This Handbook on Plant Mites of India is an attempt to provide up-to-date and complete taxonomic account of Indian species of plant mites, a group which has recently been found to be of immense economic importance. Apart from providing a full taxonomic treatment of all the species known till 1983 from India along with the keys for their identifications, this book also includes indepth information, wherever known, on various other aspects such as biology, ecology, nature of damage, control measures, etc. of the economically important phytophagous species and predatory behaviour for the others. General discussion has been made pertaining to morphology, basic techniques involved in studies of plant mites, habits and habitats, feeding habits, seasonal occurrence, sampling techniques, economic importance, control measures, classification, etc. Chapters are also devoted to Plant-Mite catalogue, list of mites known from each State and Union Territories of India, bibliography, glossary of acalogical terms, etc.

This book, being the first of its kind from India, will help both taxonomists and economic entomologists in identifying their material as well as in getting summarised information on all applied aspects. Hence, this compendium will prove to be a valuable, informative and indispensable reference material to students of plant mites in India and abroad who will undoubtedly welcome it with open arms.
FOREWORD

Insects and mites are the most important and significant pests of crops and plantations causing serious crop losses both in terms of quantity and quality of the produce. While insect pests have received sufficient attention in India, mites have remained neglected probably due to their microscopic size and obscure nature, even though they have the potentiality of causing extensive damage to tea plantations and agricultural crops. The mite problem in agriculture has gained further importance in the recent years because many of the plant mites earlier considered to be innocuous are becoming major pests due to random and indiscriminate use of chlorinated hydrocarbons which kill the natural enemies of mites. Development of resistance and cross resistance has aggravated the problem still further. Contrary to the injurious mites, there are beneficial plant mites too which act as our friends by predating upon mite and small insect pests.

The plant mites have generated interest among the entomologists. However, so far, there is no consolidated taxonomic account on plant mites of India as also their applied aspects such as biology, ecology, control, etc. Keys for easy identification of Indian phytophagous mites are also not available. As such, both the taxonomists and field level workers face difficulties in identifying their material and more so they need to scan through the scattered literature to take stock of the work done on plant mites of India.

This Handbook prepared by Dr. S. K. Gupta, Scientist-C, Zoological Survey of India, Calcutta, will fulfil this long felt need of both taxonomists and workers in applied fields. I am sure, this Handbook, the fifth in this series, published by the Zoological Survey of India, will prove useful.

_ T. N. KHOSHOO_
Secretary

New Delhi
January 14, 1985
Department of Environment
Government of India
New Delhi
EDITOR'S PREFACE

Among the several objectives of the Zoological Survey of India, probably the most important one is to provide a comprehensive systematic account on various groups of the Indian fauna. To achieve this objective, the department undertakes faunistic survey programmes and publishes the results in various books, journals, reports, etc., of which, the more important are the series on "Fauna of India", "The Handbooks" and the "Technical Monographs". The present contribution on the "Plant Mites of India" is published as a "Handbook" and is fifth in the series.

The importance of plant mite is well known as most of them are injurious pests of agricultural and horticultural crops causing considerable financial loss to the growers while some mites are important predators of mite and small insect pests of agricultural crops and, thus, help in control of pests and thereby in maintaining natural balance. Though the study of plant mite was started in India in the beginning of this century, its real extensive and intensive studies have been taken up only very recently and the results published through various journals in India and abroad are scattered and not easily accessible to majority of workers. The present "Handbook" gives a comprehensive taxonomic account of all the plant mites, both phytophagous and predatory, giving their diagnosis, mite-host, and host-mite list, distribution and also keys for identification. It includes other applied information, wherever known, in biology, ecology, control, etc. of the economically important species as well. A total of 557 species distributed over 131 genera, 18 families and 4 orders are dealt with here.

I congratulate Dr. S. K. Gupta, Scientist-C, Zoological Survey of India, Calcutta, who is a reputed acarologist in our country, for undertaking the enormous task of preparing this "Handbook" which, I am sure, will be useful to the students and researchers in the field of Agricultural and Horticultural Acarology both in India and abroad.

Dr. B. K. TIKADER
Director,
Zoological Survey of India,
Calcutta.

Calcutta
January 10, 1985
AUTHOR’S PREFACE

In view of the manifold economic importance of plant mites, a considerable amount of research work has been done in India during the past few decades and that has resulted in enriching our knowledge considerably in this field. Unfortunately, most of the works are scattered and, hence, there has been an increasing demand from acarologists and agricultural entomologists for a book giving a summarised and up-to-date information covering all aspects of plant mites of India. The present book is an attempt to that direction. It is believed that the book, being the first of its kind in India, will prove useful to a large section of workers both in India and abroad and will generate further interest among the workers in this group. Sincere efforts were made to give as much up-to-date information as possible yet there may be some omissions and it would be highly appreciated if those are pointed out for improvements in future.

I wish to express my sincere thanks and deep sense of gratitude to Dr. T. N. Khoshoo, the eminent biologist and Secretary, Department of Environment, Ministry of Environment and Forestry, Government of India, for his keen interest in this book and for kindly writing the foreword which has certainly increased its value. My grateful thanks are due to Dr. B. K. Tikader, Director, Zoological Survey of India, for his constant encouragements, valuable suggestions and for extending all the facilities. I am sure, without his personal interest, this book would not have been published so quickly. Thanks are also due to Prof. T. N. Ananthakrishnan, former Director, Z. S. I., who had given me the idea of writing this book and to Dr. S. K. Bhattacharyya, Dy. Director, for his sustained interest. I owe my sincerest gratitude to Prof. G. P. ChannaBasavanna, eminent Acarologist and President, Acarological Society of India, for taking the pains of critically going through the entire manuscript and offering many valuable suggestions for improving upon the quality of the book. A large number of scientists from India and abroad, viz. Drs. M. Mohansundaram, S. Ghai, S. Chakrabarti, Y. N. Gupta, G. L. Sadana, M. S. Dhooria, E. W. Baker, R. L. Smiley, D. A. Chant, S. Ehara, E. Swirski, M. K. P. Meyer, V. Prasad, L. R. Jeppson, C. B. Huffaker, M. H. Muma, H. A. Denmark and W. M. Chaudhri, extended valuable help by sending reprints of their works and illustrations, which were otherwise not available to me and have been freely used here, and for that I remain deeply indebted.
to all of them. Some of the illustrations of this book were borrowed from 'Terrestrial Acari of British Isle', 'A manual of Acarology', 'Ph. D. thesis of Dr. Y. N. Gupta' and also from various journals and for according kind permission I am highly obliged to, Director, British Museum (Natural History), London, Dr. G. W. Krantz, Dr. Y. N. Gupta, Dr. G. P. ChannaBasavanna, Dr. M. Mohansundaram, Dr. S. Chakrabarti, Dr. D. Macfarlane and editors of various journals. Dr. A. K. Sanyal, Zoologist, Z. S. I., helped me in correcting some of the proofs; Shri G. Sivagurunathan, the dynamic Publication Production Officer along with his colleagues viz. Shri B. C. Saha, Shri M. L. De and Shri P. K. Ghosh of the Publication Division, Z. S. I., made tireless efforts in expediting the publication of this book; while M/S Sri Aurobindo Press, the printers of this book, made valuable assistance in timely supplying the proof and faithfully incorporating all corrections made thereon and all of them deserve my special appreciation. Shri Sitaram Mondal, Artist, Z. S. I. had designed and drawn the coloured illustration of the coverpage while Shri S. Biswas Artist, Z. S. I. helped me in preparing some of the illustrations of the text and to both of them I offer my heartfelt thanks. I record my deep sense of gratitude to Dr. A. P. Kapur, former Director, Z. S. I. and Late Prof. D. N. Raychaudhri, Calcutta University, as it was they who advised me in the very beginning of my research career to take up work on plant mites and the present book is the outcome of that. Lastly, I shall be failing in my duty if I do not acknowledge with sincere thanks the help I have received from my wife Smt. Reba Gupta and daughter Km. Nilanjana Gupta in preparing the Plant-Mite Catalogue, Statewise list of mites and Index of scientific names.

S. K. GUPTA
ACKNOWLEDGEMENTS

Many of the text figures used under Eriophyoidea are after the works of Drs. G. P. ChannaBasavanna, M. Mohansundaram, S. Chakrabarti, A. K. Das, S. Mondal and B. Ghosh. They gave the kind permission to use their illustrations in my book and I am specially thankful to them for this generosity.

I also acknowledge with sincere thanks the help I have taken from the following works for preparing some of the illustrations in the groups mentioned against each :

Evans et al. (1951)—for general morphology of Acarina
Ph. D. thesis of Y. N. Gupta,
Pritchard and Baker (1955) and Meyer (1974) —for Tetranychidae
Pritchard and Baker (1958)—for Tenuipalpidae
Beer (1954)—for Tarsonemidae
Baker (1949) and Summers and Price (1970)—for Cheyletidae
Baker (1965)—for Tydeidae
Khot (1963-65)—for Erythraeidae
Ghai and Menon (1969) —for Phytoseiidae
Chant (1960) and Narayanan and Ghai (1964)—for Ascidae
Robertson (1959) —for Acaridae
Manson (1972)

I also acknowledge the help I have taken from Jeppson et al. (1975) for keys specially for higher taxa in Eriophyoidea while Krantz (1970) and Evans & Till (1979) for keys to orders of Acarina.
Dedicated to

My Parents

and

Fellow Acarologists
CONTENTS

Foreword ... i
Editor's Preface .. iii
Author's Preface .. v
Systematic Contents ... xiii

Introduction
- History .. 2
- Habits & habitats .. 3
- Techniques .. 3
- General morphology 9
- Biology .. 17
- Feeding habits .. 21
- Host-mite relationship 22
- Sampling of mites .. 22
- Seasonal occurrence 24
- Economic importance 25
- Control of mites ... 28
- Classification ... 32

Phytophagous Mites

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetranychidae</td>
<td>39</td>
</tr>
<tr>
<td>Tuckerellidae</td>
<td>115</td>
</tr>
<tr>
<td>Tenuipalpidae</td>
<td>118</td>
</tr>
<tr>
<td>Nalepellidae</td>
<td>155</td>
</tr>
<tr>
<td>Eriophyidae</td>
<td>160</td>
</tr>
<tr>
<td>Rhyncaphytoptidae</td>
<td>280</td>
</tr>
<tr>
<td>Tarsonemidae</td>
<td>290</td>
</tr>
</tbody>
</table>

Predatory Mites

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheyletidae</td>
<td>297</td>
</tr>
<tr>
<td>Stigmaeidae</td>
<td>301</td>
</tr>
<tr>
<td>Tydeidae</td>
<td>305</td>
</tr>
<tr>
<td>Bdellidae</td>
<td>311</td>
</tr>
<tr>
<td>Cunaxidae</td>
<td>313</td>
</tr>
<tr>
<td>Erythraeidae</td>
<td>320</td>
</tr>
<tr>
<td>Ameroseiidae</td>
<td>326</td>
</tr>
<tr>
<td>Asciidae</td>
<td>329</td>
</tr>
<tr>
<td>Phytoseiidae</td>
<td>331</td>
</tr>
</tbody>
</table>

Mites of Uncertain Economic Importance

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acaridae</td>
<td>407</td>
</tr>
<tr>
<td>Oribatulidae</td>
<td>409</td>
</tr>
</tbody>
</table>

Plant-Mite Catalogue .. 411
Statewise Distribution of Mites 441
References .. 455
Glossary .. 495
Index of Scientific Names 507
SYSTEMATIC CONTENTS

Order Prostigmata
Fam. Tetranychidae
Subfam. Bryobiinae 45
Tribe Bryobiini 45
Genus Bryobia 45
1. Bryobia eharai 47
2. Bryobia praetiosa 47
Genus Bryobiella 48
3. Bryobiella punjabensis 48

Tribe Hystrichonychini 49
Genus Georgiobia 49
4. Georgiobia sphaeralceae 50
Genus Mesobryobia 51
5. Mesobryobia jobneri 51
Genus Monoceronychus 51
6. Monoceronychus terpoghossiani 51
Genus Neopetrobia 53
7. Neopetrobia simlaensis 53
Genus Porcupinychus 54
8. Porcupinychus abutiloni 55

Tribe Petrobiini 55
Genus Petrobia 55
Subgenus Tetranychina 55
9. Petrobia (Tetranychina) harti 55
Subgenus Petrobia 56
10. Petrobia (Petrobia) latens 56

Subfam. Tetranychinae 57
Tribe Eurytetranychini 57
Genus Aponychus 57
11. Aponychus corpuszae 59
12. Aponychus (Stylophoronicus) baghensis 59
13. Aponychus (Stylophoronicus) lalii 60
14. Aponychus sarjul 60
15. Aponychus sulcatus 61
Genus Eutetranychus 61
16. Eutetranychus africanus 62
<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Eutetranychus anneckei</td>
<td>63</td>
</tr>
<tr>
<td>18</td>
<td>Eutetranychus bilobatus</td>
<td>63</td>
</tr>
<tr>
<td>19</td>
<td>Eutetranychus bredini</td>
<td>64</td>
</tr>
<tr>
<td>20</td>
<td>Eutetranychus caricae</td>
<td>64</td>
</tr>
<tr>
<td>21</td>
<td>Eutetranychus citri</td>
<td>64</td>
</tr>
<tr>
<td>22</td>
<td>Eutetranychus maximae</td>
<td>65</td>
</tr>
<tr>
<td>23</td>
<td>Eutetranychus nagai</td>
<td>65</td>
</tr>
<tr>
<td>24</td>
<td>Eutetranychus orientalis</td>
<td>66</td>
</tr>
<tr>
<td>25</td>
<td>Eutetranychus phaseoli</td>
<td>67</td>
</tr>
</tbody>
</table>

Tribe **Tenuipalpodini**

<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Tenuipalponychus citri</td>
<td>69</td>
</tr>
</tbody>
</table>

Genus **Bakerina**

<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Bakerina aculus</td>
<td>69</td>
</tr>
<tr>
<td>28</td>
<td>Bakerina orissaensis</td>
<td>70</td>
</tr>
</tbody>
</table>

Tribe **Tetranychini**

Genus **Eotetranychus**

<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Eotetranychus broodryki</td>
<td>71</td>
</tr>
<tr>
<td>30</td>
<td>Eotetranychus frosti</td>
<td>72</td>
</tr>
<tr>
<td>31</td>
<td>Eotetranychus fremonti</td>
<td>73</td>
</tr>
<tr>
<td>32</td>
<td>Eotetranychus hirsti</td>
<td>73</td>
</tr>
<tr>
<td>33</td>
<td>Eotetranychus irregularis</td>
<td>74</td>
</tr>
<tr>
<td>34</td>
<td>Eotetranychus kankitus</td>
<td>75</td>
</tr>
<tr>
<td>35</td>
<td>Eotetranychus mandensis</td>
<td>75</td>
</tr>
<tr>
<td>36</td>
<td>Eotetranychus pamelae</td>
<td>76</td>
</tr>
<tr>
<td>37</td>
<td>Eotetranychus rohilae</td>
<td>76</td>
</tr>
<tr>
<td>38</td>
<td>Eotetranychus rajouriensis</td>
<td>77</td>
</tr>
<tr>
<td>39</td>
<td>Eotetranychus sexmaculatus</td>
<td>77</td>
</tr>
<tr>
<td>40</td>
<td>Eotetranychus suginamensis</td>
<td>78</td>
</tr>
<tr>
<td>41</td>
<td>Eotetranychus ladakhensis</td>
<td>78</td>
</tr>
<tr>
<td>42</td>
<td>Eotetranychus neoperplexus</td>
<td>79</td>
</tr>
<tr>
<td>43</td>
<td>Eotetranychus syzygii</td>
<td>79</td>
</tr>
<tr>
<td>44</td>
<td>Eotetranychus truncatus</td>
<td>79</td>
</tr>
<tr>
<td>45</td>
<td>Eotetranychus uncatus</td>
<td>80</td>
</tr>
</tbody>
</table>

Genus **Oligonychus**

<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>Oligonychus biharensis</td>
<td>81</td>
</tr>
<tr>
<td>47</td>
<td>Oligonychus coffeae</td>
<td>83</td>
</tr>
<tr>
<td>48</td>
<td>Oligonychus indicus</td>
<td>84</td>
</tr>
<tr>
<td>49</td>
<td>Oligonychus iseilemae</td>
<td>86</td>
</tr>
<tr>
<td>50</td>
<td>Oligonychus mangiferus</td>
<td>87</td>
</tr>
</tbody>
</table>
51. Oligonychus oryzae
52. Oligonychus punicae
53. Oligonychus sacchari
54. Oligonychus sapienticolus
55. Oligonychus manishi
56. Oligonychus vitis

Genus Panonychus
57. Panonychus citri
58. Panonychus ulmi

Genus Platytetranychus
59. Platytetranychus multituberculatus

Genus Schizotetranychus
60. Schizotetranychus andropogoni
61. Schizotetranychus baltazari
62. Schizotetranychus cajani
63. Schizotetranychus fluvialis
64. Schizotetranychus hindustanicus
65. Schizotetranychus mansonii
66. Schizotetranychus spireafolius
67. Schizotetranychus tephrosiae
68. Schizotetranychus undulatus

Genus Tetranychus
69. Tetranychus angloensis
70. Tetranychus afrindicus
71. Tetranychus sayedi
72. Tetranychus kanzawai
73. Tetranychus zaheri
74. Tetranychus papayae
75. Tetranychus cinnabarinus
76. Tetranychus fijiensis
77. Tetranychus lombardini
78. Tetranychus macfarlanei
79. Tetranychus ludeni
80. Tetranychus hypogaeae
81. Tetranychus neocaledonicus
82. Tetranychus urticae

Fam. TUCKEBELLIDAE
Genus Tuckerella
83. Tuckerella indica
<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.</td>
<td>Tuckerella delhiensis</td>
<td>118</td>
</tr>
<tr>
<td>85.</td>
<td>Tuckerella kumaonensis</td>
<td>118</td>
</tr>
<tr>
<td>86.</td>
<td>Aegyptobia mumulus</td>
<td>122</td>
</tr>
<tr>
<td>87.</td>
<td>Brevipalpus californicus</td>
<td>125</td>
</tr>
<tr>
<td>88.</td>
<td>Brevipalpus chilensis</td>
<td>126</td>
</tr>
<tr>
<td>89.</td>
<td>Brevipalpus cucurbitae</td>
<td>127</td>
</tr>
<tr>
<td>90.</td>
<td>Brevipalpus euphorbiae</td>
<td>127</td>
</tr>
<tr>
<td>91.</td>
<td>Brevipalpus deleoni</td>
<td>127</td>
</tr>
<tr>
<td>92.</td>
<td>Brevipalpus essigi</td>
<td>128</td>
</tr>
<tr>
<td>93.</td>
<td>Brevipalpus lewisi</td>
<td>128</td>
</tr>
<tr>
<td>94.</td>
<td>Brevipalpus obovatus</td>
<td>129</td>
</tr>
<tr>
<td>95.</td>
<td>Brevipalpus phoenicis</td>
<td>130</td>
</tr>
<tr>
<td>96.</td>
<td>Brevipalpus karachiensis</td>
<td>131</td>
</tr>
<tr>
<td>97.</td>
<td>Brevipalpus rugulosus</td>
<td>132</td>
</tr>
<tr>
<td>98.</td>
<td>Brevipalpus pulchur</td>
<td>132</td>
</tr>
<tr>
<td>99.</td>
<td>Dolichotetranychus floridanus</td>
<td>133</td>
</tr>
<tr>
<td>100.</td>
<td>Larvacarus transitans</td>
<td>133</td>
</tr>
<tr>
<td>101.</td>
<td>Obuloides rajamohani</td>
<td>134</td>
</tr>
<tr>
<td>102.</td>
<td>Pentamerismus oregonensis</td>
<td>135</td>
</tr>
<tr>
<td>103.</td>
<td>Phytoptipalpus albizziae</td>
<td>135</td>
</tr>
<tr>
<td>104.</td>
<td>Raoiella indica</td>
<td>137</td>
</tr>
<tr>
<td>105.</td>
<td>Raoiella macfarlanei</td>
<td>138</td>
</tr>
<tr>
<td>106.</td>
<td>Tenuipalpus aboharensis</td>
<td>140</td>
</tr>
<tr>
<td>107.</td>
<td>Tenuipalpus acacii</td>
<td>141</td>
</tr>
<tr>
<td>108.</td>
<td>Tenuipalpus amygdalusae</td>
<td>141</td>
</tr>
<tr>
<td>109.</td>
<td>Tenuipalpus crassus</td>
<td>142</td>
</tr>
<tr>
<td>110.</td>
<td>Tenuipalpus cissampelosa</td>
<td>142</td>
</tr>
<tr>
<td>111.</td>
<td>Tenuipalpus dimensus</td>
<td>142</td>
</tr>
<tr>
<td>112.</td>
<td>Tenuipalpus faresianus</td>
<td>142</td>
</tr>
<tr>
<td>113.</td>
<td>Tenuipalpus fici</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>114.</td>
<td>Tenuipalpus granati</td>
<td>143</td>
</tr>
<tr>
<td>115.</td>
<td>Tenuipalpus hastaligni</td>
<td>144</td>
</tr>
<tr>
<td>116.</td>
<td>Tenuipalpus indicus</td>
<td>144</td>
</tr>
<tr>
<td>117.</td>
<td>Tenuipalpus ixorae</td>
<td>144</td>
</tr>
<tr>
<td>118.</td>
<td>Tenuipalpus lalbaghensis</td>
<td>145</td>
</tr>
<tr>
<td>119.</td>
<td>Tenuipalpus caudatus</td>
<td>145</td>
</tr>
<tr>
<td>120.</td>
<td>Tenuipalpus ludhianaensis</td>
<td>145</td>
</tr>
<tr>
<td>121.</td>
<td>Tenuipalpus mustus</td>
<td>146</td>
</tr>
<tr>
<td>122.</td>
<td>Tenuipalpus micheli</td>
<td>146</td>
</tr>
<tr>
<td>123.</td>
<td>Tenuipalpus pernicis</td>
<td>146</td>
</tr>
<tr>
<td>124.</td>
<td>Tenuipalpus pruni</td>
<td>147</td>
</tr>
<tr>
<td>125.</td>
<td>Tenuipalpus punicae</td>
<td>147</td>
</tr>
<tr>
<td>126.</td>
<td>Tenuipalpus pyrusae</td>
<td>148</td>
</tr>
<tr>
<td>127.</td>
<td>Tenuipalpus quadrisetosus</td>
<td>148</td>
</tr>
<tr>
<td>128.</td>
<td>Tenuipalpus tatrazygae</td>
<td>148</td>
</tr>
<tr>
<td>129.</td>
<td>Tenuipalpus coimbatorensis</td>
<td>149</td>
</tr>
<tr>
<td>130.</td>
<td>Tenuipalpus ghaii</td>
<td>149</td>
</tr>
<tr>
<td>131.</td>
<td>Tenuipalpus laminasetae</td>
<td>149</td>
</tr>
<tr>
<td>132.</td>
<td>Tenuipalpus malligai</td>
<td>150</td>
</tr>
<tr>
<td>133.</td>
<td>Tenuipalpus punjabensis</td>
<td>150</td>
</tr>
<tr>
<td>134.</td>
<td>Tenuipalpus tectonae</td>
<td>150</td>
</tr>
<tr>
<td>135.</td>
<td>Tenuipalpus yousefi</td>
<td>151</td>
</tr>
</tbody>
</table>

Genus *Terminalichus*

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>136.</td>
<td>Terminalichus delhiensis</td>
<td>152</td>
</tr>
<tr>
<td>137.</td>
<td>Terminalichus karachiensis</td>
<td>152</td>
</tr>
<tr>
<td>138.</td>
<td>Terminalichus panajiensis</td>
<td>152</td>
</tr>
<tr>
<td>139.</td>
<td>Terminalichus serratus</td>
<td>153</td>
</tr>
</tbody>
</table>

Supfam. Eriophyoidea

Fam. Nalepellidae

Subfam. Nalepellinae

Genus *Neophantacrus*

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>140.</td>
<td>Neophantacrus mallotus</td>
<td>158</td>
</tr>
</tbody>
</table>

Subfam. Sierraephytoptinae

Genus *Mackiella*

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>141.</td>
<td>Mackiella borasi</td>
<td>159</td>
</tr>
</tbody>
</table>

Subfam. Phytoceptellinae

Genus *Anchiphytoptus*

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>142.</td>
<td>Anchiphytoptus giganticus</td>
<td>160</td>
</tr>
</tbody>
</table>

Fam. Eriophyidae
Subfam. Nothopodinae

Genus Anthopoda
143. Anthopoda fici
144. Anthopoda deviarensis
145. Anthopoda wightiana e

Genus Colopodacus
146. Colopodacus bengalensis
147. Colopodacus cinnamomea e
148. Colopodacus combretus
149. Colopodacus eugeniae
150. Colopodacus gynalaxtae
151. Colopodacus walayarensis

Genus Cosella
152. Cosella fleschneri
153. Cosella ichtnocarpasia

Genus Disella
154. Disella tectona

Genus Floracarus
155. Floracarus eugenifoliae
156. Floracarus pollachiensis
157. Floracarus salvifoliae
158. Floracarus siruvaniensis
159. Floracarus sivakumarii

Genus Neocosella
160. Neocosella ichtnocarpae

Genus Neocolopodacus
161. Neocolopodacus mitragynae

Genus Nothopoda
162. Nothopoda kallarensis

Subfam. Cecdophyinae

Genus Colomerus
163. Colomerus vitis

Genus Ectomerus
164. Ectomerus chebulae

Genus Epicecidophyes
165. Epicecidophyes clerodendrus
166. Epicecidophyes indica

Genus Gammaphytoptus
167. Gammaphytoptus litseasis
Genus Neocecidophyes

168. Neocecidophyes malloti-vagrans

Subfam. Eriophyinae

Genus Acalitus

169. Acalitus gossypii
170. Acalitus hibisci
171. Acalitus meliosmae
172. Acalitus reticulatae
173. Acalitus schefflerae

Genus Aceria

174. Aceria antidotalae
175. Aceria delhiensis
176. Aceria dichrostachyia
177. Aceria erythrensis
178. Aceria litsea
179. Aceria trichocnemum
180. Aceria viddhagiriensis
181. Aceria commelinae
182. Aceria boraginae
183. Aceria polygalae
184. Aceria dichotomae
185. Aceria dactylonae
186. Aceria donacis
187. Aceria eragrastae
188. Aceria pustulatus
189. Aceria balanites
190. Aceria bambusae
191. Aceria barleriae
192. Aceria cajani
193. Aceria clerodendronis
194. Aceria cordiae
195. Aceria crotalariae
196. Aceria dalbergiae
197. Aceria erythrinae
198. Aceria ficus
199. Aceria gastrotrichus
200. Aceria granati
201. Aceria holopteleae
202. Aceria infectoriae
203. Aceria jasmini 196
204. Aceria justiciae 196
205. Aceria litchii 196
206. Aceria lycopersici 197
207. Aceria malloticola 198
208. Aceria mangiferae 198
209. Aceria medicaginis 200
210. Aceria mori 200
211. Aceria nandiensis 200
212. Aceria nerii 201
213. Aceria pongamiae 201
214. Aceria puttarudriahi 201
215. Aceria ruelliae 202
216. Aceria saccharini 202
217. Aceria sapindi 203
218. Aceria sheldoni 203
219. Aceria sorghi 204
220. Aceria tulipae 204
221. Aceria agallochae 205
222. Aceria setaceus 205

