India, Calcutta is macerated. The location of the ventral intestinal caeca and condition of the dorsal vessel, andry and testis sac need confirmation.

44. Eutyphoeus quadripapillatus Michaelsen

(Figs. 163-165)

Length 60-110 mm, diameter 3-4 mm, 120-168 segments. Prostomium tanylobic. First dorsal pore 11/12, sometimes 10/11 or 12/13. Clitellum xiii-xvii. Setae $aa = 2-2.5$ $ab = 0.8$ $bc = 1.2-1.7$ $cd = 0.14$ dd on xii, $aa = 2.8-3.7$ $ab = 1-1.1$ $bc = 1.4-2.1$ $cd = 0.15$ dd on xxiv. Avestibulate, male pores discharge on body surface on oval porophores, at or close to b, penes absent. Female pores paired, presetal, at or slightly median to a. Spermathecal pores small, transverse slits, at ab. Genital markings paired, postsetal, on xiii-xiv, sometimes on xv, at ab, occasionally absent.

Lateral intestinal caeca absent, median ventral intestinal caeca 4-9 in xxvii-xxxv, supra-intestinal glands 3-4 pairs in lxii-lxxi. Dorsal vessel extends anterior to gizzard into iii. Holandric, testis sacs annular (?), seminal vesicles in ix and xii, those of xii extend to xxvi-xxx, sometimes to lxxiii. Penial setae usually absent but penisetal follicles present, each follicle with 'fragments' of setae of various shapes, sometimes with unornamented 'normal' setae of 0.25-0.49 mm length. Each spermatheca with ental diverticula in the form of a circle of seminal chambers with 4 openings into a short duct. Genital marking glands absent.
Type locality: Saraghat, West Bengal, India.

Type specimens: In ZSIC, ZEV 2845-2846/7; MNHU, 7260; ZMUH, 7135, 7153.

Material examined: 0-1-3, syntypes, ZEV 2846/7, 0-0-2, syntypes, ZEV 2845/7, in ZSIC.

Distribution: India: West Bengal: Saraghat, Calcutta; Bihar: Sirsiah; Uttar Pradesh: Chhitauni, Gorakhpur.

Remarks: A dissected clitellate specimen in the Zoological Survey of India, Calcutta is macerated. The location of the ventral intestinal caeca and condition of the dorsal vessel, andry and testis sac need confirmation.

45. Eutyphoeus scutarius Michaelsen
(Figs. 166-168)

Length 140-180 mm, diameter 5 mm, c. 290 segments. Prostomium tanylobic. First dorsal pore 11/12. Clitellum ½xiii-xvii. Setae aa = 2.5 ab = 1.1 bc = 2.1 cd = 0.2 dd on xii, aa = 3.4 ab = 1.2 bc = 1.7 cd = 0.21 dd on xxiv. Avestibulate, male pores discharge on body surface in fissures on oval porophores, at or close to b, penes absent. Female pores paired, presetal, slightly within setal lines aa. Spermathecal pores small, transverse slits, at mid bc. Genital marking single, median on 15/16, at bb.

Lateral intestinal caeca absent, median ventral intestinal caeca (?), supra-intestinal glands 5 pairs in cxxvi-cxxx (?) or cxxiii-cxxxvii. Dorsal vessel extends anterior to gizzard, at least into v.
Metandric, testis sac annular (?), seminal vesicles in xii, extending to xv. Penial setae ornamented with closely crowded circles of fine spines, tip pointed, c. 2 mm long, 80-95 μ diameter. Each spermatheca with a median and a lateral, sessile, ental diverticula, duct more than 1 mm long. Genital marking glands absent.

Type locality: Comillah, Chittagong district, Bangla Desh.

Type specimens: In ZSIC, ZEV 2844/7; ZMUH, 7132.

Material examined: 0-0-1, syntype, ZEV 2844/7, in ZSIC.

Distribution: So far known from the type locality.

Remarks: The syntype in Zoological Survey of India, Calcutta is broken into two pieces and parts of its intestine are ruptured. Hence, the location of ventral intestinal caeca and supra-intestinal glands is tentative.

46. **Eutypheus turaensis** Stephenson

 (Figs. 169-172)

Length 100-177 mm, diameter 3.5 mm, 171-174 segments. Prostomium pro- or pro/tanylobic. First dorsal pore 11/12. Clitellum (?). Setae \(aa = 2.6-3.5 ab = 0.8-0.9 bc = 1.2-1.7 cd = 0.15 dd\) on xii, \(aa = 3.6-5.8 ab = 1.2-1.5 bc = 1.6-2.1 cd = 0.18-0.21 dd\) on xxiv. Avestibulate, male pores discharge on body surface in slight depressions, penes annular. Female pores paired, presetal, at a. Spermathecal pores small, transverse slits, slightly lateral to b. Genital markings paired at \(ab\); postsetal, on xv-xvi, sometimes on xiv; presetal, sometimes on xviii.

Lateral intestinal caeca ventrally directed, digitiform, in xxviii, median ventral intestinal caeca 14-18 in xxxii-xlxi, supra-intestinal glands 3-7 pairs in lxv-lxxi, typhlosole begins in xxvii-xxviii. Dorsal vessel terminates anterior to gizzard in vi, sometimes in v.
Figs. 169-172. *Eutyphoeus turaensis* Stephenson. 169. lateral view of intestine showing lateral intestinal cecum, 170. genital region, 171. penial seta, 172. spermatheca.
Metandric, testis sac ventral, seminal vesicles in xii, extending to xiv. Penial setae ornamented with circles of closely crowded fine spines especially towards the ectal end, tip bluntly pointed, 1.5-1.8 mm long, 35-43 μ diameter. Each spermatheca with a median and a lateral, shortly stalked, ental diverticula, duct short. Genital marking glands absent.

Type locality: Tura, Garo Hills, Meghalaya, India.

Type specimens: In ZSIC, W 178/1, W 181/1; BMNH, 1933: 5: 25: 280.

Material examined: 3-4-0, syntypes, W 178/1, W 181/1, in ZSIC; 2-4-0 Tura, 16 July 1977, coll. J.M. Julka, An 491, in HAZFS, ZSI, Solan.

Distribution: So far known from the type locality.

Remarks: In a revisionary work on the genus, Gates (1938a) could not trace the lateral intestinal caeca in slightly softened immature syntypes of _E. turaensis_ in the Indian Museum, now in Zoological Survey of India, Calcutta (W 178/1, W 182/1). On careful examination of these syntypes and fresh material from the type locality, it is found that the lateral intestinal caeca are present in this species. These are ventrally directed in xxviii and their tips reach beneath the intestine.

Biology: It inhabits dark loam soil, under bark and in rotten wood at an altitude between 1075-1200 m. Monocystid protozoan parasites (_Aikinetocystis_ sp.) have been reported from its coelomic cavity (Gates, 1938a, 1972).

47. _Eutyphoeus waltoni_ Michaelsen

(Figs. 173-176)

1923. _Eutyphoeus ibrahimi_, Stephenson, _Fauna Br. India, Oligochaeta_: 438.

Length 53-230 mm, diameter 4-8 mm, 115-201 segments. Prostomium pro- or tanylobic. First dorsal pore 11/12. Clitellum xiii, ½xiii-xvii. Setae $aa = 1.7-2.4$ $ab = 1-1.2$ $bc = 1.4-1.9$ $cd = 0.12-0.14$ dd on xii, $aa = 2.4-3.2$ $ab = 1.2-1.7$ $bc = 2.1-2.8$ $cd = 0.15$ dd on xxiv. Male pores discharge into deep, well-like paired vestibula (bivistibulate) opening onto the body surface through circular apertures or transverse slits, at ac; penes elongate, tubular, 1 mm long. Female pore single on the left side, presetal, slightly lateral to a. Spermathecal pores small, transverse slits, the centres at or slightly median to c. Genital markings paired (sometimes one of the pair absent), postsetal one ix, sometimes on viii, x, intersegmental on 14/15/16, 18/19, occasionally on 13/14, 16/17, 19/20-22/23.

Lateral intestinal caeca absent, median ventral intestinal caeca 24-29 in xxxiii-lxii, supra-intestinal glands 4-5 pairs in lxxvi-lxxxvi, typhlosole begins in xxvii-xxviii. Dorsal vessel terminates posterior to gizzard, in vii. Metandric, testis sac ventral, seminal vesicles in xii, extending to xiii-xiv. Penial setae ornamented with fairly closely crowded circles of small, fine teeth, tip spoon-shaped, 4-5 mm long, 20-30 μ diameter. Each spermatheca with a median and a lateral ental diverticula, often directed posteriorly, sometimes bound together in a connective tissue, duct slender, comparatively long, c. 2 mm in length. Genital marking glands sessile.

Type locality: Mainpuri, Uttar Pradesh, India.

Type specimens: *Eutyphoeus waltoni:* in ZSIC, ZEV 2849/7; MNHU, 7340; MZUT, 101; ZMUH, 7163-5. *Eutyphoeus bengalensis:* in ZSIC, ZEV 2843/7; *Eutyphoeus ibrahimi:* in ZSIC, W 21/1; BMNH, 1933: 5: 25: 275.

Distribution: India: West Bengal: Calcutta, Baranagore, Tribeni, Saraghat; Bihar: Rajmehal, Siripur, Pusa, Patna, Giridih; Uttar Pradesh: Mainpuri, Fyzabad, Lucknow, Agra, Cawnpore, Dehra Dun, Allahabad, Ahraura, Moghul Serai, Varanasi, Chunar, Mirzapur, Tanda Falls, Madho Singh, Zafarabad, Jaunpur,
Janghai, Jhusi, Bhita, Ghoorpur, Pratabgarh, Sultanpur, Fatehpur, Rae Bareli, Bara Banki, Chhitauni, Gorakhpur, Badshahi Bag, Dhikala-Saraduli Road, Pauri, Chamdhar, Budhana, Ranikhet, Guthain, Kandholi forest, Dhikala Machan; *Madhya Pradesh*: Satna, Rewa, Gwalior (?); *Rajasthan*: Udaipur; *Gujarat*: Baroda, Navali (?); Ahmedabad (?); *Delhi; Chandigarh; Punjab*: Basi Muda, Hoshiarpur, Kapurthala; *Himachal Pradesh*: Swarghat, Una, Dehra, Bilaspur, Gisani vill. near Banethi, Paonta, Nurpur, Gangwal, Jasoor, Rajpura near Chamba, Ner Chowk, Sundar Nagar; *Jammu & Kashmir*: Parel vill. near Samba, Mansar.

Outside India: Pakistan (Lahore).

Biology: Its habitats include alluvial soils with pH range of 7.5-8.6, cultivated fields, plant nurseries, gardens, flower pots, manure heaps and banks of a tank. It is found in plains to an elevation of c. 610 m.

This species is mainly active from July to October in the Indo-Gangetic Plains. Breeding is restricted to August-October (Gates, 1945c, 1961b; Bhatti, 1962b; Khan, 1966), and aestivation is probably imposed during the summer drought and winter cold. It wanders aimlessly in large numbers on the soil surface towards the end of the rainy season in October-November, which also results in heavy mortality of the individuals due to heat (Gates, 1945c). Feeding, copulation and cast deposition occur above the soil surface. Bioluminescence has been reported in this species.

Genus 10. Hoplochaetella Michaelsen, 1900

Diagnosis: Perichaetine. Combined male and prostatic pores 2 pairs on xvii or 17/18 and xix or 18/19, rarely one pair on xvii; seminal grooves absent. Oesophagus with a single gizzard in vi (sometimes in vii) and 4 pairs of discrete extramural calciferous glands in x-xiii, supra-intestinal glands absent; typhlosole lamelliform, simple. Micromeronephridia astomate; paired, enteronephric tufts in iv and v; numerous exonephric on the body wall in iv and posteriad segments. Paired, stomate, enteronephric megameronephridia in each segment from xii-xiv to the caudal end.

Type species: *Perichaeta stuarti* Perrier, 1886.

Description: Setae perichaetine throughout the body, some of the ventralmost setae in the spermathecal region modified as copulatory, internally associated with tubular glands. Combined male and prostatic pores 2 pairs on small porophores, on xvii or 17/18 and xix or 18/19, rarely one pair on xvii. Female pore single, median, presetal, on xiv. Spermathecal pores paired, segmental, between vii and x. Genital markings present or absent, when present with or without central apertures. Nephridiopores not recognized.

A large oesophageal gizzard in vi, rarely vii. Discrete calciferous glands 4 pairs in x-xiii, reniform, opening through short stalks directly into oesophagus ventro-laterally. Intestine begins in xvi, supra-intestinal glands absent, caeca occasionally present, typhlosole low, simple, lamelliform. Dorsal blood vessel single and complete; extra-oesophageal vessels paired, each receiving a vessel in xiii, formed by the union in xiv of a latero-parietal vessel and a commissure from the dorsal vessel; subneural vessel present or absent, when present united in xiv with the latero-parietal vessel; lateral hearts with connectives to the dorsal and supra-oesophageal vessels in x-xii, xiii. Unpaired lymph glands present or absent. Holandric; testis sacs present. Vasa deferentia, in species with 2 pairs of prostates, open separately into prostatic ducts, one vas deferens on each side turns anteriorly in xviii to join the anterior
prostatic duct, while the other vas deferens joins the posterior prostatic duct. In species with one pair of prostates, vasa deferentia on each side join with each other in xiv-xvi, the combined duct passing laterally to prostatic duct extends to xviii where it turns anteriorly to open into the prostatic duct in xvii. Spermathecae paired. Ovisacs paired, in xiv. Micromeronephridia, astomate, paired tufts, small, ? exonephric in ii and iii, large enteronephric in iv and v, numerous exonephric on the body wall in iv and posteriad segments; paired stomate megameronephridia, in xii-xiv and posteriad segments, discharging into a pair of lateral, parietal, longitudinal excretory canals, which open separately into rectum; each megameronephridium with a large functional funnel and several vestigeal secondary funnels, close to the nerve cord.

Distribution: Western coastal plains and western Ghats in Maharashtra, Goa and Karnataka, Shevaroy Hills in Tamil Nadu, and Nandi Hills in Karnataka.

Key to the species of _Hoplochaetella_

1. Combined male and prostatic pores 2 pairs 2
 Combined male and prostatic pores one pair _H. kinneari_

2. All spermathecal pores on segment viii 3
 All spermathecal pores not on segment viii 13

3. Last pair of hearts in xii _H. righii_
 Last pair of hearts in xiii 4

4. Genital markings absent _H. isornata_
 Genital markings present 5

5. Genital markings with central apertures, associated internally with tubular and sausage-shaped glands .. 6
 Genital markings without central apertures associated internally with sessile glands 9
6. Genital markings unpaired and median 7
Genital markings paired .. 8

7. Genital marking on xix .. H. khandalaensis

Genital markings on xvi and xix H. khandalaensis
dichordarius

8. Genital markings intersegmental, on 16/17, 19/20-20/21 ... H. powelli

Genital markings segmental, on xiii-xv H. panchganiensis

9. Genital markings in part paired; spermathecal- diverticula in a complete circle H. suctoria

Genital markings unpaired; spermathecal diverticula in two groups or an incomplete circle around duct .. 10

10. Genital markings median 11

Genital markings with centres on or close to male pore lines ... 12

11. Genital markings on xvii and xix H. affinis

Genital markings on 16/17 and xx H. bifoveata

12. Genital markings presetal on xvi or 16/17 (usually on right side), presetal on xx or 19/20 (usually on left side); copulatory setae on ix present .. H. kempi

Genital markings on right side of xviii-xix, sometimes xvii; copulatory setae on ix absent ... H. kurmagarensis

13. Spermathecal pores on vii and ciii H. stuarti

Spermathecal pores not so located 14

14. Spermathecal pores on viii and ix 15
Spermathecal pores on viii and x H. londensis

15. Last pair of hearts in xii 16
Last pair of hearts in xiii H. mullani

16. Copulatory setae on viii present 17
Copulatory setae on viii absent H. karnatakensis
17. Septum 6/7 present; spermathecal pores on viii just in front of setal arc; parietal glands lateral to ectal ends of prostatic ducts................................. *H. sanvordemensis*

Septum 6/7 absent; spermathecal pores on viii equidistant between setal arc and 7/8; parietal glands median and lateral to ectal ends of prostatic ducts.............. *H. anomala*

48. *Hoplochaetella affinis* Stephenson

(Figs. 177-180)

Length 140 mm, diameter 7 mm, 130 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum (?). Setae \(aa = 2ab = 2 bc = 2.3 yz = zz \) on xii; 72 on v, 80 on ix, 74 on xii, 65 on xix; setae \(a \) on vii, some or all of \(a-d \) on viii and ix copulatory. Combined male and prostatic pores minute, at about centres of slightly depressed porophores on xvii (slightly anterior to 17/18) and xix (slightly posterior to 18/19), at \(ce \), 0.13 body circumference apart. Spermathecal pores minute, 2 pairs, on viii at \(cd \), 0.08 body circumference apart, anterior pair slightly in front of the setal arc, posterior pair slightly anterior to 8/9. Genital markings oval without central apertures, unpaired and median, postsetal, on xvii and xix.

Septa 4/5 muscular, 5/6/7 delicate, 7/8/9 slightly muscular. Gizzard in vi. Intestinal caeca absent; typhlosole xxiii to (?). Supraoesophageal vessel single, ix-xiii. Subneural vessel (?), last pair of hearts in xiii. Lymph glands unpaired in xv and posteriad segments. Testes and male funnels in x and xi, enclosed in sacs, formed by the peripheral union of septa 9/10/11/12; seminal vesicles in ix and xii. Vasa deferentia slightly enlarged into ejaculatory bulbs before
Figs. 177-180. *Hoplochaetella affinis* Stephenson. 177. spermathecal pore region, 178. genital region, 179-180. spermatheca, anterior view (179), posterior view (180) (all drawn from a syntype).
opening into the prostatic ducts. Penial setae (?). Spermathecae 2 pairs in viii, each with an incomplete circle of 9-12 ventrally directed, adherent to the duct, sinuous, digitiform ental diverticula. Copulatory setae ornamented with spirally arranged rows of teeth, 0.48-0.66 mm long, 23-32 μ diameter. Copulatory setal glands 1-2 mm long, in paired coelomic sacs, in viii and ix. Parietal glands (?). Genital marking glands sessile.

Type locality: Mormugao Bay, Goa, India.

Type specimens: In ZSIC, W 128/1; BMNH, 1925: 5: 12: 49.

Material examined: 0-5-0, syntypes, W 128/1, in ZSIC.

Distribution: So far known from the type locality.

49. Hoplochaetella anomala Stephenson

(Figs. 181-186)

Length 48-139 mm, diameter 2.5-4 mm, 66-117 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum ½xiii-½xvi. Setae aa = 1.3-1.8 ab = 1.5-2 bc = 1.5-3.2 yz = 0.4-0.6zz on xii, aa = 2-2.4 ab = 2.1-2.3 bc = 2.8-3.5 yz = 0.5-0.7 zz on xxiv; 15-24 on ii, 31-44 on vii, 33-46 on xii, 34-46 on xx; some or all of setae b-f on viii and ix copulatory and shifted around spermathecal pores. Combined male and prostatic pores minute, at about centres of slightly depressed porophores on setal arcs of xvii and xix, at cd, 0.10-0.15 body circumference apart. Spermathecal pores paired, minute, on viii and ix at or close to c. 0.11-0.15 body circumference apart, those on viii presetal, about equidistant from the setal arc and 7/8, those on ix in or slightly posterior to the setal arc. Genital markings present or absent, if present, oval without central apertures, paired (occasionally one of the pair wanting), on or
slightly lateral to male pore lines, usually on xviii (prespetal or postsetal), sometimes on 15/16, xix (prespetal), xx (postsetal).

Septa 4/5, 9/10-12/13 slightly muscular, 5/6, 7/8/9 delicate, 6/7 absent. Gizzard in a space between septa 5/6 and 7/8, belonging to segment vii as the lateral commissural blood vessels of vi and vii are anterior and posterior to the gizzard respectively. Intestinal caeca absent; typhlosole xxii-xxiv to lx-xciii. Supraoesophageal vessel single, ix-xiii, subneural vessel absent; last pair of hearts in xii. Lymph glands absent. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of septa 9/10/11/12; seminal vesicles in ix, x and xii, those of x rudimentary. Vasa deferentia slightly enlarged into ejaculatory bulbs before opening into the prostatic ducts. Penial setae associated with each prostatic duct, unornamented, 0.12-0.22 mm long, 7-13 μ diameter. Spermathecae paired in viii and ix, each with a median and a lateral, uni- to multiloculate, shortly stalked, ventrally directed ental diverticula. Copulatory setae ornamented with short transverse rows of small teeth, 0.61-0.78 mm long, 19-27 μ diameter. Copulatory setal glands 1-2.2 mm long, in paired coelomic sacs in viii and ix, 2-5 in each sac. Parietal glands paired in xvii and xix, lateral and median to the ectal ends of prostatic ducts. Genital marking glands sessile, oval.

Type locality: Belgaum, Karnataka, India.

Type specimens In ZSIC, W 290/1, BMNH, 1933: 5: 25: 863-4.

Distribution: India: Maharashtra: Panchgani; Karnataka: Belgaum, Somwarpet, Tirthahalli.
OCTOCHAETIDAE : GENUS HOPLOCHAETELLA

Biology: Found under dried cow dung; in red sandy loam soil around roots of grasses. It deposits castings on the surface of the soil. When handled, it produces serpentine movements and the posterior end is autotomized.

50. *Hoplochaetella bifoveata* Stephenson

Length 82 mm, diameter 5.5 mm, 62(+) segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum ½xi-xvi. Setae \(aa = 2 \ ab = 1.6 \ bc = 1.1 \ yz = 0.2 \ zz \) on xii, \(aa = 2 \ ab = 1.8 \ bc = yz = 0.3 \ zz \) on xxiv; 44-50 on ii, 72-83 on vii, 60-86 on xii, 63-75 on xxx; some or all of setae \(b-d \) on viii, \(c \) or \(d \) on ix, sometimes \(a-c \) on vii copulatory. Combined male and prostatic pores minute, at about centres of small oval porophores, on xvii slightly anterior to 17/18 and on xix slightly posterior to 18/19, 0.03 body circumference apart. Spermathecal pores minute, 2 pairs on viii, at \(bc \), 0.03 body circumference apart, anterior pair presetal, \(c \) equidistant from setal arc and 7/8, posterior pair postsetal, slightly anterior to 8/9. Genital markings oval, without central apertures, unpaired, median, on 16/17, presetal on xx.

Septa 4/5 slightly muscular, 5/6-8/9 delicate, 9/10-12/13 muscular. Gizzard in vi. Intestinal caeca absent; typhlosole xxii to (?). Supra-oesophageal vessel single, ix-xiii; subneural vessel absent; last pair of hearts in xiii. Lymph glands unpaired in xv and posteriad segments. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of the septa 9/10/11/12; seminal vesicles in ix and xii. Vasa deferentia enlarged into ejaculatory bulbs before joining the prostatic ducts. Penial setae (?). Spermathecae 2 pairs in viii, each with a median
and a lateral group of 1-2 (sometimes a circle of 7-8 with a posterior gap around the duct), ventrally directed, sinuous, digitiform ental diverticula. Copulatory setae ornamented with a few short transverse rows of small spines 0.4-0.44 mm long, 19-22 μ diameter. Copulatory setal glands 1.4-2 mm long, in paired ccelomic sacs in viii and ix, sometimes in vii, 1-4 in each sac. Parietal glands paired in the form of complete or incomplete annular collars around the ectal ends of the prostatic ducts in xvii and xix. Genital marking glands sessile, oval.

Type locality: Talewadi, nr. Castle Rock, Karnataka, India.

Type specimens: In ZSIC, W 129/1.

Material examined: 0-0-1, type, W 129/1, in ZSIC.

51. **Hoplochaetella inornata** Stephenson

(Figs. 187-191)

1923. _Erythraeodrilus inornatus_, Stephenson, _Fauna Br. India, Oligochaeta:_ 459.

Length 101-128 mm, diameter 6 mm, 79 (?)-122 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum ½xiii-xvi. Setae _aa_ = 2 _ab_ = 2-2.3 _bc_ = 2.1-2.2 _yz_ = 1.2 _zz_ on xii, _aa_ = 2-2.6 _ab_ = 2.2-2.9 _bc_ = 1.8-2.3 _yz_ = 0.8-0.9 _zz_ on xxiv; 35-48 on ii, 63-73 on vii, 66-84 on xii, 63-85 on xx; setae _a-c_, sometimes _d_ or _e_ on viii copulatory, shifted towards both anterior and posterior pairs of spermathecal pores. Combined male and prostatic pores minute, at about centres of depressed oral porophores, on posterior margin of xvii and anterior margin of xix at _ce_, 0.09-0.11 body circumference apart. Spermathecal pores minute, 2 pairs on viii at _bd_, equidistant from the setal arc and intersegmental furrows, anterior
pair 0.11-0.12 body circumference apart, posterior pair 0.06-0.09 body circumference apart. Genital markings absent.

Septa 4/5 slightly muscular, 5/6-8/9 delicate, 9/10-12/13 muscular. Gizzard in vi. Intestinal caeca absent; typhlosole xxiii to lxxxvii. Supra-oesophageal vessel single, ix-xiii; subneural vessel absent; last pair of hearts in xiii. Lymph glands unpaired in xv and posteriad segments. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of septa 9/10/11/12; seminal vesicles in ix, x and xii, those of x rudimentary. Vasa deferentia enlarged into ejaculatory bulbs before joining the prostatic ducts. Penial setae associated with each prostatic duct, unornamented, 0.13 mm long, 11 µ diameter. Spermathecae 2 pairs in viii, each with a circle of c. 12 ventrally directed, sinuous, digitiform ental diverticula adherent around the duct. Copulatory setae ornamented with a few transverse rows of small spines, 0.54-0.63 mm long, 20-24 µ diameter. Copulatory setal glands 2.07-2.44 mm long in a pair of coelomic sacs in viii, 3-5 in each sac. Parietal glands paired, median to the ectal ends of the prostatic ducts in xvii, xviii and xix.

Type locality: Talewadi, nr. Castle Rock, Karnataka, India.

Type specimens: In ZSIC, W 130/1.

Distribution: India: Karnataka: Talewadi, Castle Rock.

Biology: It inhabits top 7.5-10 cm layer of red loam soil and usually crawls on the soil surface in early morning during the rainy season. It readily responds to thigmotactic stimuli in the form of serpentine movements and also autotomizes the tail portion.

52. *Hoplochaetella karnatakensis* sp. nov.
(Figs. 192-197)

Length 64-82 mm, diameter 2.5-3 mm, 103-106 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum
Figs. 192-197. *Hoplochaetella karnatakensis* sp. nov. 192. spermathecal pore region, 193. genital region, 194. penial seta, 195. copulatory seta, 196-197. spermathecae.
annular, \(\frac{1}{2} \text{xiii-} \frac{1}{2} \text{xvi} \). Setae \(aa = 1.6-2 \ ab = 1.7-2.5 \ bc = 1.2-2.2 \ yz = 0.2-0.3 \ zz \) on xii, \(aa = 2.4-2.8 \ ab = 2.4-3.3 \ bc = 1.8-2.2 \ yz = 0.3 \ zz \) on xxiv; 13-17 on ii, 38-44 on vii, 36-38 on xii, 40-51 on xx; setae \(c-g \), sometimes \(b \) and \(h \) on ix copulatory, arranged in a circle around each spermathecal pore. Combined male and prostatic pores minute, at centres of depressed oval porophores, on or a little posterior to the setal arcs of xvii and xix at \(\theta \), 0.13-0.21 body circumference apart. Spermathecal pores, paired, minute, on viii and ix at \(\epsilon \), those on viii presetal, closer to 7/8 than to the setal ring (0.18-0.20 body circumference apart), those on ix, on or a little anterior to the setal ring (0.15-0.17 body circumference apart). Genital markings usually present, oval, without central apertures, unpaired, postsetal, slightly lateral to mid-ventral line, on xix.

Septa 4/5, 8/9/10 slightly muscular, 5/6/7/8 delicate, 10/11/12/13 muscular. Gizzard in vii. Intestinal caeca absent; typhlosole xviii to lxxxv-lxxxvii. Supra-oesophageal vessel single, ix-xiii; subneural vessel absent; last pair of hearts in xii. Lymph glands absent. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of septa 9/10/11/12; seminal vesicles in ix, x and xii, those of ix and xii extending to the dorsal line. Vasa deferentia enlarged into ejaculatory bulbs before joining the prostatic ducts. Penial setae 2, associated with each prostatic duct, unornamented, 0.22-0.26 mm long, 11 \(\mu \) diameter. Spermathecae paired in viii and ix, each with a median and a lateral, free, clavate, ental diverticula. Copulatory setae ornamented with a few short transverse serrated ridges, 0.52-0.58 mm long, 24-30 \(\mu \) diameter. Copulatory setal glands 1.5-2.2 mm long, in a pair of coelomic sacs in ix, 5-6 in each sac. Parietal glands paired in xvii and xix, lateral to the ectal ends of prostatic ducts. Genital marking glands sessile, oval.

Material examined 0-0-3 grassland, soil red loam, Kemmengundi, 13.48 N, 75.69 E, altitude c. 1480 m, 9 Sept 1979, coll. J.M. Julka (holotype and one paratype in ZSIC. An 1816/1, An 1817/1, one paratype in HAZFS, ZSI, Solan, An 724).
Distribution: India: Kemmengundi, Karnataka, S. India.

Etymology: Derived from the area ‘Karnataka’, in which the type locality of the species is located.

Remarks: Hoplochaetella karnatakensis sp. nov. belongs to a group of species with 2 pairs of male pores, paired spermathecal pores on viii and ix, last pair of hearts in xii and without lateral intestinal caeca. It can be distinguished from the other two species of this group, *H. anomala* Stephenson, 1920 and *H. sunvordemensis* sp. nov. (described elsewhere in this work) by the characteristics as given in Table 5 (on page 195).

53. **Hoplochaetella kempi** Stephenson
(Figs. 198-202)

Length 70-197 mm, diameter 4-6.5 mm, 106-120 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum xiii-xvi. Setae $aa = 2$ $ab = 2$ $bc = 1.6$ $yz = 0.4$ zz on xii, $aa = 2$ $ab = 2.1$ $bc = 2.5$ $yz = 0.5$ zz on xxiv; 34-41 on ii, 54-63 on vii, 75-79 on xii, 45-70 on xx; some of ventral setae on viii and ix, sometimes on vii copulatory. Combined male and prostatic pores minute, at about centres of small oval porophores, on or slightly anterior to 17/18 and slightly posterior to 18/19, at ac, 0.06 body circumference apart. Spermathecal pores minute, 2 pairs on viii at ac, 0.06 body circumference apart, anterior pair slightly anterior to the setal arc, posterior pair postsetal, slightly nearer to 8/9 than to the setal arc. Genital markings oval without central apertures, unpaired, centres usually on or lateral to the male pore lines, two
markings usually present, anterior marking presetal on xvii or on 16/17 usually on right side, posterior marking on xx or on 19/20 on left side.

TABLE 5. Comparison of *H. karnatakensis* and *H. sanvordemensis* spp. nov. with *H. anomala*.

<table>
<thead>
<tr>
<th>Character</th>
<th>H. karnatakensis</th>
<th>H. sanvordemensis</th>
<th>H. anomala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setae on xii</td>
<td>36-38</td>
<td>43-54</td>
<td>33-46</td>
</tr>
<tr>
<td>Spermathecal pores on viii</td>
<td>just behind 7/8</td>
<td>just in front of setal arc</td>
<td>equidistant from setal arc and 7/8</td>
</tr>
<tr>
<td>Copulatory setae on viii</td>
<td>absent</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Copulatory setal glands</td>
<td>in paired coelomic sacs, in ix</td>
<td>free, in viii rarely in ix</td>
<td>in paired coelomic sacs, in vii and ix</td>
</tr>
<tr>
<td>Septum 6/7</td>
<td>present</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Parietal glands in xvii and xix</td>
<td>lateral to ectal ends of prostatic ducts</td>
<td>lateral to ectal ends of prostatic ducts</td>
<td>median and lateral to ectal ends of prostatic ducts</td>
</tr>
</tbody>
</table>

Septa 4/5, 7/8-11/12 slightly muscular, 5/6/7 delicate, 12/13 muscular. Gizzard in vi. Intestinal caeca absent; typhlosole xxii to lxxv-xcix. Supra-oesophageal vessel single, ix-xiii; subneural vessel present, but not recognised anterior to xiii; last pair of hearts in xiii. Lymph glands unpaired in xv and posteriad segments. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of septa 9/10/11/12; seminal vesicles in ix and xii. Vasa deferentia enlarged into ejaculatory bulbs before opening into the prostatic ducts. Penial setae asso-ciated with each prostatic duct, ornamented with a few short transverse serrated ridges, 0.3-0.52 mm long, 19-22 μm diameter. Spermathecae 2 pairs in viii, each with a median and a lateral group of 1-3 ventrally directed, adherent to the duct, sinuous, digitiform ental diverticula. Copulatory setae ornamented with a few short transverse or spirally
arranged rows of small, fine teeth, 0.52-0.78 mm long, 22-30 μ diameter. Copulatory setal glands 2.31-3 mm long, in paired coelomic sacs in viii and ix, sometimes in vii. Parietal glands paired, half collar-shaped, median to the ectal ends of the prostatic ducts with a small lobe on the lateral face, in xvii and xix. Genital marking glands sessile, oval.

Type locality: Talewadi nr. Castle Rock, Karnataka, India.

Type specimens: In ZSIC, W 68/1; BMNH, 1925: 5: 12: 41.

Distribution: India: Karnataka: Talewadi nr. Castle Rock, Moodabidri.

54. *Hoplochaetella khandalaensis* (Stephenson)

Hoplochaetella khandalaensis khandalaensis (Stephenson)

(Figs. 203-207)

Length 85-210 mm, diameter 4-7 mm, 90-138 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5, sometimes 5/6 or 6/7. Clitellum xiii, \(\frac{1}{2} \text{xiii-xvi} \). Setae \(aa = 2-2.1 ab = 1.9-2 \ bc = 1.1-1.4 \ yz = 0.4-0.5 \ zz \) on xii, \(aa = 2.1-2.2 \ ab = 2.1-2.2 \ bc = 1.2-1.5 \ yz = 0.3-0.4 \ zz \) on xxiv; 28-41 on ii, 44-59 on vii, 48-66 on xii, 43-68 on xx; setae \(a-c \) on viii copulatory, usually shifted around anterior pair of spermathecal pores. Combined male and prostatic pores minute, at about centres of oval porophores, on or close to sites of 17/18 and 18/19, at \(bc, 0.06-0.07 \) body circumference apart. Spermathecal pores minute, 2 pairs, on viii, at \(ac, 0.06-0.07 \) body circumference apart, slightly near to the setal arc
Genital markings oval with central tiny slit-like apertures, unpaired, median postsetal on xix.