Genus Eriophyes

223. Eriophyes acaciae 207
224. Eriophyes alangii 207
225. Eriophyes casuarinae 208
226. Eriophyes cernuus 208
227. Eriophyes cheriani 208
228. Eriophyes cymbopogonis 209
229. Eriophyes ladakhensis 209
230. Eriophyes prosopides 209

Genus Keiferophyes

231. Keiferophyes avicenniae 210

Genus Paraphytoptus

232. Paraphytoptus chrysanthemi 210

Genus Neophytoptus

233. Neophytoptus ocimae 211

Genus Phytoptus

234. Phytoptus alangii 212
235. Phytoptus breyniae 213
236. Phytoptus canthii 213
237. Phytoptus carissaee 213
238. *Phytopus cyperi* 214
239. *Phytopus eletariae* 214
240. *Phytopus casuarinae* 214
241. *Phytopus ficivorus* 214
242. *Phytopus glycosmisae* 215
243. *Phytopus lantanae* 216
244. *Phytopus laurae* 216
245. *Phytopus morindae* 216
246. *Phytopus karnatakaensis* 216
247. *Phytopus rosae* 217
248. *Phytopus subbraoi* 217
249. *Phytopus rubifoliae* 217
250. *Phytopus terminaliae* 217

Subfam. *Phyllocoptinae*

Genus *Paracaphylla*

251. *Paracaphylla strebela* 219

Genus *Acaphyllisa*

252. *Acaphyllisa parindiae* 219

Genus *Acaphylla*

253. *Acaphylla indiae* 220
254. *Acaphylla steinwedeni* 220
255. *Acaphylla syzygii* 220
256. *Acaphylla theae* 221

Genus *Calacarus*

257. *Calacarus araliae* 223
258. *Calacarus carinatus* 223
259. *Calacarus brionesae* 224
260. *Calacarus capsica* 224
261. *Calacarus channabasavannae* 225
262. *Calacarus citrifoli* 225
263. *Calacarus jasmini* 225
264. *Calacarus keiferi* 226
265. *Calacarus malvae* 226
266. *Calacarus microrostrus* 226
267. *Calacarus millingtoniae* 227
268. *Calacarus polyalthiae* 227
269. *Calacarus swietensis* 227
270. *Calacarus quisqualis* 227

Genus *Procalacarus*

271. *Procalacarus aliyarensis* 228
<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scolocusus</td>
<td>Scolocusus spiniferus</td>
<td>228</td>
</tr>
<tr>
<td>Tegonotus</td>
<td>Tegonotus bassius</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Tegonotus bengalensis</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Tegonotus cardiavagrans</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Tegonotus coimbatorensis</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Tegonotus convoluli</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Tegonotus jambolensis</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Tegonotus mangiferae</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Tegonotus parviflorae</td>
<td>232</td>
</tr>
<tr>
<td>Calepitrimerus</td>
<td>Calepitrimerus antedesmae</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Calepitrimerus asperrimae</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Calepitrimerus azadirachtae</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Calepitrimerus cordiae</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Calepitrimerus leucadis</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Calepitrimerus massanjoris</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Calepitrimerus mysorenis</td>
<td>236</td>
</tr>
<tr>
<td>Epitrimerus</td>
<td>Epitrimerus azimae</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Epitrimerus chandramohani</td>
<td>237</td>
</tr>
<tr>
<td>Indonotalox</td>
<td>Indonotalox sudarsani</td>
<td>238</td>
</tr>
<tr>
<td>Notostrix</td>
<td>Notostrix flabelliferae</td>
<td>238</td>
</tr>
<tr>
<td>Phyllocoptes</td>
<td>Phyllocoptes aliyamagarensis</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Phyllocoptes ficivagrans</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Phyllocoptes asperavagrans</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Phyllocoptes immigrans</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Phyllocoptes indicae</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Phyllocoptes salmaliae</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Phyllocoptes simplicifoliae</td>
<td>242</td>
</tr>
<tr>
<td>Phyllocoptruta</td>
<td>Phyllocoptruta malligai</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Phyllocoptruta odayarae</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Phyllocoptruta odinae</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Phyllocoptruta odinae</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Phyllocoptruta oleivora</td>
<td>244</td>
</tr>
<tr>
<td>Genus</td>
<td>Species</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Vasates</td>
<td>Vasates cassiae</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Vasates dhodabettaensis</td>
<td>246</td>
</tr>
<tr>
<td>Abacarus</td>
<td>Abacarus anacardiae</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Abacarus arjunalis</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Abacarus asiatica</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Abacarus delhiensis</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Abacarus goaensis</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Abacarus gossypii</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Abacarus sacchari</td>
<td>250</td>
</tr>
<tr>
<td>Aculops</td>
<td>Aculops acanthae</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Aculops abutiloni</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Aculops betonicae</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Aculops boerhaeviae</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Aculops excoecaria</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Aculops extensa</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Aculops kumari</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Aculops leguminae</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Aculops niphocladae</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Aculops pittosporae</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Aculops privae</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Aculops xanthocarpi</td>
<td>254</td>
</tr>
<tr>
<td>Aculus</td>
<td>Aculus atturensis</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Aculus asperus</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Aculus colei</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Aculus cassiae</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Aculus indicus</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Aculus mckenziei</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Aculus menoni</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Aculus moringaeae</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>Aculus kolengii</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>Aculus yelagiriensis</td>
<td>258</td>
</tr>
<tr>
<td>Anthocoptes</td>
<td>Anthocoptes adhatodae</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Anthocoptes ayyanari</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Anthocoptes glycosmis</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Anthocoptes pavoniae</td>
<td>260</td>
</tr>
</tbody>
</table>
338. *Anthocoptes tectonae* 260
339. *Anthocoptes vitexae* 261
340. *Anthocoptes walayarensis* 262

Genus *Bakeriella* 262
341. *Bakeriella ocimis* 262

Genus *Ditrymacus* 262
342. *Ditrymacus keiferi* 263
343. *Ditrymacus integrifoliae* 263

Genus *Indotegolophus* 263
344. *Indotegolophus darjeelingensis* 263

Genus *Keiferana* 264
345. *Keiferana neolitseae* 264

Genus *Metaculus* 264
346. *Metaculus londaensis* 265
347. *Metaculus foveolatae* 265
348. *Metaculus mangiferae* 265
349. *Metaculus sapindiphagus* 265

Genus *MonotrimaculS* 267
350. *MonotrimaculS quadrangulari* 267

Genus *Neocalacarus* 267
351. *Neocalacarus mangiferae* 267

Genus *Neomesalox* 268
352. *Neomesalox kallarensis* 268

Genus *Neometaculus* 269
353. *Neometaculus bauhiniae* 269

Genus *Neotegonotus* 269
354. *Neotegonotus fastigatus* 269
355. *Neotegonotus indicus* 270

Genus *Paratetra* 270
356. *Paratetra albizziae* 271
357. *Paratetra elephantae* 271
358. *Paratetra integrifoliavagrants* 271
359. *Paratetra himalayana* 271
360. *Paratetra murrayae* 272

Genus *Proneotegonotus* 272
361. *Proneotegonotus antiquorae* 272

Genus *Tegolophus* 272
362. *Tegolophus bambusae* 274
363. *Tegolophus calotropi* 274
364. *Tegolophus cordis* 274
365. *Tegolophus gelonis* 274
366. *Tegolophus gmelinae* 276
367. *Tegolophus gmelinus* 276
368. *Tegolophus ficusi* 276
369. *Tegolophus indica* 276
370. *Tegolophus kalyanii* 277
371. *Tegolophus nerii* 277
372. *Tegolophus spondial/us* 277
373. *Tegolophus vitexis* 278

Genus Tetra

374. *Tetra bauhinae* 278
375. *Tetra lanneansis* 279
376. *Tetra tephrosiae* 279

Genus Thamnacus

377. *Thamnacus euphorbiae* 279

Subfam. Aberoptinae

Genus Cisaberoptus

378. *Cisaberoptus kenyae* 280

Fam. Rhyncaphytoptidae

Subfam. Rhyncaphytoptinae

Genus Hyboderus

379. *Hyboderus globulus* 281

Genus Rhyncaphytoptus

380. *Rhyncaphytoptus ficifoliae* 281
381. *Rhyncaphytoptus shoreacola* 282

Subfam. Diptilomiopinae

Genus Diptilomiopus

382. *Diptilomiopus alangii* 284
383. *Diptilomiopus artocarpace* 284
384. *Diptilomiopus assamica* 285
385. *Diptilomiopus bengalensis* 285
386. *Diptilomiopus camerae* 285
387. *Diptilomiopus cocculae* 285
388. *Diptilomiopus integrifolii* 286
389. *Diptilomiopus jevremovici* 286
390. *Diptilomiopus knorri* 287

Genus Diptilorhynacus

391. *Diptilorhynacus sinusetus* 287

Genus Neodiptilomiopus

392. *Neodiptilomiopus vishakantal* 287
Genus *Neorhynacus*
393. *Neorhynacus rajendrani* 289
394. *Neorhynacus combretis* 289

Genus *Neodialox*
395. *Neodialox palmyrae* 289

Genus *Cheiracus*
396. *Cheiracus sulcatus* 290

Fam. Tarsonemidae

Genus *Polyphagotarsonemus*
397. *Polyphagotarsonemus latus* 292

Genus *Steneotarsonemus*
398. *Steneotarsonemus bancrofti* 295

Genus *Lupotarsonemus*
399. *Lupotarsonemus randsi* 296

Genus *Tarsonemus*
400. *Tarsonemus krichneri* 296

Order Prostigmata

Fam. Cheyletidae

Genus *Chelacaropsis*
401. *Chelacaropsis moorei* 299

Genus *Cheletogenes*
402. *Cheletogenes ornatus* 300

Genus *Cheyletus*
403. *Cheyletus fortis* 301

Fam. Stigmaeidae

Genus *Agistemus*
404. *Agistemus industani* 303
405. *Agistemus fleschneri* 304

Genus *Indostigmaeus*
406. *Indostigmaeus rangatensis* 305

Fam. Tydeidae

Genus *Pronematus*
407. *Pronematus elongatus* 308
408. *Pronematus fleschneri* 308
409. *Pronematus sextoni* 308

Genus *Parapronematus*
411. *Parapronematus acaciae* 309

Genus *Lorryia*
411. *Lorryia africana* 309

Fam. Bdeillidae

Genus *Bdellodes*
411. *Bdellodes* 313
<table>
<thead>
<tr>
<th>Subgenus</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgenus Hoploscirus</td>
<td>313</td>
</tr>
<tr>
<td>412. Bdellodes (Hoploscirus) affinis</td>
<td>313</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fam. CUNAXIDAE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Cunaxa</td>
<td>313</td>
</tr>
<tr>
<td>413. Cunaxa bambusae</td>
<td>315</td>
</tr>
<tr>
<td>414. Cunaxa cynodonae</td>
<td>316</td>
</tr>
<tr>
<td>415. Cunaxa myabunderensis</td>
<td>316</td>
</tr>
<tr>
<td>416. Cunaxa setirostris</td>
<td>316</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Cunaxoides</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>417. Cunaxoides nicobarensis</td>
<td>317</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Indocunaxa</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>418. Indocunaxa smileyi</td>
<td>318</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Neocunaxoides</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>419. Neocunaxoides pradhani</td>
<td>318</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fam. ERYTHRAEIDAE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subfam. CALLIDOSOMATINAE</td>
<td>320</td>
</tr>
<tr>
<td>Genus Sphaerolophus</td>
<td>320</td>
</tr>
<tr>
<td>420. Sphaerolophus gigas</td>
<td>322</td>
</tr>
<tr>
<td>421. Sphaerolophus delhiensis</td>
<td>322</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Abrolophus</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>422. Abrolophus delhiensis</td>
<td>322</td>
</tr>
<tr>
<td>423. Abrolophus ripicola</td>
<td>324</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subfam. LEPTINAE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Leptus</td>
<td>324</td>
</tr>
<tr>
<td>424. Leptus poonaensis</td>
<td>324</td>
</tr>
<tr>
<td>425. Leptus giganticus</td>
<td>325</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subfam. ERYTHRAEINAE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Erythraeus</td>
<td>325</td>
</tr>
<tr>
<td>426. Erythraeus plumosus</td>
<td>325</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Paraerythraeus</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>427. Paraerythraeus serratociliatus</td>
<td>326</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order MESOSTIGMATA</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fam. AMEROSIIDAE</td>
<td>326</td>
</tr>
<tr>
<td>Genus Neocypholaelaps</td>
<td>326</td>
</tr>
<tr>
<td>428. Neocypholaelaps pradhani</td>
<td>327</td>
</tr>
<tr>
<td>429. Neocypholaelaps stridulans</td>
<td>327</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fam. ASCIDAE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Melichares</td>
<td>329</td>
</tr>
</tbody>
</table>
Subgenus *Melichares*

| 430. | *Melichares (Melichares) fici* | 330 |

Genus *Lasioseius*

| 431. | *Lasioseius quadrisetosus* | 330 |
| 432. | *Lasioseius terrestris* | 331 |

Fam. Phytophagidae

Subfam. Amblyseinae

Genus *Amblyseius*

Subgenus *Amblyseius*

433.	*Amblyseius (Amblyseius) adhatoda*	336
434.	*Amblyseius (Amblyseius) aerialis*	336
435.	*Amblyseius (Amblyseius) channabasavanni*	337
436.	*Amblyseius (Amblyseius) deleoni*	338
437.	*Amblyseius (Amblyseius) ipomoeae*	338
438.	*Amblyseius (Amblyseius) kulini*	338
439.	*Amblyseius (Amblyseius) largoensis*	339
440.	*Amblyseius (Amblyseius) mcmurtryi*	340
441.	*Amblyseius (Amblyseius) neorykei*	340
442.	*Amblyseius (Amblyseius) orientalis*	340
443.	*Amblyseius (Amblyseius) paraaerialis*	342
444.	*Amblyseius (Amblyseius) rhabdus*	342
445.	*Amblyseius (Amblyseius) shoreae*	342

Subgenus *Asperoseius*

| 446. | *Amblyseius (Asperoseius) nucifera* | 343 |

Subgenus *Euseius*

| 447. | *Amblyseius (Euseius) alstoniae* | 344 |
448. *Amblyseius (Euseius)* bambusae
449. *Amblyseius (Euseius)* coccinea
450. *Amblyseius (Euseius)* coccosocius
451. *Amblyseius (Euseius)* delhiensis
452. *Amblyseius (Euseius)* eucalypti
453. *Amblyseius (Euseius)* finlandicus
454. *Amblyseius (Euseius)* kodaikanalis
455. *Amblyseius (Euseius)* neococcinea
456. *Amblyseius (Euseius)* ovalis
457. *Amblyseius (Euseius)* pruni
458. *Amblyseius (Euseius)* rhododendronis
459. *Amblyseius (Euseius)* sacchari

Subgenus *Neoseiulus*
460. *Amblyseius (Neoseiulus)* aceriae
461. *Amblyseius (Neoseiulus)* assamensis
462. *Amblyseius (Neoseiulus)* cynodonea
463. *Amblyseius (Neoseiulus)* dhooriai
464. *Amblyseius (Neoseiulus)* fallacis
465. *Amblyseius (Neoseiulus)* fraterculus
466. *Amblyseius (Neoseiulus)* indicus
467. *Amblyseius (Neoseiulus)* longispinosus
468. *Amblyseius (Neoseiulus)* paspalivorus
469. *Amblyseius* (Neoseiulus) *rangatensis* 356

470. *Amblyseius* (Paraphytoseius) *multidentatus* 356

471. *Amblyseius* (Paraphytoseius) *scleroticus* 358

Subgenus *Phytoscutella*

472. *Amblyseius* (Phytoscutella) *salebrosus* 358

Subgenus *Proprioseiopsis*

474. *Amblyseius* (Proprioseiopsis) *peltatus* 360

Subgenus *Typhlodromalus*

475. *Amblyseius* (Typhlodromalus) *eucalypticus* 361

476. *Amblyseius* (Typhlodromalus) *havu* 361

477. *Amblyseius* (Typhlodromalus) *jarooa* 362

478. *Amblyseius* (Typhlodromalus) *kalimpongensis* 362

479. *Amblyseius* (Typhlodromalus) *lablabi* 363

480. *Amblyseius* (Typhlodromalus) *manipurensis* 364

481. *Amblyseius* (Typhlodromalus) *sorghumae* 364

482. *Amblyseius* (Typhlodromalus) *swaga* 365

Subgenus *Typhlodromips*

483. *Amblyseius* (Typhlodromips) *arecae* 366

484. *Amblyseius* (Typhlodromips) *crotalariae* 366

485. *Amblyseius* (Typhlodromips) *eugeniae* 367
486. *Amblyseius (Typhlodromips)*
guajavae 367
487. *Amblyseius (Typhlodromips)*
mangiferae 367
488. *Amblyseius (Typhlodromips)*
meghalayensis 368
489. *Amblyseius (Typhlodromips)*
neocrotalariae 369
490. *Amblyseius (Typhlodromips)*
officinaria 369
491. *Amblyseius (Typhlodromips)*
polyantheae 370
492. *Amblyseius (Typhlodromips)*
sapienicola 370
493. *Amblyseius (Typhlodromips)*
suknaensis 370
494. *Amblyseius (Typhlodromips)*
syzygii 371
495. *Amblyseius (Typhlodromips)*
tetranychivorus 371
496. *Amblyseius (Typhlodromips)*
potentillae 372

Genus *Indoseiulus*

497. *Indoseiulus ricini* 373

Genus *Iphiseius*

498. *Iphiseius andamanicus* 375
499. *Iphiseius bakeri* 375

Genus *Paraamblyseius*

500. *Paraamblyseius formosanus* 376
501. *Paraamblyseius fragariae* 377
502. *Paraamblyseius mumai* 377

Genus *Platyseiella*

503. *Platyseiella mumai* 378

Subfam. *Phytoseini*ae

Genus *Indodromus*

504. *Indodromus meerutensis* 379

Genus *Phytoseius*

Subgenus *Pennaseius*

505. *Phytoseius (Pennaseius)*
kapuri 380
<table>
<thead>
<tr>
<th>No.</th>
<th>Subgenus Phytoseius</th>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>506</td>
<td>Phytoseius (Pennaseius) minutus</td>
<td></td>
<td>381</td>
</tr>
<tr>
<td>507</td>
<td>Phytoseius (Phytoseius) bandipurensis</td>
<td></td>
<td>382</td>
</tr>
<tr>
<td>508</td>
<td>Phytoseius (Phytoseius) corniger</td>
<td></td>
<td>383</td>
</tr>
<tr>
<td>509</td>
<td>Phytoseius (Phytoseius) crinitus</td>
<td></td>
<td>383</td>
</tr>
<tr>
<td>510</td>
<td>Phytoseius (Phytoseius) intermedius</td>
<td></td>
<td>385</td>
</tr>
<tr>
<td>511</td>
<td>Phytoseius (Phytoseius) jaunpurensis</td>
<td></td>
<td>385</td>
</tr>
<tr>
<td>512</td>
<td>Phytoseius (Phytoseius) jujuba</td>
<td></td>
<td>385</td>
</tr>
<tr>
<td>513</td>
<td>Phytoseius (Phytoseius) macropilis</td>
<td></td>
<td>386</td>
</tr>
<tr>
<td>514</td>
<td>Phytoseius (Phytoseius) macrosetosus</td>
<td></td>
<td>386</td>
</tr>
<tr>
<td>515</td>
<td>Phytoseius (Phytoseius) meyerae</td>
<td></td>
<td>386</td>
</tr>
<tr>
<td>516</td>
<td>Phytoseius (Phytoseius) mixtus</td>
<td></td>
<td>387</td>
</tr>
<tr>
<td>517</td>
<td>Phytoseius (Phytoseius) neglecta</td>
<td></td>
<td>387</td>
</tr>
<tr>
<td>518</td>
<td>Phytoseius (Phytoseius) neocorniger</td>
<td></td>
<td>387</td>
</tr>
<tr>
<td>519</td>
<td>Phytoseius (Phytoseius) punjabensis</td>
<td></td>
<td>388</td>
</tr>
<tr>
<td>520</td>
<td>Phytoseius (Phytoseius) rachelae</td>
<td></td>
<td>388</td>
</tr>
<tr>
<td>521</td>
<td>Phytoseius (Phytoseius) roseus</td>
<td></td>
<td>388</td>
</tr>
<tr>
<td>522</td>
<td>Phytoseius (Phytoseius) swirskii</td>
<td></td>
<td>389</td>
</tr>
<tr>
<td>523</td>
<td>Phytoseius (Phytoseius) rugosus</td>
<td></td>
<td>389</td>
</tr>
<tr>
<td>524</td>
<td>Phytoseius (Phytoseius) wainsteini</td>
<td></td>
<td>389</td>
</tr>
<tr>
<td>525</td>
<td>Phytoseius (Phytoseius) woodburyi</td>
<td></td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>Subgenus</td>
<td>Species Name</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>526</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) bakeri</td>
<td>390</td>
</tr>
<tr>
<td>527</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) bambusicolus</td>
<td>391</td>
</tr>
<tr>
<td>528</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) chrysanthemi</td>
<td>392</td>
</tr>
<tr>
<td>529</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) divergentis</td>
<td>392</td>
</tr>
<tr>
<td>530</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) eharai</td>
<td>393</td>
</tr>
<tr>
<td>531</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) fleschneri</td>
<td>393</td>
</tr>
<tr>
<td>532</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) gopali</td>
<td>394</td>
</tr>
<tr>
<td>533</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) himalayensis</td>
<td>394</td>
</tr>
<tr>
<td>534</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) homalii</td>
<td>394</td>
</tr>
<tr>
<td>535</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) kodaikanalensis</td>
<td>395</td>
</tr>
<tr>
<td>536</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) mori</td>
<td>395</td>
</tr>
<tr>
<td>537</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) rhenanus</td>
<td>396</td>
</tr>
<tr>
<td>538</td>
<td>Amblydromella</td>
<td>Typhlodromus (Amblydromella) rhododendronis</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>Brethria</td>
<td>Typhlodromus (Brethria) confusus</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>Brethria</td>
<td>Typhlodromus (Brethria) roshanlali</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>Clavidromus</td>
<td>Typhlodromus (Clavidromus) neotransvaalensis</td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>Orientiseius</td>
<td>Typhlodromus (Orientiseius) channabasavanni</td>
<td>398</td>
</tr>
</tbody>
</table>
Subgenus *Paraseiulus*

548. *Typhlodromus (Paraseiulus) neosoleiger* 402

Subgenus *Typhloctomus*

549. *Typhlodromus (Typhloctomus nesbitti)* 403

550. *Typhlodromus (Typhloctomus) transitans* 404

Subgenus *Typhlodromus*

551. *Typhlodromus (Typhlodromus) communis* 405

552. *Typhlodromus (Typhlodromus) garhwalicus* 405

553. *Typhlodromus (Typhlodromus) neorhenanus* 405

Subfam. Gnoriminae

Genus *Garhwalicus*

554. *Garhwalicus himalayensis* 406

Fam. Ascidae

Genus *Rhizoglyphus*

555. *Rhizoglyphus echinopus* 407

Genus *Tyrophagus*

556. *Tyrophagus putrescentiae* 409

Order Cryptostigmata

Fam. Oribatulidae

Genus *Scheloribates*

557. *Scheloribates zealandicus* 409
INTRODUCTION

Mites play an important role in agriculture as many species are plant feeders causing various types of direct damages like loss of chlorophyll, appearance of stipplings or bronzing of foliage, stunting of growth, producing various types of plant deformities and reduction of yield. Apart from direct damages, there are many species belonging to Eriophyidae and some Tetranychidae which are known as vectors of plant viral diseases causing more potential loss to the growers. In recent years, due to random use of chlorinated hydrocarbons for control of general pests, which in turn kill their natural enemies, and because of using high yielding varieties and improved agricultural practices, many species, which were of less importance or of no value at all, have assumed the status of major pests and all these have further aggravated the mite problem. Contrary to the injurious mites, there are some beneficial mites too which act as our friends by predating upon phytophagous mites and small insect pests like aphids, coccids, etc., and thus help in biological control.

In view of this importance, the plant mites have drawn the attention of the acarologists and agricultural entomologists and a good deal of work both on fundamental and applied aspects has been done in India resulting in exploration of fauna, discovery of new species, enriching our knowledge on bionomics and control of these mites and highlighting the importance of some predatory mites. Unfortunately, most of the information is scattered and often much are inaccessible to majority of the workers. Hence, there has been a growing need to have a comprehensive book on the subject dealing both with taxonomy and applied aspects of these mites so that one can get all the information under one cover and the present book is to fulfil that long felt need.

Altogether, 557 species of mites known to be associated with plants in India till 1983 are dealt with here giving their diagnosis, host/habitat records, detail distribution and keys for the identification. For phytophagous mites, wherever known, information on nature of damage bionomics, control, etc. are given and for other mites, predatory behaviour, wherever recorded, are highlighted. Various general aspects such as habits and habitats, techniques of study, sampling technique, general morphology, bionomics, economic importance, chemical
control, natural enemies, classification, etc. are discussed in brief to familiarise the readers with the subject. The measurements given in the text are all in microns.

History

The use of the term 'Akari' or mites originated as far back as 1650, though its existence was referred to as early as 850 B.C. by Homer. Linnaeus in 1758 in his *Systema Naturae* listed nearly 30 species. In the following 100 years, the major contributions came from Latreille, Leach, DeGeer, Duges, C. L. Koch and Michael. The importance of Acarology was further realised in 19th and 20th centuries through the outstanding works of Kramer, Megnin, Canestrine, Berlese, Vitzthum and Oudemans. Later, Baker & Wharton (1952) wrote the first comprehensive book in Acarology. Evans (1957), Evans et al. (1961), Krantz (1970) and Hughes (1976) increased our knowledge further in this subject. Jeppson et al. (1975) brought out the first ever comprehensive book on mites injurious to economic plants which will serve as a valuable reference for many years to come.

The earliest record of the study of mites in this country was made as far back as 1868 when Peal discovered mites on tea in Assam and named it red-spider. Wood Mason (1884) went further in investigating this mite by describing it as *Tetranychus bioculatus* which, in fact, is the first published reference on Indian plant mite of agricultural importance. Green (1890) studied another tea pest, *Eriophyes carinatus* Green (= *Calacarus carinatus*), from Assam. Cotes (1895) published an account on insects and mites attacking tea in India. Later, Watt (1898) and Watt & Mann (1903) published comprehensive books incorporating the observations made by the earlier workers. Hirst (1923-26) described some spider-mites from India. Subsequently, various workers, viz. Rahman & Sapra (1940), Puttarudriah (1947), Puttarudriah & ChannaBasavanna (1953-1961, 61a), Cherian (1931, 38), Das (1959-65), Narayanan & Ghai (1961-64, 64a), Narayanan et al. (1960), Narayanan & Kaur (1960), Ghai (1964), Ghai & Menon (1967, 69), ChannaBasavanna (1966), ChannaBasavanna et al. (1979), Gupta (1969-80), Prasad (1974, 75, 75a, 75b, 75c), Sadana & Chhabra (1974, 80, 80a, 80b), ChannaBasavanna (1981, 81a), Mohansundaram (1980-83), Chakrabarti and co-workers (1977-80), and Nassar & Ghai (1981), made significant taxonomic contributions towards advancement of our knowledge on mites associated with plants in India. There are
several other reports both in taxonomy and other aspects which have been referred separately under each species. For further classified references in the subject, the readers may consult the excellent bibliography by ChannaBasavana et al. (1979).

HABITS & HABITATS

Before collection of mites, it is absolutely needed to acquaint with the habits and habitats of the plant mites. Since most of the plant mites are negatively phototrophic, these are normally found on the under surface of the leaves either in colonies (like members of the families: Tetranychidae, Tenuipalpidae, Eriophyidae) or in solitary forms (like members of the family Tarsonemidae and majority of the predatory mites). But sometimes when the population on the lower surface increases considerably, some of the mites may also occur on the upper surface of the leaves. Some of the spider-mites cover their colonies with thin webs where all the developmental stages may be seen. Those who do not live in colonies are found either on leaf lamina or in angles formed by the major veins. A good number of mites (Phytoseiidae, Tydeidae etc.) may be found on twigs or stems or under barks. The eriophyid mites, the most peculiar among the mites, are often found on various malformed or deformed plant parts. A large number of mites may be found in the flowers, buds, axils of leaves, etc. The occurrence of mites within the galls are also not uncommon, but in case of mite galls, they are usually of open types contrary to the insect galls which are all of closed types.

TECHNIQUES

Collection

The wide range of habitats of mites has led to the development of a number of specialised collection techniques which are briefly summarised below:

Hand-picking; Though it is most strenuous, but yet it is profitable as a rich and varied collection of plant mites can be made by this method. The infested leaves or plant parts are examined under a 10X lens in the field and the mites can be picked up by a fine sable-hair brush moistened with alcohol (75%). Better results are obtained if the infested leaves or plant parts are brought to the laboratory in
polythene bags after tightly closing the mouth of the bag with a rubber band and then examining those under a stereo-binocular microscope in the laboratory. Small mites as tydeids, etc. can be better collected by hand-picking. The identification of host-plant is most important and, hence, a herbarium of plants is to be maintained. In case of tetranychid mites, collection of male specimen is very essential for the identification of species and, therefore, necessary efforts should be made to get this sex in the collection.

Sweeping: Low herbaceous plants, grass land, etc. when swept with a fine net (the type commonly used for insect collection), a large number of mites will get lodged on the inner surface of the net wall and later those can be picked up with a sable hair brush.

Beating: A white enamel tray with a cotton pad at the inner surface is kept under portion of the plant wherefrom the mites need to be collected. The plant part is beaten with a wooden rod which will cause dislodgment of mites and subsequently those will fall on cotton pad and get entangled. Later, those are picked up with a brush (Gupta, Dhoooria & Sidhu, 1975). Small mites as tydeids, etc. which are difficult to collect by heat treatment through funnel, can be easily collected by this method.

Aspirating: A Singer type aspirator (Singer, 1964) (Fig. 1) is quite convenient for collection of plant mites as it helps in collection of mites from its habitat into the preservative directly eliminating the necessity of handling the specimens.

Brushing: This is done in mite brushing machine which is somewhat modified from the one used by Henderson & McBurnie (1943) and later used by many including the present author (Gupta, Dhoooria & Sidhu, 1975). This is a very handy machine and is made of two contrarotating brushes operated by a 6-volt battery. The leaf to be brushed is held between the brushes. The mites get dislodged and fall on a plastic disc kept below the brushes. Since the plastic disc is kept smeared with vaseline, all those mites which fall on it get attached in vaseline. Later, these are picked up with a brush. The leaves should be worked forward and backward several times to ensure thorough dislodgment of all the mites from it. For some time, the petiole should be held and the rest of the leaf should be inserted while this process should be reversed holding the apical portion of the leaf. This method is also very efficient for estimating the population density of mites.

Flotation method: The leaves are plucked from the fields and are put in glass jar containing water and a detergent (Teepol) and is then vigorously shaken. The mites are dislodged and then are collected by filtration. The residue is washed with alcohol in a cavity block to get the mites (Dhooria & Gupta, 1975).
Scrapping & Teasing: Infested plant parts like inflorescence when scrapped or galls when gently teased, the mites come out and can be easily collected.

Galls which are gently opened are put into an open glass jar and the latter is kept in an airy room away from direct sunlight. As the galls gradually dry up, the mites come out of the galls and start crawling on the inside wall of the jar. The inside wall is wiped with glycerol upto 5 cm. below the mouth of the jar to avoid the escape of mites. Later, previously warmed chloropicric acid is poured over the dried plant part and the cylinder is vigorously shaken. The plant material is then allowed to settle and the liquid containing mites is poured off into a suitable container and stored. The vagrant eriophyids are best collected by wrapping the infested plant parts in a tissue paper and stored in an envelope. The mites are subsequently recovered by simmering the plant parts in Keifer's preparatory solution which is made of the following ingredients: Resorcinol—50 gms, Diglycolic acid—20 gms, Glycerol—25 ml., Iodine—enough to produce the desired colour and water—10 cc. When the mites are warmed in this solution, they get expanded, cleared and become suitable for slide preparation. In case of the leaf vagrants, the infested plant parts are put into a vial (10 cm. x 2.5 cm.) and the liquid (a thin sorbitol syrup in 25% solution of isopropyl alcohol + iodine crystals) is put into it after returning to the laboratory. Data are written on the outside wall of the tube.

Heat-treatment (Fig. 2): A good number of plant mites can also be collected by subjecting the plant material to heat treatment in a modified Tullgren's funnel. An electric bulb (40 W) will be enough to facilitate complete extraction. The mites are collected in a receiver containing a preservative (75% alcohol) and fitted with the stem of the funnel.

Preservation

The plant mites (except Eriophyidae) are best preserved in ethyl alcohol (70-80%). A few drops of glycerol may be added to avoid drying of specimens through evaporation of alcohol. Some workers prefer the use of Oudeman's fluid which is made of the following ingredients: Alcohol—87 parts, Glycerol—5 parts and Glacial acetic acid—8 parts). In this preservative, the mites are killed with their appendages stretched helping in better orientation of the specimens. However, when lactic acid is used for clearing of specimens, this preservative is unnecessary. In case of eriophyids, as mentioned earlier, the infested plant parts when wrapped in tissue paper and dried can
be stored indefinitely. Jeppson et al. (1975) pointed out that tetranychids etc. can be kept in AGA solution which is made of the following ingredients: 70% Isopropyl alcohol or ethyl alcohol—8 parts, Glacial acetic acid—1 part, Glycerine—1 part and Sorbitol—300 gms to one gallon of the above. The preservative which is suggested for eriophyid (Jeppson et al., 1975) is a thin sorbitol syrup in 25% solution of isopropyl alcohol. For this, 25% alcohol solution is made first and then sorbitol solution is added allowing the sugar to dissolve until fluid becomes a thick syrup. Small amount of iodine crystals are added to prevent mould. The preservative is to be kept in the laboratory and poured into a vial containing the plant parts. Recovering mites from dry infested plant parts consists of placing small amount of these parts, galls, etc. in a cavity slide, putting a drop of a preparatory medium and examining with transmitted light. Gentle heating may be required to obtain better clarity of specimens.

Mounting

Temporary: It is done in lactic acid (50-100%) depending upon the degree of sclerotization of the specimens and then gently warming the slides over an electric lamp (40W) for a few seconds until the fumes of lactic acid start emerging. Tetranychids, tydeids, cunaxids and other soft bodied specimens should better be mounted in cavity slide to avoid damage of specimens. The specimens after studying may be transferred back to alcohol or may be mounted in permanent mounting media. Instead of full size coverslip, broken pieces of coverslips should be used specially while mounting in lactie acid to avoid crushing of the specimens.

Permanent: Modified Hoyer’s medium is the most convenient mounting medium for mounting of mites. It is made of the following ingredients when mixed in the order as mentioned: dist. water—50 gms, gum arabic—30 gms, chloral hydrate—200 gms, glycerol—20 gms. Recently, another mounting medium, Heinze’s medium (Evans & Till, 1979), is also being used and the same is made of the following ingredients: polyvinyl alcohol—10 gms, dist. water—40—60 ml, lactic acid—35 ml, glycerol—10 ml, phenol 1% aqueous solution—25 ml, and chloral hydrate—100 gms. Both living as well as preserved specimens can be mounted in this medium directly and, if required, can be remounted by removing the coverslip by immersing the slide in water overnight. However, experience shows that in tropical climate none of the above mounting media can keep the specimens in perfectly good
condition for a longer period as in both the cases the mounting media get dried up causing shrinkage of specimens. To some extent, this difficulty can be avoided by sealing the slides with a good quality nail polish or DPX and keeping the slides in airconditioned room or at least in a refrigerator. While mounting the specimens, it should be borne in mind that as far as possible, the specimens should be mounted both dorsally and ventrally to examine structures of both the surfaces. In case of tetranychids, lateral mounting is required for male specimens for examining the aedeagus.

For mounting eriophyids, Jeppson et al. (1975) suggested Konos' medium. This involves mounting in two stages. The primary medium which is made of chloral hydrate—100 gms, glycerine-10 gms, water—50 ml, and conc. HCl-1 cc. Mites are gently cooked in Konos' preparatory mixture and when cleared, they are needled over into a wash of Hoyer's and to the final slide. Final slide should not be heated. There is another mounting medium for eriophyids i.e. Formaldehyde medium consisting of the following ingredients: sorbitol—3 gms, gum arabic powder-1 gm, iodine crystal-0.02 gm and 4% formalin solution—5 cc. These materials are allowed to dissolve with agitation for 24 hours or more and then the following are added: chloral hydrate crystal—14 gms, glycerine—20 drops, potassium iodide—0.1 gm or 0.2 gm, formalin solution (4%) may be added further, if necessary. While preparing slide, 2 drops of F. medium is put in the cavity of a slide and the mites are needled into it. A drop of HCl solution and a drop of phenol are added into it. The slide is then gently heated on a hot plate set below the boiling point of water till a gentle boiling is reached. Later, it is transferred to a drop of fresh F. medium to wash and to a drop of medium on a final slide. Some support to coverslip may be given by putting small broken pieces of coverslips or kapkok fibres to prevent crushing of mites.

Rearing

The most convenient method of rearing the mites is to confine those into an isolated leaf in small cages of Huffaker's type (Huffaker, 1948) (Fig.-3). For details regarding construction of cages, the readers may refer to Evans et al. (1961). Phytophagous mites feeding on plants can be reared in cells cutting circles out of the centre of small felt disc. These felt washers are fastened to the leaves with waterproof glue and covered with glass or cellophene. Mites can also be cultured in seedlings kept in pots. A petroleum jelly is applied around the base of the stem to prevent the escape of mites. A
commonly used method for rearing mites is the use of excised leaf and keeping the same in Petridish (5 cm dia.) over a cotton pad supersaturated with water. Leaf is periodically changed and water is added daily to maintain a film of water at the margin of the leaf to prevent escape of mites. Phytoseiid mites are best reared in plastic cages (Swirski et al., 1970).

General Morphology

The order Acarina can be distinguished from other arachnids by: (a) body not distinguished into cephalothorax and abdomen but at the most may be distinguished into Gnathosoma (body bearing mouth parts) and Idiosoma (rest of the body), (b) larvae have 3 pairs of legs while adults and nymphs have 4 pairs of legs. Most of the members of the Order Acarina are small while a few are tiny. Acarina includes both mites and ticks. The former can be separated from the latter as (a) mites lack Haller’s organ but it is present on 1st tarsus of ticks, (b) hypostome without recurved teeth in mites whereas recurved teeth are present on hypostome of ticks (Fig.4), (c) most of the mites are soft bodied while ticks are usually with leathery texture, (d) mites have their stigmal opening either laterally between coxae III and IV associated with peritrematal shield (as in Mesostigmata), or stigmata are located on or near gnathosoma (as in Prostigmata) or trachea opens through acetabular cavities of legs (as in Astigmata), but in case of ticks, the stigmata are situated behind coxae IV or laterad between coxae II and IV and each is surrounded by stigmal plate. It is not within the purview of the present work to discuss in detail the morphology of mites as morphological characters of taxonomic importance for each family have been discussed separately in the later chapters. However, some of the salient morphological characters of mites in general are discussed here to give the readers a preliminary idea. Those interested to study this aspect in greater details may refer to Evans et al. (1961) and Krantz (1970).

Segmentation: Unlike most other arachnids, the mites show little evidence of segmentation except in Tarsonemina where segmentation is shown by a number of overlapping shields. Most authors believe that the anterior part is composed of (a) precheliceral segment (segment-I), (b) cheliceral segment (segment II), (c) pedipalpal segment bearing pedipalp (segment III) and is followed by 4 leg bearing segments (segments IV-VII). The number of segments which form the rest of
the body is not known definitely in the absence of any definite embryological evidence, and, therefore, opinions differ.

Cuticle: The cuticle in Acari is secreted by epidermis. The epidermis is differentiated into 4 layers, as: Tectostracum, Epiostracum, Ectostracum and Hypostracum (Vitzthum, 1940). The epidermis is also responsible for production of setae which are of various shape

![Diagram of mite body regionations](image)

Figs. 4-5. 4. Gnathosoma of ticks (after Evans et al., 1961)
and size. Grandjean (1935), basing on the optical and chemical properties of setae distinguished two basic types, viz. one which has optically active chitin (Actinochaeta) and the other without active chitin (Anactinochaeta).

Gnathosoma: This consists of the anteriormost part of the body (Fig. 5) and is composed of three segments, the precheliceral, cheliceral and pedipalpal segments and the gnathosoma is movably articulated to the idiosoma by a synarthrodial membrane. Gnathosoma may often be enclosed within camerostome. The roof of the gnathosoma is formed by tectum, the lateral walls are formed by external walls of pedipalpal coxae which fuse dorsally with tectum and the floor is formed by the ventral extensions of the coxae. Mouth lies between and below the chelicerae. The mouth is bounded dorsally by an upper lip or labrum and ventrally by a pair of lateral lips. Gnathosoma bears various numbers of dorsal and ventral setae.

Chelicerae: It is essentially the feeding organ and in majority of the cases they are chelate. The chelicera of Astigmata and Prostigmata are 3-segmented consisting of small basal part (homologous with trochanter of other appendages), a large compound segment (may be formed by fusion of femur, genu, tibia and tarsus) and a short movable digit. In Anactinochaeta, eg. Mesostigmata, the chelicera is also basically segmented. The chelicerae exhibit considerable diversity in form and structure to suit with the different methods of feeding (Figs. 6-11).

Pedipalpi (Figs. 12-17): As has been mentioned earlier, the coxae of pedipalpi are fused to form gnathosomal base. The remaining segments of pedipalp are movably articulated to the body of the gnathosoma anterolaterally to form sensory appendages which may be modified for grasping food. The Mesostigmata has 6-segmented palp (trochanter, femur, genu, tibia, tarsus and apotele). The palpi of Prostigmata and Astigmata are 5-segmented, but often the number of segments may be reduced by fusion of one or more segments. In Prostigmata, the palp tarsus opposes distal claw like tibia to form a thumb-claw complex (Family: Cheyletidae). Setae of diverse types may be present on pedipalp.

Idiosoma: The idiosoma may be oval (Figs. 19, 22), subcircular, round (Figs. 18, 20) in free living forms while in parasitic forms (Fam. Eriophyidae) the body is elongated and worm like (Fig. 21). A furrow may often demarcate the propodosoma from hysterosoma (Fig. 357).
Figs. 6-17. 6-8. Chelicera of Prostigmata, 9. Chelicera of Mesostigmata,
10. Chelicera of Cryptostigmata, 11. Chelicera of Astigmata,
12. Parts of palp in Prostigmata: A. palp claw, B. Tibia,
C. Genu, D. Chela, E. Femur,
13-14. Palp in Prostigmata, 15. Palp in Mesostigmata,
16. Palp in Cryptostigmata, 17. Palp in Astigmata
and the latter part may again be distinguished into metapodosoma and opisthosoma (Fig. 357). The cuticle of idiosoma is variously sclerotized into shields and plates (Figs. 23-26). In some Actinochaeta, the dorsal surface may be independently sclerotized to allow flexibility between these two body regions. In Astigmata, the propodosomal

shield is almost constant. Among Prostigmata, the Tarsonemina possesses a number of overlapping horny shields (Fig. 214). In Stigmaeidae (Fig. 383) and Cheyletidae (Fig. 376), varying degrees of sclerotization occurs and shields are widely separated by striated cuticle. In Mesostigmata, the idiosoma is mostly covered by a single shield (Fig. 435) or it may be divided (Fig. 22). In Cryptostigmata, the idiosoma is heavily sclerotized. The setae on dorsal surface of idiosoma
form a readily recognizable pattern and their relative size, number, shape, position and ontogeny are of taxonomic importance.

Figs. 23-26. Degree of sclerotization of venter in different Orders:

Ventrally, the sites of the ambulatory appendages, the anus and genital orifices are of great importance. The anus is situated medioventrally near the posterior end of body and in Mesostigmata, it is surrounded by a shield and the opening is covered by a pair of valves (Fig. 25). The position of genital opening is variable. In Actinochaeta, the genital orifice is in the form of transverse slit; in case of female, it is near the 4th coxae (Fig. 24) and sometimes is provided with a
shield. In Prostigmata (Fig. 201) and Cryptostigmata (Fig. 25) it is located on venter of opisthosoma while its position varies in Astigmata and is normally located between legs II-IV (Fig. 541). In some, the respiratory opening (stigmata) also may be located on the idiosoma and it may be surrounded by sclerotized shield. The position of stigmata may vary (Figs. 27-31).

Fig. 32. Leg showing segments: E. Coxa, F. Trochanter, G. Femur, H. Genu, I. Tibia, J. Tarsus, K. Apotele.
Legs: There are 3 pairs of legs in larva and 4 pairs in nymphs and adults except in case of Eriophyidae where there are 2 pairs of legs in all stages of development (Fig. 213). Normally legs are 6-7 segmented depending upon the fact whether basifemur and telofemur remain free or fused (Fig. 32). The number of claws on tarsus may vary from 1-3 and their type may also vary (Figs. 33-37). In Cryptostigmata, normally there are 3 claws (Fig. 33), when there are 2 claws, the median claw is either suppressed or modified in rayed (Fig. 34), pad-like empodium (Fig. 35). Most of the Anactinochaeta, are bidactyl and usually have membraneous pulvillus (Fig. 36). The leg chaetotaxy and the presence and absence of various spurs, etc. are of significant taxonomic importance.

Sensory organs: Various types of setae (Figs. 38-43) are distributed over the body. The trichobothrium (Fig. 38A), a simple erect seta, occurs on legs or also on idiosoma performing tactile function. In Cryptostigmata and in some Prostigmata, specialised sensory organ, the pseudostigmatid organ (Fig. 42) is present which lies in distinct cavity called pseudosigmata. The body setae are normally simple, clubbed or clavate. In some Mesostigmata (*Ophionyssus*) the photoreceptive organ is present on the pulvillus of the 1st pair of legs (Fig. 41). Ticks have Haller's organ on tarsus of leg I. (Fig. 43).

Eyes in the form of circular differentiated area in cuticle may or may not be present. The lenses are in the form of dark pigments. Normally 2 pairs of eyes are present but 3 pairs of eyes are also not uncommon. Sometimes, out of 2 pairs, 1 pair may be lost. In Mesostigmata, the eyes are absent. Besides eyes, the other sensory structures are urstigma (situated between I and II pair of legs) and they vary in form.

Biology (Figs. 44-52)

Reproduction in Acarina is normally through Arrhenotoky. In some cases, as in *Bryobia* reproduction is also through Thelytoky. Fertilized females produce eggs with diploid number of chromosomes and unfertilized ones produce eggs with haploid number of chromosomes. The offsprings of the former are females while those of the latter are males only. Mating is generally accomplished immediately after the female emerges. In some mites, as tarsonemids, males often take in their possession female teliochrysalis by contact. During mating, male crawls down the posterior end of female and urches its abdomen upward to accomplish copulation. Male holds the female
with the forelegs. The amount of spermatozoa introduced during copulation determines the sex ratio. The development cycle includes one or more active stages. In Mesostigmata, there are four active stages as larva, protonymph, deutonymph and adult. Males may miss one of the nymphal stages. In Prostigmata, the number of active stages vary greatly. In Tarsonemidae, only 2 stages are seen, viz. larva and adult. In Erythraeidae, the larval stage is followed by a single
nymphal stage. In Tetranychidae, the larva is followed by 2 nymphal stages, protonymph and deutonymph and in between these stages, there are quiescent stages. In some families of Prostigmata, *viz.* Tydeidae, Bdellidae, etc. the larva is followed by 3 nymphal stages, *viz.* protonymph, deutonymph and tritonymph. In Eriophyidae, there are 2

active stages, the first stage nymph and second stage nymph. However, in some eriophyids, the life cycle is somewhat complicated as there are two types of females, the deutogyne adapted for hibernation and start reproduction in the next session, while the other type is the protogyne which generally reproduces throughout the summer and spring and dies with the advent of winter. In this case, an alternation of generation is exhibited. The presence of two different structural forms of females within a species is called Deuterogyny. Protogyne and deutogyne...
apply only to adults. The first and second stage of deuterogynous species do not indicate whether they will produce protogyne, deutogyne or males. The deutogynes hibernate in the crevices and other shelters in previous year's wood on plants. They become active in winter and come out of hibernation site in search of suitable location for feeding and breeding. They produce protogyne and the same is repeated till early May when the deutogynes begin to appear amongst the protogynes. The deutogynes travel and enter into the crevices of the stem upto 15 cm or more and by middle of July when the leaves begin to fall, those deutogynes which reach the hibernation sites survive while the protogynes perish with the fall of leaves. The deutogynes after reaching hibernation sites become dormant and partially dry up. Winter rain and frost recondition the deutogynes for making active in the following spring (Baker & Wharton, 1952).

In many of the Astigmatid mites, often an optional hypopial stage (nonfeeding, active or inactive stage) occurs between protonymph and tritonymph. The significance of this stage is to withstand any unfavourable condition and also for dispersal purpose. Cryptostigmata possesses four active stages, viz. larva, protonymph, deutonymph and adult. The rate of egg laying, rate of development and sex ratio vary in different groups, in different seasons and also depend upon the availability of suitable food.

Feeding Habits

The members of the order Mesostigmata, Astigmata, Prostigmata show varying types of feeding habits as predaceous, phytophagous, mycetophagous or coprophagous. Some species have more than one type of feeding habits as Phytoseiidae feeds on animal food, nectar, plant juice and pollen.

Not much is known about actual mode of feeding. Mesostigmata and Prostigmata do not probably ingest solid food. In most of the Mesostigmata, the digestion is external. According to feeding habits, the chelicerae have been variously modified. Chelicera is suitable for grasping and chewing in many Mesostigmata, Astigmata and Cryptostigmata. The phytophagous forms usually have styliform chelicerae formed by the elongation of movable digits. In Tetranychidae, the cheliceral basal segments fuse to form the eversible stylophore (Fig. 6). Pedipalpi are usually sensory but may be modified for grasping food as in Cheyletidae.
Among phytophagous mites, eriophyids are to a great extent host specific. Tetranychidae; Tenuipalpidae and Tarsonemidae are, however, not host specific. Some are polyphagous and occur on a wide variety of plants. Among the tetranychids, some are quite specific as to the type of host. *Schizotetranychus* species mostly occurs on Monocotyledonous plants except of course *S. baltazari* which is an injurious pest of citrus. The genus *Platytetranychus* occurs normally on conifers. *Oligonychus, Eotetranychus* and *Tetranychus*, however, occur on diverse types of plants. Within a host also the mites may have certain preference for certain type of microhabitat. For example, *Oligonychus mangiferus* occurs only on the upper surface of leaves of grape vine while the lower surface of the same leaf may be infested by *Eotetranychus truncatus*.

Among the predatory plant mites, no specificity has been observed though one species may occur only on particular plant while another species may occur on a wide range of plants.

The chemical composition of the host plant, leaf size, its texture, vestiture, contents of nitrogen, phosphorus, calcium, magnesium, metal chelates, etc. influence the host specificity of mites. Nitrogen and phosphorus induce mite reproduction while calcium, magnesium and metal chelates retard it (Huffaker *et al.*, 1970). The presence and absence of alternate food in the field influence in making a particular plant more susceptible or resistant to a species.