Septa 4/5 slightly muscular, 5/6/7/8 delicate, 8/9-12/13 muscular. Gizzard in vi. Intestinal caeca absent; typhlosole xxiv-xxv to cviii. Supra-oesophageal vessel single, ix-xiii; subneural vessel present, but not recognised anterior to xiii-xiv; last pair of hearts in xiii. Lymph glands unpaired in xv and posteriad segments. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of the septa 9/10/11/12; seminal vesicles in ix, x and xii, those of x rudimentary. Vasa deferentia enlarged into ejaculatory bulbs before opening into the prostatic ducts. Penial setae ornamented with a few short serrated ridges, 0.29-0.44 mm long, 16-30 μm diameter. Spermathecae 2 pairs in viii, each with a circle of 8-17 ventrally directed, adherent to the duct, sinuous, digitiform ental diverticula. Copulatory setae ornamented with short transverse rows of small teeth, 0.62-0.74 mm long, 23-30 μm diameter. Copulatory setal glands 3-5 mm long, in paired coelomic sacs in viii, 3 in each sac. Parietal glands paired, median to the ectal ends of the prostatic ducts, in xvii, xviii and xix. Genital marking glands tubular, sausage-shaped, 4.5-13 mm long.

Type locality: Khandala, Maharashtra, India.

Type specimens: In ZSIC, W 1137/1; BMNH, 1925: 5: 12: 122.

Distribution: India: Maharashtra: Bombay, Andheri, Lonavala, Khandala, Khapoli; Madhya Pradesh: Baraila.

55. Hoplochaetella khandalaensis dichordarius (Stephenson) (Figs. 208-209)

Description as for *H. khandalaensis khandalaensis* except as follows:

First dorsal pore 4/5. Setae \(aa = 2.3-2.4\) \(ab = 2-2.4\) \(bc = 1.33\) \(yz = 0.6\) \(zz\) on xii, \(aa = 2.3-2.4\) \(ab = 2-2.4\) \(bc = 1.2\) \(yz = 0.4\) \(zz\) on xxiv; 43-48 on ii, 64-77 on vii, 62-86 on xii, 69-76 on xx; setae \(a, b, c\) copulatory, shifted around anterior pair of spermathecal pores. Combined male and prostatic pores 0.05-0.06 body circumference apart. Spermathecal pores 0.04-0.05 body circumference apart. Genital markings unpaired, median, postsetal, on xvi and xix.

Type locality Bombay, Maharashtra, India.

Type specimens : Typus amissus.

56. *Hoplochaetella kinneari* (Stephenson)

Length 120 mm, diameter 3.5 mm, 116-133 segments (aclitelate specimens). Prostomium epilobic, tongue open. First dorsal pore 3/4. Clitellum \(\frac{1}{2}\)xiii-2/3xvi. Setae \(aa = 1.85\) \(ab = 2.4\) \(bc = 2.4\) \(yz = 0.86\) \(zz\) on xii, \(aa = 2.3\) \(ab = 2.5\) \(bc = 2.33\) \(yz = 0.87\) \(zz\) on xxiv;
38-40 on ii, 49-57 on vii, 45-53 on xii, 46-50 on xx; setae c-d on viii copulatory, a little dislocated from the setal ring, surrounded by slight circular depressions. Combined male and prostatic pores large transverse slits, at the centres of protuberant circular porophores, postsetal, on xvii, at c. Spermathecal pores minute, 2 pairs on viii, just anterior and posterior to the setal arc, at cd. Genital markings, when present, somewhat circular, postsetal, on xviii, more or less in line with the male porophores.

Septa 4/5 slightly muscular, 5/6/7/8/9 delicate, 9/10-12/13 muscular. Gizzard in vi. Intestinal caeca absent; typhlosome xxii to lxxxv-xcix (aclitellate specimens). Supra-oesophageal vessel single, ix-xiii; subneural vessel absent; last pair of hearts in xii. Lymph glands absent. Testes and male funnels enclosed in unpaired suboesophageal sacs, in x and xi; seminal vesicles in ix, x and xii. Vasa deferentia enlarged into ejaculatory bulbs before opening into the prostatic ducts. Penial setae (?). Spermathecae 2 pairs, in viii, each with a median and lateral disc-shaped ental diverticula. Copulatory setae ornamented. Copulatory setal glands short, 2-3 on each side of viii (in coelomic sacs ?). Parietal glands (?). Genital marking glands sessile.

Type locality: Castle Rock, Karnataka, India.

Type specimens: In ZSIC, W 26/1.

Distribution: So far known from the type locality.

Remarks: Gates (1940b) excluded a syntype (W 26/1 in ZSIC) and Kemp’s specimen (Stephenson, 1917a) with spermathecal pores widely paired on vii and viii from *Hoplochaetella kinneari*, and he described these specimens as distinct *Hoplochaetella* spp. He did not name these species since the specimens were in poor state of preservation; hence these are not included in this work.
57. *Hoplochaetella kurmagarensis* Gates

Length 70-110 mm, diameter 4-5 mm. Prostomium epilobic, tongue open. Setae a-d on viii copulatory, shifted towards anterior and posterior spermathecal pores. Combined male and prostatic pores at about centres of small, oval, porophores on or near 17/18 and 18/19. Spermathecal pores 2 pairs on viii at ac, about equidistant from the setal arc and intersegmental furrows. Genital markings circular to oval, without central apertures, unpaired, on the right side in line with or slightly lateral or median to the male porophores, on xviii, xix, sometimes xvii.

Septa present from 4/5 posteriorly. Gizzard in vi. Intestinal caeca absent. Supra-oesophageal vessel single, ix-xiii; last pair of hearts in xiii. Lymph glands absent (?). Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of septa 9/10/11/12; seminal vesicles in ix and xii. Vasa deferentia enlarged into ejaculatory bulbs before joining the prostatic ducts. Penial setae ornamented with irregular rows of fine teeth. Spermathecae 2 pairs in viii, each with a median and a lateral group of (number ?) ventrally directed digitiform diverticula. Copulatory setae ornamented with 10-16 interrupted, irregular circles of fine spines, 2(+) mm long. Copulatory setal glands 2(+) mm long, in a pair of coelomic sacs in viii. Parietal glands paired, collar-shaped, surrounding the ectal ends of the prostatic ducts, in xvii and xix. Genital marking glands sessile.

Type locality: Kurmagar Island, Karwar Harbour, Karnataka, India.

Type specimens: Typus pereditus.

Distribution: So far known from the type locality.
OCTOCHAETIDAE: GENUS HOPLOCHAETELLA

58. Hoplochaetella londensis sp. nov.
(Figs. 210-214)

Length 101-115 mm, diameter 3-3.2 mm, 109-125 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum annular, \(\frac{1}{2} \)xiii-\(\frac{1}{2} \)xvi. Setae \(aa = 1.5-1.6 \quad ab = 1.7-2 \quad bc = 1.5-1.7 \quad yz = 0.4-0.5 \) on xii, \(aa = 1.7 \quad ab = 1.7-2.5 \quad bc = 1.9-2.2 \quad yz = 0.4-0.7 \) on xxiv; 11-17 on ii, 35-38 on vii, 32-39 on xii, 35-40 on xx, \(a, b \) on viii sigmoid with a middle nodulus, slightly enlarged and ornamented. Combined male and prostatic pores minute, near centres of slightly depressed, somewhat circular porophores, on setal arcs of xvii and xix, at \(ef \), 0.17-0.22 body circumference apart. Spermathecal pores paired, minute, presetal, equidistant from setal arcs and intersegmental furrows, on viii and x, at \(de \) or \(ef \), 0.17-0.19 body circumference apart. Genital markings sometimes present, ovular, unpaired, on right side, a little ventral to the male pore line, at 17/18.

Septa 4/5-8/9 delicate, 6/7 aborted ventrally, 9/10-11/12 slightly muscular. Gizzard in vii. Intestinal caeca absent; typhlosole xxiii-xxiv to xci-xcv. Supra-oesophageal vessel ix-xiii, single in ix-xi, double in xii-xiii; subneural vessel absent; last pair of hearts in xii. Lymph glands absent. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of septa 9/10/11/12; seminal vesicles in ix, x and xi, those of ix and xii extending to the dorsal line. Vasa deferentia enlarged into ejaculatory bulbs before opening into prostatic ducts. Penial setae 2 associated with each prostatic duct, unornamented, 0.29 mm long, 11 \(\mu \) diameter. Spermathecae paired in viii and x, each with a median and a lateral, multiloculate, free, ental diverticula. Copulatory setae and glands associated with them absent. Parietal glands paired, slightly median to the ectal ends of the prostatic ducts, in xvii and xix; small collar-shaped paired glands on the body wall, slightly lateral to the ectal ends of the prostatic ducts in xvii and xix. Genital marking glands sessile, circular.
Figs. 210-214. *Hoplochaetella londensis* sp. nov. 210. spermathecal pore region, 211. genital region, 212. penial seta, 213. seta b on viii, 214. spermatheca.
Material examined: 0-1-3 soil black clay around the base of a tree, *Mangifera indica* in a grassland, Londa, 15.60 N, 74.50 E, 29 Aug 1979, coll. J.M. Julka (holotype and one paratype in ZSIC, An 1818/1, An 1819/1, 2 paratypes in HAZFS, ZSI, Solan, An 729).

Distribution: India: Karnataka: Londa.

Etymology: Derived from the type locality 'Londa'

Remarks: *Hoplochaetella londensis* sp. nov. is distinguishable from all the known species of the genus by the location of the spermathecal pores on viii and x.

Biology: It deposits casts on the surface of the soil in the form of oval pellets arranged in small mounds. When handled, it produces quick jerky movements.

59. *Hoplochaetella mullani* (Stephenson)
(Figs. 215-219)

Length 110-123 mm, diameter 3.5-7 mm, 111-122 segments. Prostomium epilobic, tongue open. Clitellum, 1/2xiii-xvi. Setae *aa* = 1.8-2 *ab* = 1.7-1.8 *bc* = 2 *yz* = 0.4-0.7 *zz* on xii, *aa* = 1.8-2 *ab* = 1.8 *bc* = 2 *yz* = 0.6 *zz* on xxiv; 28-36 on ii, 41-58 on vii, 46-76 on xii, 42-56 on xx; setae *a-d*, sometimes *e* or *f* on viii and ix copulatory, arranged in a more or less regular circle around each spermathecal pore. Combined male and prostatic pores minute, at about centres of oval porophores on the setal arcs of xvii and xix, 0.06-0.08 body circumference apart. Spermathecal pores paired, minute, on or close to setal arcs of viii and ix, at *ac*, 0.05-0.06 body circumference apart. Genital markings oval with tiny slit-like central apertures, unpaired, asymmetrical, with centres on or slightly ventral or slightly lateral to the male pore lines, presetal or postsetal, usually on xix, sometimes on xvi, xvii and xviii.
Septa 4/5 slightly muscular, 5/6/7/8/9 delicate, 9/10-12/13 muscular. Gizzard in vi. Intestinal caeca absent; typhlosole xxii to cxiv. Supra-oesophageal vessel single, ix-xiii; subneural vessel absent; last pair of hearts in xiii. Lymph glands in xv and posteriad segments. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of the septa 9/10/11/12; seminal vesicles in ix, x and xii, those of x rudimentary. Vasa deferentia enlarged into ejaculatory bulbs before joining the prostatic ducts. Penial setae ornamented with a few to several transverse serrated ridges, 0.28-0.37 mm long, 14 μ diameter. Spermathecae paired, in viii and ix, each usually with a median and a lateral group of ventrally directed, adherent to the duct, oval, ental diverticula, 2-7 in each group. Copulatory setae ornamented with transverse serrated ridges, 0.48-0.8 mm long, 20-26 μ diameter. Copulatory setal glands c. 1.5 mm long, in paired coelomic sacs in vii and ix, 4-6 in each sac. Parietal glands paired, half-collar-shaped, median to the ectal ends of the prostatic ducts, in xvii and xix. Genital marking glands tubular, sausage-shaped, 3-6 mm long.

Type locality: Matheran, Maharashtra, India.

Type specimens: In ZSIC, W 1136/1; BMNH, 1925: 5: 12: 78.

Material examined: 0-0-7, syntypes, in ZSIC, W 1136/1; 0-4-10 Satara, 1, 2 Oct 1964, coll. K.K. Tiwari, HAZFS, ZSI, Solan, An 624-625.

60. *Hoplochaetella panchganiensis* sp. nov.

(Figs. 220-224)

Length 145 mm, diameter 7 mm, 126 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum annular, xiii-xvi. Setae *aa* = 2.2-2.5 *ab* = 2.9-3 *bc* = 1.7-2.1 *yz* = 0.5-0.7 *zz* on xii, *aa* = 2.5-3 *ab* = 2.4-2.5 *bc* = 2.1-2.5 *yz* = 0.5-0.8 *zz* on xxiv; 38-51 on ii, 65-69 on vii, 74-79 on xii, 70-75 on xx; setae *a-c*, sometimes *d* on viii copulatory, shifted towards anterior pair of
Figs. 220-224. *Hoplochaetella panchganiensis* sp. nov. 220. spermathecal pore region, 221. genital region, 222. spermatheca, 223. copulatory seta, 224. penial seta.
spermathecal pores. Combined male and prostatic pores minute, at centres of slightly depressed oval porophores, at bc, on xvii and xix, 0.06-0.07 body circumference apart, those on xvii postsetal, slightly anterior to 17/18, those on xix presetal, slightly posterior to 18/19. Spermathecal pores minute, 2 pairs on viii at bc, 0.06-0.07 body circumference apart, anterior pair presetal, equidistant from setal arc and 7/8, posterior pair postsetal, slightly anterior to 8/9. Genital markings paired (sometimes one of the pair wanting), oval, slightly depressed, each with a minute central aperture in a transverse groove, postsetal, on xiii-xv.

Septa 4/5, 9/10-11/12 muscular, 5/6/7 delicate, 7/8/9 slightly muscular. Gizzard in vi. Intestinal caeca absent; typhlosole xxiii-xxiv to cx. Supra-oesophageal vessel single, ix-xiii; subneural vessel present, but not recognized anterior to xiv; last pair of hearts in xiii. Lymph glands unpaired in xv and posteriad segments. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of septa 9/10/11/12; seminal vesicles in ix, x and xii, those of x smaller than those of ix and xii. Vasa deferentia enlarged into ejaculatory bulbs before joining the prostatic ducts. Penial setae 2 associated with each prostatic duct, ornamented with a few transverse rows of short spines, 0.25 mm long, 16 \(\mu \) diameter. Spermathecae 2 pairs in viii, each with a median and a lateral group of 3-5 small ventrally directed, adherent to the duct, sinuous, digitiform ental diverticula, sometimes 8-10 diverticula in a circle around the duct but with a posterior gap. Copulatory setae ornamented with a few transverse rows of short spines, 0.57-0.6 mm long, 22-27 \(\mu \) diameter. Copulatory setal glands 1.7 3.6 mm long, in a pair of coelomic sacs in viii, 2-4 in each sac. Parietal glands paired, slightly median to the ectal ends of the prostatic ducts, in xvii, xviii and xix, those of xviii larger than those of xvii and xix. Genital marking glands sausage-shaped, 1.3-3.1 mm long.

Material examined: 0-1-2 grassland, soil red loam, Panchgani, 17.58 N, 73.43 E, altitude 1380 m, 26 Aug 1979, coll. J.M. Julka

Distribution: India: Maharashtra: Panchgani.

Etymology: Derived from the type locality 'Panchgani'

Remarks: *Hoplochaetella panchganiensis* sp. nov. belongs to a group of species with 2 pairs of male pores, all spermathecal pores on viii, parietal glands median to prostatic ducts in xvii, xviii and xix, and with genital markings. It is readily distinguishable from other members of the group, *H. khandalaensis*, *H. powelli* and *H. righii* (described elsewhere in this work) by the characteristics as given in Table 6.

TABLE 6. Comparison of *H. panchganiensis* and *H. righii* spp. nov. with related species.

<table>
<thead>
<tr>
<th>Character</th>
<th>H. khandalaensis</th>
<th>H. panchganiensis</th>
<th>H. powelli</th>
<th>H. righii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>85-210</td>
<td>145</td>
<td>102-187</td>
<td>65-120</td>
</tr>
<tr>
<td>Segments</td>
<td>90-138</td>
<td>126</td>
<td>125-139</td>
<td>90-133</td>
</tr>
<tr>
<td>Setae on vii</td>
<td>44-59</td>
<td>65-69</td>
<td>53-86</td>
<td>25-37</td>
</tr>
<tr>
<td>Genital markings</td>
<td>with central apertures; unpaired and median, postsetal on xix or xvi and xix</td>
<td>with central apertures; paired, postsetal on xiii-xv</td>
<td>with central apertures; paired, 16/17, 19/20-21/22, unpaired near mV line on 16/17</td>
<td>without central apertures; paired on 16/17, 19/20-22/23 rarely unpaired and median on 19/20</td>
</tr>
<tr>
<td>Last pair of hearts</td>
<td>xiii</td>
<td>xiii</td>
<td>xiii</td>
<td>xii</td>
</tr>
<tr>
<td>GM glands</td>
<td>tubular</td>
<td>tubular</td>
<td>tubular</td>
<td>sessile oval</td>
</tr>
</tbody>
</table>
61. Hoplochaetella powelli (Stephenson)
(Figs. 225-230)

Length 102-187 mm, diameter 5-8 mm, 125-139 segments.
Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum xiii-2/3xvi, xvi. Setae \(aa = 2.1\) \(ab = 2.1\) \(bc = 2\) \(yz = 0.6\) \(zz on xii, aa = 1.7\) \(ab = 2.4\) \(bc = 2.3\) \(yz = 0.8\) \(zz on xxiv; zz on xii, aa = 1.7\) \(ab = 2.4\) \(bc = 2.3\) \(yz = 0.8\) \(zz on xxiv; 36-46 on ii, 53-86 on vii, 52-96 on xii, 48-88 on xx; some or all of setae a-c or d on viii copulatory and shifted anteriorly. Combined male and prostatic pores minute, at about centres of oval porophores, on or close to 17/18 and 18/19 at bd, 0.06-0.07 body circumference apart. Spermathecal pores minute, 2 pairs on viii at bc, 0.05-0.07 body circumference apart, anterior pair slightly in front of the setal arc, posterior pair slightly anterior to 8/9. Genital markings oval with tiny central apertures; paired, on or just lateral to male pore lines, on 19/20-20/21, sometimes on 16/17, 21/22 (one of pair usually wanting); occasionally unpaired, slightly towards left or right side of the mid-ventral line on 16/17.

Septa 4/5 slightly muscular, 5/6/7/8/9 delicate, 9/10-12/13 muscular. Gizzard in vi. Intestinal caeca absent; typhlosole xxiv-xxv to cv-cxxiv. Supra-oesophageal vessel single, ix-xiii; subneural vessel present, but not recognized anterior to xiv; last pair of hearts in xiii. Lymph glands unpaired in xv and posteriad segments. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of the septa 9/10/11/12; seminal vesicles in ix, x and xii, those of x rudimentary. Vasa deferentia enlarged into ejaculatory bulbs before joining the prostatic ducts. Penial setae ornamented with a few short transverse rows of small teeth, 0.33-0.44 mm long, 15-19 μ diameter. Spermathecae 2 pairs in viii, each with an incomplete circle of 10-12 ventrally directed, adherent to
the duct, digitiform ental diverticula. Copulatory setae ornamented with short transverse rows of fine teeth, 0.57-0.62 mm long, 22 μ diameter. Copulatory setal glands c. 2 mm long, in paired coelomic sacs in viii, 3-4 in each sac. Parietal glands paired, median to the ectal ends of the prostatic ducts in xvii, xviii and xix. Genital marking glands tubular, sausage-shaped, 1-4 mm long.

Type locality: Bombay, Maharashtra, India.

Type specimens: In BMNH, 1924: 2: 14: 13-8.

Distribution: India: Maharashtra: Bombay, Panchgani.

Biology: This species deposits casts on the soil surface in the form of short strings of oval pellets. When handled, it produces serpentine movements.

62. *Hoplochaetella righii* sp. nov.

(Figs. 231-235)

Length 65-120 mm, diameter 3-5 mm, 90-131 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum annular, ½xiii-½xvi, xvi. Setae $aa = 1.3-1.6$ $ab = 1.5-1.7$ $bc = 1.4-1.6$ $yz = 0.2-1$ zz on xii, $aa = 1.7-1.9$ $ab = 1.9-2.2$ $bc = 1.7-3.2$ $yz = 0.2-0.4$ zz on xxiv; 8-30 on ii, 25-37 on vii, 25-46 on xii, 24-48 on xx; setae $c-e$ on viii copulatory, shifted towards spermathecal pores. Combined male and prostatic pores minute, at $c.$ centres of slightly depressed oval porophores, on xvii and xix, at ef, 0.11-0.15 body circumference apart, those on xvii postsetal, those on xix presetal. Spermathecal pores minute, 2 pairs on viii, at de, 0.12-0.15 body circumference apart, anterior pair presetal, slightly posterior to 7/8, posterior pair postsetal just anterior to 8/9. Genital markings, if present, oval, without central apertures, usually paired (occasionally one of the pair wanting), on or slightly ventral to male pore lines, on 16/17, 19/20-22/23, rarely unpaired, median, on 19/20.
FIGS. 231-235. *Hoplochaetella righii* sp. nov. 231. spermathecal pore region, 232. genital region, 233. penial seta, 234. copulatory seta, 235. spermatheca, anterior view.
Septa 4/5 slightly muscular, 5/6/7/8/9 delicate, 9/10-12/13 muscular. Gizzard in vi. Intestinal caeca absent; typhlosole xx-xxiii to lxxvi-cvi. Supra-oesophageal vessel in ix-xiii, bifurcates in x or xi or xii, the two branches connected with each other by a transverse vessel in each segment; subneural vessel present, but not recognised anterior to septa 7/8-9/10; last pair of hearts in xii. Lymph glands unpaired in xv and posteriad segments. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of septa 9/10/11/12; seminal vesicles in ix, x and xii, those of ix and xii extending to the dorsal line. Vasa deferentia enlarged into ejaculatory bulbs before joining the prostatic ducts. Penial setae 2-3 associated with each prostatic duct, ornamented with a few transverse serrated ridges, 0.34 mm long, 19 μ diameter. Spermathecae 2 pairs in viii, each usually with a median and a lateral group of 2-6 small ventrally directed, adherent to the duct, sinuous, digitiform ental diverticula, sometimes 8-10 diverticula in a circle around the duct but with a posterior gap. Copulatory setae ornamented with 16-20 transverse rows of fine spines, 0.41-0.48 mm long, 24-26 μ diameter. Copulatory setal glands 1-2 mm long, in a pair of coelomic sacs in viii, 2-4 in each sac. Parietal glands paired, slightly median to the ectal ends of the prostatic ducts, in xvii, xviii and xix, those of xvii small. Genital marking glands sessile, oval.

Material examined: coll. J.M. Julka: 3-4-13 under a log, grassland, soil black sandy loam, Kotegehar, 13.16 N, 75.15 E, altitude 650 m, 7 Sept 1979 (holotype and 2 paratypes in ZSIC, An 1821/1, An 1822/1, 17 paratypes in HAZFS, ZSI, Solan, An 725); 0-5-6 Tirthahalli, 5 Sept 1979, HAZFS, ZSI, Solan, An 726. coll. G. Ramakrishna and B. Sinha: 0-0-12 under stones on the right bank of the river Hemavati, Sakleshpur, 5 and 8 Sept 1969, HAZFS, ZSI, Solan, An 727-728.

Distribution: India: **Karnataka**: Kotegehar, Tirthahalli, Sakleshpur.
Etymology: The species is named after Dr. Gilberta Righi, Universidade de Sao Paulo, Brazil in appreciation of his work on South American earthworms.

Remarks: Hoplochaetella righii sp. nov. belongs to a group of species with 2 pairs of male pores, all spermathecal pores on viii, parietal glands median to prostatic ducts in xvii, xviii and xix, and with genital markings. It can be distinguished from other species of the group, H. khandalaensis khandalaensis (Stephenson), H. khandalaensis dichordarius (Stephenson), H. powelli (Stephenson) and H. panchganiensis sp. nov. (described elsewhere in this work) by the characteristics as given in Table 6.

63. Hoplochaetella sanvordemensis sp. nov.
(Figs. 236-242)

Length 77-182 mm, diameter 3-5 mm, 105-134 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum annular, ½xiii-½xvi. Setae $aa = 1.6-2.1$ $ab = 1.7-2.3$ $bc = 1.5-2.3$ $yz = 0.3-0.5$ zz on xii, $aa = 1.9-2.4$ $ab = 2-2.8$ $bc = 2.3-2.8$ $yz = 0.4-0.6$ zz on xxiv; 16-26 on ii, 40-53 on vii, 43-56 on xii, 40-56 on xx; setae $a-d$ and sometimes $e-g$ on viii and rarely on ix copulatory. Combined male and prostatic pores paired, minute, at centres of slightly depressed oval porophores on setal arcs of xvii and xix, at bc, 0.08-0.11 body circumference apart. Spermathecal pores paired, minute, slightly anterior to setal arcs on viii and ix, at bc, sometimes at ab or cd, 0.04-0.12 body circumference apart. Genital markings sometimes present, oval, without central apertures, depressed on or slightly ventral to male pore lines, paired, at any of 15/16-17/18, 21/22/23 (one of the pair occasionally wanting), unpaired, median, at 16/17.

Septa 4/5-7/8 delicate, 8/9 slightly muscular, 9/10-12/13 muscular. Gizzard in vii. Intestinal caeca absent; typhlosole xiii-xxiv to xcvi-ciii. Supra-oesophageal vessel single, ix-xiii; subneural vessel absent; last pair of hearts in xii. Lymph glands absent. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by
Figs. 236-242. *Hoplochaetella* sanvordensis sp. nov. 236. spermathecal pore region, 237. genital region, 238. copulatory seta, 239. penial seta, 240-242 spermathecae (anterior views)
the peripheral union of septa 9/10/11/12; seminal vesicles in ix, x and xii, those of xii smaller than those of ix and x. Vasa deferentia enlarged into ejaculatory bulbs before opening into prostatic ducts. Penial setae 2 associated with each prostatic duct, unornamented, 0.25 mm long, 12 μ diameter. Spermathecae paired in viii and ix, each with a median and a lateral, shortly stalked, free, uniloculate to multiloculate, ental diverticula. Copulatory setae ornamented with a few short transverse serrated ridges, 0.69-0.75 mm long, 27-31 μ diameter. Copulatory setal glands 1.86-3.04 mm long, free (not enclosed in coelomic sacs), 4-6 on each side in viii, rarely 2-4 in ix. Parietal glands paired, sessile, lateral to the ectal end of each prostatic duct, on xvii and xix. Genital marking glands sessile, oval, beneath the longitudinal muscle layer, sometimes slightly protuberant into coelom.

Distribution: India: Goa: Sanvordem, Marmugao; Karnataka: Castle Rock.

Etymology: Derived from the type locality ‘Sanvordem’.

Biology: It inhabits under stones and prefers top soil surface. Casts are deposited on the surface of the soil. It responds to thigmotactic stimuli in the form of serpentine movements of the body.

Remarks: *Hoplochaetella sanvordemensis* sp. nov. belongs to *anomala* group of species with 2 pairs of male pores, paired spermathecal pores on viii and ix, last pair of hearts in xii and without intestinal caeca. It can be distinguished from other species of this group, *H. anomala* and *H. karnatakensis* sp. nov. (described
elsewhere in this work) by the characteristics as given in Table 5

64. Hoplochaetella stuarti (Bourne)

(Figs. 243-247)

Length 111-162 mm, diameter 3.5-5 mm, 110-120 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5, sometimes 3/4. Clitellum 1/2-xiii-xvi. Setae *aa* = 1.8 *ab* = 1.9 *bc* = 1.8 *yz* = 0.4 *zz* on xii, *aa* = 2 *ab* = 2.3 *bc* = 1.8 *yz* = 0.5 *zz* on xxiv; 22-28 on ii, 34-40 on vii, 46-52 on xii, 46-56 on xx; setae *c-e*, sometimes *f* and *g* on vii and viii copulatory, shifted towards spermathecal pores. Combined male and prostatic pores minute, at about centres of somewhat circular and depressed porophores on setal arcs of xvii and xix, at *cf*; 0.11 body circumference apart. Spermathecal pores paired, minute, slightly posterior to setal arcs, on vii and viii, at *df*; 0.13-0.17 body circumference apart. Genital markings absent.

Septa 4/5, 9/10/11/12 slightly muscular, 5/6 delicate, 6/7/8/9 absent. Gizzard in a space between septa 5/6 and 9/10, belonging to segment vii (as the lateral commissural blood vessels of segments vii, viii and ix are posterior to the gizzard and anterior to the septum 9/10, and those of segment vi are anterior to the gizzard). Intestinal caeca present, 4 pairs, dorsolateral, in xxv (rudimentary), xxvi-xxviii; typhlosole xxiv-xxv to lxxxiv-lxxxvi. Supra-oesophageal vessel single, ix-xiii; subneural vessel absent; last pair of hearts in xiii. Lymph glands absent. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of the septa 9/10/11/12; seminal vesicles in ix, x and xii, those of x small. Vasa deferentia not enlarged into ejaculatory bulbs
ectally. Penial setae unornamented, 0.14-0.34 mm long, 9-11 μ diameter. Spermathecae paired, in vii and viii, each with a circle of 15-22 doubly glove-shaped diverticula, each diverticulum with 6-12 irregularly digitiform seminal chambers, part of which are directed ectally and part entally. Copulatory setae unornamented, 0.88-1.23 mm long, 24-27 μ diameter. Copulatory setal glands 1.5-2.5 mm long, in paired coelomic sacs in vii and viii. Parietal glands paired in xvii and xix, lateral and median to the ectal ends of the prostatic ducts.

Type locality: Yercaud, Tamil Nadu, India.

Type specimens: In ZMUH, 9673.

65. Hoplochaetella suctoria Stephenson

(Figs. 248-253)

Length 140-187 mm, diameter 6-8 mm, 114-145 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum xiii-xvi. Setae aa = 2 ab = 2 bc = 1.4 yz = 0.5 zz on xii, aa = 2 ab = 2 bc = 1.3 yz = 0.4 zz on xx; 51 on ii, 67 on vii, 63-68 on xii, 63 on xx; setae a on vii, some or all of a-e on viii and ix copulatory, those on vii shifted slightly posterior to the setal arc, those on viii and ix shifted anterior to the setal arcs. Combined male and prostatic pores minute, at about centres of somewhat oval porophores on or near to 17/18 and 18/19, at bc or cd, 0.07 body circumference apart. Spermathecal pores minute, 2 pairs on viii, at or slightly lateral to
FIGS. 248-253. *Hoplochaetella suctoria* Stephenson. 248. spermathecal pore region, 249. genital region, 250. penial seta, 251. copulatory seta, 252-253. spermatheca, posterior (252) and anterior (253) views.
bc, 0.05 body circumference apart, anterior pair slightly anterior to setal arc, posterior pair just in front of 8/9. Genital markings without central apertures, oval to circular, on xvii and on region between setal arcs of xix and xx, paired in one (or both ?) of these regions, centres of paired markings on or lateral to male pore lines.

Septa 4/5, 8/9-11/12 slightly muscular, 5/6/7/8 delicate. Gizzard in vi. Intestinal caeca absent; typhlosole xxii-xxiv to cxviii. Supra-oesophageal vessel single, ix-xiii; subneural vessel present, but not recognized anterior to xii; last pair of hearts in xiii. Lymph glands unpaired in xv and posteriad segments. Testes and male funnels in x and xi, enclosed in unpaired sacs, formed by the peripheral union of the septa 9/10/11/12; seminal vesicles in ix, x and xii, those of x rudimentary. Vasa deferentia enlarged into ejaculatory bulbs before opening into the prostatic ducts. Penial setae ornamented with a few, short, serrated ridges, 0.2-0.39 mm long, 10-16 μ diameter. Spermathecae 2 pairs in viii, each with a circle of 15-20 ventrally directed, adherent to the duct, digitiform diverticula. Copulatory setae ornamented with short transverse rows of small fine teeth, 0.49-0.63 mm long, 24-27 μ diameter. Copulatory setal glands c. 1-2.4 mm long, in paired coelomic sacs in vii, viii and ix. Parietal glands paired, half collar-shaped, median to the ectal ends of the prostatic ducts, in xvii and xix. Genital marking glands sessile, oval.

Type locality: Sanvordem, Goa, India.

Type specimens: In ZSIC, W 67/1; BMNH, 1933: 5: 25: 857-62.

Diagnosis: Lumbricine. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Oesophagus with a single gizzard in v and one pair of discrete, extramural calciferous glands, each gland bilobed, one lobe in xv and the other in xvi, both lobes opening into gut through a common duct close to the attachment of septum 15/16; supra-intestinal glands absent; typhlosole lamelliform, simple. Micro-meronephridia astomate, exonephric, paired tufts on the body wall in ii-iv, few scattered on the body wall in v and posteriad segments. Paired, stomate, enteronephric megameronephridia in each segment from c. middle of body to posterior end.

Type species: *Karmiella kannatakensis* Julka, 1983.

Description: As for the only species, *kannatakensis*.

Distribution: Karnataka, S. India.

66. *Karmiella kannatakensis* Julka

(Figs. 254-259)

Length 64-87 mm, diameter 2.5-3 mm, 125-157 segments. Prostomium tanylobic. First dorsal pore 5/6. Clitellum annular, xiii, ½xiii-½xvii, xvii. Setae lumbricine, $aa = 1.7-2\ ab = 0.7-0.9\ bc = 0.9-1\ cd = 0.11-0.15\ dd$ on xii, $aa = 2.5-3\ ab = 0.8-1\ bc = 1.1-1.4\ cd = 2.5-3\ ab = 0.8-1\ bc = 1.1-1.4\ cd = 0.12-0.16\ dd$ on xxiv, a or b on viii sometimes copulatory. Male pores paired, minute, in seminal grooves, on the setal arc of xviii, slightly lateral to a; prostatic pores paired, minute, at the ends of seminal grooves, on xvii and xix, at a; seminal grooves concave, between setal arcs of xvii and xix. Female pores paired, antero-median to a, on xiv. Spermathecal pores paired, minute, on or slightly anterior to setal arcs, on viii and ix, just median to a. Genital markings absent. Nephridiopores not recognized.
Figs. 254-259. *Karmiella karnatakensis* Julka. 254. spermathecal pore region, 255. genital region, 256. copulatory seta, 257, 259. penial seta, dorsal (257) and lateral (259) views, 258. spermatheca.
Septa 4/5, 7/8-11/12 muscular, 5/6/7 delicate. Gizzard large, in v. A pair of discrete, extramural, symmetrical, reniform calciferous glands, each gland bilobed, one lobe in xv and the other in xvi, both the lobes opening into oesophagus through a common short duct close to the attachment of septum 15/16. Intestine begins in xviii; caeca and supra-intestinal glands absent; typhlosole lamelliform, simple, xxvii-xxix to cxiv-cxix. Dorsal vessel single and complete; supra-oesophageal vessel single, vii-xv; extra-oesophageal vessels paired, v-xv; latero-parietal vessels paired, joining the supra-oesophageal vessel in xiii; subneural vessel absent; lateral hearts originating from the supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xiii. Holandric, testes and male funnels enclosed in annular sacs, in x and xi; seminal vesicles in ix and xii. Prostates paired, in xvii and xix. Penial setae unornamented, 1.1-2 mm long, 14-16 μ diameter. Spermathecae paired, in vii and ix, each with a median and a lateral ental diverticula (one of the pair sometimes absent). Copulatory setae, when present, ornamented, 0.66-0.67 mm long, 24-30 μ diameter. Ovaries paired, fan-shaped, in xiii; ovisacs absent. Micromeronephridia astomate, exonephric, paired tufts on the body wall, in ii-iv, few scattered on the body wall in v and posteriad segments, numerous in clitellar segments; paired, stomate megameronephridia in lvi-lx and posteriad segments, funnels close to the nerve cord, loops extending laterally, discharging into posterior part of rectum through a pair of longitudinal excretory canals, one on each side of mid-dorsal line.