Sampling of Mites

Evaluation of population density is essential for undertaking any study on ecology and chemical control of mites. Since mites are not randomly distributed and also it is practically impossible to count all the mites in a field, it is necessary to estimate the relative population by sampling. Different workers take the sample in the field in different ways. Some take samples from each quadrant of a tree, some take samples only from the infested leaves while some use as sampling units all leaves on certain number of twigs. Some mites as *Bryobia, Phytoseiidae*, etc., also inhabit on twigs and for those mites, twigs also should be included in sampling.

No specific recommendation can be made for mites as a whole as to : (a) the number of trees to be selected for sampling, (b) the number of leaves to be plucked from each tree, (c) the zone of the tree where-
from the leaves are to be plucked, (d) the leaf area to be considered for counting of population and (e) the frequency of sampling. All these vary along with the crop and the type of mite to be sampled. Before taking any decision in that matter one should have a fair knowledge about dispersion pattern of the mite, variation of population, if any, in different zones of the tree as well as within the leaf itself. In this respect, Southwood (1966) may be consulted for getting general guidelines. In cases, where regular samplings are needed, efforts should be made not to pluck leaves to that extent as to restrict the food of the mite to be sampled as this may consequently affect its reproduction.

Several techniques are known for sampling of mites and those are briefly discussed below (see also Gupta, Dhoria and Sidhu, 1975).

Sampling of phytophagous mites

Direct counting: This is the commonest of all the methods. The sampled leaves are put into a Petridish containing chloroform soaked cotton to immobilise mites. Later, the leaves are put one by one under a stereo-binocular microscope and the mites are counted either from the entire leaf or from a definite leaf area depending on the intensity of population and intraleaf variation, if any. Some authors found that comparing the plotted values based on actual counting of mites with the number of leaves having no mites, one can have a rough estimate of mite population.

Imprinting method: A Whatman filter paper No. 1 is put over the undersurface (because mites normally inhabit undersurface) of a leaf and a wooden roller is rolled rapidly from base to apex of the leaf and back with pressure sufficient enough to crush all the mites. The mites after being crushed leave characteristic stains on the filter paper which make permanent records of the population. Later, those spots are counted. An experienced person can easily differentiate the stains left by the adults and nymphs which are normally brownish and those left by the eggs which are paler.

Flotation Method: Already discussed under collection technique.

Jarring Method: Already discussed under collection technique.

Brushing Method: Already discussed under collection technique. However, for counting of population from the sectors of plastic discs, there are definite formulae available and those are to be applied depending upon the population density of mite to be sampled.
Sampling of predators (both Predatory Mites & Insects)

In case of predatory mites, by and large, the methods discussed above for phytophagous mites can be used. However, some predatory mites inhabit on twigs and crevices of stems and therefore sampling of leaves may not give correct picture of its population. In such cases, samples should be made from all possible plant parts. In case of insect predators, some difficulty may arise because they may fly away or may fall off when the leaves or twigs are disturbed. The following methods may be used: (Huffaker et al., 1970).

1. **Counting after knocking down of predators**: In this case, the predators are dislodged on a Petridish after spraying or dusting a pesticide and those are counted.

2. **Jarring or beating method**: This is done almost in the same way as discussed for phytophagous mites.

3. **Suction Method**: The predator can be collected quite easily by a suitable aspirator and then counted.

4. **Visual Search**: Without disturbing the predators, a visual search over a certain number of plants or trees, if made, for a desired period of time, a reasonably correct picture about the population of predator can be had.

5. **Trapping Method**: In this method, the predators are trapped by corrugated bands (Huffaker & Spitzer, 1950) and then the population is counted.

Seasonal Occurrence

Most of the phytophagous mites and predatory plant mites occur in the field throughout the year in tropical climate except, of course, in rainy seasons when the population declines considerably due to washing away of the leaf population and also during the severe winter months when the egg laying ceases due to dropping down of temperature below the development threshold. Temperature, humidity and light are the important factors influencing the dynamism of mites. In temperate climate, however, some of the tetranychids enter into diapausing stage (also called overwintering stage) during winter either in egg stage as in *Panonychus ulmi* or in adult female stage as in many species of *Tetranychus*. The diapausing eggs are laid on twigs or barks rather than on leaves. Those who enter diapause in adult female, take shelter in crevices and cracks of wood till temperature becomes favourable. Diapauing depends upon three conditions, *viz.*
photoperiod, temperature and nutrition. Of these, the first two conditions are most important though absence of healthy food may also induce diapausating (Boudreaux, 1963). Diapausing mites or their eggs must undergo a period of diapause development before environmental condition can trigger the resumption of activity.

The dispersal in mites is normally accomplished through transportation of hosts as has been seen in case of mites infesting ornamental plants, fruit trees, etc. The dispersal from one field to another takes place through crawling. In some tetranychids, the dispersal is done in very peculiar way called 'Balooning'. When the population of mite in a leaf reaches to a stage that can not provide enough food to the mite, the dispersal becomes a must. The mites lower themselves from the host plant on a fine silken thread and then subsequently are carried away to a distant place through a gentle wind current. The silken thread acts as baloon or as parachute.

ECONOMIC IMPORTANCE

Some of the mites associated with plants are quite injurious as they cause damage to their hosts either directly or indirectly. On the contrary, there are a good number of species which act as predators of other phytophagous mites and some small insect pests as aphids, coccids, etc. and thereby help in doing natural control of pests. The nature of direct and indirect injuries caused by plant mites have been elaborately discussed while dealing with the individual species in the following chapter. However, a general discussion is made here in brief to give an overall idea about the nature of damage caused by mites and the importance of the predatory mites in controlling them.

Injurious mites

Direct Injuries: Phytophagous mites while feeding on plants, penetrate the plant tissues by their needle-like chelicerae and suck the exuding sap. During this process, it damages the chlorophyll resulting in change of photosynthesis and transpiration rates. The photosynthesis is reduced by the damage of chlorophyll while the transpiration rate is increased due to disturbance in water balance. Sometimes the chlorophyll loss may be to the extent of 15-35% or more. These result in drying and dropping of leaves. The damage of mesophyll layer on the lower surface of the leaves due to feeding on that surface causes bronzing. Besides these direct injuries, many mites while feeding inject certain toxins resulting in diverse reactions in plants to those
toxins. The reactions may be different in different plants although the toxin might have been injected by the same species. All the above reasons stimulate the appearance of common mite-feeding symptoms as stippling, bronzing, defoliation, retardation of growth, reduction in size, quality and quantity of fruits and flowers, appearance of various types of plant deformities and all these affect the yield of the crop. In many cases, the infestation may be below the economic threshold level but often the damage becomes alarming causing great loss to the growers. The extent of loss may be between 2-10% as has been reported from U. S. A. (Huffaker et al., 1969) but Kolbe (1968) reported the loss to be as high as 39-51%. It is a general observation that the loss is on the side of increase gradually with more use of pesticides and with the application of improved agricultural practices. In case of tetranychids, Van de Vrie et al. (1972) reported that the injuries caused by mites are related to many unpredictable variables including the intensity of attack, weather conditions either concurrent or immediately following, the species of mite, species and variety of crop, its relative degree of susceptibility, nutrient elements in leaves and the chemicals applied to the crop. Imbalance in growth regulatory substances was found associated with the degree of mite infestation as gibberellin and auxin like promoters were present in the tissues of mite infested plants (Van de Vrie et al., 1972).

Members of the family Eriophyidae are known to cause various types of damages. Of these, the most common is the formation of galls and, hence, their name ‘Gall mites’. The shape and structure of gall produced by one species vary from the one produced by the another species and this sometimes gives sufficient clue to differentiate the species. The eriophyids, in fact produce such varied types of damage symptoms that no single group of plant parasitic animal can probably match with this group. The damage symptoms produced by the eriophyids are summarised below:

Production of dense hairy outgrowth: Some mites as Aceria puttarudriahi and A. jasmini attack tender leaves and cause the appearance of dense white hairs. A. litchii also produces chocolate brown erineum.

Production of galls: A good number of species produce galls of varying size and shape, as hemispherical, button-shaped, pouch shaped, bead-shaped, etc. The galls have hairy lining inside. The galls are always of open types.

Production of blisters: Some eriophyid species produce blisters on the leaves, eg. A. sacchari,
Russetting of leaves: Several species cause russetting of leaves, stems, and fruits to varying degree of intensity. The citrus rust mite, *Phyllocoptruta oleivora* is the most common example.

Witches Broom Effect: Some of the eriophyids, eg. *Aceria mangiferae* cause the extensive production of accessory and terminal buds of mango giving the appearance of crowding of buds.

The damage symptoms produced by the tenuipalpid mites are almost similar to those produced by the tetranychids. However, *Brevipalpus californicus* is known to cause leprosy of citrus.

The mites of the family Tarsonemidae cause curling, twisting, etc. of leaves. This may be because of the injection of certain toxins.

Indirect Injuries: Among the plant associated mites, eriophyids and a few tetranychids are known to act as vectors of plant viral diseases. In India, as many as four plant viral diseases are known to be transmitted by mites:

<table>
<thead>
<tr>
<th>Name of disease</th>
<th>Name of mite</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig Mosaic Virus (FMV)</td>
<td>Aceria ficus</td>
<td>Nagaich & Vashisth (1962)</td>
</tr>
<tr>
<td>Pigeon-Pea Sterility Virus (PSV)</td>
<td>A. cajani</td>
<td>Seth (1962)</td>
</tr>
<tr>
<td>Wheat Streak Mosaic Virus (WSMV)</td>
<td>A. tulipae</td>
<td>Jeppson et al., (1975)</td>
</tr>
</tbody>
</table>

In addition, there is another plant viral disease which is suspected to be transmitted by mite, as: Sugarcane Streak Mosaic Virus transmitted by *A. sacchari* (Sithanantham *et al.*, 1972). Besides, there are other viral diseases transmitted by mites as: Current Reversion Disease by *Phytophtus ribis*; Wheat Spot Mosaic Virus by *A. tulipae*; Peach Mosaic Virus by *Eriophyes insidiosus*; Rye Grass Mosaic Virus by *Abacarus hystrix*; Potato Virus Y by *Tetranychus cinnabarinus*, etc. None of the above virus diseases is so far known to occur in India. For further information on this aspect, readers may refer to Oldfield (1970).

Beneficial Mites:

Unlike the injurious mites, there are some beneficial mites too which are of significant importance in achieving biological control of mites. Of these, the predatory mites of the family Phytoseiidae have
received worldwide attention. Other plant associated mites which have the potentiality of use in biological control are Stigmaeidae, Cheyletidae, Erythraeidae and also probably some members of the families Cunaxidae, Bdellidae, Tydeidae and Blattisocidae (now called Ascidae).

Phytoseiidae: These are very efficient predators since they have shorter life cycles than their prey, equivalent reproductive potentiality, good searching capacity, ability to survive on a low prey density and can thrive on alternate food as nectar, honey dew, plant sap. etc. However, the amount of prey they consume is poor. Several species from India have been found to be of potential importance. Of these, mention may be made of: *Amphoseius (Neoseiulus) longispinosus, A. (N.) fallacis, A. (E.) ovalis, A. (Typhlodromips) tetranychivorus, A. (A.) channabasavanni, A. (A) largoensis, A. (Paraphyloseius) multidentatus, Indoseiulus ricini* and *Typhlodromus (Orientiseius) rickeri.* All these were found to have the capability of suppressing the prey population. Proper and judicious utilisation of these species may bring effective biological control.

Stigmaeidae: Since this family is very inadequately known from India, not much information on the efficiency of these mites as biocontrolling agents is available. However, in other parts of the world, the species *Zetzellia mali* (Ewing) is of significant importance.

Cheyletidae: *Cheletogenes ornatus* has been found to feed voraceously on *Aceria mangiferae* in India.

Though the mites of the families Cunaxidae, Bdellidae, Erythraeidae, Tydeidae, etc. were found to be important as biocontrolling agents from other parts of the world, but due to the paucity of our knowledge about these mites from India nothing definite can be said as to their importance in biological control. Proper exploration and experimentation are needed in these respects.

Control of Mites

Chemical control:

The principle of mite control and the different chemicals used for this purpose have been discussed elaborately by Jeppson (1965). However, just to give general idea about control of mites, a brief discussion is made here mainly basing upon the work cited above. Control measures for the individual species are dealt with separately in the following chapter.
Sulphur had been used as an acaricide for quite some time against tetranychid mites, tenuipalpids and eriophyids. The vapour released by sulphur kills the mites. It has a number of advantages as it is less costly, less hazardous to man and its effect on natural enemies of mites is not harmful. However, under certain conditions, it shows phytotoxicity. Petroleum oil in the form of dormant spray has been often used specially against those who lay eggs on twigs. Dinitrophenols have also been used as acaricides for control of mites but some show phytotoxicity. The use of synthetic organic pesticides started during 1940s. The first to be used was Neotran. Later, several others, as Ovex, Aramite, demeton, chlorobenzilate, dicofol, fenson, dioxathion, tetradifon, carbophenothion, ethion, binapacryl, Morestan, Plictran, Galecron, etc. appeared. Aramite though was found to be quite promising with long residual effect but because of its carcinogenic effects, it has been discarded. Ovex and dicofol are quite good on a number of crops against several species of Tetranychidae, Tenuipalpidae and Tarsonemidae and both are specially effective against eggs. But reports are available about their toxic effects on the mite and insect predators. Chlorobenzilate and tetradifon are known to have significant effectiveness against phytophagous mites but the latter has no translaminar migration and, hence, is unsuitable for mites occurring on undersurface of leaves. It is also not very effective against eriophyids. Omite is also an effective pesticide. Recently, binapacryl and Morestan have been found to be promising against tetranychids and tenuipalpids. However, the latter is toxic to the predaceous mites. Among the other promising chemicals, mention may be made of Plictran and Galecron but the former has phytotoxic effect and the latter has poor residual effect needing frequent applications. Among the organophosphorous (O. P.) compounds, parathion has long been used to be potential pesticide against a wide range of mites but because of the development of resistance against this chemical, its use became limited. Demeton and malathion, etc. are the other O. P. compounds found promising against phytophagous mites. There are some carbamates having acaricidal properties but their repeated applications cause the development of resistance amongst mites and, thus, become unsuitable for field application.

Often the mites develop resistance to a wide range of pesticides and that property often shows cross resistance to chemically related and nonrelated compounds. Rarely any morphological difference appears in the resistant population. Appearance of resistance is more common
with carbamate and O. P. type compounds and less so with other acaricides.

The principles involved in chemical control of mites are basically the same as applicable in case of insects. Use of improved agricultural practices, application of DDT and reduction of predator population due to random use of general pesticides, are some of the reasons which necessiated the adaptation of chemical control of mites. Several factors should be borne in mind before going in for chemical control of mites. The factors are: the extent and nature of damage, presence of natural enemies of mites, if any, weather conditions, nature of pest along with its population density, etc. Acaricides are somewhat specific in their actions. A certain pesticide may be effective for a certain group of mites but may be quite ineffective against a related group. On the contrary, some as Morestan have wide range of toxicity. The acaricides not only kill by direct contact and penetration through its integument but also as stomach poison and as fumigant. Therefore, before a pesticide is spread some factors as to its mode of action, its translocation property, if any, its residual property, the plant on which it is to be spread, the stage of the mite to be spread, climatic condition prevailing before and after spraying, population migration in relation to reinfestation, etc. should be considered to assess the efficiency of the pesticides. To have an idea of the possible development of resistance and cross resistance, the history of the pesticides already used in the field is essential.

Natural control:

Several natural enemies are known to have the power to check population of phytophagous mites in the field and this aspect has been extensively reviewed by McMurtry et al. (1970). A general idea is given here in brief basing mainly upon the above work.

The natural enemies of plant mites can be classified as below:

ACARINA: Phytoseiidae, Stigmaeidae, Bdellidae, Cunaxidae, Cheyletidae, Tydeidae, etc.

ARACHNIDA: Argiopidae, Theridiidae, Linyphiidae

INSECTA: Coleoptera (Coccinellidae, Staphylinidae, Endomychidae) Hemiptera (Anthocoridae, Miridae, Lygaeidae, Nabidae) Thysanoptera (Thripidae, Aelothripidae, Phlaeothripidae) Diptera (Cecidomyiidae, Syrphidae) Neuroptera (Chrysopidae, Hemrobiidae, Conyopterygidae)

PATHOGENS: Virus, Bacteria, Fungus.

Acarine predators: This has been discussed earlier under beneficial mites while treating the economic importance of mites.

Arachnid predators: Not much is known from India regarding arachnid predators. Chant (1956, 57) and Hukusima (1961) reported 30 and 36 species, respectively, predating upon phytophagous mites in England in case of former and in Japan in case of the latter. Spiders belonging to the families Argiopidae, Threidiidae and Linyphiidae were found to be efficient predators.

Insectan predators: Coccinellidae and Staphylinidae among Coleoptera are the most efficient mite predators. In Coccinellidae, *Stethorus punctillum* Weise, *S. punctum* Leconte, *S. gilvifrons* Muls., *S. oicipes* Casey, *S. pauperculus*, and *Seyymus gracilis* and under Staphylinidae *Oligota flaviceps*, *Oligota oviformes* (Casey), *O. pygmaea* Sol. are some of the most important Coleopteran mite predators. *Stethorus* species reproduce, only on mite food. From India, *S. pauperculus* and *Oligota flaviceps* were found important. In Neuroptera, chrysopids, though normally aphid predators, are known to feed on mites as well. *Chrysopa carnea* Stephens is known to feed upon *P. ulmi* in many parts of the world. The other predatory species are *C. perla* L., *C. vulgaris* Schneider, etc. The last instar larva of *C. carnea* is known to consume an average of 1000-1500 citrus red mites daily at 30-50/hour. *Hemerobius humulinus* L. (Fam. : Hemerobiidae) and *Parasemidalis flaviceps* Banks (Fam. : Conyopterygidae) are also efficient predators on *P. ulmi* in England and California, respectively. Under Hemiptera, *Anthocores musculus* Say and *Orius insidiosus* (Say) (Fam. : Anthocoridae) are very efficient predators of spider mites consuming 10-30 mites/hour. Among other Hemipteran predators, *Blepharidopterus angulatus* (Fall.) (Fam. : Miridae) on *P. ulmi* -in Europe, *Nabis apterus* Fab. (Fam : Nabidae) on spider mites in Europe and *Gecocoris* sp. (Fam. : Lygaeidae) on *Tetranychus* sp. in U. S. A., are some of the important Hemipteran predators. Under Thysanoptera, *Scolothrips sexmaculatus* (Perg.), *S. longicornis* Priesner (Fam : Thripidae) are reported to be efficient mite predators. *Aelothrips melaleucus* Haliday on *T. urticae* in Canada and *Cryptothrips nigripes* Reuter (Fam. : Phlaeothripidae) on *T. urticae* in East Germany are also efficient predators. Under Diptera, *Arthrocnodax occidentalis* Felt (Fam. : Cecidomyiidae) and syrphid larvae are also known to be important mite controlling agents.

Like other predators, the efficiency of mite predators depends upon several factors as rate of development of the predator, its rate of prey
consumption, functional, numerical and total responses of the predator, host specificity, searching capacity of predator and seasonal synchrony. Since many of the pesticides as O. P. compounds and carbamates do have adverse effects specially on predatory mites, the success of the mite predator will also depend upon the spray-schedule already adapted in the field.

PATHOGENS: Among pathogens, fungus (Hirsutella, Entomophthora), bacteria (Bacillus) and some viruses have detrimental effects on populations of phytophagous mites. Therefore, proper utilisation of these agents may prove to be profitable in achieving mite control.

CLASSIFICATION

Mites and ticks belong to the Phylum ARTHROPODA (because of the presence of: chitinous skeleton, jointed appendages, homocoeel and dorsal blood vessel), Subphylum CHELICERATA (because of the presence of: 2 preoral appendages, the precheliceral and cheliceral, the latter bearing chelicera), Class ARACHNIDA (because being terrestrial and lack compound eyes) and Subclass Acari (because body shows only traces of segmentation and may be divided by transverse furrow between legs II and III into propodosoma and hysterosoma, gnathosoma at the anterior end of body bearing 3-segmented chelicera and 6-segmented pedipalpi, 2-4 pairs of ambulacral appendages, genital and anal opening in variable position, respiration through trachea which opens by paired stigmata or respiration cutaneous and presence of hexapod larva).

Regarding higher classification of ACARI, there exists difference of opinion. Evans et al. (1961) treated Acari as Subclass having two Superorders, viz. ACARI-ANACTINOCHAETA having 4 Orders under it as NOTOSTIGMATA, TETRASTIGMATA, MESOSTIGMATA and METASTIGMATA and the other Superorder as ACARI-ACTINOCHAETA having 3 Orders under it as CRYPTOSTIGMATA, ASIGMATA and PROSTIGMATA. Krantz (1970) divided the Subclass Acari into 3 Orders, I. OPILIOACARIFORMES having 1 Suborder as NOTOSTIGMATA, II. PARASITIFORMES having 2 Suborders: MESOSTIGMATA and METASTIGMATA and III. ACARIFORMES having 3 Suborders: PROSTIGMATA, ASTIGMATA and CRYPTOSTIGMATA. Evans & Till (1979) divided the Class Arachnida into 2 Subclasses, I. ACARI-Parasitiformes having 4 Orders under it as MESOSTIGMATA, NOTOSTIGMATA, TETRASTIGMATA and METASTIGMATA and II. ACARI-Acariformes having 3 Orders under it as: ASTIGMATA, PROSTIGMATA and CRYPTOSTIGMATA.
The division of the 2 Subclasses was done on the basis of the following key (after Evans & Till, 1979):

1. Body and leg setae optically isotropic, palp often with ambulacrum represented by claws or tined claw like structure; sternum and free leg coxae usually present; idiosoma without a sejugal furrow between legs II and III, chelicera often with a dorsal lyrifissure, podocephalic canal absent. ... ACARI-PARASITIFORMES

— Body and leg setae optically anisotropic, palp without vestige of ambulacrum, without free sternum and leg coxae but with coxa-sternum or epimera, sejugal furrow usually present, chelicera never with a dorsal lyrifissure. ... ACARI-ACARIFORMES

The plant mites belong to 4 Orders, *viz.* Prostigmata, Mesostigmata, Astigmata and Cryptostigmata, and those can be separated with the help of the following key (after Evans & Till, 1979):

1. With free coxae to ambulatory appendages; pedipalpal ambulacrum represented by a tined claw like structure (apotele) near the inner basal angle of the palptarsus; stigmata situated lateral to coxae II-IV and typically with elongate peritreme. ... MESOSTIGMATA

— Lacking free coxae to ambulatory appendages; pedipalpal ambulacrum completely lost; stigmata never situated lateral to legs II-IV. ... 2

2. Pedipalp small and comprising of 2 free podomeres and closely adpressed to the sides of the hypognathum; chelicera chelate; ambulacra of legs comprising a median (empodial) claw with an associated pulvillus or a sucker like pulvillus situated on an elongate pretarsus; stigmata and trachea never present; idiosoma without trichobothria; body never vermiform. ... ASTIGMATA

— Pedipalp usually with 3-5 podomeres and conspicuous; if small with fewer podomeres and inconspicuous, then idiosoma either vermiform or with overlapping sclerites dorsally in the female; chelicera chelate or variously modified into piercing stylets or hook-like organs; a respiratory system usually present; idiosoma with trichobothria. ...
3. Gnathosoma with conspicuous rutella, chelicera typically chelate-dentate; one pair of podosomatic trichobothria almost invariably present and comprising piliform, barbed or clavate pseudostigmataid organ (sensilla) arising from conical depressions, the pseudostigmata (bothridia); pedipalp simple, tibia never with distal spurs; tracheal system when present opening to the exterior in the acetabular cavities of legs I and III or through pseudostigmata; idiosoma heavily sclerotized in the adult stage and with ridges or wing like expansions of the idiosoma which is never uniform.

- Gnathosoma only rarely with rutella; chelicera rarely chelate-dentate; propodosomatic trichobothria, when present, usually without conspicuous pseudostigmata; tarsus forming thumb-claw complex; trachea when present opening by paired stigmata situated between the chelicerae or on to the dorsal surface of the propodosoma and often with associated peritremes; usually weakly sclerotized, never with ridge or wing-like expansions of the idiosoma which may be vermiciform or covered dorsally by a number of discrete, usually overlapping sclerites.

Order PROSTIGMATA

Diagnosis: Acarina with a pair of stigmata on or near the gnathosoma, some with no discrete stigmatic opening. Chelicera may be chelate, stylet or reduced. Palp simple or fang-like or with a palp tibial claw. Empodia II-III may be claw like or sucker like, pad like, membraneous or rayed. Body weakly sclerotized. Genital shield never more than two; 2-3 pairs of discs or suckers may flank genital opening. Ocelli present or absent.

Key to the Plant Mite Families and Superfamilies of PROSTIGMATA (Based on Krantz, 1970)

1. Body annulate, usually worm-like and elongate; with 2 pairs of legs. ... Sup. family

With transverse genital aperture located behind second pair of legs, plant feeders) ... Fam. ERIOPHYIDAE

- Body more or less rounded, not elongated worm-like. ... 2
2. Gnathosoma usually circular with minute palpi lying closely appressed laterally, chelicera tiny, stylet like, with 4 pairs of legs, empodium of tarsi II-III usually a broad membranous pad. Stigmata of female opening on propodosoma behind gnathosomal base, males without stigmata or tracheae. ...

Leg IV of female without claws or empodium, with two terminal whip-like setae, plant feeders or associated with insects. ...

Gnathosoma variously shaped, generally conspicuous and with distinct chelicerae, palpi usually well developed. Empodia usually variable. Stigmata opens at base of chelicerae. ...

3. With a distinct palpal thumb-claw process. ...

- Without a distinct palpal thumb-claw process.

4. Chelicera whip-like and long, genital aperture transverse, plant feeders.

- Chelicera with opposed stylet or scissors-like, free living, plant feeders.

5. Cheliceral bases fused or if not fused not capable of lateral scissors-like movement over gnathosoma.

Fixed cheliceral digits reduced, movable digits short and needle like. Propodosoma with a pair of sensory setae, pseudostigmatic organ distinguishable by their length and by their type of insertion.

- Cheliceral bases not fused, the chelicerae moving scissors-like over gnathosoma; anterior portion of gnathosoma produced with a long snout, with 2 pairs of long sensory setae, or sensilla.

6. With 2 pairs of genital discs, palpi extending beyond gnathosoma or shorter and approximately equal to the chelae in length, with distal segment raptorial adapted for grasping.

- With 3 pairs of genital discs, palpi long, often elbowed usually with strong distal setae, antenniform.
7. Body of adults and nymphs densely clothed with setae, stigmal opening between cheliceral bases, larvae usually heteromorphic, parasitic; adults and nymphs free living predators. Movable chela of adults long, straight and extrusible, empodia absent, larval morphology variable, predator or parasitic on insects.

Gnathosoma large, incapable of withdrawing into body, propodosoma not elongate anteriorly, generally with an ossiform crista, body setae simple or pectinate and often broad ended.

— Body setae of adults and nymphs relatively few, arranged in transverse rows. Stigmal opening behind cheliceral bases. Larva homomorphic, similar to nymphs and adults in habits.

8. Cheliceral bases fused with gnathosoma and without indication of suture. Peritreme present on gnathosoma, often shaped like an arch or like 'M'.

Tarsi II and IV (also usually tarsus I) with claws and empodia. Free living predators or associate of vertebrates.

— Cheliceral bases closely contiguous or fused with each other but not generally with gnathosoma. Peritreme usually present on anterior portion of propodosoma; predators or plant feeders.

9. Chelicerae long, recurved and whip-like and arising from a stylophore, genital aperture transverse, plant feeders.

— Chelicerae not long and whip-like but rather short and stylet-like, genital aperture longitudinal and free living.

Peritreme confined to anterior edge of propodosoma.
10. Claws with a series of comb-like tenent hairs, empodia similarly ornamented, caudal aspect of idiosoma with a series of flagelliform setae

- Each claw terminating in a pair of tenent hairs bordered with combs of tenent hairs, empodia claw-like or pad-like (rarely appearing absent) often divided distally or with a basal divided spur, with or without tenent hairs, caudal aspect of idiosoma without highly modified setae

... Fam. TETRANYCHIDAE

Order MESOSTIGMATA

Diagnosis: Its size varies from 200-2000 microns, dorsum weakly sclerotized. Idiosoma rarely shows division, normally with shield. Chelicera 3-segmented, chelate, dentate, may be variously modified. Movable digit of male chelicera often bears spermatophoral process. Palpi 5-segmented, tectum present. An unpaired tritosternum usually present with a pair of lacinae or a divided lacina. A sternal shield is present. Genital orifice is in the form of transverse slit at the intercoxal area and is protected in female by 1, 3 or 4 shields and in the male by 1 or 2 shields. Anus subterminal and protected by a sclerotized shield. Leg I sensory and normally lack ambulacrum. Legs II and IV may be spurred in males. A pair of stigmata present dorsolaterally in the region of coxae II-IV; peritreme extends anteriorly as a tube. Majority are free living in soil, decaying organic matter or on plants; a few are parasitic to animals. (Based on Evans et al., 1961).

Key to the Families of Mesostigmata

1. Sternal shield of female with 2 pairs of setae; palpus apotele 2 or 3 tined; corniculae may be divided distally or otherwise modified in the distal portion

- Sternal shield with 0-4 pairs of setae, corniculae not modified as above.

... Ameroseiidae

2. Normally with fewer than 20 pairs of dorsal setae except in Gnoriminae where there are upto 23 pairs of setae.

- Always with more than 20 pairs of dorsal setae.

... Blattisocidae
Order ASTIGMATA

Diagnosis: Body weakly sclerotized; gnathosoma usually visible from above. The infracapitulum with normally a setal complement of two pairs, lacks adoral setae and rutella but is characterised by a pair of anterior ventral cuticular flaps. Pedipalp 2-segmented. Idiosoma often divided into propodosoma and hysterosoma by a sejugal furrow and relatively with a few setae. Sclerotized dorsal shield may be present on propodosoma. In Acaroidea, a characteristic Grandjean’s organ situated anterolaterally on the propodosoma and pilose supra coxal seta on leg I protect the podocephalic canal. A pair of oil glands usually present opening dorsolaterally on the opisthosoma. Genital orifice normally a longitudinal slit, occasionally transverse also located in the intercoxal region and is often provided with 2 genital suckers. Males with sclerotized penis. Anus ventral and in male is flanked with adhesive suckers. The legs with ambulacra. The tarsal solenidia bacilliform while those of tibia and genu setiform. Tibial solenidia usually long and whip-like. Usually fungivorous, many are parasitic.

The order is represented on plants in India only by one family, Acaridae.

Order CRYPTOSTIGMATA

Though species of this order occur on plants and may be fungus feeder (Haq & Prabhoo, 1976) but unfortunately no species has so far been identified from plants in India except one. Of course, several species (approx. 160 spp.) in this order are known from India but all were recorded from soil and litter. In view of this, no detail discussion of the cryptostigmatid mites of plants is made here. Hence there exists a vast scope to work in this aspect in India.
PHYTOPHAGOUS MITES

Family: TETRANYCHIDAE Donnadieu

(Tetranychidae Donnadieu, 1875, Faculte des sciences de Lyon, p.—9)

History: Donnadieu erected this family in 1875. Womersley (1940) and McGregor (1945) made valuable contributions. Pritchard & Baker (1955) brought out the excellent revisionary work in this family. Later, the important taxonomic contributions worth mentioning are: Baker & Pritchard (1960), Gutierrez (1966-70), Ehara (1956-78), Ehara & Lee (1971), Manson (1963, 67, 67a, 67b), Meyer (1965, 74,), Bagdasarian (1957), Reck (1959), Fletchmann & Baker (1970), Wainstein (1960), Tuttle & Baker (1964, 68), Tuttle et al. (1976), Chaudhri et al. (1974), etc. and over 800 species are known from the world (Baker, 1979). From India, only 61 species are known. On biology and ecology, the important review references are Huffaker et al. (1970), Boudreaux (1963), Huffaker et al (1969), Van de Vrie et al. (1972), etc.

Diagnosis: Chelicerae movable stylet like set in stylophore which is formed by fusion of cheliceral bases. Palpi 4-segmented with strong claw. Propodosoma with 3-4 pairs of setae; hysterosoma with 8-13 pairs of setae. Tarsi of legs I-II with duplex setae. Genital portion of female with characteristic wrinkles, tenent hairs present on tarsal claws. Empodium well developed, reduced or absent, with or without tenent hairs. Aedeagus of male is characteristic of the family, and is of great use in separating the species.

These mites are soft bodied, popularly known as spider mites as some of them can spin webs like spiders to cover their colonies. Normally they are of various colours and inhabit the undersurface of the leaves. A few may occur on the upper surface of leaf as well. They are exclusively plant feeders and many are important plant pests.

Morphological Characters of Taxonomic Importance

The body is differentiated into gnathosoma and idiosoma.

Gnathosoma: Gnathosoma is provided with a pair of chelicerae and a pair of pedipalpi. The mouth opening also lies in between.

Chelicera: Chelicera is a fine needle-like structure enclosed in stylophore (Fig. 6) which is formed by fusion of cheliceral bases.

Pedipalp: Each pedipalp is 4-segmented, each segment bearing a complement of setae. Terminal segment bears 6-7 setae which are of two types: tactile and sensory. Structure of palp, tibia and tarsus is of taxonomic importance (Figs. 53-65).
Figs. 53-66. 53. Palp of a tetranychid mite.
54-65. Terminal segments of palp of female in tetranychid genera,
54. Bryobia, 55. Bryobiella, 56. Porcupinychus, 57. Mesobryobia,
58. Tenupalponychus, 59. Schizotetranychus, 60. Bakerina,
61. Panonychus, 62. Neopetrobia, 63. Eutetranychus, 64. Eotetra­
nychus,
66. Anterior portion of Propodosoma of a tetranychid mite showing
location of peritreme.
Peritreme: It is provided with two arms (Fig. 66) which diverge on the dorsal surface of stylophore. The ends of the bulb may be simple, bulging or anastomosing or sometimes hooked (Figs. 67-80).

Idiosoma: Dorsum (Fig. 81) may be smooth or punctate. The integument may be variously striated. The striation pattern serves as important character for separation of species. Idiosoma is composed of two parts, the anterior part is the Propodosoma (from base of gnathosoma upto second pair of legs) which bears 3-4 pairs of setae and a pair of eyes, and the posterior part is called Hysterosoma (from base of third pair of legs upto posterior tip of body) which bears 8-13 pairs of setae (Fig. 81) arranged in different rows like dorsocentral, dorsolateral, humeral, sacral and clunals. Setae are of different types (Figs. 83-97) may or may not be borne on tubercles. The nature of setae, number of setae, relative length of setae and relative
position of setae serves as important taxonomic character for separating genera and species.

Ventral portion (Fig. 82) also possesses setae which show variations specially at the opisthosomal region. The number of anal and preanal setae serves as useful tool for separation of species. Genital portion of female possesses characteristic wrinkles (Fig. 98).

Nymphs and adults have 4 pairs of legs while larvae have 3 pairs of legs. All the leg segments possess setae and those on tarsus and tibia I are of two types, viz. sensory (Fig. 99) and tactile (Fig. 100). The former is with blunt tip with transverse striations and the latter is smooth with pointed tip. Tarsi of legs I and II often have duplex setae (Fig. 101). The pretarsus is furnished with 2 true claws and empodium. Claws may be provided with tenent hairs (Fig. 102) or

![Tarsal appendages in different tetranychid genera](image)

Figs. 119-126. Aedeagi in different tetranychid species

those may be lacking. The variation among the striation pattern serves as important tool for separation of genera. Different types of pretarsi are shown in figures (Figs. 102-118). Aedeagi of males are of diverse
shape and serve as important character for separation of species (Figs. 119-126).

Key to the Subfamilies, Tribes and Genera of Tetranychidae

1. Empodium with tenent hairs. Subfamily *Bryobiinae*, 2
 - Empodium without tenent hairs. Subfamily *Tetranychinae*, 9

2. True claw uncinate or if pad like the propodosoma with 4 well developed lobes; empodium pad like. *Bryobiini*, 3
 - True claw pad-like; empodium pad-like or uncinate. 4

3. With 3 pairs of propodosomal setae *Bryobiella*
 - With 4 pairs of propodosomal setae *Bryobia*

4. Claws and empodium pad-like *Hystrichonychini*, 5
 - Claws pad-like, empodium uncinate. *Petrobiini, Petrobia*

5. Hysterosoma with 8-9 pairs of dorsal body setae. *Porcupinychus*
 - Hysterosoma with 10 or more setae. 6

6. Propodosoma with projections or elevations over the rostrum, body elongate considerably, less than twice as long as broad. 7
 - Propodosoma without projections over rostrum, body not elongate about twice more or less as broad as long. 8

7. With 2 anterior projections over the rostrum. *Mesobryobia*
 - With 3 anterior projections over the rostrum. *Monoceronychus*

8. Members of 4th pair of dorsocentral setae as widely spaced as 4th pair of dorsolateral setae or nearly so. *Neopetrobia*
 - Members of 4th pair of dorsocentral setae closer together than 4th pair of dorsolateral setae. *Georgiobia*

9. Tarsus I dorsally with a single pair of usually associated duplex setae, if 2 pairs of closely associated duplex setae are present then tarsus II is still without closely associated duplex setae, empodium claw-like or rudimentary. *Eurytetranychini*, 10
 - Tarsus I dorsally with 2 pairs of closely associated duplex setae and tarsus II with 1 pair of duplex setae; empodium claw-like or splits distally. 11
Handbook: Plant Mites of India

10. With 2 pairs of anal setae. Eutetranychus
 — With 1 pair of anal setae. Aponychus

11. Hysterosoma with 4th pair of dorsocentral setae marginal or absent. Tenuipalpoidini, 12
 — Hysterosoma with 4th pair of dorsocentral setae in normal dorsal position. Tetranychini, 13

12. Peritreme simple, bulb-like, femoral setal formula 9-6-4-2. Tenuipalpomychnia
 — Peritreme simple or hooked, femoral setal formula 8-6-4-4. Bakerina

13. With 2 pairs of preanal setae. 14
 — With 1 pair of preanal setae. 17

14. Empodium claw like. 15
 — Empodium ending in a tuft of hairs or splits dorsally. 16

15. Dorsal body setae very short, not as long as interval between their bases. Platytetranychus
 — Dorsal body setae as long as or longer than the interval between their bases. Eotetranychus

16. Empodium a simple claw like structure. Panonychus
 — Empodium splits into 2 claw-like structures, usually with appendent hairs. Schizotetranychus

17. Empodium claw like with proximoventral hairs, duplex setae on tarsus 1 distal and approximate. Oligonychus
 — Empodium splits distally usually into 3 pairs, of hairs, duplex setae on tarsus 1 well developed. Tetranychus

Subfamily Bryobiinae Berlese

Bryobiini Berlese, 1913, Acarotheca Italica Firenze, p. 17.

Tribe Bryobiini Berlese

Bryobiini Berlese, 1913, Acarotheca Italica Firenze, p. 17.

Genus Bryobia Koch (Figs. 127-129)

Key to the Species of Bryobia

1. Propodosomal and hysterosomal setae broadly spatulate praetiosa
 — Propodosomal and hysterosomal setae sub-spatulate. eharal
Figs. 130-133. *Bryobiella* sp.: 130. Dorsum, 131. Tarsus I, 132. Leg I (part), 133. Leg II (part)
1. **Bryobia eharai** Pritchard and Keifer

Diagnosis: Yellowish brown mite found normally on upper surface of leaves. Idiosomal setae 15 pairs, clavate and serrate, borne on tubercles. Empodium on tarsus I bears 2 rows of ventrally directed tenent hairs. First pair of legs shorter in comparison to that of *B. praeitiosa*. Body broadly rounded and few rounded wrinkles present rather than dorsal striae. Leg I as long as length of body. Duplex setae of tarsus II approximate. In female, tibia I with 2 tactile setae, tarsus I with 8 tactile setae proximal to duplex setae, tibia II with 5 tactile setae proximal to duplex setae.

Hosts: *Chrysanthemum* sp. ; *Colocasia antiquorum*.

Nature of damage: Feeding of this mite causes the yellowing of leaves which later turn brown. This retards growth of young plants (Menon & Ghai, 1968a).

Bionomics: It occurs in the field throughout the year. Sapra (1940) reported this mite occurring on the upper surface of leaves. It overwinters in egg stage in foliage. This mite is more active during April to July and the population dwindles with the monsoon rains. Information about its biology is not available.

Distribution: **INDIA**: Maharashtra, Punjab, U. P., Delhi, Karnataka, Jammu & Kashmir ; outside India : Japan, Pakistan and Taiwan.

2. **Bryobia praeitiosa** Koch

Diagnosis: Dark brown mite ; first pair of legs very long ; dorsum with 15 pairs of fan-like setae; anterior propodosomal projection strong ; peritreme at the distal end long, broad and slender. Propodosoma with irregular striae and coarsely granulate; hysterosoma bears transverse striae and also coarsely granulate. Empodium II-IV pad like with 2 rows of ventrally directed tenent hairs. In female, tibia I with 1 sensory seta, 1 solenidion and 9 tactile setae, tarsus I with 6 tactile setae proximal to duplex setae ; tibia II with 4 solenidia and 5 tactile setae, tarsus II with 4 tactile setae proximal to duplex setae.

campestris, Spinacea oleracea, Triticum aestivum; outside India: It is also known to occur on apple, prune, cherry, nectarine, wheat, barley, grass (Pritchard & Baker, 1955), cabbage, clover, strawberry, grapes, (Ehara, 1969), In addition, Chaudhri et al. (1974) listed a large number of hosts from Pakistan (Vide Plant-Mite catalogue).

Nature of damage: Injury to plants by this mite is evidenced by appearance of minute yellowish spots. Gradually those spots turn brown and the leaves dry up and fall off. A severely infested tree gets denuded (Menon & Ghai, 1968; Gupta, et al., 1975).

Bionomics: Information as regards bionomics is not available from India. Basing on information available from abroad, this mite is known to overwinter both in egg and active stages in warm climate. It oversummers in egg stage. In September, the eggs start hatching until stopped by cold weather. Mite activity increases in spring when they migrate to their new host plants. Feeding continues till early June when active stages die and eggs become dormant. The bright red disc-shaped larvae after feeding become dark green and spherical. Later, they migrate to some sheltered places to moult. The mites also drop off the plants when disturbed and remain quiet after folding their legs. A few of the eggs deposited by spring adults do not aestivate but hatch in early summer giving rise to continuation of generation. They are also known to act as pests of dwelling houses (English & Snetsinger, 1957).

Control: Gupta et al. (1975) got good result by application of oxydemeton methyl (0.025%) and dimethoate (0.023%) for its control in Punjab infesting pear.

Distribution: INDIA: Himachal Pradesh, Punjab, Jammu & Kashmir, Delhi, Meghalaya, West Bengal; outside India: It is widely distributed in Europe, U. S. A., South America, Southern part of Africa, Australia, New Zealand, Taiwan, Japan, Pakistan.

Genus Bryobiella Tuttle & Baker
(Figs. 130-133)

3. Bryobiella punjabensis Prasad

Diagnosis: Dorsal idiosomal setae of different shape and much
shorter than interval between their longitudinal bases. Propodosoma with longitudinal striae on lateral sides.

Host: House—sparrow.nest.

Distribution: INDIA: Punjab.

Tribe Hystrichonychini Pritchard & Baker

Genus Georgiobia Wainstein

(Figs. 134-135)

Figs. 134-135. *Georgiobia sp.* : 134. Dorsum, 135. Tibia and tarsus I (Female)
4. **Georgiobia sphaeralceae** Tuttle & Baker

Diagnosis: Dorsocentral setae I-IV contiguous, all dorsocentrals on tubercles. Dorsocentral setae short reaching about half way to

margin of body. Leg I shorter than body. Propodosoma with 3 pairs of setae; hysterosoma with 10 pairs of setae. Peritreme anastomosing distally.

Hosts: Ranunculus sp., outside India: Sphaeralcea ambigu.

Distribution: INDIA: Punjab; outside India: U. S. A.

Remarks: No information is available on the nature of damage and bionomics of this species.

Genus Mesobryobia Wainstein
(Figs. 136-138)

5. Mesobryobia jobneri Prasad

Diagnosis: Dorsal idiosoma with 13 pairs of setae, of those, the 1st median propodosomal, 2nd median propodosomal, lateral hysterosomal and clunals large, remaining setae thin and tiny; first to third lateral hysterosomal being heavier than 1st to 4th median hysterosomals. Clunals and 4th lateral hysterosomal borne on well developed tubercles; 2nd median propodosomal larger and thicker than 2nd lateral propodosomal and 1st median propodosomal much larger and heavier than 2nd median propodosomal.

Host: Napier grass.

Distribution: INDIA: Rajasthan.

Remarks: This mite is not known to cause any damage to the host and nothing is known on its bionomics.

Genus Monoceronychus McGregor
(Figs. 139-140a)

6. Monoceronychus terpoghossiani (Bagdasarian)

Diagnosis: Body oval with transverse striations at the opisthosomal region and with fan-shaped setae. Peritreme at distal end anasto-
mosing. Rostrum with 2 projections each bearing a seta. All idiosomal setae not borne on tubercles. Empodial claw pad like with tentent hairs.

Host: Grass.

Distribution: India: Delhi; outside India: U.S.S.R.

Remarks: Nothing is known on its nature of damage and bionomics.

Genus Neopetrobia Wainstein

(Figs. 141-143)

7. Neopetrobia simlaensis Prasad

Diagnosis: Hysterosomal setae large, broad, 4th median hysterosomal seta shorter than 4th lateral hysterosomal seta; hysterosomal striae transverse between median hysterosomals except between 3rd median hysterosomal setae and slightly posterior to 4th hysterosomal setae, where it is irregular. Most setae borne on tubercles; of these, the tubercles of 4th median hysterosomal, 4th lateral hysterosomal and clunals being well pronounced, all setae well serrate. Palp without terminal sensillum, dorsal sensillum small and slender. Peritreme anastomosing distally. Tibia 1 with 2 sensory and 8 tactile setae, tarsus...
1 with 7 tactile setae proximal to duplex setae. Genital flap with transverse striae.

Host: Bamboo.

Distribution: India: Himachal Pradesh.

Remarks: No information on nature of damage and bionomics of this species is available.

Genus *Porcupinychus* Anwarullah

(Figs. 144-147)

Figs. 149-151: *Petrobia (Petrobia)* sp.: 149. Dorsum, 150. distal end of Tarsus I (Female), 151. Tarsus I (Female).
8. **Porcupinychus abutiloni** Anwarullah

Diagnosis: Three pairs of propodosomal setae and 8 pairs of hysterosomal setae, all being set on prominent tubercles; only 4 pairs of dorsocentral setae, the last 2 pairs being marginal. There are 2 sets of duplex setae on tarsus I and 1 set on tarsus II. Fine striations present on middle of propodosoma. Tibia I with small solenidia.

Hosts: *Sida* sp.; outside India: It is known to occur on *Abutilion indicum* (Anwarullah, 1966). Chaudhri *et al.* (1974) recorded it on a number of other hosts from Pakistan (*Vide* Plant-Mite catalogue).

Distribution: *India*: Tamil Nadu; outside India: Pakistan.

Remarks: Nothing is known about its nature of damage and bionomics.

Tribe Petrobiini Reck

Genus Petrobia Murray

Key to the Subgenera of Petrobia

1. Dorsal setae set on tubercles.

 — Dorsal setae not set on tubercles.

 Tetranychina Petrobia

Subgenus Tetranychina Banks

9. **Petrobia (Tetranychina) harti** (Ewing)

 (Fig. 148)

Diagnosis: The dorsal body setae set on prominent tubercles and longer than the intervals between their bases; 5th pair of dorsal setae much shorter than others. First pair of legs of female about twice as long as body. Peritremes ends in a simple bulb. The setae of male shorter than those of females; legs being longer in relation to body.

Distribution: India: Karnataka, Jammu & Kashmir, Delhi, West Bengal, Assam, Punjab; outside India: South America, Hawaii, Africa, Australia, Taiwan, Japan, Middle East.

Remarks: This mite causes no appreciable damage to its host and nothing is known as to its bionomics.

Subgenus Petrobia Murray

10. Petrobia (Petrobia) latens (Müller)

{ Fig. 149-151 }

Diagnosis: Body dark brown or greenish brown; legs light yellow; dorsal setae serrate, not set on tubercles, shorter than intervals between consecutive setae. The anterior pair of legs much longer than the body; empodium claw like. Peritreme ends in a slender enlargement which is longer than broad.

Nature of damage: It is a serious pest of wheat in unirrigated fields (M. P., Haryana, Delhi, Rajasthan, Punjab). Because of feeding, the leaves turn drying from tip backwards even when there exists sufficient soil moisture. Damage symptoms are similar to dry-drought. In case of heavy infestation, the occurrence of thousands of mites on a single leaf is not uncommon. In other crops, feeding causes the appearance of yellowing or bronzing symptoms. The infested leaves are never with webs.

Bionomics: A single female lays 6-10 winter eggs and 1-3 summer eggs per day, and during life time as many as 23-90 winter eggs and 8-27 summer eggs are produced per female (Khan et al., 1969). Incubation period varied between 9-14 days during February-March (during Max.
temperature 26.7°-30°C, Min. temperature 7.8°-8.3°C, R.H. 48\%.
Larval, protonymphal and deutonymphal periods lasted, respectively, 1-2 days, 1-3 days and 1-4 days.

The time required to reach from larva to adult was 7.20 days. This mite developing in the later part of the cropping period produces summer eggs which hatch with the advent of the favourable weather. The emerging mites appear in the wheat field in December. This generation after becoming adult lays winter eggs which hatch immediately and spread in the neighbouring fields through various means. The period of activity is during December-mid-April, with the peak during February-March. Low temperature and drought condition were the optimum conditions for rapid multiplication while rain checked the population. Gupta, Dhooria and Sandhu, (1973) studied the relative susceptibility of different varieties of wheat to the attack of this mite.

Control: Several chemicals are known in literature proving efficiency against this mite, of those, mention may be made of sulphur dusting @ 30-40 kg/ha (Bindra & Kittur, 1961); thiometon 0.15% @ 700 L/ha (Rawat & Sahu, 1969); dimethoate, monocrotophos and oxydemeton methyl @ 0.1, 0.15 and 0.1 kg a.i./ha, respectively. (Deol et al., 1972; Sandhu et al., 1976); thiometon 0.15%, dimethoate 0.15%, parathion EC 0.06% @ 900 L/ha and parathion dust 1.5% @ 24.7 kg/ha (Rawat, 1979).

Subfamily Tetranychinae Berlese

Tribe Eurytetranychini Reck

Genus Aponychus Rimando

(Figs. 152-154)

Figs. 152-154: *Aponychus* sp.: (after Chaudhri, 1972), 152. Dorsum, 153. Terminal end of tarsus (Female), 154. Leg IV (Female)

Figs. 155-158: *Eutetranychus* sp.: 155. Dorsum, 156. Distal end of tarsus I, 157. Palp (Female), 158. Aedeagus
Key to the Species of Aponychus

1. Dorsocentral hysterosomals I-III very long and approach the bases of next setae in the dorsocentral row
 — Dorsocentral hysterosomals I-III not so long
 2

2. Dorsocentral hysterosomal setae I-III sub-spatulate
 — Dorsocentral setae I-III spatulate, long
 3

3. Dorsal idiosomal setae 12 pairs, inner sacrals absent, outer sacrals and clunals almost of same length
 — Dorsal idiosomal setae 13 pairs, inner sacrals smaller than rest of the idiosomal setae, outer and inner sacrals not of same length but outer sacrals and clunals of same length.
 4

4. Propodosomal seta I one and half times as long as propodosomal seta II.
 — Propodosomal setae I and II almost equal
 5

11. Aponychus corpuzae Rimando

Diagnosis: Body dorsoventrally compressed; dorsal integument wrinkled; dorsal idiosomal setae serrate, long and spatulate. Genital flap wrinkled. Terminal sensillum of palp slender, subconical. In male, tibia I with 3 tactile setae. In female, tibia I with 5 tactile setae; tibia II with 3 tactile setae.

Host: Bamboo.

Nature of damage: These mites live in colonies on the under surface of the leaves covered with thin webs. The feeding of this mite causes the appearance of yellow specks.

Bionomics: It occurs in the field throughout the year but the population is negligible in the rainy season.

Distribution: India: Assam, Meghalaya, Orissa, Andaman Nicobar Islands; outside India: Japan, Philippine, Thailand.