Type locality: Tirthahalli, Karnataka, India.

Type specimens: In HAZFS, ZSI, Solan - Holotype, An 395; 0-1-5 paratypes, An 396.

Distribution: India: _Karnataka:_ Tirthahalli, Kotegehar, Moodabidri, Bhagamandala, Sakleshpur.

Genus 12. _Konkadrilus_ gen nov.

Diagnosis: Lumbricine. Male pores paired, in seminal grooves,
on xvii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Oesophagus with a single gizzard in v and calciferous lamellae in xvi, xvi-½xvii; discrete calciferous glands and supra-intestinal glands absent; typhlosole lamelliform, simple. Micromeronephridia astomate, exonephric, few, on the body wall in ii and posteriad segments. Paired, stomate, exonephric megameronephridia in each of caudal segments.

Type species: *Howascolex stephensoni* Soota and Julka, 1972.

Description: Setae lumbricine throughout the body. Clitellum annular. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Female pore(s) single and median, or paired, presetal, on xiv. Spermathecal pores paired. Genital markings present. Nephridiopores not recognized.

Septa present from 4/5. Oesophagus with a single gizzard in v and calciferous lamellae in xvi, xvi-½xvii; discrete calciferous glands, intestinal caeca and supra-intestinal glands absent; typhlosole lamelliform, simple. Dorsal blood vessel single, complete; supra-oesophageal vessel single or partly doubled in some segments but the two branches reunite anterior to septa, in vii-xiii; extra-oesophageal vessels paired, v-x; latero-parietal vessels paired, joining the supra-oesophageal vessel in xiii; subneural vessel absent; lateral hearts originating from the supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xii, xiii. Holandric; seminal vesicles in xi and xii. Prostates paired, in xvii and xix, extending posteriorly to 1-3 segments. Penial setae present. Spermathecae paired, in vii and ix. Ovisacs paired, in xiv. Micromeronephridia astomate, exonephric, few, on the body wall in ii and posteriad segments, tufted micromeronephridia absent; paired, stomate, exonephric megameronephridia in each of posteriormost segments, funnels close to the nerve cord, loops extending laterally close to the mid-dorsal line.

Distribution: Goa and western Karnataka, India.
Etymology: **Konkadrilus**, gender masculine, derived from the vernacular word ‘Konkan’ denoting the area in which it is commonly found, and the Greek word ‘drilos’ meaning the worm.

Remarks: On the basis of the presence of paired enteronephric megameronephridia along with astomate exonephric micromeronephridia in each of the caudal segments, the Indian species *Howascolex corethrurus* Michaelsen, 1922 (possibly also *H. bidens* and *H. merkaraensis* both of Michaelsen, 1922) has been assigned to *Wahoscolex* gen. nov. (described elsewhere in this work). As a result, *Howascolex* is restricted to include the Malagasian type species *madagascariensis*, which is defined by the presence of holonephridia in the anterior region and meronephridia in the posterior region of the body (see under remarks of *Wahoscolex* gen. nov. in this work). A re-examination of the excretory system in the types of 2 other Indian species in the Zoological Survey of India, Calcutta, viz., *Howascolex bahli* and *H. stephensoni* described by Soota and Julka (1972) from Goa reveals - “few, astomate, exonephric micromeronephridia in ii and posteriad segments; paired, stomate, exonephric megameronephridia in each of the caudal segments” These species, therefore, form a distinct assemblage distinguishable from *Howascolex* s.s. Michaelsen, 1901 by the presence of meronephridia throughout the body and absence of holonephridia, and from *Wahoscolex* gen. nov. (other Indian species of *Howascolex* and described elsewhere in the work) by the exonephric condition of the caudal megameronephridia. Accordingly, they are assigned to new genus *Konkadrilus*, which can be easily distinguished from related genera by the characters shown in Table 7.

Key to the species of *Konkadrilus*

1. Spermathecal pores intersegmental, in 7/8/9; female pores paired ... *K. bahli*

Spermathecal pores segmental, on viii and ix; female pore single, median 2
2. Last pair of hearts in xii ... *K. zicsii*

Last pair of hearts in xiii ... 3

3. Genital markings present on preclitellar segments ... *K. tirthahalliensis*

Genital markings absent on preclitellar segments ... *K. stephensonii*

67. Konkadrilus bahli (Soota and Julka)

(Figs. 260-264)

Length 32-43 mm, diameter 1-1.5 mm, 87-117 segments. Prostomium epilobic, tongue closed. First dorsal pore 10/11, sometimes 9/10. Clitellum ½xiii-xvii. Setae *aa* = 2.6 *ab* = 0.75 *bc* = 1.64 *cd* = 0.20 *dd* on xii, *aa* = 3 *ab* = *bc* = 2.4 *cd* = 0.25 *dd* on xxiv, *a, b* on viii copulatory, being surrounded by indistinct tumescences, slightly shifted anteriorly from the setal arc. Male pores minute, at or slightly median to *b*; prostatic pores minute, at or slightly lateral to *a*; seminal grooves almost straight or slightly concave, between setal arcs of xvii and xix. Female pores paired, anteromedian to *a*. Spermathecal pores large, transverse slits, in 7/8/9, at *ab*. Genital markings oval, paired, in 15/16/17, 19/20-23/24, at *aa* (one of the pair sometimes absent).

Septa 4/5-11/12 delicate. Intestine begins in xix, typhlosole in xx-xxi to lxxxv. Last pair of hearts in xiii. Testes and male funnels free, in x and xi. Penial setae ornamented with a few transverse rows of fine spines or teeth, tip pointed, c. 0.47-0.52 mm long, 16 μ diameter. Each spermatheca with a shortly stalked, spheroidal, ental diverticulum, duct longer than ampulla. Copulatory setae ornamented with scale-like spines on the margins, tip slightly claw-shaped, 0.42-0.44 mm long, 14-16 μ diameter. Genital marking glands absent.

Type locality: Satpalli village, c. 4 km from Mollem, Goa, India.
<table>
<thead>
<tr>
<th>Character</th>
<th>Howoscolex sensu stricto</th>
<th>Wahoscolex</th>
<th>Konkadrilus</th>
<th>Ramiella</th>
<th>Mallehulla</th>
<th>Celeriella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setae</td>
<td>lumbricine</td>
<td>lumbricine or perichaetine in posterior segments</td>
<td>lumbricine</td>
<td>lumbricine</td>
<td>perichaetine</td>
<td>perichaetine</td>
</tr>
<tr>
<td>Male terminalia</td>
<td>acanthodrine</td>
<td>acanthodrine to microscolecine</td>
<td>acanthodrine</td>
<td>acanthodrine</td>
<td>acanthodrine</td>
<td>megascolecine</td>
</tr>
<tr>
<td>Calciferous lamellae</td>
<td>xvi</td>
<td>xvi, ½xvi-xvi, xvi-⅔xvi</td>
<td>xvi, xvi-½xvii</td>
<td>viii-xi</td>
<td>xiv-xv</td>
<td>xiii-xiv</td>
</tr>
<tr>
<td>Typhlosole</td>
<td>absent</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Excretory system</td>
<td>partly holo-and partly meronephric</td>
<td>meronephric</td>
<td>meronephric</td>
<td>meronephric</td>
<td>meronephric</td>
<td>meronephric</td>
</tr>
<tr>
<td>Megameronephridia</td>
<td>absent</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Micromeronephridia</td>
<td>astomate</td>
<td>astomate</td>
<td>astomate</td>
<td>astomate</td>
<td>astomate</td>
<td>stome at least in caudal sements</td>
</tr>
<tr>
<td>Prostates</td>
<td>short, in 2-3 segments</td>
<td>very long, in several segments</td>
</tr>
<tr>
<td>Penial setae</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>absent</td>
</tr>
</tbody>
</table>
Type specimens: In ZSIC: Holotype, An 154/1; 0-1-2 paratypes, An 155/1.

Distribution: India: Goa: Stapalli village c. 4 km from Mollem, Yella village; Karnataka: Castle Rock.

68. Konkadrilus stephensoni (Soota and Julka)

(Figs. 265-269)

Length 31-91 mm, diameter 1.5-2.5 mm, 83-141 segments. Prostomium epilobic, tongue closed. First dorsal pore in region of 9/10-12/13. Clitellum \(\frac{1}{2}\)xiii-xvi. Setae \(aa = 2.4-3.3\) \(ab = 1.1-1.4\) \(bc = 1.3-1.7\) \(cd = 0.21-0.27\) \(dd\) on xii, \(aa = 2.6-3.2\) \(ab = 1.4-1.8\) \(bc = 1.6-2.4\) \(cd = 0.22-0.32\) \(dd\) on xxiv, \(a, b\) on viii and ix, sometimes x, xi copulatory, being surrounded by tumescences. Male pores minute, at \(b\); prostatic pores minute, just lateral to \(a\) lines; seminal grooves concave between setal arcs of xvii and xix. Female pore single and median. Spermathecal pores small, transverse slits, surrounded by oval tumescences, on viii and ix, slightly anterior or posterior to the setal arcs, sometimes slightly posterior to intersegmental furrows 7/8/9, at \(b\). Genital markings small, oval; paired: presetal or postsetal on xv-xvi at \(aa\) or \(ab\), xvii-xix at \(aa\) or \(ab\) or \(bc\), presetal on xx, 14/15-23/24 at \(aa\), xx-xxii at \(ab\); unpaired and median: presetal on xvii-xix, 16/17, with 4/5 central areas on 14/15; 3-4 markings in a transverse row; postsetal on xvi, xix, presetal on xvii, at \(aa\) or \(ab\).

Septa 4/5/6 delicate, 6/7 slightly muscular, 7/8-11/12 muscular. Intestine begins in xix; typhlosole xx-xxi to lxxi-xcvii. Last pair of hearts in xiii. Testes and male funnels free, in x and xi. Penial setae ornamented with short 5-11 transverse rows of a few
Figs. 265-269. *Konkadrilus stephensoni* (Soota and Julka). 265. spermathecal pore region, 266. genital region, 267. copulatory seta, 268. penial seta, 269. spermatheca (all drawn from a paratype).
fine teeth or spines, tip pointed, 0.55-1.07 mm long, 12-23 μ diameter. Each spermatheca with a tubular to clavate ental diverticulum (rarely with 2 diverticula), distal end of the diverticulum sometimes bifid to quadrifid, duct as long as or slightly longer than ampulla. Copulatory setae ornamented with scale-like spines on the margins, tip claw-shaped, 0.34-0.45 mm long, 12-18 μ diameter. Genital marking glands absent.

Type locality: Valpoi, Goa, India.

Type specimens: In ZSIC: holotype, An 152/1; 0-9-8 paratypes, An 153/1.

Abnormality: One specimen from Londa with clitellum 1/2xii-xv, female pore on xiii, male pores on xvii and prostatic pores on xvi and xviii. One specimen from Castle Rock with spermathecal pores on vi and vii, clitellum 1/2xi-xiv, female pore xiii, male pores on xvi, prostatic pores on xv and xvii; in another specimen from Castle Rock left spermatheca in viii absent, though associated copulatory setae present, spermathecae in ix bidiverticulate. One specimen from Sanvordem with an additional female pore on xv. Another specimen from Sanvordem with well-developed spermathecal pores on vii, viii and a rudimentary thecal pore on the left side of vi, clitellum xii-xiv, female pore on xii, male pores on xvi, prostatic pores on xv and xvii, testes and male funnels in viii and ix, seminal vesicles in ix and x, last pair of hearts in xi, ovaries in xi, intestine begins in xvii.
69. **Konkadrilus tirthahalliensis** sp. nov. (Figs. 270-274)

Length 54-97 mm, diameter 2-3 mm, 130-157 segments. Prostomium proepilobic. First dorsal pore 11/12, sometimes 10/11. Clitellum \(\frac{1}{2}-\frac{2}{3}\) xiii-xvi. Setae \(aa = 2.5-3.4\) \(ab = 1.3\) \(bc = 1.4-1.8\) \(cd = 0.18-0.21\) \(dd\) on xii, \(aa = 2.6-3.7\) \(ab = 1.4-1.5\) \(bc = 1.9-2.4\) \(cd = 0.19\) \(dd\) on xxiv, \(a\) and \(b\) on viii, ix copulatory, being surrounded by tumescences. Male pores minute, slightly median to \(b\); prostatic pores minute, slightly lateral to \(a\); seminal grooves almost concave, slightly diverging posteriorly, between the setal arcs of xvii and xix. Female pore single and median. Spermathecal pores small, transverse slits, surrounded by oval tumescences, presetal, on viii and ix, close to intersegmental furrows or setal arcs or equidistant from intersegmental furrows and setal arcs, at or just median to \(b\). Genital markings circular to oval; paired at \(ab\): on 10/11/12, 14/15, sometimes 9/10, 12/13, 15/16, presetal on xvii; paired at \(aa\): presetal or postsetal on xvii-xix, 21/22, sometimes 17/18-20/21, 22/23-29/30; rarely unpaired and median, presetal, on xvii.

Septa 4/5 delicate, 5/6 slightly muscular, 6/7-12/13 muscular. Intestine begins in \(\frac{1}{2}\)xix; typhlosole xx to cxi-cxiii. Last pair of hearts in xiii. Testes and male funnels free, in x and xi. Penial setae ornamented with 8-10 rows of small, fine teeth, tip spatulate, 2.86-3.23 mm long, 15-16 \(\mu\) diameter. Each spermatheca with a dorsally directed ental diverticulum, about half as long as combined length of duct and ampulla, duct shorter than ampulla. Copulatory setae ornamented with a few serrated ridges, tip bluntly pointed, 0.36-0.4 mm long, 16 \(\mu\) diameter. Genital marking glands absent.

Distribution: India: Karnataka: Tirthahalli.

Etymology: Derived from the type locality.
Figs. 270-274. *Konkadrilus tirthahalliensis* sp. nov. 270. spermathecal pore area, 271. genital region, 272. spermatheca, 273. tip of copulatory seta, 274. penial seta.
Remarks: Konkadrilus tirthahalliensis sp. nov. belongs to a group of species with segmental location of spermathecal pores on viii and ix, and a single median female pore. It can be distinguished from the other species of the group, K. stephensonii (Soota and Julka, 1972) and K. zicsii sp. nov. (described elsewhere in this work) by the characters shown in Table 8.

70. Konkadrilus zicsii sp. nov.
(Figs. 275-279)

\[aa = 2.9-3.3 \quad ab = 1.2-1.3 \quad bc = 1.5-1.6 \quad cd = 0.23-0.30 \quad dd \]
on xii,

\[aa = 2.4-2.8 \quad ab = 1.3-1.5 \quad bc = 1.7-1.8 \quad cd = 0.25-0.30 \quad dd \]
on xxiv,

\[a, b \] on viii and ix copulatory, being surrounded by indistinct tumescences, those on viii shifted from the setal arc anteriorly to the spermathecal pores, on ix a setae shifted anteriorly towards intersegmental furrow 8/9. Male pores minute, at b; prostatic pores minute, slightly lateral to a; seminal grooves concave, between setal arcs of xvii and xix. Female pore single and median. Spermathecal pores minute, on viii and ix, at b, those on viii about equidistant from setal arc and 7/8, those on ix slightly posterior to the setal arc. Genital markings, when present, oval, paired, presetal or on setal arc, on xviii, presetal on xix, at ab (one of the pair sometimes absent).

Septa 4/5/6 delicate, 7/8-12/13 muscular. Intestine begins in ½xix; typhlosole xxi-xxii to xci-xciii. Last pair of hearts in xii. Testes and male funnels free, in x and xi. Penial setae slightly sinuous ectally, ornamented with 12-14 circles of fine spines, 0.83-0.96 mm long, 8-11 μ diameter, tip bluntly pointed. Each spermatheca with a digitiform ental diverticulum, duct shorter than ampulla. Copulatory setae ornamented with a few spines on the margins, 0.34-0.37 mm long, 12-14 μ diameter, tip slightly claw-shaped. Genital markings glands absent.

Material examined: 0-0-6 Castle Rock, Karnataka, 15.43 N, 74.37 E, 28 Aug 1979, coll. J.M. Julka (holotype and 2 paratypes in
Figs. 275-279. Konkadrilus zicsii sp. nov. 275. spermatheca, 276. genital region, 277. spermathecal pore region, 278. copulatory seta, 279. penial seta.
ZSIC, An 1825/1, An 1826/1 paratypes in HAZFS, ZSI, Solan, An 735).

Distribution: India: **Karnataka**: Castle Rock.

Remarks: *Konkadrilus zicsii* sp. nov. belongs to a group of species with paired spermathecal pores on viii and ix, and a single median female pore. It is distinguishable from other species of the group *K. stephensoni* (Soota and Julka, 1972) and *K. tirthahalliensis* sp. nov. (described elsewhere in this work) by the characters given in Table 8.

TABLE 8. A comparison of *K. tirthahalliensis* and *K. zicsii* spp. nov. with related species.

<table>
<thead>
<tr>
<th>Character</th>
<th>K. tirthahalliensis</th>
<th>K. stephensoni</th>
<th>K. zicsii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>54-97</td>
<td>31-91</td>
<td>55-85</td>
</tr>
<tr>
<td>Segments</td>
<td>130-157</td>
<td>83-141</td>
<td>106-129</td>
</tr>
<tr>
<td>Prostomium</td>
<td>proepilobic</td>
<td>epilobic</td>
<td>epilobic</td>
</tr>
<tr>
<td>Preclitellar genital markings</td>
<td>present</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Typhlosole</td>
<td>xx to cxi-cxiii</td>
<td>xx-xxi to lxxi-xcvii</td>
<td>xxi-xxii to xci-xciii</td>
</tr>
<tr>
<td>Last pair of hearts xiii</td>
<td>xiii</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>Penial setae, Tip</td>
<td>spatulate</td>
<td>pointed</td>
<td>pointed</td>
</tr>
<tr>
<td>Length (mm)</td>
<td>2.83-3.23</td>
<td>0.55-1.07</td>
<td>-0.83-0.96</td>
</tr>
</tbody>
</table>

Genus 13. Kotegeharia gen. nov.

Diagnosis: Lumbricine. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Oesophagus with a single gizzard in v and one pair of discrete extramural calciferous glands in xv; supra-intestinal glands absent; typhlosole lamelliform, simple. Micromeronephridia astomate, exonephric, several on the body wall in i and posteriad segments. Paired, stomate, exonephric megameronephridia in each segment from about middle of body to posterior end.
Type species: *Kotegeharia gatesi* sp. nov.

Description: As for the only species, *gatesi*.

Distribution: Kotegehar, Karnataka, S. India.

Etymology: *Kotegeharia*, gender feminine, derived from the locality Kotegehar.

Remarks: *Kotegeharia* gen. nov. belongs to a group of octochaetid genera with a single oesophageal gizzard, discrete extramural calciferous glands and stomate exonephric megamero-nephridia in caudal segments. It can be distinguished from other members of the group, *Priodochaeta* Gates, 1940 and *Calebiella* Gates, 1945, by the characters shown in Table 9.

<table>
<thead>
<tr>
<th>Character</th>
<th>Kotegeharia</th>
<th>Calebiella</th>
<th>Priodochaeta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setae</td>
<td>lumbricine</td>
<td>lumbricine</td>
<td>perichaetine</td>
</tr>
<tr>
<td>Male terminalia</td>
<td>acanthodriline</td>
<td>acanthodriline</td>
<td>megascolecin</td>
</tr>
<tr>
<td>Gizzard</td>
<td>v</td>
<td>vi</td>
<td>v</td>
</tr>
<tr>
<td>Calciferous glands</td>
<td>one pair, in xv</td>
<td>4 pairs, in x-xiii</td>
<td>3 pairs, in xiv-xvi</td>
</tr>
<tr>
<td>Typhlosome</td>
<td>lamelliform, simple</td>
<td>lamelliform, bifid ventrally</td>
<td>rudimentary, a low ridge</td>
</tr>
<tr>
<td>Penial setae</td>
<td>present</td>
<td>present</td>
<td>absent</td>
</tr>
</tbody>
</table>

71. *Kotegeharia gatesi* sp. nov.
(Figs. 280-284)

Length 42–71 mm, diameter 1.5–2 mm, 132–140 segments. Prostomium epilobic, tongue open. First dorsal pore 4/5. Clitellum annular, xiii-xvi. Setae lumbricine, \(aa = 3.7-3.9 \) \(ab = 0.7-0.8 \) \(bc = 1.9-2.1 \) \(cd = 0.14-0.16 \) \(dd \) on xii, \(aa = 3.7-4 \) \(ab = 1.2-1.3 \) \(bc = 2.6-2.8 \) \(cd = 0.18-0.19 \) \(dd \) on xxiv, \(a, b \) on viii and ix, sometimes vii copulatory. Male genital field tumescent, slightly depressed at the middle, between 16/17 and 19/20. Male pores paired, minute, in seminal grooves, on xviii, just lateral to \(a \); prostatic pores paired,
Figs. 280-284. *Kotegeharia gatesi* gen. et sp. nov. 280. spermathecal pore region, 281. genital region, 282. spermatheca, 283. copulatory seta, 284. penial seta.
minute, at the ends of seminal grooves, on xvii and xix, at a; seminal grooves concave, between setal arcs of xvii and xix. Female pores paired, presetal, within a lines, on xiv. Spermathecal pores paired, large transverse slits, presetal on viii and in 8/9, at ab. Genital markings paired, large, oval, presetal or postsetal on xvi-xvii, xix-xxii, setal arcs of xvii-xix, 20/21, extending from a to mid bc; paired, small, circular, presetal on xvii, xix, postsetal on xvii, setal arc of xviii, at aa. Nephridiopores not recognized.

Septa 4/5/6 delicate, 6/7-8/9 slightly muscular, 9/10-12/13 muscular. Gizzard large, in v; one pair of discrete, extramural, sessile, bean-shaped calciferous glands, in xv, opening directly into oesophagus through small pores dorso-laterally; intestinal caeca and supra-intestinal glands absent; intestine begins in xviii; typhlosole lamelliform, simple, xxi to cxi-cxv. Dorsal vessel single and complete; supra-oesophageal vessel single, vii-xiii; extra-oesophageal vessels paired, not recognized posterior to x; latero-parietal vessels paired, ending on the ventrolateral surfaces of oesophagus in xiii; subneural vessel absent; lateral hearts originating from supra-oesophageal vessel with delicate connectives to the dorsal vessel, in x-xiii. Holandric, testes and male funnels free, in x and xi; seminal vesicles racemose, in ix and xii. Prostates paired, in xvii and xix. Penial setae ornamented with short, transverse rows of small teeth, tip bluntly pointed, 0.66-0.73 mm long, 16-19 μ diameter. Spermathecae paired, in viii and ix, each with a fan-shaped, shortly stalked ental diverticulum, duct as long as or slightly longer than ampulla. Copulatory setae ornamented with longitudinal rows of gouges, tip slightly claw-shaped, 0.41-0.47 mm long, 14 μ diameter. Ovaries paired, fan-shaped, in xiii; ovisacs paired, in xiv. Micromeronephridia astomate, exonephric, 6-7 on the body wall in i-iv, arranged in 2 ranks on each side, in v and posteriadi segments, median rank of 3-5 at ab, lateral rank of one at d lines; stomate, exonephric, paired, megameronephridia in each segment from c. middle of body to posterior end, increasing in size with loops reaching to mid-dorsal line in caudal segments, funnels close to the nerve cord. Genital marking glands absent.
Material examined: 1-7-17 Kotegebar, Karnataka, 75.15 N, 13.48 E, altitude 650 m, 7 Sept 1979, coll. J.M. Julka (Holotype and 4 paratypes in ZSIC, An 1829/1, An 1830/1, 20 paratypes in HAZFS, ZSI, Solan, An 738).

Distribution: India: Karnataka: Kotegebar.

Etymology: The species is named after Dr. G.E. Gates for his highly significant contributions on oligochaete taxonomy during the last sixty years.

Diagnosis: Lumbricine. Male pores paired, in seminal grooves on xviii or 17/18; prostatic pores 2 pairs, at the ends of seminal grooves, on xvii and xix, or one pair on xvii. Oesophagus with 2 gizzards, in v-vi and 3 pairs of discrete extramural calciferous glands in x-xii; supra-intestinal glands absent; typhlosole lamelliform, simple. Micromeronephridia astomate; paired enteronephric tufts in iii; few, exonephric on the body wall in iv and posteriad segments. Paired, stomate, exonephric megameronephridia in each of few posteriormost segments.

Type species: Eudichogaster yeicus Stephenson, 1931.

Description: Setae lumbricine throughout the body. Clitellum annular. Male pores paired, in seminal grooves on xviii and paired prostatic pores at the ends of seminal grooves on xvii and xix or male pores at the posterior ends of seminal grooves in 17/18 and one pair of prostatic pores at the anterior ends of seminal grooves on xvii. Female pores paired, minute, presetal, within a lines on xiv. Spermathecal pores paired on viii or viii-ix. Nephridiopores not recognized.
Septa all present from 4/5. Oesophagus with 2 gizzards in v-vi. Discrete extramural glands 3 pairs in x-xii, vertically ovoidal, opening through dorsal poles without distinct stalks into longitudinal grooves in lateral walls of the oesophagus. Intestine begins in xv; supra-intestinal glands and intestinal caeca absent; typhlosole simple, lamelliform. Dorsal vessel single and complete; supra-oesophageal vessel single in x-xiii; extra-oesophageal vessels paired, connected with each other by transverse vessels in v and vi, passing posteriorly to the oesophageal wall within ridges covering the apertures to calciferous glands; latero-parietal vessels paired, passing to oesophagus in xiii; subneural vessel absent; lateral hearts originating from supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xii. Holandric or proandric or metandric; testes and male funnels free, some-times in paired sacs, seminal vesicles present or absent. Prostates paired. Spermathecae paired, diverticulate. Ovisacs paired, in xiv. Micromeronephridia astomate; enteronephric paired tufts in iii; few, exonephric on the body wall in iv and posteiord segments, arranged in 3-5 longitudinal rows on each side in postclitellate segments. Paired stomate exonephric megameronephridia in caudal segments, funnels close to the nerve cord.

Distribution: India (from Burma border through the Gangetic plain and into the northern part of the peninsula, and lower western Himalayas), Burma, Bangla Desh.

Key to the species of Lennogaster

1. Spermathecal pores two pairs, on viii-ix; prostatic pores on xvii and xix 2
 Spermathecal pores one pair, on viii; prostatic pores one pair on xvii 5

2. Male genital field restricted to xvii-xix 3
 Male genital field extends posteriorly at least to 20/21 .. L. elongatus
3. Holandric... 4

Proandric... L. yeicus

4. Setae a and b on viii and ix copulatory L. trichochaetus

Setae a on vii copulatory L. falcifer

5. Setae a on viii copulatory L. chittagongensis

No setae copulatory .. L. pusillus

72. Lennogaster chittagongensis (Stephenson)
(Figs. 285-289)

Length 24-78 mm, diameter 1-2.5 mm, 79-138 segments.
Prostomium epilobic, tongue closed. First dorsal pore 11/12.
Clitellum xiii-xvii. Setae $aa = 2.4-2.7$ $ab = 1.1$ $bc = 1.4-1.5$ $cd = 0.15-0.17$ dd on xii, $aa = 2.8-3.3$ $ab = 1.1-1.2$ $bc = 1.7-2$ $cd = 0.16-0.18$ dd on xxiv, a on viii copulatory being surrounded by tumescences. Male genital field transverse, on xvii, often rather spindle-shaped. Male pores minute at posterior ends of seminal grooves on xvii, just anterior to 17/18, at b; prostatic pores minute at anterior ends of seminal grooves on setal arc of xvii, at a; seminal grooves diagonally placed on oval porophores, at ab. Spermathecal pores minute on or slightly anterior to the setal arc of viii, just lateral to a. Genital markings absent.

Septa 4/5-7/8 delicate, 8/9-12/13 slightly muscular. Typhlosole in xvii-xviii to lxxii-lxxviii. Proandric but also with male funnels in xi, testes and male funnels in x enclosed in paired sacs; seminal vesicles absent. Prostates one pair, in xvii. Penial setae ornamented with 12-17 circles of fine spines, tip truncate or narrowed to a short spine, 0.5-0.64 mm long, 3-6 μ diameter. Spermathecae one pair, in viii, each with an ental, pendant, shortly
digitiform diverticulum. Copulatory setae ornamented with scattered triangular teeth or longitudinal rows of gouges, 0.22-0.28 mm long, 11-14 μ diameter.

Type locality: Rangamati, Chittagong Hill Tracts, Bangla Desh.

Type specimens: In ZSIC, W 71/1; BMNH 1933: 5: 25: 344-5.

Outside India: Bangla Desh: Rangamati; Burma.

Biology: It inhabits sandy to sandy loam and black clay soils with pH 7.2-7.6 in grasslands, under stones and decaying leaves, and among roots of ferns and mosses growing on rocks.
73. Lennogaster elongatus Gates
(Figs. 290-291)

Length 120 mm, diameter 3.5 mm, c. 185 segments. Prostomium proepilobic, tongue closed. First dorsal pore 12/13. Clitellum xiii-xvii. Setae $ab = 2.2 \ bc = 1.8 \ cd = 0.13 \ dd$ on xii, $aa = 3 \ ab = 1.5 \ bc = 2 \ cd = 0.16 \ dd$ on xxiv, no setae copulatory. Male genital field almost rectangular, longitudinally placed, extending from 16/17 to the setal arc on xxi. Male pores minute, in seminal grooves on xviii, just lateral to a; prostatic pores minute, in seminal grooves on the setal arcs of xvii and xix, at about a; seminal grooves almost straight extending from the setal arc on xvii to 20/21. Spermathecal pores minute, presetal, on viii and ix, at about a. Genital markings absent.

Septa 4/5-7/8 muscular, 8/9 thickly muscular. Typhlosole in xx-xxi to cxvi. Holandric, testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Prostates two pairs, in xvii and xix, extending posteriorly to a few segments. Penial setae sparsely ornamented with small, rather triangular teeth, tip chisel-shaped, sharply pointed or with a short sharp spine, 0.47-0.56 mm long, 10-12 μ diameter. Spermathecae two pairs, in viii-ix, each with an ental, ventrally directed, digitiform diverticulum.

Type locality: Nowgong, Madhya Pradesh, India.

Type specimens: In ZSIC, W 3631/1.

Material examined: 0-0-1, holotype, W 3631/1, ZSIC.

Distribution: India: Madhya Pradesh: Nowgong; Uttar Pradesh: Robertsganj, Sohagi.

74. Lennogaster falcifer (Stephenson)
(Figs. 292-296)

Length 40-70 mm, diameter 2-3 mm, 142-151 segments. Prostomium proepilobic, tongue closed. First dorsal pore 12/13. Clitellum xiii-xvii. Setae \(aa = 2 \), \(ab = 1.1 \), \(bc = 1.3-1.4 \), \(cd = 0.14 \), \(dd \) on xii, \(aa = 2.3-2.5 \), \(ab = 1-1.1 \), \(bc = 1.4-1.8 \), \(cd = 0.15 \), \(dd \) on xxiv, \(a \) on vii copulatory, being surrounded by tumescences. Male genital field shortly oval, between 16/17 and 19/20. Male pores minute, in seminal grooves on the setal arc of xviii, at or a little median to \(b \); prostatic pores minute, at the ends of seminal grooves on the setal arcs of xvii and xix, at \(a \); seminal grooves concave, extending from the setal arc on xvi to the setal arc on xix, at \(ab \). Spermathecal pores minute, on circular tumescent areas, presetal on viii and ix, at or slightly lateral to \(a \). Genital markings oval, at \(aa \), usually paired on xviii, sometimes unpaired and median areas of tumescence on 20/21.

Septa 4/5/6/7 delicate, 7/8 slightly muscular, 8/9-12/13 muscular. Typhlosole in xix-xx to lx-lxxiiii. Holandric, testes and male funnels free, in x and xi; seminal vesicles acinous, in ix and xii. Prostates two pairs, in xvii and xix. Penial setae ornamented with marginal indentations or numerous fairly large triangular spines, tip chisel-shaped, membranous or bifid or pointed with a short hair or spine, 0.3-0.96 mm long, 8-16 \(\mu \) diameter. Spermathecae 2 pairs, in viii-ix, each with a digitiform, usually dorsally directed, ental diverticulum, duct slightly shorter than ampulla. Copulatory setae ornamented with a few scattered gouges or unornamented (Gates, 1945b), tip rounded, 0.44-0.48 mm long, 14-16 \(\mu \) diameter. Genital marking glands absent.

Type locality: Jubbalpore, Madhya Pradesh, India.

Type specimens: In ZSIC, W 297/1; BMNH, 1925: 5: 12: 94:

Material examined: In ZSIC: 12-0...0, syntypes, W 297/1; 0...1-0 Saugor, W 298/1; 1-5-0 Bheraghat, W 299/1; 0-0-18, Jubbalpore, W 3657/1.

Distribution: India: Madhya Pradesh: Jubbalpore, Saugor, Baraila, Bheraghat, Safraha, Gaurighat.
75. Lennogaster pusillus (Stephenson)
(Figs. 297-300)

Length 20-68 mm, diameter 1-2.5 mm, 105-132 segments. Prostomium proepilobic, tongue closed. First dorsal pore 11/12, sometimes 12/13. Clitellum xiii-xvii. Setae $aa = 1.6-1.7$ $ab = 0.9$

$bc = 1-1.1$ $cd = 0.12-0.13$ dd on xii, $aa = 2.4-2.5$ $ab = 1.3$ $bc = 1.5-1.7$ $cd = 0.14-0.17$ dd on xxiv, no setae copulatory. Male genital field transverse, on xvii. Male pores minute, in or near 17/18 at posterior ends of seminal grooves, at b; prostatic pores minute, on the setal arc of xvii at anterior ends of seminal grooves, at a, seminal grooves crescentic, diagonally placed on oval porophores, extending from the setal arc on xvii to 17/18, at ab. Spermathecal pores minute, presetal, on viii, at about a. Genital markings absent.