12. Aponychus (Stylophoronychus) baghensis Prasad

Diagnosis: Idiosoma with 12 pairs of setae; I-III dorsocentral hysterosomals very large, leaf like and approaching the next setae in
the medio-hysterosomal row, I dorsocentral hysterosomals very short and thin; most dorsal idiosomal setae leaf like; IV dorsocentral hysterosomals absent, only one seta present on each of genu I, II and tibia II, 4 setae on femur I.

Host: Bamboo.

Distribution: India: Bihar.

Remarks: No damage is caused by this mite and nothing about its biology is known.

13. *Aponychus (Stylophoronychus) lalii* Prasad

Diagnosis: Twelve pairs of setae present on idiosoma; 1-3 dorsocentral hysterosomals very large, leaf like and approaching the next setae in the mediohysterosomal row; 1st dorsocentral hysterosomals very short and thin; most dorsal idiosomal setae leaf like; 4th dorsolateral hysterosomals absent, only one seta present on each of genu I, II and tibia II, 4 thick setae on femur I.

Host: Bamboo.

Nature of damage: No damage is caused by this mite.

Bionomics: Nothing is known in this regard.

Distribution: India: Bihar.

14. *Aponychus sarjui* Gupta

Diagnosis: Body oblong. Idiosomal setae spatulate, serrate. Dorsocentrals I and II, dorsolateral hysterosomals minute, III propodosomal, humeral, III dorsocentral, all of same length. Inner sacrals small, outer sacrals and clunals large and of same length. Peritreme ‘U’ shaped. Genital flap with transverse striae. Tibia I with 1 sensory and 4 tactile setae, tarsus I with 10 tactile setae; tibia II with 1 sensory and 2 tactile setae, tarsus II with 10 tactile setae (in female).

Host: Bamboo.

Remarks: No damage is caused by this mite and bionomics is not known.

Distribution: India: Andaman Isl.
15. **Aponychus sulcatus** Chaudhri

Diagnosis: Body oblong with expansion of lateral margins of propodosoma between propodosomal setae III and humeral setae. Peritreme slender with slightly broad distal end. Dorsum finely granulated with transverse wrinkles in the middle. Propodosomal setae 3 pairs, 1st strongly serrate and spatulate on tubercles and one and half times longer than propodosomal seta II which is fan shaped; III well developed, serrate; dorsocentral hysterosomals 3 pairs, fan shaped, strongly serrate on tubercles. Dorsolateral hysterosomal 3 pairs I fan shaped, II and III spatulate, serrate; sacrals 2 pairs; genital setae 2 pairs; anal setae 1 pair.

Hosts: *Carica papaya*, *Arundo donax*; outside India: *A. donax*, *Boerhaavia diffusa*.

Distribution: INDIA: Punjab; outside India: Pakistan.

Remarks: It is not known to cause any damage to its host. No work has been done on its bionomics.

Genus *Eutetranychus* Banks

(Figs. 155-158)

Key to the Species of Eutetranychus

1. Striae forming 'V' pattern between second and third pairs of dorsocentral hysterosomal setae
 - Striae longitudinal between second and third pairs of dorsocentral hysterosomal setae. ... 2
2. Dorsocentral hysterosomal setae relatively much longer, reaching to the bases of setae next behind; third pair even going beyond the bases of 4th pair. ... maxima
 - Dorsocentral hysterosomal setae very short, not reaching to the bases of setae next behind. ... 3
3. Propodosomal mediodorsal striae with less developed lobes; third pair of dorsocentral setae tapering, third and fourth dorsocentral hysterosomal setae forming a rectangle. ... phaseoli
— Propodosomal mediodorsal striae with developed lobes, third pair of dorsolateral setae similar to other lateral setae; third and fourth dorsocentral hysterosomal setae forming a square.

4. Propodosoma with mediodorsal striae anastomosing. ...

 orientalis

— Propodosoma with mediodorsal striae not anastomosing. ...

 5

5. Dorsal setae set on small tubercles, dorsal body setae slender, slightly enlarged distally. ...

 bredin

— Dorsal setae set on strong tubercles, dorsal body setae slender, serrate and tapering. ...

 africanus

6. Peritreme ending in simple bulb, longitudinal striae starting at the bases of second pair of dorsocentral hysterosomal setae. ...

 7

— Peritreme ending in bilobed bulb, longitudinal striae starting behind the bases of second dorsocentral hysterosomal setae. ...

 bilobatus

7. Tibia II with 5 tactile setae. ...

 8

— Tibia II with 6 tactile setae. ...

 9

8. All dorsocentrals, humerals and third pair of propodosomal setae not set on tubercles. ...

 citri

— All setae on idiosoma set on tubercles. ...

 caricae

9. First pair of dorsolateral setae situated anterior to first pair of dorsocentral setae. ...

 nagai

— First pair of dorsolateral setae situated at the level of first pair of dorsocentral setae. ...

 anneckei

16. Eutetranychus africanus (Tucker)

Eutetranychus africanus, Manson, 1963, Acarologia, 5: 352.

Diagnosis: Body with dorsal setae subspatulate and long; longitudinal striae on propodosoma bears weaker lobes; striae longitudinal between second and third pairs of dorsocentral hysterosomal setae. Palp tarsus of female three and half times as long as broad. Distal bent of aedeagus relatively shorter than dorsal margin of shaft.

Hosts: Orange; outside India: lemon, frangipini (Baker & Pritchard, 1960).

Nature of damage: In India, it is not known to cause any damage.
However, in other countries it is known to produce fine stipplings on the leaves causing premature leaf drop.

Bionomics: Not much is known about its bionomics. Heavy rain acts as the limiting factor to the population build-up of this mite.

Distribution: India: Assam, Karnataka; outside India: Durban, Mauritius, Natal.

17. *Eutetranychus anneckei* Meyer

Diagnosis: This species is close to *E. orientalis*, but can be separated from it by having striae between second and third pairs of dorsocentral hysterosomals not ‘V’ shaped but longitudinal, dorsal sensillum on palp tarsus of female about 0.67 length of terminal sensillum. The terminal sensillum on the palp tarsus of male about 2 times as long as its greatest thickness and with relatively shorter dorsal sensillum.

Hosts: *Luffa acutangula*, sapota, jackfruit, peach, mulberry, *Ficus* sp., citrus, sour orange.

Nature of damage: No damage is caused by this mite.

Distribution: India: Delhi; outside India: Mozambique.

18. *Eutetranychus bilobatus* Nassar & Ghai

Diagnosis: Dorsum with 3 pairs of propodosomal and 10 pairs of hysterosomal setae set on tubercles, all setae strongly serrate and varying in length; dorsocentral hysterosomal shorter than intervals between their bases and decidedly more spatulate than dorsolaterals. Humerals and first pair of dorsolateral setae situated anterior to first pair of dorsocentral hysterosomal setae; third pair of dorsocentral hysterosomals forming a square with 4th pair of dorsocentral hysterosomals. Propodosoma with longitudinal striae with distinct lobes; hysterosomal striae between second and third pairs of dorsocentral longitudinal. Peritreme bilobed distally.

Host: *Zizyphus* sp.

Nature of damage: No damage is caused by this mite.

Distribution: India: Delhi.
19. **Eutetranychus bredini** Baker & Pritchard

Diagnosis: Setae on mediodorsal integument of propodosoma anastomosing; lobes of striae strongly developed. Peritreme gradually enlarging distally; dorsal setae on strong tubercles; marginal setae long and slender.

Hosts: Brinjal; outside India: palm.

Distribution: INDIA: U. P.; outside India: Africa.

Remarks: It causes no damage to its host and no information is available as to its bionomics.

20. **Eutetranychus caricae** Nassar & Ghai

Diagnosis: Dorsum with 3 pairs of propodosomal and 10 pairs of hysterosomal setae set on strong tubercles, all setae strongly serrate, varying in length; propodosomal, humeral and dorsolateral hysterosomal setae serrate, rod like and enlarged distally; third pair of dorsocentral hysterosomal setae reaching to the bases of 4th pair of dorsocentral hysterosomals; humerals and first pair of dorsolaterals situated anterior to first pair of dorsocentral hysterosomals; third pair of dorsocentral hysterosomals forming a square with the fourth pair of dorsocentral hysterosomals. Propodosoma having longitudinal striae with weak lobes.

Host: *Ficus carica*.

Nature of damage: No economic importance of this species is known.

Distribution: INDIA: Delhi.

21. **Eutetranychus citri** Attiah

Diagnosis: This species differs from *E. orientalis* in first pair of dorsolaterals and the humerals which are situated anterior to the first pair of dorsocentrals; the third pair of dorsocentrals form a slight rectangle with the fourth pair of dorsocentrals, all being spatulate, dorsolaterals being relatively longer; humerals, dorsocentrals and third pair of propodosomals not set on tubercles; rest of the setae on
tubercles. Peritreme ends in simple bulb. Tibia I and tibia II bear 9 and 5 tactile setae, respectively.

Host: Citrus.

Nature of damage: No damage is caused by this mite.

Distribution: INDIA: Delhi; outside INDIA: Egypt.

22. **Eutetranychus maximae** Nassar & Ghai

Diagnosis: Dorsum with 3 pairs of propodosomals and 10 pairs of hysterosomal setae set on strong tubercles, all being long, serrrate, rod like except third pair of propodosomals, humerals, second and third pairs of dorsolateral setae mostly tapering; dorsocentral hysterosomals long and touch the bases of the next setae in line. Propodosoma having longitudinal striae with a strong lobe; striae between second and third pairs of dorsocentral hysterosomals forming a ‘V’ pattern. Ventrally genital area with 1 pair of pregenital, 2 pairs of genital, 2 pairs of anal and 2 pairs of paraanal setae, all simple.

Host: Cucurbita maxima.

Nature of damage: No damage is known to be caused by this mite.

Distribution: INDIA: Delhi.

23. **Eutetranychus nagai** Nassar & Ghai

Diagnosis: Dorsum with 3 pairs of propodosomals and 10 pairs of hysterosomal setae on prominent tubercles except humerals and dorsocentrals; all setae strongly serrate and varying in length, propodosomals, humerals and dorsolateral hysterosomals tend to be subspatulate; third pair of dorsocentral hysterosomals forming a square with fourth pair of dorsocentrals. Propodosoma having longitudinal striae strongly lobed, striae longitudinal between second and third pairs of dorsocentrals. Terminal sensillum of palp tarsus 4 times as long as broad.

Host: Eriobotrya japonica.

Nature of damage: No damage is caused by this mite.

Distribution: INDIA: Delhi.
24. *Eutetranychus orientalis* (Klein)

Diagnosis: Greenish brown mite with dorsal striae on propodosoma parallel and lobed; dorsal setae short, broad and set on small tubercles. Lateral setae longer than dorsomedian setae, slightly spatulate. In male, tarsus I with 1 sensory and 11 tactile setae; tarsus II with 1 sensory and 11 tactile setae. Aedeagus hook-like with distal bent longer than dorsal margin of shaft which is slightly concave. In female, tibia I with 2 sensory and 3 tactile setae, tarsus I with 1 sensory and 14 tactile setae; tibia II with 1 sensory and 5 tactile setae.

Nature of damage: This is a serious pest of a wide variety of fruits, of those, citrus is the most important one. All stages of mites suck sap from leaves, tender shoots, bark as well as from fruits. The affected leaves turn yellowish brown which afterwards dry up and fall off. The mites are usually seen on the upper surface of leaves being covered under heavy webs with dust particles adhered to it. The infested leaves get crumpled. All these affect the normal physiological activities of the plants and thereby the growth and vigour are retarded. Injury is more where the plants lack moisture. Sadana & Kanta (1972) reported that out of 6 different varieties of citrus, lemon was highly susceptible. In another study, Sadana & Kanta (1972a) reported that out of 48 plants tested for hosts of this mite, 30 plants were suitable for feeding and breeding, 17 were suitable for short feeding and oviposition but unsuitable for feeding and breeding.

Bionomics: The life-cycle is completed as: egg 1-2 days in summer, may be as long as 35 days in winter; larval, protonymphal and deutonymphal stages take 1-4 days each. The longevity of adult female is 6-12 days while the same during winter is 10 days. A single female lays as many as 29-30 eggs in a life time. The optimum temperature for development is 25°-30°C but mortality is high at 35°C (Banu &
The life cycle was also studied by Lal (1977). The population of this mite is abundant during summer months (March-June), absent during rainy season (July-September) and very low during winter (December-February). High temperature, low humidity and bright sunny days are favourable for development of population (Lal & Mukharji, 1980). The population build-up is positively correlated with number of oil glands and negatively correlated with thickness of leaf cuticle (Mohamad, 1965). Population on cassava was absent or very low during June-December and thereafter the increase was sudden. Peak infestation was during January-April (Lal, 1982). Sweet lime and sour lime were more susceptible as higher fecundity, longevity, feeding and oviposition responses were more on these varieties. Kagzi and Musambi varieties had little preference (Dhooria, 1982). Bitter gourd, bottle gourd, cabbage, Datura, egg plant, litchi, ornamental plant, phalsa and tomato exhibit nonpreference for oviposition (Dhooria, 1982b).

Control: Different chemicals have been found to be effective against this mite in different experiments. To name a few: carbo-phenothion 0.02% (Sethi, 1967; Rai et al., 1964), ethion 0.03-0.05%, phosalone, monocrotophos and dicofol (0.05%), cyhexatin (Plictran) 0.05% (Pareek & Sharma, 1982), monocrotophos 0.07% (Dhooria & Butani, 1982a). Dicofol is effective against all stages while chlorfenoson, chlorofenothol + chlorfenoson were very effective against adults larvae and nymphs, (Dhooria & Butani, 1982).

Natural enemies: The natural enemies recorded on this mite are: *Pronematus* sp., *Amblyseius* (Neoseiulus) cucumeris, *A. (Euseius) alstoniae*, *A. (E.) delhiensis*, *A. (E.) finlandicus*, *Typhlodromus (A.) divergentis*, *T. (A.) fleschweri*, *Agistemus* sp., *Pronematus elongatus*, *Cheyletus eruditus*, *Cunaxa setirostris*, *Scolothrips indicus*, *Scymnus gracilis*, *Stethorus pauperculus*, *Anthocoris* sp. (Gupta et al., 1971; Sadana & Kanta, 1971; Dhooria, 1981; Dhooria, 1982).

Distribution: India: Assm, Jammu & Kashmir, Karnataka, Delhi, Maharashtra, Punjab, West Bengal, Gujarat, Haryana, U. P.; outside India: Israel, Turkey, Jordan, Iran, Egypt, Cyprus, Sudan, South Africa, Afghanistan, Pakistan, Taiwan, Thailand, East Transvaal.

25. **Eutetranychus phaseoli** Nassar & Ghai

Diagnosis: Dorsum with 3 pairs of propodosomal and 10 pairs of hysterosomal setae, all set on prominent tubercles, mostly serrate;
dorsocentral hysterosomals shorter than the interval between them and subspatulate except first pair of propodosomals and third pair of dorsolaterals long and tapering; first pair of dorsocentral hysterosomals equal in length to fourth pair of dorsocentral hysterosomals and both longer than second and third pairs of dorsocentral hysterosomal setae. Propodosomal striae with weak lobes; hysterosomal striae also with weak lobes.

Host: Phaseolus vulgaris.

Nature of damage: No damage is caused by this mite.

Distribution: INDIA: Delhi.

Tribe Tenuipalpodini Pritchard & Baker

Genus Tenuipalponychus Channa Basavanna & Lakkundi
(Fig 159-161)

Figs. 159-161: Tenuipalponychus sp.: (after Channa Basavanna & Lakkundi, 1977) : 159. Dorsum, 160. Distal end of tarsus I (Female), 161. Tibia and tarsus I (Female)

Figs. 162-164: Bakerina sp.: (after Prasad, 1975) : 162. Dorsum, 163. Terminal end of tarsus I (Female), 164. Leg I (Female)
26. **Tenuipalponychus citri** Channa Basavanna & Lakkundi

Diagnosis: Female with 13 pairs of rod like dorsal setae; all on moderate tubercles; each seta on dorsal surface studded with row of pear shaped tubercles. Propodosoma with fine granulations laterally and reticulate mediodorsally. Peritreme ends in a simple bulb without terminal branches. Terminal sensillum of palpus two and half times as long as broad. Aedeagus forming a knob at the dorsally turned distal end.

Host: Citrus.

Nature of damage: It infests different varieties of citrus in Karnataka. Its infestations cause the appearance of brownish scars on the fruits. Later, those coalesce to form white patches on the surface.

Distribution: INDIA: Karnataka.

Genus **Bakerina** Chaudhri

(Figs. 162-164)

Key to the Species of Bakerina

1. Dorsal idiosomal setae 12 pairs; setae leaf-like
 - Dorsal idiosomal setae 13 pairs; setae lanceolate
 *orissaensis*
 *aculus*

27. **Bakerina aculus** Chaudhri

Diagnosis: Dorsal setae 13 pairs, all setae pointed, lanceolate. Propodosoma with dorsal reticulations in the middle, fine dashes within reticulations, minute alveoli in lining of each reticulations. Hysterosoma with irregular simple longitudinal striations along the margin and irregular, dimpled, transverse striations in the middle. Peritreme hooked. Dorsocentral seta I shorter than the distance between dorsocentral I and II; dorsocentral seta II shorter than the distance between dorsolateral II and III.
Host: *Thuja orientalis*.

Distribution: INDIA: Punjab; outside India: Pakistan.

Remarks: No damage is caused by this mite.

28. **Bakerina orissaensis** Prasad

Diagnosis: Dorsal idiosomal setae 12 pairs, leaf-like, borne on tubercles; clunals very short; hysterosomals mostly smaller; solenidia present on tibia I and none present on tibia II-IV.

Hosts: Jackfruit, onion.

Nature of damage: It is not known to cause any damage to its hosts.

Bionomics: No work has been done on its bionomics.

Distribution: INDIA: Orissa.

Tribe Tetranychini Reck

Genus Eotetranychus Oudemans

(Figs. 165-168)

Key to the Species of Eotetranychus

1. Dorsal idiosomal setae serrate 2
 — Dorsal idiosomal setae not serrate 8
2. Dorsal idiosomal setae longer than the interval between their longitudinal bases 3
 — Dorsal idiosomal setae as long as interval between their longitudinal bases 7
3. Dorsal idiosomal setae 1½ times longer than interval between their longitudinal bases 4
 — Dorsal idiosomal setae about 2 times longer than the intervals between their longitudinal bases fremonti
4. Shaft of aedeagus short, broad and curved dorsal; not forming a knob 5
 — Shaft of aedeagus straight, turning slightly dorsal to form a knob rohilae
5. Aedeagus with proximal portion of shaft curved dorsad... rajouriensis
 — Aedeagus with proximal portion of shaft not curved... 6
6. Aedeagus greatly tapering and forming a broad ventral bent... kankitus
 — Aedeagus greatly narrowed distally and curves dorsad and forming a distal knob... broodryki
7. Shaft of aedeagus bending dorsad to form slender sigmoid... irregularis
 — Shaft of aedeagus bending ventrad to form slender but not sigmoid... syzygii
8. Distal portion of aedeagus sigmoid... 9
 — Distal portion of aedeagus curved but not sigmoid... 10
9. Dorsal idiosomal setae as long as interval between their longitudinal bases... hirsti
 — Dorsal idiosomal setae twice as long as the interval between their longitudinal bases... frosti
10. Distal portion of aedeagus strongly curved and hooklike... suginamensis
 — Distal portion of aedeagus curved but not hooked... 11
11. Peritreme at the distal end bends... sexmaculatus
 — Peritreme at the distal end not bends... 12
12. Genital flap with longitudinal striae... truncatus
 — Genital flap with transverse striae... 13
13. Peritreme distally ends in a bulb... 14
 — Peritreme distally curved... ladakhensis
14. Aedeagus bent dorsad to form a slender distal portion... pamelae
 — Aedeagus bent dorsad to form a gradually tapering slender distal portion... mandensis

[The species neoperplexus and uncatus are not included in key because their records from India are doubtful.]

29. Eotetranychus broodryki Meyer

Diagnosis: Green mite, body linear, setae lanceolate, serrate and reach upto the bases of the next setae. Propodosomal striae lobed and
striae on hysterosoma transverse. Shaft of aedeagus narrow distally and curves dorsad forming a distal knob which is provided with a small anterior projection and a long posterior projection.

Host: Red-gram (*Cajanus indicus*).

Nature of damage: Das & Naik (1977) reported this species from Orissa infesting red-gram. The feeding by this mite causes chlorosis resulting in the appearance of yellow specks on the under surface of leaves. All these checked the growth and yield of the crop.

Bionomics: Infestation was noticed during January to April and disappeared during rainy season.

Distribution: INDIA: Orissa; outside India: Rhodesia.

30. *Eotetranychus frosti* (McGregor)

Figs. 165-168: *Eotetranychus* sp.: 165. Dorsum. 166. Terminal end of tarsus I (Female), 167. Terminal end of tarsus I (male). 168. Tibia and tarsus I (Female)
Diagnosis: In male, tibia I with 4 sensory and 9 tactile setae, tarsus I with 3 sensory and 3 tactile setae proximal to duplex setae; tibia II with 7 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 9 tactile setae, tarsus I with 1 sensory and 4 tactile setae proximal to duplex setae; tibia II with 8 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae.

Hosts: Apple; outside India: rose (McGregor, 1952), raspberry, blackberry (Pritchard & Baker, 1955).

Nature of damage: It is not known to cause any damage to its host.

Distribution: INDIA: Gujarat, Jammu & Kashmir; outside India: Arizona, California, Louisiana, Missouri, North Dakota, Ohio, New York.

31. **Eotetranychus fremonti** Tuttle & Baker

Diagnosis: In male, terminal sensillum of palpus minute and tapering, dorsal sensillum slender. Peritreme hooked at the distal end. Tarsus I with 2 sensory and 3 tactile setae proximal to duplex setae; tibia II with 1 sensory and 7 tactile setae, tarsus II with 1 sensory and 2 tactile setae proximal to duplex setae. In female, tarsus I with 1 sensory and 4 tactile setae proximal to duplex setae; tibia II with 2 sensory and 6 tactile setae, tarsus II with 1 sensory and 4 tactile setae proximal to duplex setae. Terminal sensillum of palpus $2\frac{1}{3}$ times as long as broad. Dorsal sensillum tapering.

Hosts: _Ficus sp., Zizyphus jujuba, Morus alba._

Distribution: INDIA: Nicobar Isl.; outside India: U. S. A.

Remarks: It causes no damage to its hosts and no information is available as to its bionomics.

32. **Eotetranychus hirsti** Pritchard & Baker

Diagnosis: It is greenish yellow mite with black blotches all over dorsum; dorsum with 14 pairs of setae; clunals minute. Striations transverse on female genital flap as well as to the area anterior to the flap. In male, tibia I with 5 sensory and 9 tactile setae,
tarsus I with 2 sensory and 4 tactile setae proximal to duplex setae; tibia II with 1 sensory and 7 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. Aedeagus bends dorsal with upturned portion slender, tapering and sigmoid. In female, tibia I with 3 sensory and 7 tactile setae, tarsus I with 1 sensory and 5 tactile setae; tibia II with 8 tactile setae, tarsus II with 1 sensory and 4 tactile setae proximal to duplex setae.

Hosts: Ficus cunea, F. racemosa.

Nature of damage: This is a serious pest of fig in India and also in Pakistan. Transparent green patches are produced on the undersurface of leaves when viewed across light. The patches turn yellowish green, then brown with rough and dry texture. Such leaves along with fruits drop prematurely, often resulting in complete defoliation of plants. These mites normally infest the under surface of leaves but in case of heavy infestations they may move to the upper surface of leaves and fruits as well. The infested fruits get shrivelled, fail to ripen and ultimately fall off. In November, when the leaves dry, the mites migrate to the terminal buds where they hibernate till February or early March when their activity resumes (Puttarudriah & ChannaBasavanna, 1959; Kanta et al., 1963; Bindra & Verma, 1966).

Bionomics: This mite remains active in the field during May to October and overwinters in the axils of the buds.

Control: Bindra & Verma (1966) reported good mortality by applying phosphamidon (0.025%), mevinphos (0.025%) and parathion (0.025%) when applied against this mite in the field. Kanta et al. (1963) while studying relative toxicity found chemical I, chlorobenzilate, phosphamidon, parathion and dimethoate were 66.06, 1.69, 1.62, 1.56, and 1.07 times as toxic as chemical II at LC 50 level and endrin gave 59% kill at LC 90 level.

Distribution: INDIA: Andhra Pradesh, Bihar, Karnataka, Punjab, Tamil Nadu, Delhi, West Bengal; outside India: Pakistan.

33. Eotetranychus irregularis Nassar & Ghai

Diagnosis: Dorsal body setae 13 pairs including a pair of humerals all without tubercles, linear, lanceolate, serrate and slightly longer than the longitudinal intervals between them. Propodosoma bears longitudinal striae and those on hysterosoma mostly transverse; lobes of striae
broadly triangular with an occasional rounded one. Tarsus I with 4 tactile setae proximal to duplex setae. Shaft of aedeagus bending dorsad to form a slender sigmoid distal and that strongly tapered and directed straight dorsocaudally.

Host: Ficus carica.

Nature of damage: No damage is caused by this mite.

Distribution: INDIA: Delhi.

34. Eotetranychus kankitus Ehara

Eotetranychus kankitus, Manson, 1963, Acarologia, 5 : 353.

Diagnosis: The striation pattern in female genital flap longitudinal. In female, tibia I with 1 sensory and 9 tactile setae, tarsus I with 1 sensory and 3 tactile setae proximal to duplex setae; tibia II with 8 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. In male, tibia I with 4 sensory and 9 tactile setae, tarsus I with 3 sensory and 3 tactile setae proximal to duplex setae; tibia II with 8 tactile setae, tarsus II with 1 sensory and 2 tactile setae proximal to duplex setae. Aedeagus slightly downcurved, tapering distally and slightly sigmoid.

Host: Citrus.

Nature of damage: This is a minor pest of citrus. The damage caused by it is of insignificant nature and is very similar to that of E. sexmaculatus.

Distribution: INDIA: Meghalaya; outside India: Japan.

Remarks: No information on biology and control of this mite is available.

35. Eotetranychus mandensis Manson

Diagnosis: Dorsal body setae slender, tapering; dorsocentral hysterosomals as long as or longer than longitudinal intervals between them. Tarsus I with 13-14 tactile setae and 1 sensory setae, in addition to duplex setae. In male, tibia I with 9 tactile and 1 sensory setae; tarsus II with 12 tactile and 1 sensory setae. The striation pattern of female genital flap transverse. The aedeagus abruptly tapers distally upward at right angle to the shaft and slightly sigmoid and tapers distally.
Host: Citrus.