Septa 4/5-7/8 delicate, 8/9-12/13 slightly muscular. Typhlosole in xvii-xviii to lxx-lxxvi. Proandric but also with male funnels in xi, testes and male funnels in x enclosed in paired sacs; seminal vesicles absent. Prostates one pair, in xvii. Penial setae ornamented with scattered small triangular teeth, tip almost membranous, slightly widened with ectal end straight or jagged or concave or deeply indented, 0.53-0.65 mm long, 4-5 μ diameter. Spermathecae one pair, in viii, each with a sessile, spheroidal to tubular ental diverticulum, ampulla longer than the duct, at right angle to the latter.

Type locality: Saugor, Madhya Pradesh, India.

Biology: It is litter dwelling and remains within top 5 cm layer of sandy loam soil with 7-8 pH and high organic matter (> 10%). It also inhabits kitchen waste, compost pits near cow sheds, in roofs of thatched houses, under stones and amongst roots of mosses and ferns growing on rocks.

Activity is restricted to 2-3 months from late June to October. Maximum population density of 600/m² has been observed around a compost pit. Diapause during unfavourable period is passed in immature stage. Cocoons are small, round with ornamentations, initially pale lemon gradually changing to greenish-reddish-brown. Incubation period is about 12-18 days. Usually a single worm hatches from each cocoon. Clitellum degenerates during the post-reproductive period. Activity may continue throughout the year where adequate moisture (15-20 g%) and organic matter are available. Casts are deposited on the soil surface in the form of small towers with central openings.
76. Lennogaster trichochaetus (Stephenson)
(Figs. 301-306)

Length 32-45 mm, diameter 1.75-2.25 mm, 103-128 segments. Prostomium proepilobic, tongue closed. First dorsal pore 12/13. Clitellum xiii-½xvii. Setae $aa = 2$ $ab = 0.9$ $bc = 1.5$ $cd = 0.15$ dd on xii, $aa = 2.8$ $ab = 1.2$ $bc = 1.7$ $cd = 0.16$ dd on xxiv, a and b on viii and ix copulatory, being surrounded by epidermal tumescences. Male genital field somewhat rectangular, longitudinally placed, extending from 16/17 to 19/20. Male pores minute, in seminal grooves on xviii, at b; prostatic pores minute, at the ends of seminal grooves on the setal arcs of xvii and xix, at or a little lateral to a; seminal grooves bracket-shaped, extending from the setal arc of xvii to the setal arc of xix, at ab. Spermathecal pores minute, on circular tumescent areas, on or just posterior to the setal arcs of viii and ix, at ab. Genital markings absent.

Septa 4/5-7/8 delicate, 8/9/10 muscular. Typhlosole in xix-xx to lxxvi-lxxx. Holandric, testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Prostates 2 pairs, in xvii and xix, extending posteriorly to a few segments. Penial setae slightly undulating, ornamented with a few longitudinal rows of triangular teeth, tip widened, membranous, margins curved, rather spoon to scoop-shaped, 1.94-1.99 mm long, 5-7 μm diameter. Spermathecae 7 pairs, in viii-ix, each with a digitiform, dorsally directed, ental diverticulum, duct longer than ampulla. Copulatory setae ornamented with short transverse serrated ridges, tip slightly claw-shaped, 0.26-0.35 mm long, 9-11 μm diameter.

Type locality: Palchar, Maharashtra, India.

Type specimens: In ZSIC, W 277/1; BMNH, 1925: 5: 12: 111.
Figs. 301-306. Lennogaster trichochaetus (Stephenson). 301. spermathecal pore region, 302. genital region, 303. penial seta, 304. enlarged tip of penial seta, 305. copulatory seta, 306. spermatheca.

Distribution: India: Maharashtra: Palchar, Bombay, Andheri; Goa: Marmugoa.

Biology: Found in soil around roots of grasses in a cultivated field.

77. Lennogaster yeicus (Stephenson)
(Figs. 307-311)

Length 25-45 mm, diameter 1.25-2 mm, 91-120 segments. Prostomium proepilobic, tongue closed. First dorsal pore 11/12. Clitellum xiii-xvii. Setae\(\text{aa} = 2.1-2.3\) \(\text{ab} = 1-1.1\) \(\text{bc} = 1.1-1.4\) \(\text{cd} = 0.14-0.17\) \(\text{dd} = 0.16\) on xii, \(\text{aa} = 2.6-2.7\) \(\text{ab} = 1.1-1.3\) \(\text{bc} = 1.4-1.5\) \(\text{cd} = 0.16\) on xxiv, no setae copulatory. Male genital field slightly raised, extending from 16/17 to 19/20. Male pores minute, in seminal grooves on xviii, at \(b\); prostatic pores minute, at the angles of seminal grooves on the setal arcs of xvii and xix, at \(b\); seminal grooves bracket-shaped, extending from the setal arc of xvii to the setal arc of xix, at \(b\). Spermathecal pores minute, surrounded by circular tumescences, on or slightly anterior to the setal arc of viii and in or just posterior to the intersegmental furrow 8/9, at about mid \(ab\). Genital markings absent.

Septa 4/5/6 slightly muscular, 6/7 delicate, 7/8-13/14 muscular. Typhlosole in xvii-xviii to lxiii-lxxviii. Proandric but also with male funnels in xi, testes and male funnels of x in paired sacs; seminal vesicles absent. Prostates 2 pairs, in xvii and xix. Penial setae unornamented or ornamented with slight marginal serrations, tip widened or bifid with a web between the prongs or tapering or truncate, 0.3-0.46 mm long, 3-5 \(\mu\) diameter. Spermathecae 2 pairs, in viii-ix, each with a digitiform or slightly
protuberant, ventrally directed ental diverticulum, duct longer than ampulla.

Type locality: Chaungson, Amherst district, Burma.

Type specimens: In BMNH, 1930: 12: 27: 36-7.

Outside India: Burma.

Genus 15. **Mallehulla** Julka and Rao, 1982

Diagnosis: Perichaetine. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Oesophagus with a single gizzard, in v and lacking discrete calciferous glands but with calciferous lamellae, in xiv-xv; supra-intestinal glands absent; typhlosole in the form of a low ridge. Micromeronephridia astomate; paired enteronephric tufts in iv; numerous, exonephric on the body wall in iii and posteriad segments. Paired, stomate, exonephric megameronephridia in vi and posteriad segments.

Type species: *Mallehulla indica* Julka and Rao, 1982.

Description: As for the only species, *indica*.

Distribution: Karnataka, S. India.

78. **Mallehulla indica** Julka and Rao

(Figs. 312-316)

Length 47-133 mm, diameter 2-4 mm, 73-112 segments.
Figs. 312-316. *Mallehulla indica* Julka and Rao. 312. spermatheca, 313. copulatory seta, 314. spermathecal pore region, 315. genital region, 316. penial seta.
Prostomium epilobic or combined pro/epilobic, tongue open or closed. First dorsal pore 4/5. Clitellum annular, ½xiii-½xvi. Setae perichaetine, \(aa = 1.5-2.2 \) \(ab = 1.8-2.4 \) \(bc = 2-3.2 \) \(yz = 1-1.6 \) zz on xii, \(aa = 2-2.7 \) \(ab = 2-2.7 \) \(bc = 2.5-3.7 \) \(yz = 1.2-1.9 \) zz on xx, 12-18 on ii, 23-28 on vii, 34-42 on xx, \(a, b \) and sometimes \(c \) ornamented and enlarged throughout the body, on vii and viii copulatory, being surrounded by circular tumescences. Male pores paired, minute, in seminal grooves, on xviii, at \(bc, 0.16-0.19 \) body circumference apart; prostatic pores paired, minute, at the ends of seminal grooves, on xvii and xix, at \(bc; \) seminal grooves straight or slightly concave, between setal arcs of xvii and xix. Female pore single and median, presetal, on xiv. Spermathecal pores paired, small transverse slits, in 7/8/9, at \(bc, 0.10-0.13 \) body circumference apart. Genital markings absent. Nephridiopores not recognized.

Septa 4/5, 7/8-12/13 slightly muscular, 5/6/7 delicate. Gizzard large, in v. Oesophagus enlarged and with calciferous lamellae, in xiv-xv; discrete calciferous glands absent. Intestine begins in xvii; caeca and supra-intestinal glands absent; typhlosole in the form of a low ridge, xxviii-xxx to xliv-liv. Dorsal vessel single and complete; supra-oesophageal vessel single, viii-xiii; extra-oesophageal vessels paired, v-xii; latero-parietal vessels paired, joining the supra-oesophageal vessel in xiii; subneural vessel absent; lateral hearts originating from the supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xiii. Holandric, testes and male funnels in unpaired ventral sacs, in x and xi; seminal vesicles racemose, in ix and xii, pseudoseminal vesicles rudimentary, in xiii. Prostates paired, in xvii and xix, extending posteriorly to 2 segments. Penial setae ornamented, 3.46-6.51 mm long, 35-58 \(\mu \) diameter. Spermathecae paired, in viii and ix, each with a small ental diverticulum. Copulatory setae ornamented, 1.20-1.42 mm long, 38-50 \(\mu \) diameter. Ovisacs paired, in xiv. Micromeronephridia astomate; paired, ? exonephric tufts in iii, larger, paired enteronephric tufts in iv, numerous, exonephric on the body wall in iii and posteriad segments; paired, stomate, exonephric megamero-
nephridia in vi and posteriad segments, funnels close to the nerve cord, loops extending laterally.

Type locality: Moodabidri, Karnataka, India.

Type specimens: In ZSIC: Holotype, An 1507/1; 0-0-2 paratypes, An 1508/1. In HAZFS, ZSI, Solan: 0-0-4 paratypes, An 323.

Biology: It inhabits laterite soil with pH 6 under decaying leaves of *Mangifera indica* and *Colocasia* sp. near paddy and turmeric cultivation.

Diagnosis: Lumbricine. Male pores paired, on xviii (in seminal grooves ?); prostatic pores paired (at the ends of seminal grooves ?), on xvii and xix. Oesophagus with 2 gizzards in vii-viii (?) and one or 2 pairs of discrete, extramural calciferous glands in region of xiv-xv (?); supra-intestinal glands and typhlosole absent. Micro-and megameronephridia (?).

Type species: *Benhamia aitkeni* Fedarb, 1898.

Description: As for the only species, *aitkeni*.

Distribution: Kerala, S. India.
Remarks Gates (1962b) re-examined the sectioned type of *O. aitkeni* in the British Museum, and defined the genus *Octochaetoides* as bigiceriate. Its relationships with other octochaetid genera are not clear for lack of information on the excretory system, exact location of gizzards and calciferous glands, and other characteristics.

79. *Octochaetoides aitkeni* (Fedarb)

Length 119 mm, diameter 3 mm, 180 segments. Prostomium (?). First dorsal pore 19/20 or 18/19 (?). Clitellum xiii-xvii. Setae $aa = 2 ab$, slightly greater than bc, which is equal to cd. Male pores paired, minute and close together (in seminal grooves ?), on xviii; prostatic pores paired (at the ends of seminal grooves ?), on xvii and xix. Female pore single, on xiv. Spermathecal pores paired, small, close together, in 7/8/9. Genital markings absent.

Gizzards 2, in vii-viii (?). Calciferous glands discrete, extramural, in region of xiv-xv (?), 2 pairs or one pair and then each gland bilobed. Intestine begins in xvi; intestinal caeca, supra-intestinal glands and typhlosole absent. Last pair of hearts in xii. Holandric, testes and male funnels in x and xi; seminal vesicles in ix and xii (?). Prostates paired, in xvii and xix. Penial setae smooth, with nodulus at about one third from the distal end, three times as long as the normal setae. Spermathecae paired, in viii and ix, each with a tubular diverticulum arising from about the middle of the duct.

Type locality: Travancore, Kerala, S. India.
Type specimens: In BMNH, holotype, longitudinal sections on slides, 1904. 10. 20. 244-249.

Distribution: So far known from the type locality.

Diagnosis: Lumbricine. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Oesophagus with a single gizzard in vi or in a space between septa 4/5 and 7/8 or 8/9 or 9/10, and one pair of discrete extramural asymmetrical calciferous glands opening into the gut close to the attachment of septum 15/16; supra-intestinal glands absent; typhlosole lamelliform, bifid ventrally. Micromeronephridia astomatous; paired, enteronephric tufts in iv; several, exonephric on the body wall in v and posteriad segments, slightly enlarged and stomate with preseptal and intrasegmental funnels in caudal segments. Megameronephridia absent.

Type species: Octochaetus surensis Michaelsen, 1910.

Description: Setae lumbricine throughout the body. Clitellum annular. Male pores paired, in seminal grooves, on the setal arc of xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Female pores paired, within a lines, sometimes unpaired and median, on xiv. Spermathecal pores paired. Nephridiopores not recognized.

Oesophageal gizzard single, in vi or in a space where septa are absent. Calciferous glands one pair, discrete, extramural, shortly and slenderly stalked, asymmetrical, opening into oesophagus close to the attachment of septum 15/16, one gland in xv and the other in xvi. Intestinal caeca and supra-intestinal glands absent; typhlosole
lamelliform, ventrally bifid. Dorsal vessel single and complete; supra-oesophageal vessel single, viii-xiii; extra-oesophageal vessels paired from v and opening into supra-oesophageal in viii; latero-parietal vessels paired, each joining the extra-oesophageal vessel in xiii, subneural vessel absent; lateral hearts originating from supra-oesophageal with delicate connectives to the dorsal vessel in x-xii, xiii. Holandric or metandric. Prostates paired, in xvii and xix, extending posteriorly to a few segments. Penial setae present. Spermathecae paired, in viii and ix, diverticulate. Ovisacs paired in xiv. Micromeronephridia astomate; large enteronephric tufts in iv; several biramous, exonephric on the body wall in v and posterior segments, slightly enlarged and arranged in two transverse rows in each of caudal segments, the anterior row with preseptal funnels and posterior row with intrasegmental funnels. Megameronephridia absent.

Distribution: Peninsular India, but extended to other parts of the country, Pakistan, Nepal, Burma, Malaya Peninsula and Philippines presumably due to transportation of the type species and *O. beatrix*.

Remarks: Gates (1962b) characterized *Octochaetona* in having astomate micromeronephridia throughout the body. A careful examination of the excretory system in its 11 species, including the type species *O. surensis* (Michaelsen, 1910), shows that micromeronephridia in the caudal segments are slightly enlarged and stomate with preseptal and intrasegmental funnels; median megameronephridia being absent.

Key to the species of Octochaetona

1. Spermathecal pores in 7/8/9
 - 2
 - Spermathecal pores on viii and ix
 - 6

2. Seminal vesicles in xii
 - 3
 - 0. excavata
 - Seminal vesicles in ix and xii

3. Intestinal begins in xvii; copulatory setae on viii
 O. barnesi

Intestine begins in xviii; copulatory setae on viii and one of the adjacent segments
 4

4. Copulatory setae on vii and viii
 O. serrata

Copulatory setae on viii and ix
 5

5. Septum 7/8 present, muscular
 O. prashadi

Septum 7/8 absent
 O. pattoni

6. Holandric
 O. beatrix

Metandric

7. Seminal vesicles 2 pairs, in ix and xii, or xi and xii
 O. compta

Seminal vesicles 3 pairs, in ix, xi and xii

8. Seminal vesicles in ix and xii
 9

Seminal vesicles in xi and xii
 13

9. Last pair of hearts in xii
 10

Last pair of hearts in xiii
 11

10. Copulatory setae on viii and ix; septum 7/8 present muscular
 O. paliensis

Copulatory setae on viii; septum 7/8 absent
 O. barkudensis

11. Spermathecal pores just posterior to 7/8 and 8/9; intestine begins in xviii
 O. albida

Spermathecal pores on or close to setal arcs of viii and ix; intestine begins in xvii
 12

12. Testes and male funnels free; septum 7/8 present, muscular
 O. philotti

Testes and male funnels enclosed in sacs; septum 7/8 absent
 O. surensis

13. Copulatory setae on viii and ix
 O. parva

Copulatory setae absent
 14

14. Unpaired and median genital markings on xiii
 O. maindroni

Unpaired and median genital markings on some of 16/17-19/20, xx-xxv
 O. thurstoni
80. Octochaetona albida (Gates)
(Figs. 317-321)

Length 53-96 mm, diameter 3-5 mm, 154-185 segments. Prostomium epilobic, tongue open, sometimes closed. First dorsal pore 12/13. Clitellum xiii-xvii. Setae $aa = 3-3.7$ $ab = 1.2-1.5$ $bc = 2-2.6$ $cd = 0.2$ dd on xii, $aa = 4.4-5$ $ab = 1.2-1.7$ $bc = 3-3.1$ $cd = 0.22$ dd on xiv, a, b on viii and ix, sometimes on vii and x, copulatory being surrounded by oval to spindle-shaped tumescences. Male genital field indistinct. Male pores minute, at b; prostatic pores minute, at or slightly lateral to b; seminal grooves almost straight or slightly concave between the setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute, presetal, a little posterior to intersegmental furrows, on viii and ix, slightly lateral to b. Genital markings oval to almost circular; paired, on 15/16/17, sometimes on 14/15, at aa, occasionally reaching laterally to bc (one of the pair may sometimes be absent); unpaired and median but usually with a pair of central areas, on 19/20-24/25, reaching laterally to a or b or well into bc.

Septa 4/5, 8/9-11/12 muscular, 5/6/7 delicate, 7/8 slightly muscular. Gizzard in vi. Intestine begins in xviii, typhlosole in xxiii-xxv to cxxv. Last pair of hearts in xiii. Holandric, testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Penial setae ornamented with 13-16 irregularly interrupted circles of fine spines, tip slightly flattened and hollowed into a scoop-shape, 0.82-0.94 mm long, 12-14 μ diameter. Each spermatheca with a rather fan-shaped, shortly stalked, ectal diverticulum, duct shorter than ampulla. Copulatory setae ornamented with gouges or excavations, tip bluntly pointed, 0.55-0.62 mm long, 20-25 μ diameter. Genital marking glands absent.

Type locality: Kurnool, Andhra Pradesh, India.
Type specimens: In ZSIC, W 3660/1.

Material examined: 0-0-9, syntypes, W 3660/1, in ZSIC.

Distribution: So far known from the type locality.

81. *Octochaetona barkudensis* (Stephenson)
(Figs. 322-323)

Figs. 322-323. Octochaetona barkudensis (Stephenson). 322. genital region, 323. spermatheca.
Length 40-91 mm, diameter 1.5-3 mm, 72-149 segments. Prostomium epilobic, tongue open. First dorsal pore 12/13, sometimes 11/12. Clitellum xiii-xvi. Setae $aa = 2.9$ $ab = bc = 1.4$ $cd = 0.22$ dd on xii, $aa = 2.7$ $ab = 1.8$ $cd = 0.26$ dd on xxiv, a, b on viii copulatory being surrounded by epidermal tumescences. Male genital field slightly tumescent between 16/17 and 19/20, extending laterally into mid bc. Male pores minute, just lateral to b; prostatic pores minute, at or slightly median to b; seminal grooves almost straight or slightly concave between setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute, on presetal annulus of viii and ix, at ab. Genital markings oval to circular; paired, presetal on xvi, sometimes on xv, xviii and xix, at ab; unpaired and median, presetal, sometimes on xx-xxix, at aa.

Septa 4/5, 8/9-11/12 muscular, 5/6/7/8 absent. Gizzard in a space between septa 4/5 and 8/9. Intestine begins in xvii; typhlosole in xxii-xxiii to xcvi-xcix. Last pair of hearts in xii. Holandric, testes and male funnels free, in x and xi; seminal vesicles acinous, in ix and xii. Penial setae ornamented with large spines, ectal end sinuous, tip pointed, 0.58 mm long, 10 μ diameter. Each spermatheca with a shortly stalked, distally broadened, ental diverticulum, duct shorter than ampulla. Copulatory setae ornamented with marginal serrations, tip claw-shaped, 0.52 mm long, 17 μ diameter. Genital marking glands absent.

Type locality: Barkuda Island, Chilka Lake, Orissa, India.

Type specimens: In ZSIC, ZEV 6575/7; BMNH, 1933: 2: 16: 4-5.

Material examined: 0-1-1, syntypes, ZEV 6575/7, in ZSIC.

82. _Octochaetona barnesi_ (Stephenson)

Length 75 mm, diameter 3.5 mm, 201 segments. Prostomium epilobic, tongue open. First dorsal pore 12/13. Clitellum xiii-xvii. Setae \(aa = 3.5 \ ab = 0.9 \ bc = 1.4 \ cd = 0.12 \ dd \) on xii, \(aa = 4.3 \ ab = 1.4 \ bc = 2.6 \ cd = 0.16 \ dd \) on xxiv, \(a,b \), on viii copulatory being surrounded by epidermal tumescences. Male genital field depressed on posterior portion of xvii and anterior portion of xix. Male pores minute, at \(b \); prostatic pores minute, at \(a \); seminal grooves concave between setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute, in 7/8/9, at \(a \). Genital markings usually absent; when present, pa: ːd, oval, postsetal on ix, slightly lateral to \(b \), on 14/15, at \(ab \).

Septa 4/5, 8/9-11/12 muscular, 5/6/7/8 absent. Gizzard between septa 4/5 and 8/9. Intestine begins in xvii; typhlosole in (?). Last pair of hearts in xiii. Holandric, testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Penial setae ornamented with circles of fine spines, ectal end flattened and slightly hollowed, 1.4 mm long, 24 µ diameter. Each spermatheca with a cylindrical ental diverticulum, duct shorter than ampulla. Copulatory setae ornamented with semi-circular depressions with sharp margins, tip claw-shaped, 0.8 mm long, 20 µ diameter.

Type locality: Horsleykonda, Chitoor district, Andhra Pradesh, India.

Type specimens: In BMNH, 1933: 2: 23: 478-480.

Distribution: India: Andhra Pradesh: Horsleykonda; Tamil Nadu: Vandolre, Madras.

83. *Octochaetona beatrix* (Beddard)

(Figs. 324-328)

Length 40-134 mm, diameter 2-5 mm, 133-197 segments. Prostomium epilobic, tongue closed. First dorsal pore 12/13, sometimes 11/12. Clitellum xiii-xvii, xviii. Setae $aa = 2.3 \pm 2.3$, $ab = 0.7-0.8$, $bc = 1.1-1.3$, $cd = 0.09-0.1$, dd on xii, $aa = 2.3-2.7$, $ab = 0.8-0.9$, $bc = 1.4-1.5$, $cd = 0.11$, dd on xxiv, a, b on viii and ix slightly sigmoid and enlarged. Male genital field slightly depressed. Male pores minute, at or just median to a; prostatic pores minute, median to a; seminal grooves concave between setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute, on or slightly anterior to the setal arcs of viii and ix, median to a. Discrete genital markings absent, but paired oval to circular slightly thickened areas present, lateral to seminal grooves, on xviii and xix.
FIGS. 324-328. *Octochaetona beatrix* (Beddard). 324. spermathecal pore region, 325. spermatheca, 326. penial seta, 327. seta a on viii, 328. genital region.
Septa 4/5, 8/9-11/12 muscular, 5/6/7/8 absent. Gizzard between septa 4/5 and 8/9. Intestine begins in xvii; typhlosole in xxv to civ-cxii. Last pair of hearts in xiii. Metandric, testes and male funnels enclosed in a sub-oesophageal, U-shaped sac in xi, male funnels present in x; seminal vesicles small, in xii. Penial setae ornamented with sparse triangular teeth, tip pointed, 0.5-0.85 mm long, 15-20 μ diameter. Each sphermatheca with a spheroidal, shortly pyriform, oval or flattened and shelf-like, shortly stalked ental diverticulum. Setae a, b on viii and ix ornamented with a few scattered excavations, sigmoid, 0.29-0.32 mm long, 30-35 μ diameter.

Type locality: Calcutta, West Bengal, India.

Outside India: Pakistan, Nepal, Burma, Malay Peninsula, Philippines.

Biology: It inhabits sandy loam and clay loam soils with low organic matter, in lawns, grasslands, in flower pots and on the edges of roadside ditches. Maximum population density of 300/m² was recorded in a grassland in Orissa. It undergoes diapause during
periods of low soil moisture and high soil temperature. However, activity may be continued throughout the year in swampy habitats. Cocoons are round and thin-walled; incubation period is about 3-4 weeks at 25°C (± 3°C) soil temperature and 15° g% (± 2 g%) soil moisture. Usually one (rarely two) young worm hatches from each cocoon. Reproduction is biparental. Copulation and feeding take place beneath the soil surface.

84. Octochaetona compta (Gates)
(Figs. 329-333)

Length 70-150 mm, diameter 3-7 mm, 131-176 segments. Prostomium epilobic, tongue closed. First dorsal pore 12/13. Clitellum xiii-xvii. Setae $aa = 2.5-3.2$ $ab = 1.1-1.3$ $bc = 1.9-2.1$ $cd = 0.14$ dd on xii, $aa = 3.2-4$ $ab = 1.1-1.3$ $bc = 1.9-2$ $cd = 0.17$ dd on xxiv, a, b on viii sometimes copulatory being surrounded by tumescences. Male genital field transversely oval between 16/17 and 19/20. Male pores minute, slightly median to b; prostatic pores minute, just median to b; seminal grooves nearly straight or irregularly biconcave with indentations on the setal arc of xviii, between the setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute, slightly anterior to the setal arcs of viii and ix, at ab, sometimes at a or b. Genital markings oval, unpaired and median, presetal, usually on xiii, sometimes on xv, xx-xxv, at aa or bb or reaching laterally well into bc.

Septa 4/5, 8/9-11/12 muscular, 7/8 delicate to slightly muscular, 5/6/7 absent. Gizzard between septa 4/5 and 7/8. Intestine begins in xvii; typhlosole in xxiv-xxv to cxiv-cxviii. Last pair of hearts in xiii. Holandric, testes and male funnels free, in x and xi; seminal vesicles in ix, xi and xii. Penial setae ornamented with 15-30 circles of small teeth, tip sharp or rounded, narrowed or widened, flattened, 0.74-0.85 mm long, 14-16 μ diameter. Each spermatheca with a dorso-ventrally flattened and circular disc-like
OCTOCHAETIDAE : GENUS OCTOCHAETONA

ectal diverticulum. Setae a, b on viii and ix sigmoid and ornamented with short transverse serrate lines, those on viii sometimes copulatory and ornamented with longitudinal rows of fairly stout and long spines.

Type locality : Nellore, Andhra Pradesh, India.
Type specimens: In ZSIC, W 3661/1.

Material examined: 0-2-13, syntypes, W 3661/1, in ZSIC.

85. Octochaetona excavata (Stephenson)

(Figs. 334-337)

Length 46-70 mm, diameter 2-3 mm, 150 segments. Prostomial epilobic, tongue open. First dorsal pore 12/13. Clitellum xiii-xvii. Setae $aa = 3.5 \ ab = bc = 1.4 \ cd$ anterior to clitellum, $aa = 2.5 \ ab = 1.1bc = 1.9 \ cd$ posterior to genital region, a, b on viii copulatory. Male genital field circular to rather hexagonal, depressed with a well marked lip, extending from xvii to $\frac{1}{2}xx$. Male pores minute, at b; prostatic pores minute, at a; seminal grooves concave between the setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute, in 7/8/9, at a. Genital markings absent.

Septa 4/5, 10/11-12/13 muscular, 5/6-9/10 absent. Gizzard between septa 4/5 and 10/11. Intestine begins in (?), typhlosole (?). Last pair of hearts in xiii. Holandric, testes and male funnels in unpaired U-shaped sacs, in x and xi; seminal vesicles in xii. Penial setae ornamented with c. 5 irregular rings of small spines, tip flattened, 1.27 mm long, 16 μ diameter. Each spermatheca with a short, stumpy, slightly curved ental diverticulum, duct shorter than ampulla. Copulatory setae ornamented with short irregular rows of teeth forming incomplete circles, tip claw-shaped, 0.7 mm long, 16 μ diameter.

Type locality: Horsleykonda, Chitoor district, Andhra Pradesh, India.
Figs. 334-337. *Octochaetona excavata* (Stephenson). 334. spermatheca, 335. genital region, 336, 337. penial setae (all redrawn, after Stephenson 1925).

Type specimens: In BMNH, 1933: 2; 23: 481-3.

Distribution: So far known from the type locality.

86. *Octochaetona maindroni* (Michaelsen)

Length 50-180 mm, diameter 2.5-5 mm, c. 130-198 segments. Prostomium epilobic. First dorsal pore 12/13. Clitellum xiii-xvii. Setae $aa = 2.5 \ ab = 1.7 \ cd$ on (?), a, b on viii and ix sigmoid. Male genital field depressed. Male pores minute, median to b; prostatic pores minute, at b; seminal grooves convex between setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute, anterior to setal arcs of vii and ix, lateral to a. Genital markings unpaired and median, postsetal on xiii, reaching laterally into bc, sometimes on xviii between seminal grooves.

Septa 4/5, 7/8-13/14 muscular, 5/6/7 absent (?). Gizzard anterior to the septum 7/8 (between septa 4/5 and 7/8). Intestine begins in (?), typhlosole (?). Last pair of hearts in xiii. Holandric, testes and male funnels free, in x and xi; seminal vesicles in xi and xii. Penial setae ornamented with irregular transverse rows of large rather slender teeth, ectal end flattened, tip pointed, 1.2 mm long, 10 μ diameter. Each spermatheca with a shortly stalked, multiloculate ectal diverticulum. Genital marking glands (?).

Type locality: Gingi, S. Arcot district, Tamil Nadu, India.

Type specimens: Typus amissus.

87. *Octochaetona paliensis* (Stephenson)
(Figs. 338-342)

Length 35-92 mm, diameter 2-3.5 mm, 119-182 segments. Prostomium epilobic, tongue open. First dorsal pore 12/13. Clitellum xiii-xvii. Setae \(aa = 2.7-4.3 \) \(ab = 0.9-1.1 \) \(bc = 1.4-2.5 \) \(cd = 0.15-0.16 \) \(dd \) on xii, \(aa = 3.3-3.4 \) \(ab = 1.2-1.3 \) \(bc = 1.9-2.5 \) \(cd = 0.16-0.19 \) \(dd \) on xxiv, \(a, b \) on viii and ix copulatory being surrounded by tumescences. Male genital field depressed, deeply so on xvii and xix. Male pores minute, at or slightly lateral to \(a \) or \(b \); prostatic pores minute, at \(b \); seminal grooves straight or convex between the setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute, presetal on viii and ix, close to setal arcs, at \(ab \). Genital markings, when present, oval, unpaired and median or 19/20-23/24, at \(aa \) or \(bb \), paired on xviii, at \(bc \).

Septa 4/5, 7/8-11/12 muscular, 5/6/7 absent. Gizzard between septa 4/5 and 7/8. Intestine begins in xvii, typhlosole xxii-xxiii to lxxxix-xcviii. Last pair of hearts in xii. Holandric, testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Penial setae ornamented with circles of fine spines, tip bluntly pointed, 0.55-0.73 mm long, 13-17 \(\mu \) diameter. Each spermatheca with a somewhat clavate ental diverticulum, duct shorter than ampulla. Copulatory setae ornamented with transverse rows of serrated ridges, tip claw-shaped, 0.51-0.82 mm long, 15-23 \(\mu \) diameter. Genital marking glands absent.

Type locality: Palia, Madhya Pradesh, India.

Remarks: An examination of 6 syntypes of *O. phillotti* (ZEV 2853/7) in the Zoological Survey of India, Calcutta shows that the last pair of hearts are in xii and do not belong to *O. phillotti* which is characterised by the location of last pair of hearts in xiii. Possibly, Michaelsen (1907) mistook the coils of dorsal blood vessel in xiii for the last pair of hearts in these syntypes.

88. *Octochaetona parva* (Gates)
(Figs. 343-344)

Length 70-100 mm, diameter 3-4 mm, 80 segments. Prostomium epilobic, tongue open. First dorsal pore 12/13. Clitellum xiii-xvi, xvii. Male genital field usually indistinct, slightly depressed between seminal grooves. Male pores minute, slightly median to b; prostatic pores minute, at b; seminal grooves almost straight or slightly concave between setal arcs of xvii and xix. Female pores paired. Spermathecal pores small, transverse or diagonal or sometimes longitudinal, straight or crescent slits, anterior to setal arcs on viii and ix, at or close to a or b. Genital markings oval, unpaired and median, on 20/21/22, sometimes on 19/20, postsetal on xxi, at aa.

Figs. 343-344. Octochaetona parva (Gates). 343. spermathecal pore region, 344. genital region (both drawn from a syntype).
and xii. Penial setae ornamented with circles of fine spines, tip sharply pointed to bluntly rounded, 0.96-1.1 mm long, 20-25 μ diameter. Each spermatheca with a flattened disc-like ectal diverticulum, duct shorter than ampulla. Copulatory setae ornamented with longitudinal rows of fairly stout and long spines, tip more or less claw-shaped, 0.88-1.2 mm long, 24-30 μ diameter. Genital marking glands (?).

Type locality: Nellore, Andhra Pradesh, India.

Type specimens: In ZSIC, W 3662/1.

Material examined: 0-0-1, syntype, W 3662/1, ZSIC.

89. Octochaetona pattoni (Michaelsen)
(Figs. 345-349)

(excluding specimens with copulatory setae on vii and viii, genital markings on postclitellar segments).

1923. Octochaetus (Octochaetoides) pattoni (in part), Stephenson, Fauna Br.
India, Oligochaeta: 388 (exclusion as above).

Length 65-113 mm, diameter 2.5-4 mm, 141-157 segments. Prostomium epilobic, tongue open. First dorsal pore 12/13. Clitellum ½xiii-xvi, ½xvii. Setae \(aa = 2.2-2.7 \) \(ab = bc = 1.1-1.4 \) \(cd = 0.11 \) \(dd \) on xii, \(aa = 3-3.7 \) \(ab = 1.1-1.2 \) \(bc = 2.1-2.5 \) \(cd = 0.13 \) \(dd \) on xxiv, \(a, b \) on viii and ix copulatory being surrounded by tumescences. Male genital field longitudinally oval and depressed. Male and prostatic pores minute, at \(a \); seminal grooves straight between setal arcs of xvii and xix. Female pores paired. Spermathecal pores small, transverse slits, in 7/8/9, at \(a \). Genital markings oval, paired, postsetal on xi, on 14/15, at \(aa \) or \(ac \).

Holandric, testes and male funnels enclosed in sacs (\?), in x and xi, seminal vesicles in ix and xii. Penial setae ornamented with rings of small to large teeth, ectal end expanded with sharp lateral and distal serrated edges, 0.72-1.08 mm long, 15-19 μ diameter. Each spermatheca with a shortly stalked ental diverticulum. Copulatory setae ornamented with 12-13 transverse and concave ridges, projecting into spines on the margins of the setae, tip bluntly rounded, on viii 0.27-0.59 mm long, 22-26 μ diameter, on ix 0.19-0.2 mm long, 17-19 μ diameter. Genital marking glands absent.