Nature of damage: Though it attacks citrus in India but the damage caused by it is of insignificant nature. Infested leaves turn yellow.

Distribution: INDIA: Karnataka.

Remarks: Information on bionomics and control of this mite is lacking.

36. Eotetranychus pamelae Manson

Eotetranychus pamelae Manson, 1963, _Acarologia_, 5: 355-356.

Diagnosis: In male, tibia I with 3 sensory and 10 tactile setae, tarsus I with 1 sensory and 5 tactile setae proximal to duplex setae; tibia II with 1 sensory and 5 tactile setae, tarsus II with 1 sensory and 4 tactile setae. In female, tibia I with 1 sensory and 6 tactile setae, tarsus I with 1 sensory and 2 tactile setae proximal to duplex setae; tibia II with 5 tactile setae, tarsus II with 1 sensory and 1 tactile setae proximal to duplex setae. Peritreme bends distally. The striae of genital flap transverse posteriorly and longitudinal on central anterior portion, that anterior to flap is longitudinal.

Host: Citrus.

Distribution: INDIA: Assam.

Remarks: No information on its nature of damage, bionomics and control is available.

37. Eotetranychus rohilae Nassar & Ghai

Diagnosis: Dorsum with 13 pairs of setae, all setae on tubercles, dorsal body setae extend beyond the bases of the setae next behind; striae on propodosoma longitudinal while those on hysterosoma mostly transverse and provided with rounded lobes. Tarsus I with 4 tactile setae and 1 sensory setae proximal to duplex setae. Aedeagus with slender straight shaft turning slightly dorsad to form a knob; the posterior projection rounded and about twice as long as posterior projection which is also rounded.

Host: _Morus_ sp.

Distribution: INDIA: Delhi.

Remarks: Nothing is known about its economic importance.
38. *Eotetranychus rajouriensis* Nassar & Ghai

Diagnosis: Dorsal body setae 13 pairs including a pair of humerals, setae not on tubercles, all long, pointed distally and serrate; dorsal setae much longer than the intervals between their bases; striae on propodosoma longitudinal while those on hysterosoma mostly transverse; lobes on striae mostly triangular with an occasional rounded one. Tarsus I with 4 tactile setae proximal to duplex setae. Shaft of aedeagus short, relatively broad, strongly curved dorsad forming distal portion, sigmoid tapered and directed caudally.

Host: *Zizyphus* sp.

Distribution: INDIA: Delhi.

Remarks: The economic importance of this species is unknown.

39. *Eotetranychus sexmaculatus* (Riley)

Diagnosis: In male, tibia I with 3 sensory and 10 tactile setae, tarsus I with 1 sensory and 3 tactile setae proximal to duplex setae; tibia II with 1 sensory and 5 tactile setae, tarsus II with 2 sensory and 3 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 8 tactile setae; tarsus I with 2 sensory and 3 tactile setae proximal to duplex setae; tibia II with 1 sensory and 4 tactile setae, tarsus II with 3 tactile setae proximal to duplex setae. Peritreme hooked distally. Striation longitudinal on anterior central portion of genital flap. Aedeagus curved dorsally near the middle of the shaft.

Hosts: Citrus, peach; outside India: citrus and avocado.

Nature of damage: Its infestation in India is never of any severe nature. However, in other parts of the world it is a serious pest of citrus and avocado. It feeds on the upper surface of leaves causing the appearance of yellow depressions. The severely infested leaves become yellow, distorted and drop off prematurely.

Bionomics: In India, nothing is known as to its bionomics. The works done in other parts of the world indicate that a female lays
25-40 eggs in 10-20 days. The incubation period is 5-8 days and each development stage requires 2-3 days. The population is influenced by dry weather (Jeppson et al., 1975).

Control: No information is available from India in this regard.

Distribution: INDIA: Karnataka, Meghalaya; outside India: Taiwan, U. S. A., Formosa, New Zealand.

40. Eotetranychus suginamensis (Yokoyama)

Diagnosis: It is greyish green mite with black dots on dorsum. Aedeagus with a short shaft, tapering and bending distally to form a distal hook.

Nature of damage: This mite normally occurs on the under surface of leaves covered with thin webs. A heavy population on a single leaf is not unlikely. The feeding causes crinkling and crumpling of leaves. The infested leaves turn pale yellow and fall off prematurely.

Bionomics: It remains active in the field throughout the year but the population remains at low level during winter.

Control: Nothing in this regard from India is known.

Distribution: INDIA: Punjab, Delhi; outside India: Japan.

41. Eotetranychus ladakhensis Gupta

Diagnosis: In male, terminal sensillum twice as long as wide while in female, it is thrice as long as wide. In male, tibia I with 3 sensory and 5 tactile setae, tarsus I with 2 sensory and 5 tactile setae proximal to duplex setae; tibia II with 1 sensory and 4 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 5 tactile setae, tarsus I with 1 sensory and 5 tactile setae proximal to duplex setae; tibia II with 1 sensory and 7 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. Dorsal idiosomal setae longer than intervals between their longitudinal bases. Aedeagus long and slender.

Host: Undetermined plant.
42. **Eotetranychus neoperplexus** Estebanes & Baker

Diagnosis: Dorsum with 14 pairs of setae, stylophore rounded anteriorly. Tarsus I with 4 proximal tactile setae and tarsus II with 3 tactile setae, tibia II with 8 tactile setae. Genital flap and the portion anterior to it transversely striate. Aedeagus bent ventrad in rounded curve, the distal knob having angulation posteriorly.

Hosts: *Bauhinia variegata*; outside India: *Cryptocarya* sp.

Distribution: INDIA: Punjab; outside India: Mexico.

Remarks: The economic importance of this species is unknown.

43. **Eotetranychus syzygii** Gupta & Gupta

Diagnosis: In male, palp without terminal sensillum, dorsal sensillum slender. Tarsus I with 3 tactile and 3 sensory setae proximal to duplex setae, tibia I with 9 tactile and 1 sensory setae; tarsus II with 3 tactile and 1 sensory setae proximal to duplex setae, tibia II with 6 tactile setae. In female, tarsus I with 5 tactile and 1 sensory setae proximal to duplex setae; tarsus II with 3 tactile and 1 sensory setae proximal to duplex setae, tibia II with 6 tactile and 1 sensory setae.

Host: *Syzygium cumini*.

Distribution: INDIA: M. P.

Remarks: Economic importance of this species is unknown.

44. **Eotetranychus truncatus** Estebanes & Baker

Diagnosis: Sensillum on palpus small, almost as long as wide.
Peritreme bends distally. Dorsal body setae longer than intervals between their bases. Aedeagus bends dorsally making an obtuse angle, without knob, posterior angulation small.

Hosts: Grape vines; outside India: *Helicteres guazumaefolia*.

Nature of damage: It is not known to cause any significant damage to its host.

Bionomics: In Punjab, the population of this mite is more on 'Charas', Chasselas Violet, Jaoes Beli, Kabar Ravi, Lomanto, Medeleine, Angevine, Medelene Royal, Mukh Chalani and Muscat varieties of grape vines. High temperature and rainfall reduced the mite population (Dhooria & Sandhu, 1975).

Control: No work in this respect has been done.

Distribution: India: Punjab; outside India: Mexico.

45. *Eotetranychus uncatus* Garman

Diagnosis: Body pale, lemon yellow, with small black dots behind eyes. Palp sensillum more than 2 times as long as broad. Peritreme slightly hooked distally. Tibia I with 10 setae (9 tactile and 1 sensory), tarsus I with 5 tactile and 1 sensory setae proximal to duplex setae. Aedeagus long, attenuate and sharply pointed.

Host: Bauhinia variegata.

Nature of damage: Feeding on the lower surface of the leaves causes uneven growth of two surfaces of leaves, thus forming cupping and crinkling of leaves from below. In heavy infestation, the entire area along two sides of midrib are affected.

Bionomics: The population increases in late January, reaches peak in March, declines in April with the increase in temperature and disappears in May-June. Moderate temperature and moderate humidity favour the population build-up (Lakshman Lal & Mukharji, 1980).

Control: No information from India in this regard is available.

Distribution: India: U. P.; outside India: U. S. A.

Genus *Oligonychus* Berlese

(Figs. 169-172)

Key to the Species of Oligonychus

1. Aedeagus bent ventrad, tarsus I with not more than single tactile seta on venter just distad of duplex setae
 — Aedeagus bent dorsad, although the distal end may be directed ventrad, tarsus I with 2 tactile setae on venter just distad of duplex setae
 2

2. Aedeagus gradually narrowing distally
 — Aedeagus with distal end abruptly narrowed
 3

3. Aedeagus bent ventrad, forms acute angle with axis of shaft
 — Aedeagus bent ventrad at right angle to shaft
 4

4. Bent portion of aedeagus forming an acute angle to shaft
 — Bent portion of aedeagus with tip directed ventrad
 5

5. Aedeagus with bent portion forming a right angle with shaft
 — Aedeagus with bent portion forming acute angle with shaft
 6

6. Tarsus I with proximoventral empodial appendages forming a pair of empodial spurs; on monocot plants, mostly grass
 — Tarsus I with 3 pairs of proximoventral hairs on empodium; on other hosts
 7

7. Aedeagus with distal end enlarged
 — Aedeagus with distal end not enlarged
 8

8. Bent portion of aedeagus longer
 — Bent portion of aedeagus shorter
 9

9. Aedeagus with distal end strongly sigmoid
 — Aedeagus with distal end not strongly sigmoid
 10

10. Aedeagus with bent portion dorsad slender, 'S' shaped
 — Aedeagus with dorsal bent tapering, small hook shaped
 11

46. Oligonychus biharensis (Hirst)

Diagnosis: In male, tibia I with 3 sensory and 8 tactile stae, tarsus I with 2 sensory and 4 tactile setae; tibia II with 7 tactile setae, tarsus II with 1 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 5 tactile setae, tarsus I with 1 sensory and 4 tactile setae proximal to duplex setae; tibia II with 7 tactile setae, tarsus II with 2 tactile setae proximal to duplex setae. Aedeagus in male long and slender with axis of the distal enlargement parallel to the shaft.

Nature of damage: It is a sporadic pest in India. The feeding causes the appearance of numerous white spots on the leaves.
Oligonychus coffeae (Nietner)

Diagnosis: Body bright crimson, ventrally dark pruplish or bronzy. In male, tibia I with 3 sensory and 7 tactile setae, tarsus I with 3 sensory and 2 tactile setae proximal to duplex setae; tibia II with 5 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. Aedeagus bends ventrally at right angle to the shaft and gradually narrows to slender distal end. In female, tibia I with 1 sensory and 7 tactile setae, tarsus I with 1 sensory and 3 tactile setae proximal to duplex setae; tibia II with 5 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae.

Nature of damage: It is a serious pest of tea specially in Northern India and causes more damage to the crop than by any other tea pest. Continuous sucking by all stages of this mite from leaves and petiols produces yellowish spots at the points of feeding which subsequently turn brown. Later, the entire leaf turns copperish and ultimately dries up and falls off. Attack is more severe on the old leaves than on the young ones. All these affect on the growth of the tea bushes. In case of severe attack, the young plants might be killed. It is also a serious pest of jute in India (Misra, 1913). The mites remain on the upper surface of the leaves covered with thin webs. The grown up leaves are more severely attacked. The affected leaves become brown, then become crinkled and fall off prematurely. A heavily infested crop becomes useless for fibre production. It is also known to infest cotton in Gujarat area but its damage on cotton is most insignificant in comparison to the damage done by other tetranychid species on cotton.

Bionomics: According to Das (1959) the life cycle is completed in 9.4-12 days in May-June while it takes 28 days in cold months.
Immediately after copulation, the egg laying starts but sometimes it may be delayed. Usually 4-6 eggs are laid per female per day. The durations of larval and nymphal (protonymph and deutonymph) stages are: 1.5 to 2.5 days and 3.5 days, respectively. Both the fertilized and unfertilized females lay eggs, the progeny of the former belongs to both the sexes and that of the latter belongs to males only. The average longevity of females and males are 24.4 and 12 days, respectively. Das and Das (1967) studied the effect of temperature and humidity on the development of this mite.

The attack starts in March, the population increases with the rise of temperature and becomes heavy during April-June. With the onset of monsoon it disappears from tea. The population develops again after rains but never attains that alarming stage. During cold months, the population remains at low level and mostly remains confined in bushes. No report on hibernation in winter is available. On the contrary, it breeds throughout the winter months. Early pruned tree is more prone to attack but there is not much difference between early and late clearing out and also between early and late skidding (Das, 1960). The upper zone of the tree under shady condition shows highest mite population and is followed by middle and lower zones. In the unshaded tea, the middle zone has the highest mite population and the upper zone having the least. All the zones of shade tea have less mite population than corresponding zones of unshaded tea. Leaf temperature and light penetration within the bushes appear to regulate its distribution (Banerjee, 1980).

Control: Different pesticides from time to time were found to be effective against this mite. Those are sulphur (Fleet, 1900); chlorobenzilate and tetradiaton (Ananthakrishnan, 1963); binapacryl, formothion and carbophenothion (Ananthakrishnan & Krishnamurthy, 1964); ethion 47% diluated at 1: 500 (Mukherjea, 1967); dicofol, binapacryl, carbophenothion, dimethoate and phosalone (Tripathi & Singh, 1970). Dicofol, carbophenothion and binapacryl have ovicidal actions also.

48. Oligonychus indicus (Hirst)

Diagnosis: Body greyish green with black blotches scattered over dorsum. Aedeagus forms acute angle with axis of the shaft. In male, tibia I with 2 sensory and 11 tactile setae, tarsus I with 2 sensory and 4 tactile setae proximal to duplex setae; tibia II with 1 sensory and 6 tactile setae, tarsus II with 2 sensory and 5 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 8 tactile setae, tarsus I with 2 sensory and 2 tactile setae proximal to duplex setae II; tibia II with 1 sensory and 6 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. Sensillum on palp tarsus 2 times as long as broad.

Nature of damage: In case of sugarcane, maize and sorghum, the feeding of this mite causes the appearance of reddish spots which increase with the increase of attack. Those spots later coalesce to form large red patches and spread on the leaf surface to turn the colour of the leaf red. The leaves of severely infested plots turn red, as if burnt, which dry up and fall off. Its attack on paddy and banana results in the appearance of whitish spots which later turn yellow, and the infested leaves gradually wither. The attack of this mite on sugarcane is more in north India and less in south India but the result is just reverse in case of paddy. Desai & Chavada (1955) reported 20-30% damage to the sugarcane crop. Khot et al. (1955) reported that this mite produces reddish spots on sorghum but not on most of its alternate hosts. Kulkarni et al. (1978) studied the relative susceptibility of 19 varieties of sorghum against this mite. Sugarcane varieties with soft leaves appear to be more susceptible than those with harder leaves.

Bionomics: Rahman & Sapra (1940) reported that life cycle took 4½-6 days in males and 5½-7 days in females. Gupta, Dhooria and Sidhu (1974) studied the biology of this mite at five different temperatures (25°, 27.5°, 30°, 30.5°, and 35°C) and on three different food (sugarcane, sorghum and maize) and found that maize was the best food and 30°C was the most favourable temperature because of the minimum time taken to complete the life cycle and high fecundity of both fertilized and unfertilized females on this food and temperature. Sorghum was the second best food.
This mite is prevalent during pre-monsoon months and population dwindles with the onset of monsoon. However, it remains in the field throughout the year on one or the other host. Khan & Murthy (1956) reported that this mite developed on the leaves of 'Rabi' jowar and 'Eksali' sugarcane only after the cessation of southwest monsoon rains. Rainfall drastically inhibits its multiplication. According to them, sugarcane and jowar are the alternate hosts while *Dicanthium annulatum* is the primary host as the mite occurs on that host even during the rainy season. The rain affects the population differently on different varieties. The population reduction on maize is more on erect and narrow leaves and less so on broad and horizontal leaves (Sandhu *et al.*, 1975). Nitrogen fertilizer induces heavy infestation.

Control: Singh, Kalra & Sidhu (1961) found lime sulphur (1:6) to be very effective while Rai *et al.* (1965) reported chemical I, carbophenothion and phorate to be very effective against this mite. Gupta, Sidhu & Dhooria (1972) studied the ovicidal action of 20 pesticides and found that tetradifon and Galecron even at lower concentration (0.025%) and binapacryl, carbophenothion and dicofol at 0.075% killed 100% eggs. Sidhu *et al.* (1972) in a later experiment confirmed that binapacryl, carbophenothion, dicofol and monocrotophos, which in the earlier experiment found to have good ovicidal action, were also very effective against adults giving above 90% kill. Margal & Channabasavanna (1979) reported that carbofuran (3% granules, 147 gms a. i./ha) was the most effective against adults of this mite on sorghum while Mittal *et al.* (1979) found phosalone (0.075%) to be the best.

Natural enemies: Gupta *et al.* (1971) reported *A. (E.) delhiensis* to feed upon this mite infesting maize. Sandhu *et al.* (1973) found *A. (N.) indicus* feeding on all the stages of this mite. The other predators of economic importance are: *Scymnus gracilis*, *Orius* sp., *Stethorus gilvifrons*, *S. pauperculus* and *Scolothrips indicus*.

Distribution: India: Andhra Pradesh, Bihar, Karnataka, Orissa, Punjab, Tamil Nadu, Delhi, U. P., West Bengal, Haryana; outside India: Pakistan.

49. *Oligonychus iseilemae* (Hirst)

Diagnosis: Aedeagus bears a small sigmoid dorsal bent without
any distal enlargement with the tip directed upward. In male, tibia I with 3 sensory and 10 tactile setae, tarsus I with 3 sensory and 4 tactile setae proximal to duplex setae; tibia II with 1 sensory and 6 tactile setae, tarsus II with 3 tactile setae proximal to duplex setae. In female, tibia I with 2 sensory and 7 tactile setae, tarsus I with 1 sensory and 3 tactile setae proximal to duplex setae; tibia II with 7 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. Palp with terminal sensillum much wider than long. Dorsal sensillum slender.

Hosts: Iseilema laxum, grass.

Distribution: INDIA: Tamil Nadu, Andaman Nicobar Isls.

Remarks: This mite is not known to have any economic importance.

50. **Oligonychus mangiferus** (Rahman & Sapra)

Diagnosis: Dark red dorsolaterally and pale red medio-dorsally. In male, tibia I with 4 sensory and 7 tactile setae, tarsus I with 3 sensory and 3 tactile setae proximal to duplex setae; tibia II with 5 tactile setae, tarsus II with 3 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 7 tactile setae, tarsus I with 1 sensory and 3 tactile setae proximal to duplex setae; tibia II with 5 tactile setae, tarsus II with 1 sensory and 6 tactile setae proximal to duplex setae. Male with bent portion of aedeagus triangularly tapering to an acute angle with the shaft.

Nature of damage: This mite infests the upper surface of leaves. It damages chlorophyll and sucks sap from the leaves resulting in the appearance of characteristic yellowish spots. In case of mango, the middle area of the lamina becomes much yellowish with less browning whereas in case of black berry, the attack is more near the margin. In case of grape vines, the entire upper surface of leaves becomes slight brownish but colour of the lower surface remains mostly unaffected.
Gradually, the infested leaves dry up and the trees suffer premature leaf-fall.

Bionomics: The duration of life stages are as follows: egg: 3-4 days, larva: 1-2 days, protonymph: 1-2 days, deutonymph: 1-2 days. However, the duration of all the stages are lengthened in winter. The life cycle takes 8-9 days in summer and 2½ times as long as in winter. Pre-oviposition, oviposition and post-oviposition periods are: 1.25 days, 5.12 days, and 1.25 days, respectively, in summer. Out of four temperatures (20º, 25º, 30º and 35ºC) tested, development was maximum at 30ºC and minimum was at 20ºC. Maximum mortality was noticed at 20ºC and minimum was at 25ºC (Sadana & Chander, 1973). The population remained in the field throughout the year with the peak during October to December. Dhooria & Sandhu (1975) tested 21 varieties of grape vines for their relative resistance against this mite and found that 'Angoor Kalan', Kismih, Charni, Kata Kurgan, and Perlette showed higher population of this mite and less of Eotetranychus truncatus. On the contrary, Jaoes Beli, Kabar Ravi, Lomanto, Meuleine Angevine, Medelene Royal, Mukh Chalani and Muscat showed just the reverse result. They observed that high population and low humidity reduced the population considerably. Sadana & Chhabra (1974) recorded several new hosts for this mite.

Control: High volume sprays (400 L/ha) on grape vines with 0.015% methyl demeton, dimethoate and carbophenothion; 0.025% dicofol and 0.05% malathion could reduce the population by 92-100% within a week while endosulfan and tetradifon (0.025%) were rather ineffective (Sidhu & Singh, 1972).

Natural enemies: A number of natural enemies are known to feed upon this mite which are: Amblyseius (Neoseiulus) cucumeris (Narayanan & Khot, 1959); A. (E.) delhiensis, A. (E.) finlandicus, Agistemus sp., Mediolata sp., Scolothrips sp. and Scymnus gracilis (Sadana & Chhabra, 1974).

Distribution: INDIA: Haryana, Punjab, Himachal Pradesh, West Bengal, Kerala, Karnataka, Orissa, Bihar, Delhi; outside India: Hawaii, Peru, Mauritius, Egypt.

51. Oligonychus oryzae (Hirst)

Diagnosis: In male, tibia I with 2 sensory and 10 tactile setae,
tarsus I with 2 sensory and 4 tactile setae proximal to duplex setae; tibia II with 1 sensory and 6 tactile setae, tarsus II with 1 sensory and 3 tactile setae. In female, tibia I with 2 sensory and 6 tactile setae, tarsus I with 1 sensory and 4 tactile setae proximal to duplex setae; tibia II with 5 tactile setae, tarsus II with 2 tactile setae proximal to duplex setae. Aedeagus of male slender, sigmoid, tip broadly angled distally. In female, terminal sensillum 3 times as long as broad.

Hosts: Paddy, *Cynodon dactylon*

Nature of damage: This mite infests paddy in Tamil Nadu and Karnataka (Nair, 1975; Rai et al., 1977). It lives on the undersurface of leaves covered with thin webs. Infested plants become pale, show stunted growth and die soon after transplanting. Continuous feeding by all stages of this mite causes yellowing of leaves. The reduction in yield may be as high as 25%. Though the attack is sporadic but considering the heavy loss caused by this mite on isolated patches, Nagarajan (1957) rated this as a serious pest of paddy.

Bionomics: High population of this mite was noticed during July to January. Misra & Israel (1968) studied bionomics of this mite.

Control: Sulphur is quite good against this mite but eggs are resistant to it (Nagarajan, 1957). Phosphamidon (0.05%) and dimethoate (0.03%) are also efficient in achieving good control (Rai et al., 1977).

Distribution: **INDIA**: Tamil Nadu, Orissa, Andaman Nicobar Isl., Punjab.

52. *Oligonychus puniceae* (Hirst)

Diagnosis: In male, tibia I with 3 sensory and 8 tactile setae, tarsus I with 2 sensory and 2 tactile setae proximal to duplex setae; tibia II with 5 tactile setae, tarsus II with 1 sensory and 2 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 7 tactile setae, tarsus I with 1 sensory and 2 tactile setae proximal to duplex setae; tibia II with 1 sensory and 4 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. Palpus of female with terminal sensillum 2 times as long as broad. Aedeagus of male triangularly tapering to an acute angle with the shaft.

Hosts: Grape vines, pomegranate, litchi; outside India: Avocado
Nature of damage: Feeding by this mite causes the appearance of yellowish spots which later turn brown. Initially this mite confines their feeding near the midrib and with the increase of infestation it spreads over the entire leaf surface. Chlorophyll is also damaged.

Bionomics: Nothing is known in this regard from India. However, information available from abroad indicates that 7 days are needed for completion of a generation at a constant temperature of 25°C (Ebelling, 1959). It is prevalent in early summer, peak is seen in late summer and population declines thereafter.

Control: No information in this regard is available from India.

Natural enemies: Scolothrips sexmaculatus and Stethorus sp. are important predators of this mite.

Distribution: India: Punjab, Tamil Nadu; outside India: Central and South America.

53. Oligonychus sacchari (McGregor)

Diagnosis: Aedeagus bends dorsal, tapering strongly and sigmoid, tip turned down. In male, tibia I with 3 sensory and 10 tactile setae, tarsus I with 3 sensory and 3 tactile setae proximal to duplex setae; tibia II with 4 tactile setae, tarsus II with 1 sensory and 5 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 9 tactile setae, tarsus I with 1 sensory and 3 tactile setae proximal to duplex setae; tibia II with 9 tactile setae, tarsus II with 1 sensory and 5 tactile setae proximal to duplex setae. Palpus with terminal sensillum 2 times as long as broad.

Hosts: Sugarcane; outside India: Orchids.

Distribution: India: West Bengal, Gujarat, Assam; outside India: Puerto Rico.

Remarks: No work has been done on its bionomics and it is not known to have any economic importance.

54. Oligonychus sapienticolus Gupta

Diagnosis: Dorsal propodosomals and hysterosomals being longer than interval between their bases. In male, tibia I with 3 sensory and
9 tactile setae, tarsus I with 2 sensory and 4 tactile setae proximal to duplex setae; tibia II with 7 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. In female, tibia I with 3 sensory and 7 tactile setae, tarsus I with 1 sensory and 4 tactile setae proximal to duplex setae; tibia II with 7 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae.

Host: Banana.

Nature of damage: It causes no damage to its host.

Bionomics: No work on bionomics of this species has been done.

Distribution: India: West Bengal.

55. *Oligonychus manishi* Gupta

Diagnosis: In male, terminal sensillum of palpus large, about 2 times as long as broad. Tibia I with 2 sensory and 9 tactile setae, tarsus I with 2 sensory and 4 tactile setae proximal to duplex setae; tibia II with 1 sensory and 6 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 9 tactile setae; tarsus II with 2 sensory and 3 tactile setae proximal to duplex setae.

Host: Paddy.

Nature of damage: It causes no damage.

Bionomics: No work on bionomics of this species has been done.

Distribution: India: Andaman Isl.