Type locality: Madras, Tamil Nadu, India.

Type specimens: In ZSIC, ZEV 2856-2862/7; BMNH, 1925: 5: 12: 124; MNHU, 7336; ZMUH, 7159.

Material examined: ZSIC - *O. pattoni* 0-2-0 Red Hills, Madras, coll. E. Thurston, syntypes, ZEV 2857/7; 1-1-0 People’s Park, Madras, coll. E. Thurston, syntypes, ZEV 2858/7; 1-3-1 Pursevaukann, Madras, coll. E. Thurston, syntypes, ZEV 2856/7; 0-1-0 Kilpauk, Madras, coll. E. Thurston, syntypes, ZEV 2860/7; 0-3-0 Egmore Spur Tank, Madras, coll. E. Thurston, syntypes, ZEV 2861/7; 0-0-1 Mackay’s Garden, Madras City, coll. Capt. W.S. Patton, syntypes, ZEV 2862/7.

Distribution: So far known from the type locality.

Remarks: The type material of *O. pattoni* (Michaelsen, 1907) in Zoological Survey of India comprises 7 lots (ZEV 2856-2862/7). An examination of these shows that 4 lots (ZEV 2856-2857/7, 2859/7, 2860/7) contain specimens of both *O. pattoni* and *O. serrata* (Gates, 1945).

90. Octochaetona philotti (Michaelsen)

(Figs. 350-354)

Length 93-128 mm, diameter 2-5.5 mm, 157-199 segments. Prostomium epilobic, tongue open. First dorsal pore 12/13. Clitellum xiii-xvi, ⅓xvii. Setae $aa = 2.6-2.8$ $ab = 0.9-1.2$ $bc = 1.6-1.9$ $cd = 0.1-0.12$ dd on xii, $aa = 3-3.9$ $ab = 1.1-1.3$ $bc = 1.9-2.4$ $cd = 0.18-0.19$ dd on xxiv, a, b on viii and ix copulatory being surrounded by tumescences. Male genital field rectangular, deeply depressed on xvii and xix; floor of depression slightly raised on xviii. Male pores minute, at a; prostatic pores minute, slightly lateral to a;
OCTOCHAETIDAE: GENUS OCTOCHAETONA 289

seminal grooves convex between setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute to small diagonal slits, presetal, on viii and ix, slightly median to b. Genital markings, when present, oval, unpaired and median depressions with 3-4 central areas, postsetal on xx, presetal on xxi, at bb, paired, postsetal, on xvii-xix, at bc.

Septa 4/5, 7/8-11/12 muscular, 5/6/7 absent. Gizzard between septa 4/5 and 7/8. Intestine begins in xvii, typhlosole in xxiv-xxv to cvii-cxix. Last pair of hearts in xiii. Holandric, testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Penial setae ornamented with circles of spines, tip bluntly pointed, 1.25-1.43 mm long, 16-19 μ diameter. Each spermatheca with a shelf-like ental diverticulum, duct shorter than ampulla. Copulatory setae ornamented with transverse serrated ridges, tip claw-shaped, 0.79-0.89 mm long, 27-32 μ diameter. Genital marking glands absent.

Type locality: Hyderabad, Andhra Pradesh, India.

Type specimens: In ZSIC, ZEV 2853/7; BMNH, 1925: 5: 12: 42; MNHU, 7343; ZMUH, 7138.

91. Octochaetona prashadi (Stephenson)

Length 51-61 mm, diameter 2.5-3.5 mm, 150-155 segments. Prostomium epilobic, tongue open. First dorsal pore 12/13. Clitellum (?). Setae aa = 3.3 ab = 1.2 bc = 2 cd = 0.14 dd on xii, aa
= 3.5 \(ab = 1.4 \) \(bc = 2.8 \) \(cd = 0.16 \) \(dd \) on xxiv, \(a, b \) on viii and ix copulatory being surrounded by tumescences. Male genital field quadrangular, deeply depressed on xvii and xix. Male pores minute; prostatic pores minute, at \(b \); seminal grooves between setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute, in 7/8/9, at or slightly median to \(b \). Genital markings absent.

Septa 4/5, 7/8-11/12 muscular, 5/6/7 absent. Gizzard between septa 4/5 and 7/8. Intestine begins in xviii, typhlosole in xxi to ciii-cv. Last pair of hearts in xiii. Holandric, testes and male funnels free, in \(x \) and \(xi \); seminal vesicles in ix and xii. Penial setae ornamented with a large number of closely set rings of spines, tip hooked and hollowed on one side, 1.5 mm long, 40 \(\mu \) diameter. Each spermatheca with a clavate ental diverticulum, duct shorter than ampulla. Copulatory setae ornamented with longitudinal rows of gouges, tip slightly claw-shaped, 0.8 mm long, 20 \(\mu \) diameter.

Type locality: Kalayan, Maharashtra, India.

Type specimens: In ZSIC, W 267/1, BMNH, 1933: 5: 25: 897-901.

Material examined: In ZSIC: 0-1-0 Kalayan, coll. B. Prashad, syntype, W 267/1; 0-2-0 Sakarwari, coll. B. Prashad, W 268/1.

Distribution: India: Maharashtra: Kalayan, Sakarwari on way to Mahabaleshwar.

92. *Octochaetona serrata* (Gates)
(Figs. 355-359)

(excluding specimens with copulatory setae on viii and ix, genital markings on xi and 14/15).

Length 80-150 mm, diameter 3-4 mm, 161-188 segments. Prostomium epilobic, tongue closed, sometimes open. First dorsal
pore 12/13. Clitellum xiii, ½xiii-xvi. Setae \(aa = 2.2-2.7 \ ab = bc = 1.9-2.3 \ cd = 0.16 \ dd \) on xii, \(aa = 2.9-4 \ ab = bc = 2.9 \ cd = 0.17 \ dd \) on xxiv, \(a, b \) on vii and viii copulatory being surrounded by tumescences. Male genital field depressed, rectangular. Male pores minute, at or just lateral to \(a \); prostatic pores minute, slightly lateral to \(a \); seminal grooves almost straight between setal arcs of xvii and xix. Female pores paired. Spermathecal pores large transverse slits on 7/8/9, at \(a \). Genital markings oval, unpaired and median, on 21/22, sometimes on 20/21, 22/23-28/29, at \(aa \), occasionally with two central areas.

Septa 4/5, 10/11-13/14 muscular, 9/10 delicate, 5/6-8/9 absent. Gizzard between septa 4/5 and 9/10. Intestine begins in xviii, typhlosole in xviii to cii-cxviii. Last pair of hearts in xiii. Holandric, testes and male funnels in sacs (?), in x and xi; seminal vesicles in ix and xii. Penial setae ornamented with circles of triangular teeth, tip bluntly rounded, 0.97-1.09 mm long, 22-26 \(\mu \) diameter. Each spermatheca with a broadly clavate ental diverticulum. Copulatory setae ornamented with circles of fine spines, tip claw-shaped, 0.61-0.83 mm long, 19 \(\mu \) diameter. Genital marking glands absent.

Type locality: Madras, Tamil Nadu, India.

Type specimens: Typus perditus.

Material examined: In ZSIC - *O. pattoni*: 0-0-1 Madras, coll. E. Thurston, syntype, ZEV 2859/7; 1-2-0 Red Hills, Madras, coll. E. Thurston, syntypes, ZEV 2857/7; 0-3-0 Pursevaukann, Madras, coll. E. Thurston, syntypes, ZEV 2856/7; 1-2-0 Kilpauk, Madras, coll. E. Thurston, syntypes, ZEV 2860/7.

Distribution: So far known from the type locality.

93. **Octochaetona surensis** (Michaelsen)

(Figs. 360-364)

Length 60-140 mm, diameter 2.5-6 mm, 111-180 segments. Prostomium epilobic, tongue closed. First dorsal pore 12/13. Clitellum xiii-xvi, xvii. Setae \(aa = 2.7-4.3 \) \(ab = 1-1.1 \) \(bc = 1.4-2.5 \) \(cd = 0.15-0.16 \) \(dd \) on xii, \(aa = 3.3-3.4 \) \(ab = 1.2-1.3 \) \(bc = 1.9-2.5 \) \(cd = 0.16-0.19 \) \(dd \) on xxiv, \(a, b \) on viii and ix copulatory being surrounded by tumescences. Male genital field extends from xvi to xx, with deep unpaired transverse depressions, postsetal on xvii and presetal on xix. Male pores minute, median to \(b \); prostatic pores minute, at \(b \); seminal grooves convex between setal arcs of xvii and xix. Female pores paired, sometimes unpaired and median. Spermathecal pores minute, on or close to the setal arcs of viii and ix, at \(ab \). Genital markings oval, paired or unpaired and median, postsetal on some of xviii-xxii, at \(aa \) or \(bb \).

Septa 4/5, 8/9-10/11 muscular, 5/6/7/8 absent. Gizzard between septa 4/5 and 8/9. Intestine begins in xvii, typhlosole in xxii-xxiii to ci-cxv. Last pair of hearts in xiii. Holandric, testes and male funnels in cylindrical sacs, in x and xi; seminal vesicles in ix and xii. Penial setae ornamented with a few longitudinal rows of triangular teeth, tip pointed or claw-shaped, 1.2-1.8 mm long, 25-30 \(\mu \) diameter. Each spermatheca with a shortly stalked, multiloculate ental diverticulum, duct longer than ampulla. Copulatory setae ornamented with longitudinal rows of spikes or thorn-like protuberances, tip slightly claw-shaped, 0.85-1.2 mm long, 20-25 \(\mu \) diameter. Genital marking glands absent.
Type locality: Sur Lake, Puri district, Orissa, India.

Outside India: Burma.

Biology: It inhabits sandy loam and clay loam soils with comparatively low organic matter (< 5 g%) in grasslands, hillocks, peripheral parts of compost pits, non-irrigated uplands, crop fields and around roots of potted plants. O. surensis is geophagous. Copulation and feeding take place beneath soil surface at 15-30 cm depth. Activity in grasslands and pastures is restricted to June-February. Maximum population densities of 186/m² and 133/m² have been observed in ungrazed upland pasture and a grazed upland pasture respectively. Quiescence in summer is characterised by a diapause coil (Dash and Senapati, 1980; Senapati, 1980). It comprised 50% of the total earthworm population in western Orissan pastures. Population turnover was 4.2 and 3.9 in grazed and ungrazed pasture ecosystems respectively.

Reproduction is biparental. Cocoons are thin-walled and spherical; average weight 31.5 mg, length 5.34 mm, diameter 4.09 mm, diameter: length ratio 0.76; colour initially pale lemon yellow changing gradually to deep green to brownish red. Incubation period is 4 weeks at 26°C (± 3°C) soil temperature and 16 g%
(±1 g%) soil moisture; 98 days with similar soil moisture but at 20°C soil temperature. Normally one (rarely two) juvenile worm hatches from each cocoon. Peak cocoon production occurs during November. Newly hatched juveniles take about 20 months to reach the maturity. Life cycle is, however, disrupted for 3-5 months due to low soil moisture (<10 g%) and high soil temperature (>28°C) during the summer months. Clitellum degenerates during the post-reproductive period and these individuals are often prone to fungal infection (Dash et al., 1979).

O. surensis deposits casts on the soil surface in the form of globules which often fuse with each other to form large irregular pyramidal structures of about 4-5 cm height in soils with high moisture content. A population dominated with *O. surensis* has been reported to produce 47 tons of dry worm casts per acre per year.

94. **Octochaetona thurstoni** (Michaelsen)

(Figs. 365-368)

Length 130-242 mm, diameter 5-6 mm, 198-231 segments. Prostomium epilobic, tongue closed. First dorsal pore 12/13. Clitellum xiii-xvii. Setae \(aa = 2.4\) \(ab = 0.9\) \(bc = 2\) \(cd = 0.11\) \(dd\) on xii, \(aa = 3.5-4\) \(ab = 1.2-1.3\) \(bc = 3.5-4\) \(cd\) posterior to genital region, \(a, b\) on viii and ix enlarged and slightly sigmoid. Male genital field slightly depressed, extending from xvii to xix. Male pores minute, slightly median to \(a\); prostatic pores minute, at \(b\); seminal grooves convex between setal arcs of xvii and xix. Female pores paired. Spermathecal pores minute, presetal, on viii and ix, at \(ab\). Genital markings oval, cushion-like, unpaired and median, on 16/17, 17/18, 19/20 postsetal xviii, xix, presetal xxii-xxiv, sometimes xx-xxi, xxv, at \(aa\) or \(bb\).
Septa 4/5, 7/8-12/13 muscular, 5/6/7 absent. Gizzard between septa 4/5 and 7/8. Intestine begins in xviii, typhlosole in xxiv to cxxx-cxxxii. Last pair of hearts in xiii. Holandric, testes and male funnels free, in x and xi; seminal vesicles in xi and xii. Penial setae thin, hair-like, ornamented with 12-16 irregular rings of very small spines or scale-like structures, tip pointed, 1-1.15 mm long, 10-13 μm diameter. Each spermatheca with a shortly stalked, flattened, half-like multiloculate ental diverticulum, duct shorter than ampulla. Setae a, b on viii and ix slightly sigmoid, ornamented with short ridges, 0.5 mm long, 28 μm diameter. Genital marking glands absent.

Type locality: Madras, S. India.

Type specimens: In ZSIC, ZEV 2855/7; ZMUH, 7158.

Distribution: India: Tamil Nadu: Madras, Vandolre.

Genus 18. Octonochaeta gen. nov.

Diagnosis: Lumbricine. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Oesophagus with a single gizzard in a space between septa 4/5 and 7/8, and one pair of discrete extramural calciferous glands, in xvi; supra-intestinal glands absent; typhlosole lamelliform, simple. Micromeronephridia astomate, paired large enteronephric tufts in iv, several to numerous exonephric on the body wall in iii and posteriad segments, stomate with preseptal and intrasegmental funnels in caudal segments; megameronephridia absent.

Type species: Octochaetus (Octochaetoides) roseus Stephenson, 1926.

Description: As for the only species, rosea.

Distribution: Andhra Pradesh, S. India.

Etymology: Octonochaeta, gender feminine, anagram of Octochaetona.

Remarks: Gates (1962b) included Octochaetus (Octochaetoides) roseus Stephenson, 1926 in his genus Octochaetona, which was defined by the ventrally bifid typhlosole and one pair of asymmetrical calciferous glands, one gland in xv and the other in xvi, that open into oesophagus close to the attachment of septum 15/16. An examination of its syntypes in Zoological Survey of India, Calcutta (15 clitellate, “types”, Secunderabad, Deccan, coll. Prof. J.P. Mullan, W 3152/1) and other recently collected
specimens from Hyderabad (a twin-city of Secunderabad, type locality) reveals that the typhlosole is not ventrally bifid and one pair of calciferous glands are symmetrically placed in xvi, opening into oesophagus in the same segment. Because of these taxonomically important differences, Octochaetus (Octochaetoides) roseus cannot be referred to Octochaetona and any other known octochaetid genera. It is therefore assigned to Octonochaeta gen. nov., which belongs to a group of octochaetid genera with a single oesophageal gizzard, discrete extramural calciferous glands and stomate exonephric micromeronephridia in the caudal segments, and lack megameronephridia. It can be distinguished from other members of the group, Octochaetona Gates, 1962 and Chaetococctoides gen. nov. (described elsewhere in this work) by the characters as given in Table 3.

95. Octonochaeta rosea (Stephenson)
(Figs. 369-373)

Length 52, 125-300 mm, diameter 3-5 mm, 200-280 segments. Prostomium epilobic, tongue open. First dorsal pore 12/13. Clitellum annular, xiii-xvii. Setae lumbricine, \(aa = 3.2-3.3 \) \(ab = 1-1.2 \) \(bc = 1.8-2.2 \) \(cd = 0.12-0.14 \) \(dd \) on xii, \(aa = 3.4-3.8 \) \(ab = 1.1-1.4 \) \(bc = 2.1-2.8 \) \(cd = 0.13-0.14 \) \(dd \) on xxiv, \(a, b \) on viii and ix, sometimes either on left or right side on x and xi copulatory, being surrounded by tumescences. Male genital field somewhat rectangular with rounded corners, between 16/17 and 19/20, extending laterally to \(c \) or mid \(bc \), deeply depressed on xvii and xix. Male pores paired, minute, in seminal grooves, on the setal arc of xviii, just median to \(a \); prostatic pores paired, minute, at the ends of seminal grooves, on xvii and xix, at or slightly lateral to \(a \); seminal
grooves convex, between setal arcs of xvii and xix. Female pores paired, presetal, within a lines, on xiv. Spermathecal pores paired, large transverse slits, presetal, on viii and ix, at ab. Genital markings, when present, oval, unpaired and median with 1-3 central areas, presetal on xvi, postsetal on xx, on 15/16, 20/21, at aa or bb. Nephridiopores not recognized.

Septa 4/5, 7/8-11/12 muscular, 5/6/7 absent. Gizzard large, between septa 4/5 and 7/8; calciferous glands discrete, extramural, reniform, one pair, in xvi, opening into oesophagus through short stalks dorso-laterally; intestinal caeca and supra-intestinal glands absent; intestine begins in xviii; typhlosole lamelliform, simple, xviii to cxxvii-clxix. Dorsal vessel single and complete; supra-oesophageal vessel single, vii-xv; extra-oesophageal vessels paired, v-xv, a small vessel from each extra-oesophageal joins the supra-oesophageal vessel in viii; latero-parietal vessels paired, each bifurcates in xiii, one branch joins the supra-oesophageal vessel and the other passes to the extra-oesophageal vessel; subneural vessel absent; lateral hearts originating from supra-oesophageal vessel with delicate connectives to dorsal vessel, in x-xiii. Holandric testes and male funnels free, in x and xi; seminal vesicles narrowed and slightly coiled distally, in ix and xii. Prostates paired, in xvii and xix. Penial setae ornamented with short transverse rows of fine spines, tip bluntly pointed but slightly hollowed out on one side, 1.5-2 mm long, 28 μ diameter. Spermathecae paired, in viii and ix, each with a long, broad, flat, multiloculate ental diverticulum, duct shorter than ampulla. Copulatory setae ornamented with longitudinal rows of gouges with serrated margins, tip slightly claw-shaped, 1-1.1 mm long, 24 μ diameter. Ovisacs paired, in xiv. Genital marking glands absent. Micromeronephridia astomate, enteronephric paired tufts in iv, several to numerous exonephric on the body wall in iii and posteriad segments, slightly enlarged and stomate in caudal segments, arranged in two transverse rows in each segment, the anterior row with preseptal and the posterior row with intra-segmental funnels; megameronephridia absent.
Type locality: Secunderabad, Andhra Pradesh, S. India.

Remarks: A study of the type material of Octochaetoides sudarshensis Sharma and Chacko, 1970 shows no taxonomic differences from Octonochaeta rosea.

Diagnosis: Lumbricine. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix. Oesophagus with 2 gizzards, in v-vi and 4 pairs of discrete extramural calciferous glands in x-xiii; supra-intestinal glands absent; typhlosole lamelliform, simple. Micromeronephridia astomate; paired exonephric tufts in ii-ix; few, exonephric on the body wall in xii-xix and posteriad segments. Paired, stomate, exonephric megameronephridia in each of few posteriormost segments.

Type species: Eudichogaster bengalensis Michaelsen, 1910.
Description: Setae lumbricine throughout the body. Clitellum annular. Male pores paired, in seminal grooves on xviii; prostatic pores paired, at the ends of seminal grooves on xvii and xix; seminal grooves between setal arcs of xvii and xix. Female pores paired, presetal, on xiv. Spermathecal pores paired, on viii and ix. Genital markings present, sometimes absent. Nephridiopores not recognized.

Septa 4/5/6 delicate, 6/7-12/13 slightly to moderately muscular. Gizzards 2, in v-vi. Calciferous glands 4 pairs, discrete, extramural, in x-xiii, with vertical calciferous lamellae in longitudinal hemi-ellipsoid protuberances ventrally and a well-developed ventral ridge. Intestinal caeca and supra-intestinal glands absent; typhlosole simple, lamelliform. Dorsal vessel single and complete; supra-oesophageal vessel single, ix-xiii; extra-oesophageal vessels paired, x-xiii, ending posteriorly within the ventral longitudinal ridge in oesophagus; latero-parietal vessels paired, passing to the ventral surface of oesophagus in xiii; subneural vessel absent; lateral hearts originating from the supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xii. Holandric. Prostates 2 pairs, in xvii and xix. Penial setae present or absent. Spermathecae paired, in viii and ix. Copulatory setae usually present. Ovisacs paired, in xiv. Micromeronephridia astomate, exonemric paired tufts on the body wall in ii and on anterior faces of septa in iii-ix, a few on the body wall in xii and posteriad segments, arranged in 2-3 longitudinal rows on each side in post-prostatic region; paired stomate exonemric megameronephridia in caudal segments, funnels close to the nerve cord.

Distribution: Northeastern portion of the peninsular India from Jubbulpore to Orissa and West Bengal, and the Western Ghats in Maharashtra.

Key to the species of Pellogaster

1. Penial setae and genital markings present; intestine begins anterior to xviii
 2
Penial setae and genital markings absent; intestine begins in xviii.

P. simsi

2. Prostomium epilobic or pro/epilobic; setae a, b on viii and ix copulatory; genital markings present on xii.

P. isabellae

Prostomium tanylobic; no setae copulatory; genital markings absent on xii.

P. bengalensis

96. Pellogaster bengalensis (Michaelsen)
(Figs. 374-376)

Length 40-74 mm, diameter 2-3 mm, 94-140 segments. Prostomium tanylobic. First dorsal pore 10/11 or 11/12. Clitellum ⅓xiii, xiv-xvi, xvii. Setae aa = 2.6-3 ab = 1-1.2 bc = 1.6-2.1 cd = 0.26-0.27 dd on xii, aa = 2.8 ab = 1.8 bc = 1.8 cd = 0.27 dd on xxiv, a on viii and ix absent, no setae copulatory. Male pores minute, at ab; prostatic pores minute, at ab; seminal grooves straight. Female pores slightly within a lines. Spermathecal pores tiny, transverse or crescentic slits, at or close to the sites of missing setae a. Genital markings tiny, circular to oval, paired, close to the spermathecal pores on viii-ix, presetal on xvii, postsetal on xix, at ab, sometimes on the setal annuli of x, xx, posterior margin of xix, in or slightly posterior to 19/20, at aa.

Intestine begins in xvi, typhlosole xviii to lxxiii. Last pair of hearts in xii. Testes and male funnels free, in x and xi; seminal vesicles in xi and xii, those of xii extending to the dorsal line. Penial
setae ornamented with c. 15 irregular, broken circles of fine to triangular spines, tip claw-shaped or simply pointed and bluntly rounded, 0.7-1.3 mm long, 16-20 μm diameter. Each spermatheca with a sessile ental diverticulum, duct as long as or longer than ampulla.

Type locality: Tribeni, W Bengal, India.

Type specimens: In ZSIC, ZEV 3506/7; ZMUH, 3608.

Biology: It inhabits soil in cultivated fields, grasslands and on river banks. Plagiotoma pellogasteri, a ciliate protozoan has been recorded from its coelomic cavity (Mandal and Nair, 1976).

97. Pellogaster isabellae Gates
(Figs. 377-380)

Length 40-70 mm, diameter 2 mm, 141-153 segments. Prostomium pro/epilobic or epilobic, tongue open. First dorsal pore 9/10, sometimes 7/8 or 8/9. Clitellum xiii-xvii. Setae $aa = 2.8 \text{ab} = 1.1 \text{bc} = 2.3 \text{cd} = 0.27 \text{dd}$ on xii, $aa = 4.3 \text{ab} = 1.4 \text{bc} = 3.7 \text{cd} = 0.26 \text{dd}$ on xxiv, a, b on viii and ix copulatory. Male pores minute, at or slightly lateral to a; prostatic pores minute, at or just lateral to a; seminal grooves almost straight, at ab. Female pores within a lines. Sperматhecal pores minute, slightly anterior to the setal arcs, at ab, those on ix sometimes on the setal arc. Genital markings circular to oval, small; a group of 2-4 presetal markings on xii, at aa or bb; paired, presetal on xvi, xvii, xx at aa, postsetal on xvi at b and on xx at ab; unpaired, median, presetal on xx and on setal arc of xxi.

Intestine begins in xv, typhlosole xvii-xix to lxxx-lxxxv. Last pair of hearts in xii. Testes and male funnels free, in x and xi; seminal vesicles in xi and xii. Penial setae sparsely ornamented with triangular teeth, tip sharply pointed, 2-2.3 mm long, 6-8 μ diameter. Each spermatheca with a digitiform to elongately ellipsoidal, ventrally directed ental diverticulum, closely adherent to the lateral face of a slender duct, which is longer than ampulla. Copulatory setae ornamented with closely crowded gouges, tip slightly claw-shaped, 0.31-0.36 mm long, c. 10 μ diameter.
Type locality: Naini, Allahabad district, Uttar Pradesh, India.

Type specimens: In ZSIC, W 3667/1, W 3668/1.

Material examined: In ZSIC: 0-1-1, syntypes, W 3667/1; 0-0-2, syntypes, W 3668/1.

Biology: Its activity is restricted to the rainy season from July to October.
98. *Pellogaster simsi* sp. nov.
(Figs. 381-383)
Length 33-42 mm, diameter 1.5-2 mm, 87-102 segments. Prostomium epilobic, tongue closed. First dorsal pore 4/5.

Figs. 381-383. *Pellogaster simsi* sp. nov. 381. genital region, 382. copulatory seta, 383. spermatheca.
Clitellum xiii-xvi, ½xxvii. Setae \(aa = 2.4-2.6 \) \(ab = 0.9-1 \) \(bc = 1.5-1.8 \) \(cd = 0.3-0.35 \) \(dd \) on xii, \(aa = 2.2 \ ab = 0.8 \ bc = 1.7 \ cd = 0.25 \ dd \) on xxiv, \(a, b \) on viii and ix sometimes copulatory, being surrounded by indistinct epidermal tumescences. Male pores minute, slightly lateral to \(a \); prostatic pores minute, at about \(a \); seminal grooves almost straight but slightly bent medially on xviii, between the setal arcs of xvii and xix. Female pores within \(a \) lines. Spermathecal pores minute, presetal on viii and ix, at \(b \). Genital markings absent.

Intestine begins in xviii, typhlosole xx-xxi to xli-l. Last pair of hearts in xii. Testes and male funnels free, in x and xi; seminal vesicles acinous, in xi and xii, extending to the dorsal line. Penial setae absent. Each spermatheca with a shortly stalked, club-shaped ental diverticulum, duct as long as or slightly shorter than the ampulla. Copulatory setae, when present, ornamented with a few longitudinal rows of gouges, tip truncate but with a short tooth or spine at the apex, 0.25-0.28 mm long, 9-11 \(\mu \) diameter.

Type locality: Panchgani, Maharashtra, India.

Material examined: 5-7-10 soil red loam, Panchgani, 17.58 N, 73.43 E, altitude c. 1400 m, 26 Aug 1979, coll. J.M. Julka (holotype and 2 paratypes in Zoological Survey of India, Calcutta, An 1833/1, An 1834/1, 19 paratypes in HAZFS, ZSI, Solan, An 754).

Distribution: So far known from the type locality.

Remarks: Pellogaster simsi sp. nov. can be distinguished from other known species of the genus, *P. bengalensis* (Michaelsen) and *P. isabellae* Gates, by the characters noted in Table 10. This species

<table>
<thead>
<tr>
<th>Character</th>
<th>P. simsi</th>
<th>P. bengalensis</th>
<th>P. isabellae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>33-42</td>
<td>40-74</td>
<td>40-70</td>
</tr>
<tr>
<td>Diameter (mm)</td>
<td>1.5-2</td>
<td>2-3</td>
<td>2</td>
</tr>
<tr>
<td>Segments</td>
<td>87-102</td>
<td>94-140</td>
<td>141-153</td>
</tr>
</tbody>
</table>

TABLE 10. Comparison of *Pellogaster simsi* sp. nov. with the known species of *Pellogaster.*
is named after Mr. R.W Sims, British Museum (Natural History), London who has done considerable work on the earthworm taxonomy.

Genus 20. Priodochaeta Gates, 1940

1900. Diporochaeta (in part), Michaelsen, Tierreich, 10: 207.

Diagnosis: Perichaetine. Combined male and prostatic pores paired, on xviii. Oesophagus with a single gizzard in v and 3 pairs of discrete extramural calciferous glands in xiv-xvi; supra-intestinal glands absent; typhlosole rudimentary. Micromeronephridia astomate; small, exonephric, paired tufts in v-xiii; few, in transverse bands, exonephric, on the body wall in xiv and posteriad segments. Stomate, exonephric, paired megameronephridia in each caudal segment.

Type species: Perichaeta pellucida Bourne, 1894.

Description: As for the only species, pellucida.
Distribution: Nilgiri Hills, S. India.

Remarks: The generic definition is tentative, since the excretory system is not adequately known in the type species.

99. *Priodochaeta pellucida* (Bourne)

Length 180-450 mm, diameter 4-4.5 mm, 268 segments. Prostomium prolobic or proepilobic, usually retracted. First dorsal pore 9/10, sometimes 8/9. Clitellum 2/3-1/3 xii to xix, xx, annular xiii-xvii. Setae perichaetine, \(aa = 4-6 \ ab \), \(zz = 2 \ aa \) on anterior segments, 31-40 on iii, 32-39 on viii, 36-40 on xii, 29-36 on xx. Combined male and prostatic pores paired, minute, transverse slits, at or close to the centres of slightly depressed oval porophores, on xviii, at \(be \). Female pores paired, presetal, at \(a \) or \(ab \), on xiv. Spermathecal pores paired, small, transverse slits on the anterior margins of viii and ix, just posterior to 7/8/9, at \(bd \) or \(be \). Genital markings absent. Nephridiopores not recognized.

Septa present from 4/5, 5/6-11/12 muscular. Gizzard large, in \(v \). Calciferous glands discrete, extramural, 3 pairs, in xiv-xvi, opening directly into oesophagus through vertical slit-like apertures. Intestine begins in xix; caeca and supra-intestinal glands absent; typhlosole the form of a low ridge, xxii-xxv to cx. Dorsal vessel single and complete; supra-oesophageal vessel single, in vii-xiv; extra-oesophageal vessels paired, passing posteriorly into a well-developed vascular plexus on the ventral surface of gut, in ix-xii; latero-parietal vessels paired, joining the plexus in xii; subneural vessel absent; lateral hearts originating from supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xii. Holandric, testes and male funnels free, in x and xi; seminal vesicles acinous, in xi and xii. Vasa deferentia on each side unite in xiii and
join the ectal end of prostatic duct, in xviii. Prostates paired, in xviii. Penial setae absent. Spermathecae paired, in viii and ix, each with a median digitiform to club-shaped diverticulum, duct shorter than ampulla. Micromeronephridia astomate, small, exonephric (?), paired tufts (?) in v-xiii, few, arranged in transverse bands, exonephric in xiv and posteriad segments; stomate; exonephric (?), paired megameronephridia in each of caudal segments.

Type locality: Coonoor, Nilgiri Hills, S. India (designated by Gates, 1940a).

Distribution: India: Tamil Nadu: Coonoor, Ootacamund in Nilgiri Hills.

Genus 21. Priodoscolex Gates, 1940

Diagnosis: Perichaetine. Combined male and prostatic pores paired, on xviii. Oesophagus with a single gizzard in v and 4 pairs of discrete extramural calciferous glands in xiv-xvii, those in xv-xvii bilobed; supra-intestinal glands absent; typhlosole lamelliform, simple. Micromeronephridia astomate; exonephric paired tufts in iii, vi-xiii, larger enteronephric paired tufts in iv and v; several exonephric on the body wall in xiv and posteriad segments, stomate with preseptal funnels posterior to the typhlosolar region. Megameronephridia absent.

Type locality: Priodoscolex montanus Gates, 1940.

Description: As for the only species, montanus.

Distribution: Nandydroog (Nandi Hills), Karnataka, India.

Remarks: Gates (1940a) defined Priodoscolex in having 6 pairs of calciferous glands: 2 pairs in each of the segments xv-xvii. A careful study of recently collected specimens of the type species from its type locality shows that it possesses 4 pairs of calciferous glands: one pair of rudimentary glands in xiv and 3 pairs of bilobed glands in xv-xvii, two lobes of each gland open into oesophagus
through a common duct. Possibly, Gates (1940a) considered the bilobed condition in each pair of glands in xv-xvii as 2 distinct pairs, and he failed to recognize the rudimentary glands in xiv.

100. Priodoscolex montanus Gates

(Figs. 384-386)

Length 230-313 mm, diameter 3-4 mm, 306-384 segments. Prostomium retracted, intersegmental furrow 1/2 absent (segments i and ii united with each other). First dorsal pore 10/11, sometimes 11/12. Clitellum saddle-shaped, xiii, ½xiii-xix. Setae perichaetine, \(aa = 1.1-2 \ ab = 2 \ bc = 0.7-0.8 \ yz = 0.2-0.3 \ zz \) on xii, \(aa = 1.7-2 \ ab = 2-2.5 \ bc = 0.5-0.7 \ yz = 0.2-0.3 \ zz \) on xxiv, 40-52 on iii, 64-75 on vii, 80-93 on xii, 79-86 on xxi. Combined male and prostatic pores paired, transverse slits, 0.04 body circumference apart, at the ends of a median C-shaped groove with concave side posterior, on an oval, transverse genital shield on xviii. Female pores paired, presetal, on xiv. Spermathecal pores paired, minute, located on unpaired tumescences on vii and ix (slightly posterior to 7/8 and 8/9), 0.02 body circumference apart. Genital markings absent. Nephridiopores not recognized.

Septa 4/5 delicate, 5/6/7/8 slightly muscular, 9/10/11/12 muscular. Oesophagus with a large gizzard in v; 4 pairs of discrete extramural reniform calciferous glands, in xiv-xvii, those in xiv rudimentary, those in xv-xvii bilobed, two lobes of each gland open into oesophagus through a short lateral stalk. Intestine begins in xix; caeca and supra-intestinal glands absent; typhlosole lamelliform, simple, xxv-xxxi to cxcviii-cxxix. Dorsal vessel single and complete; supra-oesophageal vessel single in vii-xi, paired in xii-xiii; extra-oesophageal vessels paired, iv-xiii, each bifurcating in viii, one branch to the supra-oesophageal and the other runs posteriorly to meet the latero-parietal vessel on the ventral surface of oesophagus in xiii; latero-parietal vessels paired, each bifurcate in
xiii, one branch joins the supra-oesophageal vessel and the other meets the extra-oesophageal vessel; subneural vessel present from posterior end, turning laterally in xvi-xix to meet the latero-parietal vessel in xiii-xvi; lateral hearts originating from the supra-oesophageal vessel with delicate connectives, in x-xiii. Holandric, testes and male funnels free, in x and xi; seminal vesicles acinous, in xi and xii. Prostates paired, in xviii; vas deferens joins the prostatic duct ectally in xviii. Penial setae absent. Spermathecae paired, in viii and ix, each with a short, median, digitiform, ectal diverticulum, duct longer than ampulla. Micromeronephridia astomate; exonephric paired tufts in iii, vi-xiii, larger paired enteronephric tufts in iv and v; several exonephric, arranged in transverse bands in xiv and posteriad segments, stomate with preseptal funnels posterior to the typhlosolar region; megameronephridia absent.

Type locality: Nandydroog (Nandi Hills), Karnataka, S. India.

Type specimens: Typus amissus.

Material examined: 0-6-4 at c. 30 cm depth of red loam soil in a dense forest, Nandi Hills, c. 65 km from Bangalore, altitude 1250 m, 23 Sept 1979, coll. J.M. Julka, An 749, in HAZFS, ZSI, Solan.

Distribution: So far known from the type locality.

Genus 22. Ramiella Stephenson, 1921

Diagnosis: Lumbricine. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on
Oesophagus with a single gizzard in v or vi and calciferous lamellae in viii-xi; discrete calciferous glands and supra-intestinal glands absent; typhlosole in the form of a low ridge to a simple lamella. Micromeronephridia astomate, exonephric, few, on the body wall in iii and posteriad segments. Paired, stomate, exonephric megameronephridia in each of few posteriormost segments.

Type species: Octochaetus bishambari Stephenson, 1914.

Description: Setae lumbricine throughout the body. Male pores paired, in seminal grooves, in xviii; prostatic pores paired at the ends of seminal grooves on xvii and xix. Female pore (s) single and median or paired, presetal, on xiv. Spermathecal pores 2 pairs, in 7/8/9 or on viii and ix. Genital markings usually present. Nephridiopores not recognized.

Septa present from 4/5. Gizzard single in v or vi. Oesophagus tubular with calciferous lamellae in viii-xi; discrete calciferous glands absent. Intestine begins in or anterior to xvi; supra-intestinal glands and intestinal caeca absent; typhlosole simple, in the form of a low ridge to lamelliform. Dorsal vessel single and complete; supra-oesophageal vessel single, viii, ix-xii; extra-oesophageal vessels paired, joining the latero-parietal vessels in xii-xiii; subneural vessel absent; lateral hearts originating from the supra-oesophageal vessel with delicate connectives, to the dorsal vessel in x-xii. Holandric. Prostates 2 pairs, in xvii and xix, extending posteriorly to a few segments. Spermathecae paired, in viii and ix. Ovisacs paired, in xiv. Micromeronephridia astomate, exonephric, few, discoidal, on the body wall in iii and posteriad segments, arranged in 2-7 longitudinal rows on each side in postclitellate segments; paired, stomate, exonephric, megameronephridia in caudal segments, funnels close to the nerve cord.

Distribution: Indo-Gangetic Plain, Peninsula and Coorg, India. Extended to Burma, Christmas Island, Philippines and China probably as a result of transportation of the type species.
Key to the species of RamieUa

1. All spermathecal pores intersegmental, at c, gizzard in v .. R. heterochaeta
 All spermathecal pores not intersegmental, at or median to b; gizzard in vi 2
2. Intestine begins in xiv, typhlosole absent or rudimentary ... R. bishambari
 Intestine begins posterior to xiv, typhlosole well-developed and lamelliform 3
3. Intestine begins in xv; clitellum annular; female pore single and median 4
 Intestine begins in xvi, clitellum saddleshaped; female pores paired R. pallida
4. Spermathecal pores on viii and ix R. nainiana
 Spermathecal pores in 7/6 and on ix R. sundargarhensis

Remarks: The above key excludes RamieUa parva Stephenson, 1924. An examination of its 2 syntypes in the Zoological Survey of India, Calcutta (W 1134/1) shows that it belongs to the family Ocnerodrilidae with the following characteristics: intestine begins in xii, last pair of hearts in xi, spermathecae adiverticulate and holonephric excretory system.

101. RamieUa bishambari (Stephenson)
 (Figs. 387-390)

Length 20-38 mm, diameter 0.8-1.2 mm, 78-91 segments. Prostomium epilobic, tongue open. First dorsal pore in region of 6/7-10/11. Clitellum annular, weakly developed ventrally at *aa*, *xiii*, ½*xiii*-½*xvii*, xvi. Setae *aa* = 3-3.1 *ab* = 1.3-1.6 *bc* = 1.8-2.2 *cd* = 0.22-0.25 *dd* on *xii*, *aa* = 3.1-3.3 *ab* = 1.4-1.6 *bc* = 2.2-2.5 *cd* = 0.26 *dd* on *xxiv*. Male pores at or slightly lateral to *a*: prostatic pores minute, at *b*; seminal grooves convex between setal arcs of *xvii* and *xix*. Female pores paired, presetal, within *a* lines. Spermathecal pores small, on *viii* and *ix*, slightly posterior to intersegmental furrows 7/8 and 8/9, at *b*. Genital markings, when present, small, circular to oval; paired, presetal on *vii*-ix, *xvii*, *xx*, postsetal on *vii*, *viii*, *x*, *xi*, at or close to *ab*; unpaired and median, postsetal on *xix* or 19/20.

Septa 4/5 slightly muscular, 5/6-12/13 muscular. Gizzard in *vi*. Intestine begins in *xiv*, typhlosole in the form of a low ridge, *xvii*-xviii to c. 15-20 posteriad segments. Testes and male funnels free, in *x* and *xi*; seminal vesicles in *xii*, or sometimes in *xi* and *xii*. Penial setae ribbon-like, rolled so as to appear solid, ornamented with 7-15 transverse rows of triangular teeth, 0.5-0.95 mm long, 20-36 μ diameter. Each spermatheca with a sessile, spherical to oval ental diverticulum. Genital marking glands absent.

Type locality: Saharanpur, Uttar Pradesh, India.

Material examined: In HAZFS, ZSI, Solan - Himachal Pradesh: coll. M. Chandra: 0-0-1 c. 4 km N. of Pulbahal, 19 July

Biology: It is usually found in mineral soil with high organic matter (> 10 g%) and pH ranging from 6 to 8, mostly in grasslands, forests, lawns, municipal dumps, drainage ditches, among roots of mosses and ferns growing on rocks, and under stones on the banks of ponds and streams. Activity, including breeding, is possible round the year under favourable conditions. Quiescence is imposed during the summer months. Reproduction is biparental. The lost head and tail parts can be regenerated (Gates, 1972).

102. Ramiella heterochaeta Michaelsen

Length about 80 mm, diameter 0.75-1.5 mm, c. 160 segments. Prostomium prolobic to slightly pro/epilobic. First dorsal pore (?). Clitellum saddle-shaped, \(\frac{1}{2} \)xiii-xvi. Setae \(aa = 4 \ ab = 0.7 \ bc = 2 \ cd = \)
0.7 dd at about middle of the body. Male pores minute, at about b; prostatic pores minute, at b; seminal grooves almost straight, between setal arcs of xvii and xix. Female pores paired, presetal, within a lines. Spermathecal pores in 7/8/9, at c. Genital markings oval, paired in 11/12, slightly lateral to b.

Septa 6/7 slightly muscular, 7/8-11/12 muscular. Gizzard in v. Intestine begins in (?), typhlosole present. Testes and male funnels free, in x and xi, seminal vesicles in ix and xii. Penial setae ornamented with a number of small triangular teeth, tip expanded, slightly excavated, 0.6 mm long, 10 \(\mu \) diameter. Each spermatheca with a small pear-shaped genital diverticulum, duct scarcely shorter than ampulla. Copulatory setae in the spermathecal region perhaps present (?). Genital marking glands (?).

Type locality: Somavarpatna, Coorg, Karnataka, India.

Type specimen: In ZMUH, 9154.

Distribution: So far known from the type locality.

103. _RamieUa nainiana_ Gates

(Figs. 391-394)

Length 30-65 mm, diameter 1.5-3.5 mm, 144-162 segments. Prostomium epilobic, tongue closed. First dorsal pore 4/5, sometimes 3/4 or in region of 5/6-8/9. Clitellum annular, xiii, 2/3 xiii-xvii. Setae \(aa = 2.8-3 \) \(ab = 1.3-1.5 \) \(bc = 2.3-2.8 \) \(cd = 0.29 \) \(dd \) on xii, \(aa = 3.2-3.7 \) \(ab = 1.3 \) \(bc = 2.2-2.6 \) \(cd = 0.3 \) \(dd \) on xxiv. Male pores minute, at or slightly lateral to b; prostatic pores minute, at b; seminal grooves concave between the setal arcs of xvii and xix, at ab. Female pore single, median. Spermathecal pores minute, presetal, on viii and ix, at or close to b. Genital markings oval, unpaired, median, presetal with 1-4 central areas on xi-xii, sometimes on x, xiii, intersegmental with a single central area, on 20/21/22/23, sometimes on 16/17-19/20, 23/24-31/32.
OCTOCHAETIDAE : GENUS RAMIELLA

Septa 4/5-11/12 muscular. Gizzard in vi. Intestine begins in xv; typhlosole simple, lamelliform, xvii-xix to lxxxvii-xciv. Testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Penial setae ornamented with a few scattered or more regularly spaced triangular teeth, membranous ectally with margins slightly curved and spade-shaped, tip concave, 1-1.8 mm long, 9-11 μ diameter. Each spermatheca with a ventrally directed digitiform ental diverticulum, adherent to the duct. Genital marking glands absent.

Type locality: Allahabad, Uttar Pradesh, India.

Type specimens: In ZSIC, W 3639/1.

Material examined: 0-4-S2, syntypes, W 3639/1, in ZSIC.

Biology: It inhabits soil with high organic matter. Activity, including breeding, is from July to November. Bioluminescence has been observed in this species (Gates, 1944).

104. RamieUa pallida (Stephenson) (Figs. 395-398)

Length 40-66 mm, diameter 1.5-3 mm, 138-166 segments. Prostomium epilobic, tongue closed. First dorsal pore 10/11, sometimes 9/10 or 11/12. Clitellum saddle-shaped, xiii-xvii. Setae $aa = 2.5 \ ab = \ bc = 1.2-1.4 \ cd = 0.15-0.17 \ dd$ on xii, $aa = 2.8-3 \ ab = 1.1-1.2 \ bc = 1.5-1.8 \ cd = 0.18-0.21 \ dd$ on xxiv. Male pores minute, at b; prostatic pores minute, at or slightly median to b; seminal grooves slightly concave between setal arcs of xvii and xix. Female
pores paired, slightly within a lines. Spermathecal pores on the setal arcs of viii and ix, at the sites of setae a. Genital markings, when present, oval, paired, just median to spermathecal pores on ix, presetal on xx, at aa, on 16/17, 19/20 at ab, slightly lateral to seminal grooves on 17/18/19 at bc.

Septa 4/5 delicate, 5/6/7 slightly muscular, 7/8-11/12 muscular. Gizzard in vi. Intestine begins in xvi; typhlosole simple, lamelliform, xx-xxi to xcvi-ci. Testes and male funnels free, in x and xi; seminal vesicles in ix and xii; vasa deferentia of x and xi coiled into compact spheroidal masses of hair-pin loops in xi and xii respectively. Penial setae unornamented, ectal end slightly sinuous, tip bluntly rounded, 0.79-0.93 mm long, 7-11 μ diameter. Each spermatheca with a shortly stalked spheroidal ental diverticulum, duct shorter than ampulla. Genital marking glands absent.

Type locality: Panchgani, Maharashtra, India.

Type specimens: In ZSIC, W 260/1; BMNH, 1933: 5: 25: 906-8.

Distribution: So far known from the type locality.

Biology: It is usually found in laterite and sandy loam soil at 15-30 cm depth in a grassland and on a hill slope. When disturbed, it slightly jumps with lashing movements of its anterior and posterior ends.

Remarks: Stephenson (1920, 1923) wrongly described the spheroidal masses of vasa deferentia in xi and xii as the compact bodies of nephridial tubules.

105. Ramiella sundargarhensis Julka

(Figs. 399-402)

Length 52-77 mm, diameter 3 mm, 115-167 segments. Prostomium epilobic, tongue closed. First dorsal pore 9/10, sometimes
Figs. 399-402. *Ramiella sundargarhensis* Julka. 399. spermatheca, 400. genital region, 401. lateral view of penial seta, 402. dorsal view of penial seta (all drawn from the holotype).
10/11. Clitellum annular, 1/3 xiii, xiv-xvi, 1/3 xvii. Setae $aa = 3.3-3.6 \, ab = 1.2-1.3 \, bc = 2.5-3.3 \, cd = 0.24 \, dd$ on xii, $aa = 3.8-4.2 \, ab = 1.4 \, bc = 3.4 \, cd = 0.25 \, dd$ on xxiv. Male pores minute, close to b; prostatic pores minute, slightly lateral to a; seminal grooves almost straight or slightly concave between the setal arcs of xvii and xix, at ab. Female pore single, median. Spermathecal pores minute, in 7/8 and presetal on ix, at or close to b lines. Genital markings circular to oval; paired, postsetal on viii at aa, pre- or postsetal on ix, presetal on x-xii, at bc, on 19/20-23/24 at aa; sometimes unpaired and median, postsetal on xi, pre- or postsetal on xii.

Septa 4/5/6, 8/9-11/12 muscular, 6/7/8 slightly muscular. Gizzard in vi. Intestine begins in xv; typhlosole simple, lamelliform, xviii to c-cii. Testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Penial setae ornamented with a few scattered triangular teeth, tip expanded, truncate or slightly rounded, 1.09-1.5 mm long, 10-17 μ diameter. Each spermatheca with a digitiform ventrally directed ental diverticulum, adherent to the duct. Genital marking glands absent.

Type locality: Sundargarh, Orissa, India.

Material specimens: In ZSIC, An 307-308/1.

Material examined: 0-0-1, holotype, An 307/1, 0-0-9, para-types, An 308/1, in ZSIC.

Biology: It inhabits sandy loam mineral soil with > 5 g% of organic matter and 6-7 pH in forests and grasslands. A maximum population of about 75/m² was observed at Ushakothi forest. Reproduction is biparental. Copulation and feeding occur beneath the soil surface. Cocoons are round and their colour gradually changes from pale lemon yellow to dark reddish brown; average live weight 40 mg. Peak cocoon production occurs during late August. Clitellar degradation and fungal infection of adults at post-reproductive period have been observed. This species under-
goes diapause during the summer stress. In laboratory cultures, it deposited globular casts on the surface, but no casts were observed in the field.

Genus 23. Rillogaster Gates, 1939

Diagnosis: Lumbricine. Combined male and prostatic pores paired, on xix; seminal grooves absent. Oesophagus with 2 gizzards, in vi-vii and 4 pairs of discrete extramural calciferous glands in x-xiii; supra-intestinal glands absent; typhlosole in the form of a low ridge. Micromeronephridia astomate; paired, exonephric large tufts in iv, smaller tufts in v-vii; few, exonephric on the body wall in viii and posteriad segments. Paired, stomate, exonephric megameronephridia in c. lxx and each of posteriad segments.

Type species: Eudichogaster matheranensis Stephenson, 1924.

Septa 4/5 thickly muscular, 5/6/7/8 delicate, 8/9-12/13 muscular. Oesophagus with 2 large gizzards in vi-vii. Discrete calciferous glands 4 pairs in x-xiii, reniform, opening through long stalks directly into oesophagus laterally. Intestine begins in xv, supra-intestinal glands and caeca absent, typhlosole in the form of a low ridge. Dorsal vessel single and complete; extra-oesophageal vessels paired, connected with each other by transverse commissures in v and vi, passing into calciferous glands in xiii after giving off branches to anterior glands; supra-oesophageal vessel bifurcates in x-xii, but branches being united with each other anterior to septa 11/12/13 and pass into the ventral faces of the calciferous glands in
OCTOCHAETIDAE : GENUS RILLOGASTER

xiii; latero-parietal vessels paired, entering into the posterior faces of calciferous glands in xiii; subneural vessel absent; lateral hearts with connectives to the dorsal and supra-oesophageal vessels in x-xii, last pair of hearts in xii. Holandric. Prostates paired, in xix, extending posteriorly to a few segments. Spermathecae paired, diverticulate. Ovisacs paired, in xiv. Micromeronephridia astomate and exonephric, small paired tufts on the body wall in iii and iv, on anterior faces of septa in v-vii, larger tufts on anterior face of septum 4/5, few on the body wall in viii and posteriad segments arranged in transverse bands in viii-xviii, in longitudinal rows posterior to prostatic region; paired stomate, exonephric, megameronephridia in c. Ixx and posteriad segments, funnels close to the nerve cord.

Distribution: Western Ghats in Maharashtra and Goa, India.

Key to the species of Rillogaster

1. Spermathecal pores close to b, genital marking glands present .. *R. matheranensis*
2. Spermathecal pores at c, genital marking glands absent ... *R. eastoni*

106. *Rillogaster eastoni* sp. nov.

(Figs. 403-406)

Length 57-79 mm, diameter 1.2-2 mm, 130-155 segments. Prostomium epilobic, tongue open. First dorsal pore 10/11, sometimes 11/12. Clitellum annular, xiii-xvii, xviii. Setae *aa = 2.5-2.9* *ab = 1.2-1.3* *bc = 1.5-1.6* *cd = 0.23-0.28* *dd on xii, aa = 2.8-3* *ab = 1.3-1.6* *bc = 2* *cd = 0.27* *dd on xxiv*. Combined male and prostatic pores small, discharging at centres of oval porophores, at or slightly lateral to b. Spermathecal pores minute, at c. Genital markings circular to ovoidal, single, median or slightly left or right side of midventral line, presetal on xx, xxi, xxii, postsetal on xv; paired postsetal on xvii, xviii, 20/21 at *ab* (one of the pair sometimes absent); paired, oval, epidermal tumescences anterior and posterior to male porophores on xix.
Typhlosole in xx-xxii to lxxv-lxxxiii. Testes and male funnels free, in x and xi; seminal vesicles racemose in ix and xii. Vasa deferentia of a side uniting in xiii, each vas deferens enlarged into an ejaculatory bulb before joining the ectal end of the prostatic duct in xix, beneath the longitudinal muscle layer. Penial setae of two types
in each penisetal follicle, unornamented, and ornamented with several circles of sharp spines, tip bluntly pointed, 0.83-0.88 mm long, 23-27 μ diameter. Each spermatheca with an ectal hammer-shaped, shortly stalked, multiloculate diverticulum, duct c. half as long as ampulla.

Material examined: 0-14-6 sandy loam soil, Sanvordem, Goa, 15.27 N, 74.11 E, 31 Aug 1979, coll. J.M. Julka (holotype and 2 paratypes in ZSIC An 1835/1, An 1836/1, 17 paratypes in HAZFS, ZSI, Solan, An 750).

TABLE 11. Comparison of *R. eastoni* sp. nov. with *R. matheranensis*

<table>
<thead>
<tr>
<th>Character</th>
<th>R. eastoni</th>
<th>R. matheranensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>57-79</td>
<td>76-141</td>
</tr>
<tr>
<td>Diameter (mm)</td>
<td>1.5-2</td>
<td>3-5</td>
</tr>
<tr>
<td>Segments</td>
<td>130-155</td>
<td>152-249</td>
</tr>
<tr>
<td>Spermathecal pores</td>
<td>at c</td>
<td>at or slightly lateral to b</td>
</tr>
<tr>
<td>Genital markings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unpaired</td>
<td>median or slightly left or right side of midventral line, postsetal on xv, pre-setal on xx-xxii.</td>
<td>median, presetal but on setal annuli on ix-xiii, xvii-xxi.</td>
</tr>
<tr>
<td>Paired</td>
<td>postsetal on xvii-xviii, 20/21 at ab.</td>
<td>postsetal on vii, xviii, presetal on viii, xx, at ab.</td>
</tr>
<tr>
<td>Typhlosole</td>
<td>xxi-xxii to lxxv-lxxxiii.</td>
<td>xxiii to lxii.</td>
</tr>
<tr>
<td>Ejaculatory bulb</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Penial setae</td>
<td>two types, ornamented and unornamented, 0.83-0.88 mm long, 23-27 μ diameter.</td>
<td>one type, ornamented, 2-3 mm long, 35-38 μ diameter.</td>
</tr>
<tr>
<td>Spermathecal diverticulum</td>
<td>hammer-shaped</td>
<td>clavate</td>
</tr>
<tr>
<td>Genital marking glands</td>
<td>absent</td>
<td>present</td>
</tr>
</tbody>
</table>
Abnormality: Combined male and prostatic pores in one specimen are on the right side on xx and left side on xix.

Distribution: India: Goa: Sanvordem.

Etymology: The species is named after Mr. E.G. Easton, British Museum, London.

Remarks: Rillogaster eastoni sp. nov. can easily be distinguished from the other known species of the genus, R. matheranensis (Stephenson), by the characters noted in Table 11.

107. Rillogaster matheranensis (Stephenson)
(Figs. 407-410)

Length 76-141 mm, diameter 3-5 mm, 152-249 segments. Prostomium epilobic, tongue open. First dorsal pore 12/13. Clitellum xii, ½xiii-½xvii. Setae $aa = 3.2-3.4$ $ab = 1.3-1.9$ $bc = 1.9-2.3$ $cd = 0.18-0.19$ dd on xii, $aa = 3-4$ $ab = 1.5-2$ $bc = 2.1-3.1$ $cd = 0.20-0.23$ dd on xxiv, a and b in preprostatic region ornamented but sigmoid in shape. Combined male and prostatic pores small, transverse slits on circular porophores, slightly median to b. Spermathecal pores large, transverse slits at or slightly lateral to b. Genital markings tiny, circular to ovoidal; paired, postsetal slightly anteromedian to spermathecal pores, on viii, presetal on xx, sometimes postsetal on xviii, at ab, two pairs on male porophores on xix; unpaired and median, presetal but on setal annuli on ix-xiii, sometimes on xvii-xxi.

Typhlosole in xxxii to lxii. Testes and male funnels free, in x and xi; seminal vesicles racemose, in ix and xii. Vasa deferentia of a side uniting with each other in xviii, without any enlargement into an ejaculatory bulb before opening into the ectal end of prostatic
duct. Penial setae ornamented with 19-26 closely arranged circles of triangular teeth, tip bluntly pointed, 2-3 mm long, 35-38 µ diameter. Each spermatheca with a small, clavate, multiloculate, shortly stalked posterior ental diverticulum, duct shorter than ampulla. Genital marking glands sessile, oval, slightly projecting into the coelomic cavity.

Type locality: Matheran, Maharashtra, India.

Type specimens: In ZSIC, W 1155/1; BMNH, 1925: 5: 12: 5.

Distribution: India: Maharashtra: Matheran, Lonavala, Khandala.

Diagnosis: Lumbricine Combined male and prostatic pores paired, on xviii. Oesophagus with a single gizzard between septa 5/6 and 8/9, and one pair of discrete intramural calciferous glands in xii; supra-intestinal glands present; typhlosole in the form of a low ridge. Micromeronephridia astomate; numerous, enteronephric in iii; exonephric, on the body wall in v and posteriad segments; few, arranged in longitudinal rows posterior to clitellum. Paired, stomate, exonephric megameronephridia in each segment posterior to the supra-intestinal glands region.

Type species: *Megascolides bergtheili* Michaelsen, 1907.

Description: As for the only species, *bergtheili.*
Distribution: Possibly in the Himalayas east of Darjeeling, West Bengal, India.

108. Scolioscolides bergtheili (Michaelsen)
(Figs. 411-412)

Length 100-120 mm, diameter 4.5-5 mm, 146-175 segments.
Prostomium tanylobi. First dorsal pore 11/12. Clitellum annular, xiii-xvii. Setae \(aa = 7.75 \ ab = 1.55 \ cd = 0.4 \) on xii. Combined male and prostatic pores paired, small, transversely crescentic within rather penis-like but small tubercles on oval porophores, on xviii, at or just median to \(b \). Female pores paired, in transverse slit-like depressions, presetal, within \(a \) lines, on xiv. Spermathecal pores paired, on small oval porophores, in 7/8, slightly median to \(b \). Genital markings oval, unpaired and median but with two central areas, on xii, xiii and xx, sometimes on xi and xxi, extending laterally into \(bc \). Nephridiopores not recognized.

Septa 4/5/6, 8/9/10/11 muscular, 6/7/8 absent. Gizzard single, large, between septa 5/6 and 8/9. Calciferous glands paired, intramural, longitudinally hemi-ellipsoidal with flat faces mesially, in xii, each gland with numerous transverse vertical lamellae. Intestine begins in xv; lateral intestinal caeca paired, in xxi, unpaired and midventral intestinal caeca 5, in xxiv-xxviii; supra-intestinal glands 2 pairs, in lix-lx or lx-lxi; typhlosole in the form of a low ridge terminating posteriorly with the supra-intestinal glands. Dorsal vessel single and complete; supra-oesophageal vessel single, in xii-xiii; extra-oesophageal vessels paired, passing to anterior ends of calciferous glands in xii; latero-parietal vessels paired, passing to posterior ends of calciferous glands; subneural vessel absent; lateral hearts originating from supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xiii; last pair of hearts in xiii.
Figs. 411-412. Scolioscolides bergtheili (Michaelsen). 411. spermatheca, 412. genital region (both drawn from a syntype).
Holandric, testes and male funnels in x enclosed in U-shaped sacs and those of xi in annular sacs; seminal vesicles in ix and xii. Prostates one pair, in xviii, extending posteriorly to xix. Vasa deferentia join the ental ends of prostatic ducts. Penial setae absent. Spermathecae one pair, in viii, each with a median and a lateral, bi-or trilobed ental diverticula, duct shorter than ampulla. Ovisacs absent (?). Genital marking glands absent. Micromeronephridia astomate, numerous, enteronephric in iii, exonephric on the body wall in v and posteriad segments, fewer and arranged in longitudinal rows in postclitellate segments; paired, stomate, exonephric megameronephridia in each segment posterior to the supra-intestinal gland region, funnels close to the nerve cord.

Type locality: Sandakphu, Darjeeling district, West Bengal, India.

Type specimens: In ZSIC, ZEV 2951/7; ZMUH, 7137.

Material examined: 0-0-3, syntypes, ZEV 2951/7, in ZSIC.

Distribution: So far known from the type locality.

Genus 25. Travoscolides Gates, 1940

Diagnosis: Lumbricine. Combined male and prostatic pores paired, on xviii. Oesophagus with a single gizzard in v and 4 pairs of discrete extramural calciferous glands in x-xiii; supra-intestinal glands absent; typhlosole lamelliform, simple. Micromeronephridia astomate, large, enteronephric, paired tufts in v, smaller, exonephric, paired tufts in vi-xiii; several stomate, enteronephric in xv and posteriad segments. Megameronephridia absent.

Type species: *Megascolides chengannures* Aiyer, 1929.

Description: Setae lumbricine throughout the body. Clitellum annular. Combined male and prostatic pores paired, on xviii. Female pores paired, presetal, within a lines on xiv. Spermathecal
pores paired, in or close to 7/8/9. Genital markings absent. Nephri diopores not recognized.

Septa present from 5/6. Gizzard single, in v. Calciferous glands discrete, extramural, reniform, 4 pairs, in x-xiii, opening into oesophagus ventrally through short stalks. Intestinal caeca and supra-intestinal glands absent; typhlosole lamelliform, simple. Dorsal vessel single and complete (?); supra-oesophageal, extra-oesophageal and latero-parietal vessels (?); subneural vessel absent; lateral hearts originating from vessels from calciferous glands (branches of supra-oesophageal ?) with delicate connectives to the dorsal vessel, in x-xii, xiii. Holandric; seminal vesicles in xi and xii. Prostates paired, in xviii. Vasa deferentia joining the ental ends of prostatic ducts. Penial setae present. Spermathecae paired, in viii and ix. Ovisacs (?). Micromeronephridia astomate, large, enteronephric, paired tufts in v, smaller, exonephric, paired tufts in vi-xiii; several, stomate (with preseptal nephrostomes), enteronephric micromeronephridia in xv and posteriad segments, discharging in each segment into a pair of septal excretery canals which open into intestine through an intra-typhlosolar longitudinal excretory duct.

Distribution: Kerala, S. India.

Remarks: Gates (1940a) included 4 Indian species of *Megascolides, chengannures, duodecimalis, pilatus* and *cochinensis* (tentatively), in his genus *Travoscolides*. Since several taxonomic characteristics are not known in these species, they can only be distinguished from each other (somewhat doubtfully) by the penial setae.

Key to the species of Travoscolides

1. Last pair of hearts in xii ...
 Last pair of hearts in xiii ..

 2. Penial setae short, c. 0.33 mm long, tip not bayonet-shaped ... 3
 Penial setae longer, 0.57 mm long, tip bayonet-shaped, flattened and markedly hollowed........

 4. T. duodecimalis

 5. T. pilatus
3. Penisetal tip with a hair-like spine hooked to one side ... T. cochinensis

Penisetal tip without a spine .. T. chengannures

109. Travoscolides chengannures (Aiyer)

Length 120 mm, diameter 3 mm, 230 segments. Prostomium probolic. First dorsal pore 11/12. Clitellum xiv-xviii. Setae $aa = 2.9 \ ab = 1.3 \ bc = 2.1 \ cd = 0.14 \ dd$ on xii, $aa = 5.7 \ ab = 1.7 \ bc = 2 \ cd = 0.17 \ dd$ on xxiv. Male genital field transversely placed, indistinctly demarcated area of translucence, slightly depressed, extending from 18/19 to just behind the setal arc of xvii and reaching laterally to c. middle of bc, with a pair of tumescences between 17/18 and 18/19; each tumescence with a groove (seminal ?), at a. Combined male and prostatic pores, minute, on small papillae, on the setal arc of xviii, slightly lateral to the grooves, at ab. Spermathecal pores minute, on anterior margins of viii and ix, at a, on slightly raised protuberances.

Septa 5/6 delicate, 6/7-12/13 muscular. Intestine begins in xv; typhlosole xxiv-xxv to cxlix. Last pair of hearts in xiii. Testes and male funnels free, in x and xi. Penial setae unornamented, tip with a slight longitudinal groove but without a terminal spine, shaft with a slight nodulus at the middle, c. 0.33 mm long, c. 15 μ Spermathecae elongately sausage-shaped, each with a multiloculate disc-shaped diverticulum on the anterior face of an indistinct short duct.

Type locality: Chengannur, Kerala, S. India.

Type specimens: In ZSIC, W 1514/1.

Material examined: In ZSIC: 0-1-0, type, W 1514/1.

Distribution: So far known from the type locality.
110. Travoscolides ? cochinensis (Michaelsen)

1923. _Megascolides cochinensis_, Stephenson, _Fauna Br. India, Oligochaeta_: 198.

Length 155 mm, diameter 2.5-4 mm, c. 280 segments. Prostomium (?). First dorsal pore 9/10. Clitellum xiii (?), xiv-xviii. Setae $aa = 1.5 \ ab = 0.75 \ bc = cd$ anterior to clitellum, $aa = 5 \ ab = 1.25 \ bc = 2.5 \ cd$ at about middle of the body, enlarged on iv-vii. Male genital field with a median depression on xviii, continuous anteriorly with a postsetal transverse depression on xvii, which extends laterally to c. Combined male and prostatic pores minute, on the slopes of the median depression, on the setal arc of xviii, at a. Spermathecal pores on anterior margins of viii and ix, at a.

Septa 5/6/7 (?), 7/8-11/12 muscular. Intestine beginning and typhlosole (?). Last pair of hearts in xiii. Testes and male funnels free (?), in x and xi. Penial setae unornamented, tip with a hair-like spine hooked to one side, shaft straight, c. 0.33 mm long, c. 12 μ diameter. Spermathecae elongately sausage-shaped, each with a small multiloculate disc-like diverticulum that joins a short duct beneath the longitudinal musculature of the body wall.

Type locality: Foot of Nelliampathis Hills, Kerala, S. India.

Type specimens: Typus amissus.

Distribution: So far known from the type locality.

Remarks: Michaelsen (1910) in describing his species, _M. cochinensis_ stated that the calciferous glands were apparently absent; thus raising doubts about its inclusion in _Travoscolides_ which is characterized by the presence of 4 pairs of discrete extramural calciferous glands, in x-xiii. Gates (1940a), however, included _cochinensis_ provisionally in _Travoscolides_ on the structure of the spermathecae, and at the same time suggested that the
absence of calciferous glands may be due to their fragile nature which might have been destroyed by jolting action during the transit of the specimens from India to Germany.

111. Travoscolides duodecimalis (Stephenson)

Length 160 mm, diameter 5 mm, c. 317 segments. Prostomial (?). First dorsal pore 11/12. Clitellum xiv-xvii. Setae $aa = 10$ $ab = 1.5$ $bc = 3$ cd anterior to clitellum, $aa = 8$ ab on postclitellate segments, $aa = 6$ ab in middle of body. Male genital field with a median rectangular depression on xviii. Combined male and prostatic pores on small porophores, on xviii, on the sides of the median depression, at ab. Spermathecal pores minute, in $7/8/9$, at ab.

Septa 5/6 slightly muscular, 6/7-11/12 muscular. Intestine begins in xvi; typhlosole in xxiv to (?). Last pair of hearts in xii. Testes and male funnels free, in x and xi. Penial setae ornamented with a few, minute, scattered teeth, tip simple and bluntly pointed, shaft curved and recurved ectally, 0.82 mm long, 14 µ diameter. Spermathecae elongately digitiform (sausage-shaped), each with a small spherical diverticulum on an indistinct, short and slightly dilated duct.

Type locality: Parambikulam, Kerala, S. India.

Type specimens: In ZSIC, ZEV 6596/7; BMNH, 1933: 5: 25: 80.

Material examined: 0-0-1, syntype, ZEV 6596/7, in ZSIC.

Distribution: So far known from the type locality.

112. Travoscolides pilatus (Stephenson)

Length more than 123 mm, diameter 4 mm, segments (?). Prostomium and clitellum (?). First dorsal pore 11/12. Setae $aa = 3-4 \ ab$, $bc = 2-3 \ ab = 2 \ cd$ anterior to male pore area, $aa = 6-7 \ ab$, $bc = 3 \ ab = 2 \ cd$ posterior to male pore region, much enlarged on iii-ix. Male genital field an oval tumescent area on xviii, extending slightly to xix. Combined male and prostatic pores on small porophores, at ab, on xviii. Spermathecal pores on minute papillae, on anterior margins of viii and ix, just behind 7/8/9 at a.

Septa 6/7-12/13 muscular. Intestine begins in xvi; typhlosole xxiv to lxiv. Last pair of hearts in xiii. Testes and male funnels free, in x and xi. Penial setae unornamented, tip bayonet-shaped, flattened and hollowed, 0.57 mm long, 21 μ diameter. Spermathecae cylindrical (sausage-shaped), diverticula not developed (immature specimens).

Type locality: Parambikulam, Kerala, S. India.

Type specimens: In ZSIC, ZEV 6919/7; BMNH, 1933: 5: 25: 86.

Distribution: So far known from the type locality.

Genus 26. Wahoscolex gen. nov.

Diagnosis: Lumbricine throughout the body, or at least in the anterior or anterior and middle regions, often perichaetine in the posterior region. Male pores paired, in seminal grooves, on xviii or 17/18 or on porophores on xvii; prostatic pores 2 pairs at the ends of seminal grooves, on xvii and xix or xvii and xviii, or one pair on xvii. Oesophagus with a single gizzard in v (rarely vi) and with calciferous lamellae in xvi, sometimes extending slightly into adjacent segments; discrete calciferous glands and supra-intestinal glands absent; typhlosole lamelliform, simple. Micromeronephridia astomate; paired, enteronephric tufts in iii-vi, exonephric tufts in vii-xii; few to several exonephric on the body wall in xiii and
posteriad segments. One or two pairs of stomate enteronephric megameronephridia in each segment from about middle of body to posterior end.

Type species: *Howascolex corethrurus* Michaelsen, 1922.

Etymology: Anagram of *Howascolex*, gender masculine.

Description: Setae lumbricinæ either throughout the body, or at least in the anterior or anterior and middle regions; often perichae­tine at the posterior part of the body. Male pores paired, in seminal grooves, on xviii or 17/18, or on porophores and combined (?) with prostatic pores on xvii. Prostatic pores 2 pairs on xvii and xix or xvii and xviii at the ends of seminal grooves, or one pair on xvii. Female pore (s) presetal, on xiv. Spermathecal pores paired, rarely unpaired, between 7/8 and 9/10. Nephridiopores not recognized.

Oesophagus with a single large gizzard in v (rarely vi), enlarged and with calciferous lamellae in xvi, sometimes extending to posterior half of xv or anterior half of xvii; discrete calciferous glands absent. Intestine begins posterior to xvii; caeca and supraintestinal glands absent; typhlosole lamelliform, simple. Dorsal vessel single and complete, supra-oesophageal vessel single, in viiixiii; extra-oesophageal vessels paired, uniting with paired latero­parietal vessels in xiii; subneural vessel absent; lateral hearts originating from the supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xii, xiii. Testes holandric. Spermathecae paired or unpaired. Prostates paired. Ovisacs (?). Micromeronephridia astomate; small enteronephric tufts in iii and iv, larger in v and vi, exonephric tufts in vii-xii; few to several exonephric on the body wall in xiii and posteriad segments. Megameronephridia stomate, enteronephric, one or two pairs in each segment from about middle of body to the posterior end, loops extending laterally to c. mid-dorsal line, ducts discharging into intestine near the dorsal vessel (?) through dorsal longitudinal excretory canals.

Distribution: Western and Nandi Hills in Karnataka, and Nilgiri Hills in Tamil Nadu, South India.
Remarks: Michaelsen (1901) erected the genus *Howascolex* for his species *madagascariensis* from Madagascar with holonephridia in the anterior region and meronephridia in the posterior region of the body. Michaelsen (1922) added 3 more species, *bidens*, *corethrurus* and *merkaraensis* from the Western Hills in Karnataka, S. India, although these differed considerably from the type species in possessing a typhlosole, holonephridia in the posterior region and meronephridia in the anterior region of the body. The genus was redefined by Pickford (1937) to include New World species of *Acanthodrilus* and *Wegeneriella* with both "mega-" and "micro-nephridia" Jamieson (1971b) rejected Pickford's suggestion and retained *Wegeneriella* as a distinct genus and referred the meronephric species of *Acanthodrilus* to *Ramieillona* following Gates (1962a).

Both Gates (1940b) and Jamieson (1971b) pointed out that the Indian section of *Howascolex* was not congeneric with that of the Malagasian section, but the separation was deferred for lack of detailed information on the excretory system. Recently, the author could collect a number of well preserved specimens of *corethrurus* from Bhagamandla in Coorg section of the Western Hills in Karnataka, which is very close to its type locality Somvarapatna. A careful study of its excretory system reveals: "astomate micromeronephridia arranged in paired enteronephric tufts in iii-vi and paired exonephric tufts in vii-xii, 11-16 astomate exonephric micromeronephridia on the body wall on each side in each of segments xiii-xvi, decreasing in number to 6-7 on each side in xvii and posteriad segments; paired, stomate, enteronephric megameronephridia in each segment from about the middle of body to the caudal end, size increasing gradually so that the loops reach to the mid-dorsal line in the caudal segments" These details in the excretory system of *corethrurus* show that it is completely meronephric, and not partly holonephric and partly meronephric as stated by Michaelsen (1922). Probably, Michaelsen could not recognize micromeronephridia in the posterior segments of *corethrurus*
(possibly also in other 2 Indian species, *bidens* and *merkaraensis*) because of the presence of coelomic coagulum and much enlarged megameronephridia, the latter perhaps mistaken for holonephridia. It is, thus, evident that wholly meronephric *corethrurus* (also *bidens* and *merkaraensis*) is generically distinct from the Malagasian type species of *Howascolex*. Moreover, *corethrurus* possessing an oesophagus with a single gizzard and calciferous lamellae in xvi extending slightly into xv or xvii, without discrete calciferous glands and excretory system with caudal enteronephric megameronephridia cannot be assigned to any known octochaetid genera, a new genus *Wahoscolex* is erected to accommodate this species. The distinctiveness of *Wahoscolex* gen. nov. from the related octochaetid genera is shown in Table 7.

It is pertinent to discuss the status of other *Howascolex* species described during the last 50 years, viz., *H. sinicus* from China by Chen (1935); *H. lasiurus*, *H. sauerlandti* and *H. tecumumamivulcanicus* from America by Graff (1957); *H. bahli* and *H. stephensoni* from Goa, India by Soota and Julka (1972). Both Jamieson (1971b) and Gates (1972) regarded *H. sinicus* as species dubium and possibly a synonym of the peregrine *Ramiella bishambari*. *H. lasiurus*, *H. sauerlandti* and *H. tecumumamivulcanicus* were referred to *Ramiellona* by Gates (1962a). On the basis of morphology of the excretory system, *H. bahli* and *H. stephensoni* are assigned to *Konkadrilus* Julka (described elsewhere in this work).

Key to the species of *Wahoscolex*

1. Setae lumbricine throughout the body 2

 Setae perichaetine in the posterior region of the body .. 6

2. Prostates 2 pairs, in xvii and xix 3

 Prostates one pair, in xvii 5
3. Spermathecal pores unpaired and median, in 7/8/9 \textit{W. bouchei}
Spermathecal pores paired .. 4
4. Spermathecal pores 2 pairs, in 7/8/9 \textit{W. veereshi}
Spermathecal pores one pair, in 8/9....................... \textit{W. (?) bidens}
5. Spermathecal pores 2 pairs, in 7/8/9 \textit{W. horai}
Spermathecal pores one pair, in 8/9 \textit{W. nandiensis}
6. Prostates in xvii and xix 7
 Prostates in xvii and xviii \textit{W. curgensis}
7. Spermathecal pores one pair, in 8/9 \textit{W. (?) ditheca}
Spermathecal pores more than one pair 8
8. Spermathecal pores 3 pairs, in 7/8/9/10.............. \textit{W. corethrurus}
 Spermathecal pores 4 pairs, in 5/6/7/8/9............. \textit{W. (?) merkaraensis}

113. \textit{Wahoscolex (?) bidens} (Michaelsen)

1922. \textit{Howascolex bidens} Michaelsen, \textit{Jb. hamb. wiss. Anst.}, 38: 38

Length 70-90 mm, diameter 1.5-1.75 mm, c. 110-180 segments.
Prostomium epilobic, tongue (?). First dorsal pore (?). Clitellum xiii-xvi. Setae lumbricine throughout the body, \(aa = 1.25 \ bc, bc = 2 \ ab = 1.33 \ cd\) on anterior segments. Male pores minute, at posterior ends of seminal grooves, on xviii; prostatic pores minute, on xvii and xix, close to \(b\) lines, those on xvii at the centres of large porophores, those on xix inconspicuous; seminal grooves short, from posterior margin of porophores on xvii to the setal arc of xviii. Female pore single and median. Spermathecal pores paired, large transverse slits, in 8/9, at \(ab\). Genital markings unpaired and median, at 11/12.

Septa 6/7-13/14 muscular. Gizzard in v; intestine begins in xx; typhlosole in (?). Last pair of hearts in (?). Testes and male funnels free, in x and xi; seminal vesicles lobed, in ix and xii. Prostates 2
pairs, those in xix slightly smaller than those in xvii. Penial setae ornamented with short transverse zigzag markings, flattened ectally, tip bifid, 0.55 mm long, 22-25 μ diameter. Spermathecae paired, in ix, each with an ental club-shaped diverticulum, duct shorter than ampulla. Genital marking glands absent (?).

Type locality: Shiboga, Karnataka, S. India.
Type specimens: In ZMUH, 9161.
Distribution: So far known from the type locality.

114. _Wahoscolex bouchei_ sp. nov.

(Figs. 413-417)

Length 118-136 mm, diameter 2-2.5 mm, 158-182 segments. Prostomium epilobic, tongue open. First dorsal pore 11/12. Clitellum annular, xiii-xviii. Setae lumbricine throughout the body, \(a a = 2.2-2.3\ ab = 0.9-1.1\ bc = 1.1\ cd = 0.16-0.17\ dd\) on xii, \(a a = 2.5-2.7\ ab = 1.1\ bc = 1.2\ cd = 0.15-0.17\ dd\) on xxiv. Male pores minute, in seminal grooves, on setal arc of xviii, at \(a\); prostatic pores minute, at the ends of seminal grooves, on xvii and xix, close to midventralline; seminal grooves almost straight with ends slightly bent medially. Female pore single and median. Spermathecal pores unpaired, median, in 7/8/9, at centres of low, circular to oval papillae, in 7/8 minute and circular, in 8/9 comparatively larger and a transverse slit. Genital markings absent.

Septa 4/5/6 delicate, 6/7 slightly muscular, 7/8-12/13 muscular. Gizzard in v; intestine begins in \(\frac{1}{2}\)xviii; typhlosole in xxii-xxiii to xciv-cxxx. Last pair of hearts in xii. Testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Prostates 2 pairs, those in xvii longer than those in xix. Penial setae undulating ectally, ornamented with 2-3 short transverse rows of fine spines, those associated with prostates in xvii, 0.65-0.76 mm long, 19-22 μ diameter, those associated with prostates in xix, 0.25-0.48 mm long, 9-14 μ diameter. Spermathecae unpaired, median, in viii and ix; of viii small, vestigeal, pear-shaped and adveruncate, of ix larger,
usually with 2, short, digitiform to fan-shaped ental diverticula, rarely advoidiculate. Stomate, enteronephric megameronephridia one pair in each of c. 100 posteriormost segments, funnels close to the nerve cord.

Material examined: 1-2-6 open grassland on a hill slope, soil laterite, Kemmengundi, Karnataka, 13.48 N, 75.69 E, altitude c. 1480 m, 4 Sept 1979, coll. J.M. Julka (holotype and 1 paratype in ZSI Calcutta, An 1808/1, An 1809/1, 7 paratypes in HAZFS, ZSI, Solan, An 756).
Distribution: India: Karnataka, Kemmengundi.

Etymology: This species is named after Dr. M. Bouché, a well-known French Oligochaetologist.

Remarks: Wahoscolex bouchei sp. nov. belongs to a group of species with lumbricine arrangement of setae throughout the body and 2 pairs of prostates in xvii and xix. It can be easily distinguished from the other species of the group, Wahoscolex (?) bidens (Michaelsen, 1922) and Wahoscolex veereshi sp. nov. (described elsewhere in this work), by the characteristics as shown in Table 12.

115. Wahoscolex corethrurus (Michaelsen)
(Figs. 418-421)

Length 85-119 mm, diameter 1-2.3 mm, c. 180, 189-206 segments. Prostomium epilobic, tongue open. First dorsal pore 11/12. Clitellum annular, xiii-xvi. Setae lumbricine in anterior and middle regions, and perichaetine in posterior region of the body, \(aa = 2.2.6\ ab = 0.9-1\ bc = 1.1-1.3\ cd = 0.13-0.15\ dd\) on xii, \(aa = 3-3.7\ ab = 1-1.9\ bc = 1.8-2\ cd = 0.15-0.18\ dd\) on xxiv, 9-20 on segments in the perichaetine region. Male pores minute, in seminal grooves, on the setal arc of xviii, at \(a\); prostatic pores minute, at the ends of seminal grooves, on xvii and xix, slightly ventral to \(a\); seminal grooves concave between the setal arcs of xvii and xix. Female pore single and median. Spermathecal pores paired, minute, in 7/8/9/10 close to the midventral line at the centres of unpaired slightly raised oval papillae. Genital markings circular; closely paired, near the midventral line, on 11/12, sometimes 10/11; unpaired, median, extending laterally to \(b\), usually on 14/15-15/16, 20/21, occasionally 21/22.

Septa 4/5 delicate, 5/6/7/8 slightly muscular, 8/9-12/13 muscular. Gizzard in \(v\); intestine begins in \(\frac{1}{2}\) xviii; typhlosole xxiii-
TABLE 12. Comparison of *W. bouchei* and *W. veereshi* spp. nov. with related species.

<table>
<thead>
<tr>
<th>Character</th>
<th>W. bouchei</th>
<th>W(?). bidens</th>
<th>W. veereshi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>118-136</td>
<td>70-90</td>
<td>39-83</td>
</tr>
<tr>
<td>Segments</td>
<td>158-182</td>
<td>c. 110-180</td>
<td>124-154</td>
</tr>
<tr>
<td>Clitellum</td>
<td>xiii-xviii</td>
<td>xiii-xvi</td>
<td>xiii-xvii</td>
</tr>
<tr>
<td>Seminal grooves</td>
<td>between setal arcs of xvii and xix</td>
<td>between setal arcs of xvii and xviii</td>
<td>between setal arcs of xvii and xix</td>
</tr>
<tr>
<td>Female pore(s)</td>
<td>single and median</td>
<td>single and median</td>
<td>paired</td>
</tr>
<tr>
<td>Spermathecal pores</td>
<td>unpaired and median, in 7/8/9</td>
<td>paired, in 8/9</td>
<td>paired, in 7/8/9</td>
</tr>
<tr>
<td>Genital markings</td>
<td>absent</td>
<td>unpaired and median in 11/12</td>
<td>absent</td>
</tr>
<tr>
<td>Spermathecae</td>
<td>unpaired and median, in viii and ix, of viii vestigeal and adiverticulate, of ix larger and usually bidiverticulate, rarely adiverticulate</td>
<td>paired, in ix, unidiverticulate</td>
<td>paired, in viii and ix, unidiverticulate</td>
</tr>
</tbody>
</table>
Last pair of hearts in xiii. Testes and male funnels free, in x and xi; seminal vesicles lobed, in xii. Prostates 2 pairs, in xvii and xix, almost of equal length. Penial setae undulating ectally, unornamented, 0.57-0.74 mm long, 5-9 μ diameter. Spermathecae paired, in viii, ix and x, each with an ental digitiform diverticulum, about one third the combined length of duct and ampulla. Genital marking glands absent. Stomate, enteronephric megameronephridia one pair in each segment in c. posterior half of body, funnels close to the nerve cord.

Type locality: Somavarapatna, Coorg, Karnataka, S. India.

Type specimens: In ZMUH, 9160, 9163.

Material examined: 0-18-13 soil red loam, Bhagamandla, Karnataka, South India, 10 Sept 1979, coll. J.M. Julka, An 757, in HAZFS, ZSI, Solan.

Distribution: India: Karnataka: Somavarapatna, Bhagamandla.

116. *Wahoscolex curgensis* sp. nov.

(Figs. 422-426)

Length 64-66 mm, diameter 1-1.5 mm, 144-145 segments. Prostomium epilobic, tongue open. First dorsal pore 11/12. Clitellum annular, xiii-xvii. Setae lumbricine in anterior region and perichaetine posterior to the clitellum $aa = 1.9-2.2$ $ab = 0.8-0.9$ $bc = 1.1$ $cd = 0.11-0.15$ dd on xii, $aa = 2.4-2.5$ $ab = 1.1-1.4$ $bc = 1.3-1.7$ $yz = 0.2-0.24$ zz on xxiv, 9-12 on perichaetine segments. Male pores minute, in seminal grooves, on the setal arc of xviii, at a; prostatic pores minute, at the ends of seminal grooves, on xvii and xviii, those on xviii slightly posterior to male pores; seminal grooves short, straight to concave, posterior ends divergent. Female pore single and median. Spermathecal pores paired, minute, in 8/9, slightly ventral to a lines. Genital markings circular to oval, paired, at ab, on 9/10/11 (one of the pair sometimes absent); unpaired, median, on 15/16, 20/21, presetal on xviii slightly posterior to 17/18 between the seminal grooves.
Septa 4/5 and 7/8 slightly muscular, 5/6/7 delicate, 8/9-12/13 muscular. Gizzard in v; intestine begins in ½xviii; typhlosole xxii to cvii. Last pair of hearts in xii. Testes and male funnels free, in x and xi; seminal vessels lobed, in ix and xii. Prostates 2 pairs, those in xvii longer than those of xviii. Penial setae undulating ectally, ornamented with 15-18 spines on the lateral margins, 1.03-1.15 mm long, 7-8 μ diameter. Spermathecae paired, in ix, each with an ental, clavate diverticulum, c. one-third the combined length of duct and ampulla. Genital marking glands absent. Stomate, enteronephric megameronephridia 2 pairs in each of c. 80 posteriormost segments, funnels at ab (close to the nerve cord) and cd.

Material examined: 4-4-2 grassland on a hill slope, soil laterite, Mercara, 12.26 N, 75.47 E, altitude c. 1220 m, 12 Sept 1979, coll. J.M. Julka (holotype in ZSIC, An 1810/1, 9 paratypes in HAZFS, ZSI, Solan, An 758).

Distribution: India: Karnataka: Mercara.

Etymology: Derived from the word ‘Coorg’ Hills in Karnataka, the location of the type locality.

Remarks: *Wahoscolex curgensis* sp. nov. belongs to a group of species with lumbricine setae in the anterior and perichaetine setae in the posterior region of the body. It can be easily recognized from other members of the group, *W (?) ditheca*, *W. corethrurus* and *W (?) merkaraensis* all of Michaelsen (1922) by the characters as shown in Table 13.

117. *Wahoscolex (?) ditheca* (Michaelsen)

Length 80 mm, diameter 0.67-1 mm, c. 170 segments. Prostomium epilobic. First dorsal pore 11/12. Clitellum annular, xiii-xvi. Setae lumbricine in anterior and middle regions and
TABLE 13. Comparison of *W. curgensis* sp. nov. with related species.

<table>
<thead>
<tr>
<th>Character</th>
<th>W. curgensis</th>
<th>W. corethrurus</th>
<th>W(?). dietheca</th>
<th>W(?). merkaraensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>64-66</td>
<td>85-119</td>
<td>80</td>
<td>c. 60</td>
</tr>
<tr>
<td>Segments</td>
<td>144-145</td>
<td>180, 189-206</td>
<td>c. 170</td>
<td>c. 200</td>
</tr>
<tr>
<td>Clitellum</td>
<td>xiii-xvii</td>
<td>xiii-xvi</td>
<td>xiii-xvi</td>
<td>?</td>
</tr>
<tr>
<td>Spermathecal pores</td>
<td>one pair, in 8/9</td>
<td>3 pairs, in 7/8/9/10</td>
<td>one pair, in 8/9</td>
<td>4 pairs, in 5/6/7/8/9</td>
</tr>
<tr>
<td></td>
<td>between setal arcs of xvii and xviii</td>
<td>between setal arcs of xvii and xix</td>
<td>between setal arcs of xvii and xix</td>
<td>between setal arcs of xvii and xix</td>
</tr>
<tr>
<td>Seminal grooves</td>
<td>xiii</td>
<td>xiii and xix</td>
<td>?</td>
<td>xiii</td>
</tr>
<tr>
<td>Last pair of hearts</td>
<td>in xvii and xviii</td>
<td>in xvii and xix</td>
<td>in xvii and xix</td>
<td>in xvii and xix</td>
</tr>
<tr>
<td>Prostates</td>
<td>one pair, in ix, diverticulate</td>
<td>3 pairs, in viii, ix, x, diverticulate</td>
<td>one pair, in ix, diverticulate</td>
<td>4 pairs, in vi-ix, those in vi and vii vestigial and ad diverticulate, those in vii-ix diverticulate</td>
</tr>
<tr>
<td>Spermathecae</td>
<td>ornamenteated, 1.03-1.15 mm long</td>
<td>unornamenteated 0.59-0.74 mm long</td>
<td>ornamentation and length (?)</td>
<td>ornamented 1.2 mm long</td>
</tr>
</tbody>
</table>
perichaetine in the posterior region of the body, $aa = 4$ $ab = 1.6$ $bc = 2.4$ $cd = 0.22$ dd, $c. 18$ on perichaetine segments. Male pores minute, in seminal grooves, on xviii; prostatic pores minute, at the ends of seminal grooves, on xvii and xix. Female pores (?). Spermathecal pores paired, in 8/9, at a. Genital markings (?).

Septa 6/7-12/13 moderately muscular. Gizzard in v; intestine begins in (?); typhlosole from (?). Last pair of hearts (?). Testes and male funnels free, in x and xi; seminal vesicles lobed, in ix and xii. Prostates paired, in xvii and xix. Penial setae present, undulating ectally, ornamentation (?). Spermathecae paired, in ix, each with a cylindrical diverticulum. Stomate, enteronephric megamerophage (?).

Type locality: Shimoga, Karnataka, India.

Type specimens: In ZMUH, 9158.

Distribution: So far known from the type locality.

Remarks: The species was described as a form _ditheca_ of _Howascolex corethrurus_ by Michaelsen (1922) with one pair of spermathecal pores in 8/9 but having overall morphological similarity with the typical form. Since the number and location of spermathecal pores appear to be of specific importance (see key to the species of _Wahoscolex_), the form _ditheca_ is considered to be a distinct species. However, it is tentatively retained in _Wahoscolex_ for lack of information on its excretory system.

118. _Wahoscolex horai_ sp. nov.
(Figs. 427-430)

Length 37-53 mm, diameter 1-1.2 mm, 94-109 segments. Prostomium epilobic, tongue open. First dorsal pore 10/11. Clitellum annular, xiii-xvi. Setae lumbricine throughout the body, $aa = 2.1-2.2$ $ab = 1.2-1.4$ $bc = 1.2-1.5$ $cd = 0.2$ dd on xii, $aa = 2.4-2.7$ $ab = 1.3-1.5$ $bc = 1.3-1.7$ $cd = 0.19-0.22$ dd on xxiv. Combined (?) male and prostatic pores minute, at the centres of slightly protuberant porophores, on the setal arc of xvii, at a, ...
porophores lateral in an oval depression. Female pore single and median. Spermathecal pores paired, minute, in 7/8/9, slightly ventral to a. Genital markings absent.

Septa 4/5/6 delicate, 6/7-11/12 slightly muscular. Gizzard in v; intestine begins in xix; typhlosole xxi to lxxxii. Last pair of hearts in xii. Testes and male funnels free, in x and xi; seminal vesicles in ix and xii. Prostates one pair, in xvii; vas deferens on each side entering the body wall slightly anterior to the opening of the
prostatic duct in xvii, united (?) with the latter ectally beneath the longitudinal musculature. Penial setae taper gradually towards ectal ends, unornamented, 0.36-0.58 mm long, 5-7 μ diameter. Spermathecae paired, in viii and ix, each with an ental digitiform diverticulum. Stomate, enteronephric megameronephridia 2 pairs in each of c. 30 posteriormost segments, funnels at ab (close to the nerve cord) and c.

Material examined: 0-0-2 under decaying leaves, soil red sandy loam, Bhagamandla, c. 45 km from Mercara, altitude 1050 m, 10 Sept 1979, coll. J.M. Julka (holotype in ZSIC, An 1811/1, paratype in HAZFS, ZSI, Solan, An 759).

Distribution: India: Karnataka: Bhagamandla, c. 45 km from Mercara.

Etymology: The species is named after late Dr. S.L. Hora, a well-known Indian Zoologist.

TABLE 14. Comparison of *W. horai* **sp. nov. and** *W. nandiensis* **sp. nov.**

<table>
<thead>
<tr>
<th>Character</th>
<th>W. horai</th>
<th>W. nandiensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>37-53</td>
<td>30-42</td>
</tr>
<tr>
<td>Segments</td>
<td>94-109</td>
<td>72-100</td>
</tr>
<tr>
<td>Clitellum</td>
<td>xiii-xvi</td>
<td>xiii-xvii</td>
</tr>
<tr>
<td>Seminal grooves</td>
<td>absent</td>
<td>short, setal arc of xvii to 17/18</td>
</tr>
<tr>
<td>Spermathecal pores</td>
<td>2 pairs, in 7/8/9</td>
<td>one pair, in 8/9</td>
</tr>
<tr>
<td>Intestine begins</td>
<td>in xix</td>
<td>in xviii</td>
</tr>
<tr>
<td>Typhlosole</td>
<td>xxi to lxxxii</td>
<td>xix-xx to lviii-lxxiii.</td>
</tr>
<tr>
<td>Penial setae</td>
<td>unornamented, shaft straight, 0.36 - 0.58 mm long</td>
<td>ornamented, shaft undulating ectally, 0.71-0.96 mm long</td>
</tr>
<tr>
<td>Spermathecae</td>
<td>2 pairs, in viii and ix</td>
<td>one pair, in ix</td>
</tr>
</tbody>
</table>
Remarks: *Wahoscolex horai* sp. nov. belongs to a group of species with lumbricine arrangement of setae throughout the body and one pair of prostates in xvii. It can be distinguished from the other member of this group, *Wahoscolex nandiensis* sp. nov. (described elsewhere in this work), by the characters shown in Table 14.

119. *Wahoscolex (?) merkaraensis* (Michaelsen)

Length c. 60 mm, diameter 1.75-2 mm, c. 200 segments. Prostomium epilobic. First dorsal pore (?). Clitellum (?). Setae lumbricine in the anterior and middle parts of the body, and perichaetine in posterior region, $aa = 3.4$, $ab = 1.4$, $bc = 1.8$, $cd = 0.41$, dd, usually 12 on perichaetine segments. Male pores minute, in seminal grooves, on xviii; prostatic pores at the ends of seminal grooves, on xvii and xix, slightly median to a, those on xvii larger than those on xix; seminal grooves almost straight, between setal arcs of xvii and xix. Female pore single and median. Spermathecal pores paired, in 5/6-8/9, near mid-ventral line, size of the pores increasing posteriorly. Genital markings paired, oval, in 11/12, at ab.

Septa 8/9-12/13 muscular, 13/14 delicate, anterior septa (?). Gizzard in vi (?v); intestine begins in xviii; typhlosole in (?). Last pair of hearts in xiii. Testes and male funnels free, in x and xi; seminal vesicles lobed, in ix and xii. Prostates 2 pairs, those in xvii longer than those in xix. Penial setae undulating ectally, ornamented with a few scar-like markings with serrated borders, 1.2 mm long, 13 μ diameter. Spermathecae paired, in vi-ix, increasing in size posteriorly, those in vi and vii vestigeal and adiverticulate, those in viii and ix each with a sausage-shaped ental diverticulum, duct shorter than ampulla. Genital marking glands absent (?).
360 JULKA : FAUNA OF INDIA : MEGADRAE OUGOCHAETA

Type locality: Merkara, Coorg, Karnataka, S. India.

Type specimens: In ZMUH, 9155-6.

Distribution: India: Karnataka: Merkara, Bhagamanola (probably misspelt for Bhagamandla).

Remarks: This species is tentatively included in *Wahoscolex* because of lack of detailed information on its excretory system.

120. **Wahoscolex nandieosis** Spa nov.

(Figs. 431-435)

Length 30-42 mm, diameter 0.9 -1.1 mm, 72-100 segments. Prostomium epilobic, tongue open. First dorsal pore 11/12, occasionally 12/13. Clitellum annular, xiii-xvii. Setae lumbricine throughout the body, \(aa = 1.8-2.1 \) \(ab = 1-1.3 \) \(bc = 1.1-1.4 \) \(cd = 0.18-0.21 \) \(dd \) on xii, \(aa = 2-2.3 \) \(ab = 1-1.1 \) \(bc = 1.3-1.5 \) \(cd = 0.21-0.22 \) \(dd \) on xxiv. Male pores minute, at posterior ends of seminal grooves, in 17/18, at or slightly ventral to \(b \); prostatic pores minute, at anterior ends of seminal grooves, on xvii, at \(a \); seminal grooves short, almost straight or slightly curved, posterior ends divergent, between setal arc of xvii and 17/18, at centres of somewhat oval porophores. Female pore single and median. Spermathecal pores paired, minute, in 8/9, close to the mid-ventral line, sometimes equidistant from the mid-ventral and \(a \) lines. Genital markings absent.

Septa 4/5, 6/7-11/12 slightly muscular, 5/6 delicate. Gizzard in v; intestine begins in xviii; typhlosole xix-xx to lviii-lxxiii. Last pair of hearts in xii. Testes and male funnels free, in x and xi; seminal vesicles lobed, in ix and xii. Prostates one pair, in xvii, extending to xviii. Penial setae undulating ectally, margins ornamented with sharp spines, 0.71-0.96 mm long, 5-9 µ diameter. Spermathecae paired, small, in ix, each with a short shelf-like ental diverticulum. Stomate, enteronephric megameronephridia 2 pairs in each of c. 25 posteriormost segments, funnels at \(ab \) (close to the nerve cord) and \(c \).
Figs. 431-435. *Wahoscolex nandiensis* sp. nov. 431. spermathecal pore region, 432. genital region, 433, 435. spermathecae, 434. penial seta.

Distribution: India: Karnataka: Nandi Hill, 65 km from Bangalore.

Etymology: W. nandiensis sp. nov. derived from the type locality, 'Nandi' Hills.

Remarks: Wahoscolex nandiensis sp. nov. belongs to a group of species with lumbricine arrangement of setae throughout the body and one pair of prostates in xvii. It can be easily distinguished from the other member of the group Wahoscolex horai sp. nov. (described elsewhere in this work) by the characters shown in Table 14. (Page 358)

121. Wahoscolex veereshi sp.-nov.
(Figs. 436-440)

Length 39-83 mm, diameter 1-2 mm, 124-154 segments. Prostomium epilobic, tongue open. First dorsal pore 12/13, sometimes 11/12. Clitellum annular, xiii-xvii. Setae lumbricine throughout the body, \(aa = 1.8-2 \ ab = 0.9 \ bc = 0.8-0.9 \ cd = 0.15-0.17 \ dd \) on xii, \(aa = 2.8 \ ab = 1.3-1.5 \ bc = 1.2-1.5 \ cd = 0.22-0.26 \ dd \) on xxiv. Male pores minute, in seminal grooves, on xviii, at \(a \); prostatic pores minute, at the ends of seminal grooves, on xvii and xix, slightly ventral to \(a \); seminal grooves almost straight or slightly concave between setal arcs of xvii and xix. Female pores paired, anteromedian to \(a \), on xiv. Spermathecal pores paired, minute, in 7/8/9, just ventral to \(a \). Genital markings absent.

Septa 4/5, 6/7-8/9 slightly muscular, 5/6 delicate, 9/10-12/13 muscular. Gizzard in \(v \); intestine begins in xviii; typhlosole xxi-xxii to ci-cxix. Last pair of hearts in xii. Testes and male funnels free, in x and xi; seminal vesicles lobed, in ix and xii.
OCTOCHAETIDAE: GENUS WAHOSCOLEX

Prostates, in xvii and xix, almost of equal length. Penial setae slightly undulating, ornamented with a few, short, transverse rows of 4-5 small spines, tip expanded and webbed, 0.65-0.74 mm long, 7-8 μ diameter. Spermathecae paired, in viii and ix, each with a small, clavate, ental diverticulum. Stomate, enteronephric megameronephridia 2 pairs in each of c. 70 posteriormost segments, funnels at ab (close to the nerve cord) and c.

Material examined: 0-0-2 grassland, soil red loam, Kemmengundi, 13.48 N, 75.69 E, altitude c. 1480 m, 4 Sept 1979, coll. J.M. Julka (holotype and paratype in ZSIC, An 1814/1, An 1815/1); 0-0-7 grassland on the bank of a stream, soil red loam, Gudalur, c. 52 km from Ootacamund on way to Mysore, 11.30 N, 76.26 E, altitude c. 1000 m, 16 Sept 1979, coll. J.M. Julka, HAZFS, ZSI, Solan, An 761.

Distribution: India: Karnataka: Kemmengundi, Bababudan Hills; Tamil Nadu: Gudalur, Nilgiri Hills.

Etymology: The species is named after the Indian soil biologist, Dr. G.K. Veeresh, University of Agricultural Sciences, Bangalore.

Remarks: *Wahoscolex veereshi* sp. nov. belongs to a group of species with lumbricine setae throughout the body and 2 pairs of prostates, in xvii and xix. It is distinguishable from the other members of the group *W(?). bidens* (Michaelsen, 1922) and *W. bouchei* sp. nov. (described elsewhere in this work) by characters shown in Table 12. (Page 350)
SPECIES INCERTAE SEDIS

122. Dichogaster (?) travancorensis (Fedarb)

1900. Dichogaster travancorensis, Michaelsen, Tierreich, 10: 353.

Length 75 mm, diameter 2 mm, 131 segments. Clitellum saddle-shaped, xiv-xxi. Setae lumbricine, in pairs, very close together.

Gizzards 2, in viii-ix. Calciferous glands in xiv-xvi, pouch-shaped, the anterior ones the smallest. Intestine begins in xvii. Last pair of hearts in xiii. Spermathecae paired, each with a shortly cylindrical, sessile diverticulum, at the middle of the duct, which is thick and dilated, and as long as ampulla. Prostates tubular, 2 pairs. Penial setae ending in a whip-like tip, frequently bent into a hook. Meronephric.

Type locality: Travancore, Kerala, S. India.
Type specimens: In BMNH, 1904: 10: 5: 664.
Distribution: So far known from the type locality.

Remarks: All the known Indian species of Dichogaster can be assigned to a homogeneous bolai group with one pair of calciferous glands, each gland trilobed, a lobe in each of xv-xvii, the three lobes of a side open into oesophagus through a common duct in xvi. The position of calciferous glands in travancorensis in xiv-xvi, if correct, excludes it from the bolai group. According to Stephenson (1923), the original account of the species is inadequate and partly incorrect, e.g., position of gizzards, spermathecae and prostates. In absence of more exact information on the calciferous glands and other characteristics, the generic relationships of the species remain doubtful.
123. **Diplocardia (?) indica** Stephenson

Length 50 mm, diameter 2.5 mm, 117 segments. Prostomium tanylobic. First dorsal pore 10/11. Clitellum xiv-xvii. Setae lumbricine, \(aa = 2.5 \ ab = 1.25 \ bc = 2.5 \ cd \) on preclitellar segments. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix; seminal grooves, slightly median to \(b \), bent laterally on posterior portion of xvii and anterior portion of xix. Female pores paired (?), antero-median to \(a \), on xiv. Spermathecal pores paired, minute, on viii and ix, antero-lateral to \(a \). Genital markings unpaired and median on xviii; paired, postsetal on viii, presetal on ix, at \(aa \), postsetal on xiv and xv, 16/17, at \(bc \). Nephridiopores not recognizable.

Septa 4/5 delicate, 5/6/7 slightly muscular, 7/8-11/12 muscular. Gizzards 2, in v-vi. Oesophagus moniliform in ix-xiv, with a ventral, median, typhlosole-like (calciferous ?) ridge, in x-xiii. Intestine begins in xvi; intestinal caeca and supra-intestinal glands absent; typhlosole simple, lamelliform, begins abruptly in xviii. Dorsal vessel single; supra-oesophageal vessel single, in x-xii; extra-oesophageal and latero-parietal vessels (?); subneural vessel absent; last pair of hearts in xii. Holandric, testes and male funnels in x and xi; seminal vesicles in xi and xii. Prostates paired, tubular, in xvii and xix. Penial setae with margins sinuous ectally, tip thin, flattened, truncate, 1.4-1.6 (+) mm long, 7 \(\mu \) diameter. Spermathecae paired, in viii and ix, each with a digitiform ental diverticulum. Genital marking glands absent.

Type locality: Buldana, Berar, Maharashtra, India.

Type specimens: In ZSIC, W 1148/1; BMNH, 1933: 2: 23: 614-6.

Distribution: So far known from the type locality.
Remarks: Stephenson (1924b) assigned his species *indica* from north peninsular India to an American genus *Diplocardia* in having 2 gizzards and acanthodrilid characteristics of tubular prostates and holonephric excretory system. Gates (1939b) re-examined three immature 'types' in the Indian Museum, and observed that *indica* was perhaps generically distinct from *Diplocardia* in possessing a single dorsal blood vessel and 'modified holonephridia' than the usual type (with preseptal funnels). He could not recognize meronephridia but stressed the need to confirm their absence in better preserved specimens. If meronephridia (possibly overlooked by Stephenson and Gates) are present in *indica*, it is to be transferred to an octochaetid genus, possibly *Pellogaster*.

124. *Diporochaeta* (?) *dorsochaeta* Jamieson

Length 39-66 mm, diameter 1.1-1.4 mm, 110-118 segments. Prostomium epilobic, almost tanylobic, sides slightly convergent posteriad; hind end clubbed. First dorsal pore 5/6. Clitellum annular, ½xiii-xvi, xvii. Setae lumbricine throughout the body, $aa = 1.9$ $ab = 1.05$ $bc = 0.9$ $cd = 1.6$ dd on xii. Combined male and prostatic pores paired, on strongly protuberant porophores on xviii, at b. Female pores paired, preseptal, within a lines, on xiv. Spermathecal pores paired, minute, in 7/8/9, at b. Genital markings indistinct, oval, paired, anterior to male porophores, on xviii.

Septa present from 4/5, 7/8-10/11 slightly muscular. Gizzard single, large, in vi; oesophagus without discrete calciferous glands but widened and with calciferous (?) lamellae in xiii-xiv or xiv-xv or xiii-xv. Intestine begins in xvii or ½xvii; caeca, supra-intestinal glands and typhlosole absent. Dorsal vessel single, not recognizable on or anterior to gizzard; supra-oesophageal vessel single, x-xii; subneural vessel absent; lateral hearts originating from supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xii. Holandric, testes and male funnels free, in x and xi; seminal vesicles
in ix and xii. Prostates tubular, paired, in xviii; vas deferens joining the ental end of the prostatic duct. Penial setae with a few, sparsely scattered small teeth, 0.23 mm long, 11 µ diameter. Ovaries paired, fan-shaped, in xiii; ovisacs (?) paired, in xiv. Spermathecae paired, in viii and ix, each with a short clavate ental diverticulum. Meronephric; micromeronephridia (?); megameronephridia exonephric, one pair on each side in each of pre-intestinal segment, the lateral nephridium with a (preseptal) funnel, median nephridium astomate; caudally both lateral and median megameronephridia stomate (in some segments another pair of lateral stomate megameronephridia may be present).

Type locality: Gundar Shola, Palni Hills, S. India.

Distribution: India: Tamil Nadu: Gundar Shola, Kodaikanal.

Remarks: Jamieson (1977) considered the meronephric condition of the nephridia in his species *dorsochaeta* as a purely specific character, and assigned it (though doubtfully) to the holonephric Australasian *Diporochaeta* (Fam. Acanthodrilidae sensu Gates, 1959). He redefined *Diporochaeta* to accommodate species with holo- or meronephridia, and tubular or racemose prostates, which is not acceptable. The meronephric *dorsochaeta* with tubular prostates is assignable to the Octochaetidae (sensu Gates, 1959). Within the Octochaetidae, it seems to be closely related to *Celieriella* with oesophagus with a single gizzard and calciferous lamellae in xiii-xiv but without discrete calciferous glands and intestinal typhlosole.

125. **Lennogaster (?) parvus** (Fedarb)

Length 40 mm, diameter 2 mm, 132 segments. First dorsal pore 11/12. Clitellum annular, xiii-xvii, lacking ventrally on xvii. Setae ab paired, cd distant (as far apart as bc), bc = 2 ab = cd. Prostatic pores one pair, on xvii, obliquely placed on ill-defined wrinkled papillae; male pores (?); female pores (?). Spermathecal pores inconspicuous, on or slightly anterior to the setal arc of viii, at ab.

Gizzards 2, in v-vi. Calciferous glands small, in xi, xii and xiii, the anterior pair the largest. Andry (pro- or metandric ?); seminal vesicles in xi, tongue-shaped. Prostates one pair, in xvii. Penial setae absent; copulatory setae (?). Spermathecae paired, in viii, tubular, slightly bulbous at the inner end, adiverticulate. Meronephric.

Type locality: Dehra Dun, India.

Type specimens: ?

Distribution: So far known from the type locality.

Remarks: The above description of the species is inadequate and perhaps partly incorrect. According to Gates (1939); “The tongue-shaped seminal vesicles of xi may have been vertically placed testis sacs, and if the calciferous glands are in the usual locations (in x-xii, ‘as in other species of *Lennogaster*’) would then be in x; ovaries may have been overlooked and large ovisacs mistaken for ovaries; if the segmental numbering internally was then determined from the ovisac segment as xiii this would explain the location of the calciferous glands” If this interpretation is correct, then *parvus* belongs to *Lennogaster* and its relationships are with *L. pusillus* and *L. chittagongensis*. It may be noteworthy to mention that the author has collected several specimens of *L. chittagongensis* from low altitudes in Sirmour district of Himachal Pradesh which is not far off from the type locality of *parvus*. On the other hand, if the location of calciferous glands in the original description of *parvus* was correctly assigned by Fedarb,
in that case it does not belong to *Lennogaster*. Extensive collecting is required from the type locality to determine its exact generic status.

126. Octochaetoides (?) castellanus (Stephenson)

Length 48 mm, diameter 2 mm, c. 125 segments. Prostomium (?). First dorsal pore 5/6. Clitellum (?). Setae widely paired, \(ab = 1.66 \) \(ab = bc = 1.5 \) \(cd \); \(a, b \) (?) on viii and ix copulatory. Male genital field with a median circular depression. Male pores paired, minute, on xviii; prostatic pores paired, small pits, at the ends of seminal grooves, on xvii and xix, median to \(a \); seminal grooves bowed outwards. Female pore single, median, on xiv. Spermathecal pores paired, on setal arcs of viii and ix, at \(a \). Genital markings (?)

Septa 4/5, 7/8-12/13 slightly muscular, 5/6/7 delicate or absent. Gizzard between septa 4/5 and 7/8. Calciferous glands discrete, extramural, without stalks, paired, around oesophagus, in xiv. Intestine begins in xvi (?); typhlosole lamelliform, simple. Last pair of hearts in xiii (?). Holandric, testes and male funnels free, in x and xi; seminal vesicles lobed, small, in xii. Prostates paired, tubular, in xvii and xix. Penial setae ornamented with a few, small, sparsely scattered spines ectally, tip flattened with ectal margin slightly indented, 0.87-1 mm long, 14 \(\mu \) diameter. Spermathecae paired, in viii and ix, each with a club-shaped ental diverticulum. Copulatory setae ornamented with a series of rough notches on the margins, tip claw-shaped, 0.61 mm long, 20 \(\mu \) diameter. Meronephric; micronephridia astomate, large, paired tufts in iv with composite ducts opening into pharynx (?), several, exonephric, on the body wall in v and posteriad segments, arranged in 4-5
longitudinal ranks on each side posterior to clitellum; paired stomate, exonephric megameronephridia in caudal segments, funnels close to the nerve cord.

Type locality: Castle Rock, Karnataka, India.

Type specimens: In ZSIC, W 134/1; BMNH, 1933: 5: 25: 877-80.

Material examined: 0-0-1, syntype, W 134/1, in ZSIC.

Distribution: So far known from the type locality.

Remarks: The syntype in the Zoological Survey of India, Calcutta is macerated and broken into two parts, but some characteristics of the digestive and excretory systems can still be recognized. An examination of these characteristics shows its relationship with octochaetid genera with a single gizzard, discrete extramural calciferous glands and stomate exonephric megameronephridia in caudal segments. Its affinities with the restricted bigiceriate *Octochaetoides* are doubtful.

127. *Octochaetoides (1) kurmagarensis* Gates

Length c. 120 mm, diameter c. 6 mm Prostomium prolobic. First dorsal pore 7/8, sometimes 6/7. Clitellum annular, xiv-xvi, or slightly onto xvii dorsally. Setae a on viii and ix copulatory, those on viii being surrounded by tumescences. Male genital field indistinct. Male pores paired, in seminal grooves, on xviii; prostatic pores paired, at the ends of seminal grooves, on xvii and xix; seminal grooves almost straight, between setal arcs of xvii and xix, at or just median to a. Female pores paired, presetal, within a lines, on xiv. Spermathecal pores paired, small, transverse or diagonal slits, on or slightly posterior to setal arcs of viii and ix, median to a. Genital markings absent.

Septa 4/5/6 delicate, 6/7-12/13 slightly muscular. Gizzard in v. Calciferous glands unpaired, a low annular band around oesophagus, in xv. Intestine begins in xvii; caeca, supra-intestinal
glands and typhlosole absent. Dorsal vessel single and complete; supra-oesophageal vessel single, viii-xiii; extra-oesophageal vessels paired, each with small vessels joining the supra-oesophageal vessel in each of segments viii-xiii; latero-parietal vessels paired, joining the supra-oesophageal vessel in xiii; lateral hearts originating from the supra-oesophageal vessel with delicate connectives to the dorsal vessel in x-xiii. Holandric; seminal vesicles in ix and xii. Prostates paired, tubular, in xvii and xix. Penial setae ornamented with 40-50 circles of closely crowded fine spines, tip thin and flattened, terminal margin very finely toothed, 2(+) mm long. Spermathecae paired, in viii and ix, each with a sessile ental diverticulum with 1-3 seminal chambers. Copulatory setae ornamented with longitudinally placed rectangular depressions, tip claw-shaped, 1.5-1.8 mm long. Meronephric; micromeronephridia astomate, paired enteronephric (?) tufts in iv, several exonephric on the body wall in v and posteriad segments.

Type locality: Kurmagar Island, Karwar Harbour, Karnataka, S. India.

Type specimens: ?

Distribution: So far known from the type locality.

Remarks: Unpaired and annular condition of the calciferous glands in xv may be of sufficient taxonomic importance to require generic distinction from other known octochaetid genera (Gates, 1945a). More information on the characteristics of the excretory system, especially the caudal nephridia, is required to consider its generic status. Certainly, *Octochaetoides kurmagarensis* with a single gizzard cannot be assigned to the restricted bigiceriate *Octochaetoides*.

128. *Octochaetoides (?) raoi* Gates

Length 140 (+) mm, diameter 3 mm. First dorsal pore 12/13. Clitellum annular, xiii-xvi. Setae lumbricine, \(ab < cd < bc < aa \) at
posterior end. Male genital field longitudinally rectangular between 16/17 and 19/20, extending laterally to median portion of bc, slightly depressed between seminal grooves. Male pores paired, probably in seminal grooves on xviii; prostatic pores paired, probably at the ends of seminal grooves, on xvii and xix; seminal grooves bracket-shaped between the setal arcs of xvii and xix, at about a. Female pores paired, near midventral line, on xiv. Spermathecal pores paired, transverse slits in 7/8/9, slightly median to a. Genital markings oval, paired, on 11/12, at ac, unpaired and median, on 14/15, at bb.

Septa present from 4/5, 5/6 delicate, 6/7-11/12 muscular. Gizzard in v. Calciferous glands one pair, discrete, extra-mural, vertical, ovoidal, sessile, in xvi, associated with septum 15/16, opening into oesophagus through fairly large lateral slits. Intestine begins in xvii; caeca and supra-intestinal glands absent; typhlosole lamelliform, simple. Last pair of hearts in xiii. Holandric; seminal vesicles acinous, in ix and xii. Prostates paired, tubular, those of xvii extend to xvi, those of xix to xx. Penial setae unornamented, 0.45-0.73 mm long, 26-40 μ diameter. Spermathecae paired, in viii and ix, each with a shortly stalked uni- to multiloculate ectal diverticulum. Meronephric; micromeronephridia astomate, large, paired, (exo- or enteronephric ?) tufts in iv, v and vi, several on the body wall in other segments. Genital marking glands absent.

Type locality: Nandydroog (Nandi Hills), Karnataka, India.

Type specimens: ?

Distribution: So far known from the type locality.

Remarks: O. raoi with a single oesophageal gizzard cannot be assigned to the restricted bigiceriate Octochaetoïdès. More information on the characteristics of the excretory system is required for considering its relationship with other octochaetid genera.
REFERENCES

ARLDT, T. 1908. Die Ausbreitung der terricolen Oligochaten
im Laufe der erdgeschichtlichen Entwicklung des Erdreliefs.

BAHL, K.N. 1927. On the reproductive process of earthworms.
Pt I. The process of copulation and exchange of sperm in

BEDDARD, F.E. 1883. Note on some earthworms from India.

BEDDARD, F.E. 1892a. On some species of the genus Perichaeta

BEDDARD, F.E. 1892b. The earthworms of the Vienna Museum.

BEDDARD, F.E. 1893. On some new species of earthworms
from various parts of the world. Proc. zool. Soc. Lond.,
1892: 666-707.

BEDDARD, F.E. 1900. On a new species of earthworm from
India belonging to the genus Amyntas. Proc. zool. Soc.
Lond., 1900: 998-1002.

BEDDARD, F.E. 1902. On two new earthworms of the family

REFERENCES

REFERENCES

REFERENCES

REFERENCES 387

REFERENCES

REFERENCES

STEPHENSON, J. 1921a. Oligochaeta from Manipur, the Laccadive Islands, Mysore, and other parts of India. Rec. Indian Mus., 22: 745-768.

ALPHABETICAL INDEX

Names in italics are synonyms and numbers in bold indicate pages containing detailed descriptions.

aborianus Eutyphoeus, 131
Acanthodrilidae, 5, 12, 24, 39, 48, 49, 376
Acanthodrilinae, 5
acanthodriline, 12
Acanthodrilus, 344
Aeolosomatidae, 4
aestivation, 32
affinis (Benhamia), 100, 101
affinis (Dichogaster), 40, 101
affinis (Hoplotaetella), 181, 182
age groups, 7
Aikinetocystis, 38, 164, 174
Ailoscolecidae, 48
aikenii (Benhamia), 263
aikenii (Octochaetoides), 89, 263
aikenii (Octochaetus), 263
albida (Bahlia), 31, 64
albida (Octochaetona), 267
albidus (Octochaetoides), 267
alexandri (Amynthas), 39
Alluroididae, 47
Alluroidina, 4, 47
Alluroidoidae, 4
Almidae, 48, 50
andersoni (Eutyphoeus), 161, 163
ane ciques, 33
annandalei (Barogaster), 68
annandalei (Eutyphoeus), 129, 132
annandalei (Megascolides), 68
annandalei fulgidus (Eutyphoeus). 147, 147
anomala (Hoplochaetella), 182, 184, 193, 218
anomala (Mactaphire), 40
anomala (Millsonia), 31
anomalus (Erythraeodrilus), 184
Anoplophrya, 38
ants, 38
aphanidermatus (Pythium), 43
Archilagiochaeta, 3
ashworthi (Eudichogaster), 117, 118
ashworthi kinneari (Eudichogaster), 121
asianus (Microdriilus), 113
assamensis (Eutyphoeus), 130, 131, 133
bacteria, 34, 43
badger, 38
bahi (Howascolex), 228, 229, 345
bahli (Konkadrilus), 229
Bahlia, 53, 61, 64
Balanta, 98
balantine, 12
barailanus (Eudichogaster), 127
barkudensis (Eudichogaster), 252, 254
barkudensis (Lennogaster), 252
barkudensis (Octochaetona), 266, 269
barkudensis (Octochaetus), 269
barnesi (Octochaetona), 266, 270
barnesi (Octochaetus), 276
barodensis (Barogaster), 68, 70
barodensis (Eudichogaster), 67, 70
Barogaster, 63, 67, 68
basilanus (Eutyphoeus), 164, 167
beatrix (Octochaetoides), 279
beatrix (Octochaetona), 266, 271
beatrix (Octochaetus), 271, 274
beetles, 38
bengalensis (Eudichogaster), 302, 304
bengalensis (Eutyphoeus), 174, 175
bengalensis (Pellogaster), 304, 309
bengalensis orissanus (Pellogaster), 304
bengalensis jubbulporensis (Pellogaster). 304
Benhamia, 98, 116
bergtheili (Megascolides), 335
bergtheili (Scioloscolides), 335
bermudensis (Pontodrilus), 39
bicincta (Pithemera), 33, 40
bidens (Howascolex), 228, 344, 345, 346.
bidens (Wahoscolex), 346, 349, 364
bifoveata (Hoplochaetella), 181, 187
biogeography, 6
biomass, 36, 37
Bipalium, 38
birmanicus (Tonoscolex), 33
birmanicus (Octochaetoides), 293
birmanicus (Octochaetus), 293, 295
bishambhari (Eutyphoeus), 161, 163
bishambhari (Octochaetus), 317, 319
bishambhari (Ramiella), 31, 317
Biwadrilidae, 47,
Biwadriloidea, 6, 47
blackbird, 38
body form, 7
bolau (Dichogaster), 31, 36, 40, 100, 103
bolau bolau (Dichogaster), 104
bolau pacifica (Dichogaster), 103
bolau palmicola (Dichogaster), 103
bolavi (Benhamia), 103, 106
bolavi pacifica (Benhamia), 103, 106
bolavi palmicola (Benhamia), 103, 106
bouchei (Wahoscolex), 346, 347, 349, 364
bulbus ejaculatrice, 24
burrows, 33
bursae copulatrices, 12
bursata (Celeriella), 78
carabid, 38
calciferous glands, 17, 18, 46
calciferous lamellae, 17, 18, 46
Calebiella, 61, 73, 240
california (Metaphire), 40
callosus (Eutyphoeus), 131, 132, 135
carabid, 38
castaneus (Lumbricus), 39
castellanus (Octochaetoides), 90, 370
castellanus (Octochaetus), 370
castings, 33
Celeriella, 62, 76, 77, 231, 368
Chaetoocotoides, 62, 89, 92, 299
chennannures (Megascolides), 338, 339
chennannures (Travoscolides), 339
chittagongianus (Eudyphoeus), 140, 142
copulation, 29
copulatory setae, 24, 29, 46
corethrurus (Howascolex), 228, 343, 344, 345, 349
corethrurus (Pontoscolex), 39
corethrurus (Wahoscolex), 346, 349, 354, 355
corethrurus ditheca (Howascolex), 354
corethrurus typica (Howascolex), 349
Craterocystis, 38
crawi (Dichogaster), 113, 114
Cridrilidae, 39, 47, 49
Cridriloida, 6, 47
crow, 38
cultri/era (Ramiella), 319
cuneata (Taenia), 38
curgensis (Dichogaster), 100, 108, 110
curgensis (Wahoscolex), 346, 352, 355
curgensis unilocularis (Dichogaster), 108, 110
cyaneum (Octolasion), 39
damonis (Dichogaster), 99, 100
Dashiella, 63, 94, 97
dast (Octochaetus), 272, 274
density, 35
diapause, 32
Dicelis, 38
Dichogaster, 53, 63, 98, 100
dichogasteri (Plagiotoma), 108
diffringens (Amynthas), 34, 37, 39
Dionyx, 38
Diporochaelil, 310, 368
Diporodrilinae, 48
dipterous larvae, 38
dispersal, 37
dissection, 44
INDEX

Distichopus, 38
distribution, 35
ditheca (Celeriella), 78, 79
ditheca (Wahoscolex), 346, 354, 355
dorsal pores, 10, 46
dorsochaeta (Diporochaeta), 367
Dorissodrile, 47
doveri (Dichogaster), 111
dubius (Microscolex), 39
duodecimalis (Celeriella), 78, 81
duodecimalis (Spenceriella), 78, 81
duodecimalis (Travoscolides), 338, 341
duodecimalis dietheca (Spenceriella), 79
duodecimalis quadripapillata (Spenceriella), 86
duodecimalis typica (Spenceriella), 81
eastoni (Rillogaster), 329, 331, 332
Echinocystis, 38
economic importance, 40
eoschist (‘Lumbricus’), 39
elegans (Gordiodrilus), 40
elongata (Polypheretima), 40
elongatus (Lennogaster), 244, 248
Enchytraeidae, 1, 47
Enchytraeoida, 4, 47
epigeus, 33
epilobic, 9
Erythraeodrilus, 179
Eudichogaster, 63, 67, 116, 243, 302, 328
Eudrilidae, 4, 24, 29, 39, 48, 49
Eudrilinae, 48
eugenii (Eudrilus), 39
euprostates, 24
Eutyphoeus, 35, 53, 61, 128, 129
excavata (Octochaetona), 265, 278
excavatus (Octochaetus), 278
excavatus (Perionyx), 34, 36, 37
extramural, 18
falcifer (Eudichogaster), 248
falcifer (Lennogaster), 245, 248
fermori (Octochaetoides), 272
fermori (Octochaetus), 272, 274
fermori tetracystis (Octochaetus), 272, 274
fermori typica (Octochaetus), 272
festivus (Eutyphoeus), 130, 138
flatworm, 38
foetida (Eisenia), 30, 31, 36, 39
food, 34
fungi, 34, 43
gammiei (Eutyphoeus), 130, 132, 140
gammii (Typhoeus), 140
gammii (Typhaeus), 140, 142
ganeshae (Octochaetus), 281, 282
gatesi (Kotegeharia), 240
genital markings, 11, 14, 29
genital pores, 11, 12
genital setae, 24, 29
genital tumescences, 14
gigas (Eutyphoeus), 130, 142
gizzard, 17, 18
Glossoscolecidae, 39, 48, 50
Glossoscolecoida, 6, 48
Glypheidrilus, 35
grandis (Drawida), 33
Grayallia, 38
gull, 38
habitat, 32
habits, 32
Haplotaxida, 1, 4, 47, 49, 51
Haplotaxidae, 4, 47
Haplotaxina, 4, 47
hawayanus (Amynthas), 40
hedgehog, 38
Heterakis, 38
heterochaeta (Ramella), 320
heterochaeta (Remiella), 317, 320
hodgarti (Octochaetus), 272, 274
holandy, 23
holomyxyn, 23
bolonephridia, 26
Hoplitophrya, 38
Hoplochaeta, 178
Hoplochaetella, 35, 62, 178, 180
horai (Wahoscolex), 346, 356, 362
Hormogastridae, 48
Hormogastrinae, 48
hortsisis (Eisenia), 39
houletii (Metaphire), 40
Howascolex, 53, 228, 343, 344, 345
Howascolex s.s., 228, 231
ibrahimi (Eutyphoeus), 174, 175
inaequalis (Ventura), 43
incommodus (Eutyphoeus), 31, 33, 129, 145
incommodus fulgidus (Eutyphoeus), 145
incommodus (Typhoeus), 145, 147
incubation, 31
indica (Benhamia), 116, 120
indICA (Diplocardia), 366
indica (Eudichogaster), 120
indica (Mallehulla), 259
indica (Trigaster), 120
indicus (Eudichogaster), 117, 118, 120
inornata (Hoplochaetella), 34, 35, 180, 188
inornatus (Erythraeodrilus), 188
insignis (Megascolex), 43
intestinal caeca, 17, 19
intestine, 17, 19
intramural, 18
isabellae (Pellogaster), 31, 304, 306, 309
Karmiella, 61, 224
karnatakensis (Hoplochaetella), 181, 190, 193, 218
karnatakensis (Karmiella), 224
kempi (Celeriella), 78, 83, 84
kempi (Erythraeodrilus), 193
kempi (Eutyphoeus), 131, 164
kempi (Hoplochaetella), 181, 193
kempi (Spenceriella), 83
kempi bifoveatus (Erythraeodrilus), 187
khandalaensis (Dashic‘la), 94
khandalaensis (Erythraeodrilus), 196
khandalaensis (Hoplochaetella), 34, 196, 210
khandalaensis dichordarius (Erythraeodrilus), 198
khandalaensis dichordarius (Hoplochaetella), 181, 190, 216
khandalaensis khandalaensis (Hoplochaetella), 181, 193, 216
khani (Eutyphoeus), 158, 160
kherai (Eutyphoeus), 130, 148
kinneari (Erythraeodrilus), 200
kinneari (Eudichogaster), 118, 121
kinneari ? (Eudichogaster), 125
kinneari (Hoplochaetella), 34, 180, 280
koboensis (Eutyphoeus), 140, 142
Kokadrilus, 62, 226, 228, 231, 345
Kotegeharia, 61, 239
kukenthali (Eukerria), 40
kurmagarensis (Hoplochaetella), 181, 202
kurmagarensis (Octochaetoides), 90, 371
Kynotidae, 48
lacuum (Criodrilus), 39
lasiurus (Howascolex), 345
leech, 38
Lennogaster, 63, 94, 97, 243, 244, 369
life cycle, 30
lippus (Eutyphoeus), 130, 150
londensis (Hoplochaetella), 181, 203
longiseta typica (Eutyphoeus), 143
Lumbricidae, 10, 39, 48, 49
Lumbricina, 4, 6, 47, 49, 51
Lumbricinae, 48
Lumbricinide, 11, 12
Lumbricoidea, 4, 6, 47
Lumbriculida, 4, 47
Lumbriculidae, 4, 47
luminescence, 35
lunatus (Octochaetus), 272, 274
Lutodrilidae, 48
madagascariensis (Howascolex), 228, 344
magnus (Eutyphoeus), 140, 142
maindroni (Octochaetona), 266, 279
maindroni (Octochaetus), 280
maindroni chaperi (Octochaetus), 280
maindroni typica (Octochaetus), 279
Malabarica, 35
malabaricus (Dichogaster bolaut), 104, 106
Malabarinae, 48
malayana (Benhamia), 103, 106
malayana (Dichogaster), 103
Mallehulla, 62, 231, 259
manipurensis (Eutyphoeus), 152
manipurensis manipurensis (Eutyphoeus), 129, 152
marylandensis (Anoplophrya), 148
masoni (Eutyphoeus), 161
masoni (Typhaeus), 161, 163
masoni (Typhoeus), 161
matheranensis (Eudichogaster), 328, 332
matheranensis (Rillogaster), 329, 331, 332
Maupasella, 38
mauriti (Lampito), 30, 31, 35
Megadrili, 1
Megascoleidae, 5, 12, 24, 39, 48, 49
Megascoleinae, 5, megascoleine, 12
Megascoleoida, 4, 6, 48, 51
Megascoleidae, 67, 334, 337
merkaraensis (Howascolex), 228, 344, 345, 359
merkaraensis (Wahoscolex), 346, 354, 355, 359
meronedyndry, 23
meronephridia, 26
metagyny, 23
metandry, 23
Metaradiophrya, 38
Metastrongylus, 38
Microchaetidae, 48
Microdrili, 98
Microdrilus, 98
micro-organisms, 34
microscolecine, 12
Millsonia, 98
modiglianii (Benhamia), 110, 111
modiglianii (Dichogaster), 40, 100, 110, 113
moammedi (Eutyoephoeus), 145, 147
mole, 38
Moniligastrida, 1, 4, 47, 49
Moniligastridae, 4, 24, 47, 49
Monocystis, 38
montania (Chactocotoides), 90
montanus (Octochaetoides), 90
montanus (Octochaetus), 89, 90
montanus (Priodoscolex), 312, 313
morrisi (Amythathas), 40
mullani (Erythraedrilus), 205
mullani (Eudichogaster), 118, 122
mullani (Hoplochaetella), 181, 205
myana, 38
Naididae, 47
nainiana (Ramiella), 31, 35, 317, 321
nainianus (Eutyoephoeus), 130, 154
nandienis (Wahoscolex), 346, 359, 360, 362
narayani (Curgiona), 33
Nellocystis, 38
Nematocystis, 38
Nematodes, 34, 43
Neooligochaeta, 3
nepalensis (Eutyoephoeus), 130, 156
nephridia, 14, 26
nephridiopores, 14
nicholsoni (Eutyoephoeus), 31, 33, 131, 158
nicholsoni (Typhoeus), 158, 160
occidentalis (Ocnerodrilus), 31, 40
Ocnerodrilidae, 5, 12, 24, 40, 48, 49
Ocnerodrilus, 48
Ocnerodrilus, 35
octaedra (Dendrobaena), 39
Octochaetidae, 5, 12, 24, 40, 48, 50, 53, 61
Octochaetinae, 5
Ocneroidoidea, 63, 89, 262, 371
Ocnerochaeta, 53, 62, 89, 90, 264, 265, 298, 299
Octochaetus, 262, 264, 315
octonephra (Benhamia), 103, 106
octonephra (Dichogaster bolauti), 103
Octonochoeta, 62, 90, 92, 298
Onesia, 38
Opisthocystidae, 47
orientalis (Eutyoephoeus), 131, 132, 161
orientalis (Typhaeus), 161
orientalis (Typhoeus), 128, 161, 163
origin, 6
pachpaharensis (Octochaetus), 317, 319
pachpaharensis (Ramiella), 317
paivai (Eutyoephoeus), 161, 163
paliensis (Octochaeta), 266, 280
paliensis (Octochaetus), 280, 282
paliensis riparius (Octochaetus), 281, 282
pallida (Ramiella), 34, 317, 323
palidus (Octochaetus), 323
panamaensis (Nematogenia), 40
panchagniensis (Hoplochaetella), 181, 287
papaya (Carica), 43
papillata (Benhamia), 110, 111
papillata (Dichogaster), 110
papillata hawaiensis (Benhamia), 110, 111
papillata hawaiensis (Dichogaster), 110
Parabursaria, 38
parasites, 38
Pareudrilinae, 48
parthenogenesis, 14, 29
INDEX
parva (Calebiella), 73
parva (Dichogaster), 100
parva (Eudichogaster), 368
parva (Octochaetona), 266, 283
parva (Ramella), 317
parva (Trigaster), 368
parvus (Bimastos), 39
parvus (Eudichogaster), 368
parvus (Octochaetona), 266, 283
pattoni (Octochaetona), 266, 285
pellucida (Perichaeta), 310, 311
pellucida (Priodochaeta), 311
penial setae, 24, 46
peregrine, 6, 31, 39
Perichaeta, 178
perichaetine, 11, 12
Perionyx, 35
penial setae, 24, 46
pharingianus (Eutyphoeus), 130, 161
philotti (Octochaetona), 266, 287
philotti (Octochaetus), 287
philotti (part) (Octochaetus), 280, 282, 288
phosphoreus (Microscolex), 39
Phreodriulidae, 47
pigmentation, 14
pilatus (Megascolides), 338, 341
pilatus (Travoscolides), 338, 341
pittiyi (Octochaetona), 272, 274
Plagiotoma, 38
planata (Metaphire), 40
Pleurocystis, 38
Polycerus, 38
poonensis (Benhamia), 124
poonensis (Eudichogaster), 118, 124
poonensis (Trigaster), 124
population, 35
posthuma (Metaphire), 33, 34, 40
postremus (Eutyphoeus longiseta), 143
powelli (Erythraeodrillus), 211
powelli (Hoplochaetella), 33, 34, 181, 210, 211, 216
prashadi (Barogaster), 68, 72
prashadi (Eudichogaster), 117, 118, 122, 125
prashadi (Megascolides), 72
prashadi (Octochaetona), 266, 289
prashadi (Octochaetus), 289
predators, 38
preservation, 44
Priodochaeta, 61, 240, 310
Priodoscolex, 62, 312
proandry, 23
proepilobic, 9
prognyn, 23
prolobic, 9
protoplasm, 9, 46
protozoans, 34, 38
provincialis (Eutyphoeus), 158
punctata (Celeriella), 77, 85
pusillus (Eudichogaster), 252, 254
pusillus (Lennogaster), 245, 252, 369
pygomere, 1, 8
quadrirapipilata (Celeriella), 78, 86
quadrirapipilatus (Eutyphoeus), 129, 168
quiescence, 32

Ramella, 315
Ramilla, 53, 62, 231, 315, 317
Ramiellona, 345
raoi (Octochaetoides), 90, 372
regularis (Celeriella), 78, 87
regularis (Spenceriella), 87
reproduction, 29
reproductive system, 23
Rhabditis, 38
Rhynchocystis, 38
righii (Hoplochaetella), 180, 210, 213
Riilogaster, 63, 94, 97, 328, 329
robin, 38
robustus (Amynthas), 40
rosea (Eisenia), 39
rosea (Octochaetona), 299
rosea (Octonochaeta), 299, 302
roseus (Octochaetus), 298, 299, 302
rotatorian, 38
rotifers, 34
rubellus (Lumbricus), 39
rubida (Dendrobaena), 39
rudis (Folienia), 38
rugosa (Benhamia), 103, 106
yeicus (Eudichelogaster), 243, 257
yeicus (Lennogaster), 245, 257
zeesii (Konkadrilus), 229, 237, 239
zygolobic, 9
ABOUT THE AUTHOR

After obtaining his M.Sc. (Hons School) degree in Zoology from the Panjab University, Chandigarh, Dr. J. M. Julka started his research career as a Senior Research Scholar at the Central Inland Fisheries Research Institute, Barrackpore (West Bengal) in 1962. He joined the Zoological Survey of India in 1965. Since then he has made considerable contributions on the taxonomy and ecology of the Indian earthworms, including the discovery of several new taxa. He has so far published more than 60 research papers. Dr. Julka also represented the Zoological Survey of India in the Joint Multi-disciplinary Scientific Surveys Expeditions to the unexplored areas of difficult terrain in Arunachal Pradesh in the years 1969 and 1974. In appreciation of his outstanding work during these expeditions, he was awarded an ‘Independence Day Silver Medal’ by the Government of Arunachal Pradesh and a ‘Silver Medal’ by the Geological Survey of India in 1975. Recently, the University of Camerino, Italy, invited him to study the ‘types’ of the Indian earthworm species deposited in various Italian Universities/Institutions.