56. *Oligonychus vitis* Zaher & Shehata

Diagnosis: This species is very close to *Oligonychus coffeae* and *Oligonychus mangiferus*. However, from the former it can be separated by the presence of 4 tactile setae and 1 sensory setae proximal to duplex setae on tarsus I of female and from the latter species by the aedeagus which bends ventrad at right angle. The striae on hysterosoma mostly transverse except for irregular striae between III dorsocentral hysterosomals.

Host: *Vitis vinifera*.

Nature of damage: No damage is caused by this mite.

Distribution: India: Delhi; outside India: Egypt.
Genus **Panonychus** Yokoyama
(Figs. 173-175)

Key to the Species of Panonychus

1. Fifth pair of dorsocentrals and 4th pair of dorsolaterals equal in length *citri*
 — Fifth pair of dorsocentral about 1/3 length of 4th pair of dorsolaterals *ulmi*

57. **Panonychus citri** (McGregor)

Diagnosis: Reddish mite with reddish dorsal long setae on strong tubercles. The striae on genital plate transverse and that on the area

Figs. 173-175. *Panonychus* sp.: 173. Dorsum, 174. Terminal end of tarsus I (Female), 175. Tibia and tarsus I (Female) (after, Pritchard and Baker, 1955).
anterior to it longitudinal. In male, aedeagus with distal sigmoid part about 1.5 times as long as dorsal margin of shaft. Tibia I with 3 sensory and 6 tactile setae, tarsus I with 2 sensory and 3 tactile setae proximal to duplex setae; tibia II with 5 tactile setae, tarsus II with 3 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 7 tactile setae, tarsus I with 5 tactile setae; tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae.

Nature of damage: Though it is a serious pest of citrus in Europe but in India it rarely occurs in the form of pest. It damages chlorophyll resulting in the appearance of speckled effects. The infestation causes retardation of growth and defoliation. Sometimes the attack causes the browning and drying of terminal tips. Low humidity accelerates the rate of multiplication.

Bionomics: The time taken to complete the life cycle (egg-adult) varied with temperature and humidity. The maximum period in case of mated and unmated females is 14.75 ± 0.21 and 14.75 ± 0.20 days, respectively at 23.6 ± 1°C and 64.5% R.H., while the minimum is 12.46 ± 0.27 and 14.29 ± 0.20 days, respectively at 30 ± 1°C and 48.7% R.H. The longevity of adult female and male are 7-11 days and 6-9 days, respectively. The most favourable temperature and humidity are 30 ± 1°C and 48.7% R.H., respectively. The mite remains active in the field during August-March and scarce during hot summer. (Maity & Chakrabarti, 1977).

Control: Information in this regard is not available from India.

Distribution: **INDIA**: Assam, Meghalaya, Jammu & Kashmir, Punjab, West Bengal, Andaman Isl.; outside India: Argentina, Bermuda, California, China, Cuba, Florida, Japan, Mexico, Middle East, New Zealand, S. Africa, Thailand.

58. *Panonychus ulmi* (Koch)

Diagnosis: Adults brick red with whitish dorsal tubercles; 5th pair of dorsocentral hysterosomals about 1/3 the length of 4th pair of dorsolaterals. In male, tibia I with 3 sensory and 8 tactile setae, tarsus I with 3 sensory and 3 tactile setae proximal to duplex setae; tibia II
with 5 tactile setae, tarsus II with 2 tactile setae proximal to duplex setae. Aedeagus strongly bent dorsally, distal end slender and sigmoid.

Nature of damage: Characteristic white streaks appear on the upper surface of leaves due to injuries caused by this mite. Later, the leaf assumes the dusty gray hue, then yellowish brown and ultimately bronzy. The damaged leaves become rolled.

Bionomics: No information in this regard is available from India. The information available from abroad indicates that females take 6-8 days to reach adulthood while males take still shorter time. The population starts building in spring and the peak is attained in late summer (Jeppson et al., 1975).

Control: Information in this regard is not available from India.

Genus *Platytetranychus* Oudemans

(Figs. 176-178)

59. *Platytetranychus multidigituli* (Ewing)

Diagnosis: Peritremes forms an anastomosing chamber distally. In female, tibia I with 7 tactile setae, tibia II with 5 tactile setae; tarsus I with 3 tactile setae proximal to duplex setae. Dorsal body setae shorter than intervals between their longitudinal bases. Aedeagus bends sharply ventrad and forms a distal knob; distal angulation being much shorter than the anterior angulation.

Host: Brinjal.

Distribution: India: Gujarat; outside India: U. S. A.

Nature of damage: It causes no appreciable damage to its host in India.

Bionomics: Nothing is known from India.
Genus Schizotetranychus Trägårdh
(Figs. 179-182)

Key to the Species of Schizotetranychus

1. Dorsal idiosomal setae longer than the distance between their longitudinal intervals
 - Dorsal idiosomal setae as long as the interval between their longitudinal bases
 2
 7
2. Dorsal idiosomal setae serrate
 - Dorsal idiosomal setae not serrate
 3
 5

Fig. 176-178: Platytetranychus sp.: 176. Dorsum, 177. Tibia and tarsus I (Female), 178. Terminal portion of tarsus I (Female).
Fig. 179-182: Schizotetranychus sp.: 179. Dorsum, 180. Tibia and tarsus I (Female), 181. Distal end of tarsus I (Female), 182. Distal end of tarsus I (Male).
3. Dorsal idiosomal setae slightly serrate 4
 — Dorsal idiosomal setae less serrate fluvialis
4. Tarsus I with 1 sensory and 4 tactile setae tephrosiae
 — Tarsus I with 1 sensory and 3 tactile setae cajani
5. Dorsal idiosomal setae minutely pubescent and lanceolate, broad proximally and tapering distally andropogoni
 — Dorsal idiosomal setae simple 6
6. Aedeagus turns dorsad, distally without posterior angulation hindustanicus
 — Aedeagus turns dorsad, distally with posterior angulation spireafolia
7. Peritreme at the distal end ‘U’ shaped baltazari
 — Peritreme at the distal end bulb shaped mansoni

*The record of the species undulatus from India is doubtful and hence omitted from key.

60. Schizotetranychus andropogoni (Hirst)

Diagnosis: Dorsal body setae as long as intervals between their bases. Aedeagus of male forms a dorsally directed sigmoid curve that is not acutely angulated. Propodosomal striae longitudinal, hysterosomal striae transverse. In male, tibia I with 2 sensory and 7 tactile setae, tarsus I with 1 sensory and 3 tactile setae proximal to duplex setae; tibia II with 2 sensory and 3 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 7 tactile setae, tarsus I with 1 sensory and 4 tactile setae proximal to duplex setae; tibia II with 1 sensory and 4 tactile setae, tarsus II with 2 tactile setae proximal to duplex setae.

Hosts: *Andropogon annulatus*, *Chloris incomplata*, grass, *Saccharum officinarum*, *S. spontaneum*, paddy, *Dicanthium annulatum*.

Nature of damage: It is essentially a serious pest of sugarcane in north India. Recently, in eastern India this mite has been seen to cause damage on paddy crops also. Thousands of mites will be seen on the undersurface of leaves making small oval colonies covered with thin webs and are arranged irregularly on either sides of mid rib. All the stages of mites in varying numbers (5-117) may be seen in the
colonies numbering 1300-1500 per leaf. The feeding on leaves causes the appearance of white blotches. Later, the webs turn brown and finally are blown off. The affected leaves look sickly and gradually dry up. Infestation is more on ratoon crops than on newly planted crops. Almost similar type of damage symptoms are produced on paddy and jowar. Its population was found to be maximum on NC 918 variety of paddy and minimum on Satika variety, while IR8 was completely free from mites (Gupta, 1975a).

Bionomics: The density of this pest was not significantly different from one variety to another though the distribution of webs on the entire affected leaf varied significantly from variety to variety (Khanna & Butani, 1954). Its biology has been studied by Kalra & Chaudhary (1965). The population of this mite on paddy is more during August-September, dwindles during October and becomes scarce at the end of November (Gupta, 1975a).

Control: Several attempts were made to find out a suitable control measure against this mite (Prasad & Prasad, 1958; Lal et al., 1960; Lal et al., 1963; Kalra & Chaudhary, 1965; Gupta et al., 1972a; Prakash et al., 1979). A fairly good method for the control of this mite is the application of miscible spray containing chlorobenside and malathion @ 0.2% and 1 kg/ha, respectively which has been reported to give 84% reduction of population within 8-12 days after spraying (Kalra & Chaudhary, 1965). The pesticides, *viz.* dicofol (0.05%), Plictran (0.05% W.P.), monocrotophos (0.75%), carbophenothion (0.05%) (Gupta et al., 1972a), Chlormeviphos (0.05%) (Varma et al., 1978) are also promising.

Distribution: INDIA: Bihar, Punjab, West Bengal, Tamil Nadu, Delhi, Orissa; outside India: Pakistan, Thailand, Mexico.

61. Schizotetranychus baltazari Rimando

Diagnosis: Peritreme hooked, propodosomal striae longitudinal and continue posteriorly upto first dorsocentral hysterosomals. Two types of dorsal body setae, one with broadened basal third and tapers rapidly while the other is longer, stiffer and more evenly tapering. The lateral propodosomal, humeral, outer sacrals, are of this type. In female, tarsus I with 10 tactile and 1 sensory setae; tarsus II with 9
tactile and 1 sensory setae, in addition to duplex setae; tibia II with 5 tactile setae. In male, aedeagus bends dorsal at right angle with shaft and with shorter sigmoidal distal curve. Tibia I with 4 sensory and 7 tactile setae; tibia II with 5 tactile setae.

Hosts: *Murraya koenigii*, orange.

Nature of damage: So far it has not been reported to cause much damage to its host but in Taiwan it has been reported to produce greenish spots on leaves and fruits of citrus (in Jeppson *et al.*, 1975).

Bionomics: The average duration of different stages of this mite is as follows: egg: 3.4 days, larva: 6.6 days, protonymph: 5.4 days, deutonymph: 5.2 days and preoviposition period: 3.2 days. Oviposition continues for 20 days during which the female lays 31.6 eggs (Lo & Hisa, 1968).

Control: No information is available from India.

Distribution: India: Assam, Karnataka; outside India: Burma, Hong Kong, Thailand, Taiwan.

62. *Schizotetranychus cajani* Gupta

Diagnosis: Palpus with terminal sensillum large, much larger than broad. Peti treme slightly enlarged distally. Dorsocentral hysterosomals 1½ times as long as their longitudinal distances. Aedeagus with shaft broad and long, gradually narrowing, the distal part angulate with tip directed forward. In male, tibia I with 9 tactile and 4 sensory setae, tarsus I with 2 sensory and 5 tactile setae proximal to duplex setae; tibia II with 1 sensory and 6 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. In female, tibia I with 2 sensory and 3 tactile setae, tarsus I with 1 sensory and 3 tactile setae proximal to duplex setae; tibia II with 1 sensory and 4 tactile setae, tarsus II with 1 sensory and 4 tactile setae proximal to duplex setae.

Host: pigeon-pea.

Distribution: India: West Bengal.

Remarks: It causes no damage to its host. No work has been done on the bionomics of this species.
63. Schizotetranychus fluvialis McGregor

Diagnosis: Dorsal body setae slender, much shorter than longitudinal interval between them, finely pubescent. Distal end of aedeagus forms a dorsally directed sigmoid curve.

Host: Pigeon pea.

Distribution: INDIA: Punjab; outside India: North America.

Remarks: It is of no known economic importance.

64. Schizotetranychus hindustanicus (Hirst)

Diagnosis: Body setae fine, set on triangular sockets, about 2/3 as long as distance between their bases. Distal portion of aedeagus turns dorsal to form a sigmoidal distal end, tip slightly hooked. Empodial claw simple.

Nature of damage: It is a pest of citrus in south India causing white stipplings on leaves. Puttarudriah & ChannaBasavanna (1959) reported this mite to be more prevalent on orange inducing pale sickly appearance on leaves.

Distribution: INDIA: Tamil Nadu, Kerala.

Remarks: No work has been done on its bionomics.

65. Schizotetranychus mansoni Gupta

Diagnosis: In male, the terminal sensillum 3 times as long as wide, dorsal sensillum slender. Tarsus I with 1 sensory and 4 tactile setae proximal to duplex setae; tibia II with 5 tactile setae, tarsus II with 1 sensory setae proximal to duplex setae. Dorsal idiosomal setae slightly longer than longitudinal interval between their bases. In female, tibia I with 1 sensory and 8 tactile setae, tarsus I with 1 sensory and 3 tactile setae proximal to duplex setae; tibia II with 5 tactile setae, tarsus II with 1 sensory and 1 tactile setae.

Host: Paddy.
Distribution: INDIA: Andaman Isl.

Remarks: It is not known to cause any damage to its host.

66. Schizotetranychus spireafolia Garman

Diagnosis: Dorsal setae much shorter than the interval between their bases. Setae minutely pubescent, widened near base, tapering to a slender acute tip. Aedeagus bends upwards at less than right angle to form slender sigmoid acuminate tip.

Hosts: Pigeon-pea, sugarcane.

Nature of damage: It is of no known economic importance.

Distribution: INDIA: West Bengal, Punjab; outside India: U.S.A.

67. Schizotetranychus tephrosiae Gutierrez

Diagnosis: Dorsal body setae linear, lanceolate, serrate and longer than the intervals between the bases of the following setae. Propodosoma with longitudinal striae and hysterosoma with transverse striae; dorsal lobes tiny, narrow, sharply pointed towards tip. Tarsus I with 4 tactile setae and 1 sensory setae proximal to duplex setae. Shaft of aedeagus long, straight and curves dorsad, anterior projection of knob very small with posterior projection relatively longer and directed dorsad.

Host: Eriobotrya japonica.

Nature of damage: It is of no known economic importance in India.

Distribution: INDIA: Delhi; outside India: Malagasy.

68. Schizotetranychus undulatus (Beer & Lang)

Diagnosis: Dorsal setae as long as distance between their bases; aedeagus ventrally directed and sigmoid.

Hosts: Acacia arabica, Jasminum grandiflorum.
Nature of damage: It is of no known economic importance in India.

Distribution: India: Punjab; outside India: U. S. A.

Genus Tetranychus Dufour
(Figs. 183-186)

Figs. 183-186: *Tetranychus* sp.: 183. Dorsum, 184. Distal end of tarsus I (Male), 185. Distal end of tarsus I (Female), 186. Tibia and tarsus I (Female).
Key to the Species of *Tetranychus*

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Decision</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Proximal duplex setae on tarsus I of female placed distal to tactile setae</td>
<td>...</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Proximal duplex setae on tarsus I of female more or less in line with tactile setae</td>
<td>...</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Aedeagus with a knob distally</td>
<td>...</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Aedeagus very long, slender, tapering distally</td>
<td>...</td>
<td>fijiensis</td>
</tr>
<tr>
<td>3.</td>
<td>Aedeagus knob provided with very small anterior and posterior projections; empodium II of male with proximoventral tridigimate spurs</td>
<td>...</td>
<td>macfarlanet</td>
</tr>
<tr>
<td></td>
<td>Aedeagal knob with anterior acute projection while posterior projection absent; empodium II of male with 3 pairs of proximoventral hairs and a small distinct mediiodorsal spur</td>
<td>...</td>
<td>ludeni</td>
</tr>
<tr>
<td>4.</td>
<td>Aedeagus with tiny knob</td>
<td>...</td>
<td>hypogaeae</td>
</tr>
<tr>
<td></td>
<td>Aedeagus with distinct knob</td>
<td>...</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>Female with longitudinal to irregular, longitudinal striae between 3rd pair of dorsocentral hysterosomals and longitudinal between 4th pair of dorsocentrals</td>
<td>...</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Female with transverse to irregular longitudinal striae between third pair of dorsocentral hysterosomals and longitudinal between 4th pair of dorsocentrals</td>
<td>...</td>
<td>angloensis</td>
</tr>
<tr>
<td>6.</td>
<td>Female hysterosoma with longitudinal striae between 4th pair of dorsocentral hysterosomals forming a more or less diamond shaped figure between 3rd and 4th pair of dorsocentral hysterosomals</td>
<td>...</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Female hysterosoma with irregular longitudinal striae between 4th pair of dorsocentral hysterosomals not forming diamond shape</td>
<td>...</td>
<td>afrindicus</td>
</tr>
<tr>
<td>7.</td>
<td>Female hysterosoma with longitudinal striae between 3rd pair of dorsocentrals</td>
<td>...</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Female hysterosoma with irregular longitudinal striae between 3rd pair of dorsocentral setae</td>
<td>...</td>
<td>sayedi</td>
</tr>
<tr>
<td>8.</td>
<td>Upper surface of aedeagus knob straight or rounded with some kind of projections</td>
<td>...</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Upper surface of aedeagus knob concave with anterior and posterior rounded projections like berry-shaped</td>
<td>...</td>
<td>neocaledonicus</td>
</tr>
</tbody>
</table>
9. Aedeagus knob with anterior projection rounded
 - Aedeagus with anterior projection acute

10. Terminal sensillum of male about 3-4 times as long as broad; aedeagal knob about 0.2-0.25 length of dorsal margin of shaft
 - Terminal sensillum of male about 3 times as long as broad, aedeagal knob about 0.33 the length of dorsal margin of shaft

11. Empodium I of male with strong mediodorsal spur, female carmine in colour
 - Empodium I of male with minute mediodorsal spur, female dark red in colour with dark spot on either sides of body

12. Anterior and posterior projection of aedeagal knob not similar.
 - Anterior and posterior projection of aedeagal knob similar, females greenish or yellowish in colour with large spots on either sides of body

13. Anterior and posterior projection of aedeagal knob acuminate and similar, axis of knob parallel to axis of shaft; upper surface of aedeagal knob rounded
 - Anterior projection of aedeagal knob strongly acuminate and curved ventrad, axis of knob not parallel to axis of shaft; upper surface of aedeagal knob straight

69. Tetranychus angloensis Meyer

Diagnosis: Dorsum with slender serrate setae, longer than distance between the bases of the following setae. The striae between 3rd pair of dorsocentral hysterosomals transverse to irregular while those between the 4th pair of dorsocentraals longitudinal; area between 3rd and 4th pairs of dorsocentral hysterosomals bear transverse striae. The shaft of aedeagus narrows distally and curves dorsad forming a knob with an angulate anterior projection; the axis of knob forms an acute angle with axis of shaft.

Host: Cucurbita maxima.
Nature of damage: It is of no known economic importance in India.

Distribution: INDIA; Delhi; outside India: Angola.

70. Tetranychus afrindicus Nassar & Ghai

Diagnosis: Dorsal setae 13 pairs, all long, slender, serrate and pointed, setae longer than distance between their bases; first pair of dorsolateral setae located anterior to first pair of dorsocentral and humeral setae. Propodosoma bearing longitudinal striae between third pair of dorsocentrals and irregularly longitudinal striae between 4th pair of dorsocentrals. Tarsus I bears 4 tactile setae and 1 sensory setae proximal to duplex setae. Shaft of aedeagus narrowed distally and turned slightly dorsad forming a knob with an acute anterior and posterior projection. Aedeagal knob without neck.

Host: *Phaseolus* sp.

Nature of damage: Nothing is known.

Distribution: INDIA: Delhi.

71. Tetranychus sayedi Baker & Pritchard

Diagnosis: Dorsal body setae of female long, slender and setose, striae on dorsum with semicircular lobes; striae irregular between 3rd pair of dorsocentral hysterosomals but longitudinal between 4th pair of dorsocentrals. Tibia I with 9 tactile and 1 sensory setae, tarsus I with 4 tactile setae proximal to duplex setae. Aedeagus bends dorsad at a right angle forming a small knob while the anterior and posterior angulations small and acute.

Host: *Solanum melongena*.

Distribution: INDIA: Delhi (?); outside India: Zaire.

72. Tetranychus kanzawai Kishida

Diagnosis: Dorsal body setae of female longer than intervals between their bases. The hysterosoma provided with longitudinal
striae between 3rd pair of dorsocentors and between 4th pair of dorsocentors, a diamond shaped figure is formed between these two pairs of setae. The leg chaetotaxy similar to that of T. lombardinii. Knob of aedeagus of male about 1/3 the length of the margin of shaft; anterior rounded portion of knob is about as wide as the base of the acute posterior projection; axis of knob is parallel to that of shaft.

Host: Morus sp.

Distribution: INDIA: Delhi; outside India: Japan, Philippines.

73. Tetranycbus zaberi Nassar & Ghai

Diagnosis: Dorsal body setae 13 pairs, all long, slender, pointed and longer than the distance between their bases. Propodosoma bearing longitudinal striae, hysterosomal striae mostly transverse except longitudinal striae between 3rd and 4th pairs of dorsocentral hysterosomals forming a diamond shaped figure in the area between these two pairs of setae. Tarsus I with 4 tactile setae proximal to duplex setae. Shaft of aedeagus short, broad and curving dorsad to form a large knob which is provided with an acute anterior and posterior projections.

Host: Phaseolus vulgaris.

Nature of damage: No damage is caused by this mite.

Distribution: INDIA: Delhi.

74. Tetranychus papayae Nassar & Ghai

Diagnosis: Dorsal body setae 13 pairs, long, slender, serrate and pointed, all longer than distance between their bases. Propodosoma bearing longitudinal striae, striae between 3rd and 4th pairs of dorsocentral hysterosomal setae longitudinal and forming a diamond shaped figure between these two pairs of setae. Tarsus I with 4 tactile setae proximal to duplex setae. Shaft of aedeagus bent dorsad forming distally knob which is 0.33 the length of dorsal margin of shaft and its axis not parallel to axis of shaft.

Host: Carica papaya.

Nature of damage: No economic importance of this species is known.

Distribution: INDIA: Delhi.
75. *Tetranychus cinnabarinus* (Boisd.)

Diagnosis: Carmine mite with longitudinal striae between 3rd pair of dorsocentral hysterosomals. Empodial spur tiny. Axis of aedeagal knob forming a strong angle with axis of shaft, posterior angulation being equal to anterior angulation. In male, tibia I with 4 sensory and 7 tactile setae, tarsus I with 3 sensory and 3 tactile setae proximal to duplex setae ; tibia II with 7 tactile setae, tarsus II with 1 sensory and 4 tactile setae proximal to duplex setae. In female, palpus with terminal sensillum 2 times as long as broad ; tibia I with 1 sensory and 9 tactile setae, tarsus I with 1 sensory and 3 tactile setae proximal to duplex setae ; tibia II with 7 tactile setae, tarsus II with 1 sensory and 4 tactile setae proximal to duplex setae.

Nature of damage: The attack of this mite on pulse crops makes the leaves yellowish, resulting in crumpling, curling and twisting of leaves. In addition, the leaves are covered with heavy webs which affect the photosynthesis of plants. Eventually, the leaves dry up and fall off. Similar damage symptoms are produced on a wide range of vegetables. Growth, flowering and fruit formation are severely affected. In Jammu & Kashmir, this mite severely infests apple causing yellowing of leaves and premature leaf fall. In case of tea, the leaves
become pinkish and purplish. In Gujarat and Punjab, it is known to infest cotton while in eastern India it infests jute as well. In both the cases the leaves become crinkled, crumpled and malformed. All those leaves ultimately dry up and fall off. American variety of cotton is more susceptible to the attack of this mite than the local variety. In Kerala, the mite poses a problem on tapioca specially during summer months. It attacks castor almost all over India.

Bionomics: Its life history has been studied by Janjua (1942); Gupta, Dhoooria & Sidhu (In press) and Srivastvra & Mathur (1962). According to the latter report, the life cycle (egg-adult) takes an average of 14.3 days during January. The duration of other stages are: egg : 5-8 days, protonymph : 3-4 days, deutonymph : 3-5 days. Longevity of adult male : 1-4 days, female : 8-14 days. Almost similar results were obtained by Basu & Pramanik (1968). Its seasonal occurrence has been studied by Basu & Pramanik (1968), Singh & Saini (1971) and Gupta, Dhoooria & Sidhu (1976). As per reports of the latter workers, the high temperature and high R. H. proved detrimental for mite population while moderate temperature and R. H. proved congenial for its multiplication. Population was positively correlated with R. H. and negatively correlated with temperature. The population starts developing during October-December, peak is attained during January to March, starts declining during April and becomes negligible during March-September. Rainfall in August drastically reduces the population. According to Pande & Sharma (1979), the peak is attained during May and low during October-January. On the other hand Lall et al. (1965) stated that it remained active in the field throughout the year. This mite prefers those varieties of ladys' finger having low carbohydrate/nitrogen ratio. It prefers high concentration of carbohydrate and low concentration of nitrogen. The high percentage of aspergin, aspartic acid and glutanic acid enhances egg production. The varieties having high concentration of auxin are also preferred as it accelerates the rate of multiplication. Low potassium content is also preferred by this mite (Planisamy et al., 1976). Contrary to it, Fotedar (1979) experimentally proved that population growth was rapid in those parts having high nitrogen content. The population of this mite on *Cassava* appeared to be absent or low during June-December and the peak was during January-April (Lal, 1982).

Control: Several researchers performed a number of trials for the control of this mite and found the following chemicals to be very promising: Rahman (1939)—Lime sulphur; Puttarudriah
(1947)—Finely powdered sulphur-wood ash (1:4); Singh & Saini (1956)—chlorobenzilate (1:400); Sen (1958)—Aramite (0.02%); Lall & Dutta (1959)—malathion 0.02%; Pawer & Rathore (1959)—ethyl parathion (0.02%); Singh & Singh (1960)—diazinon (0.02%) or ethyl parathion (0.02%); Singh & Guram (1960)—diazinon or parathion (0.02-0.03% E.C.); Bindra & Goyal (1966)—malathion (0.05%) or dicofol (0.025%); Goyal & Bath (1967)—methyl demeton; Basu & Pramanik (1969)—carbophenothonion (0.023%); Patel & Patel (1968)—dimethoate (0.09%); Srivastava & Mathur (1962)—thiometon (0.1% E.C.); Gupta et al. (1969)—thiometon (0.05%); Sidhu et al. (1970)—monocrotophos; Bindra et al. (1970)—aldicarb/phorate/disulfoton (1.25 kg each) or dimethoate and methyl demeton (2.5 L each); Prem Sagar (1978)—binapacryl (0.05%); Palanisamy & Subramaniam (1977)—dicofol; Fotedar & Singh (1980)—carbofuran (500 ppm.); Rote, Shah & Mehta (1981)—dicofol (0.3%) or sulphur dust or wettable sulphur dust (0.2%) and carbaryl (0.2%).

Natural enemies: A number of natural enemies as below are known to feed upon this mite. Adalia decimpunctata, Chrysopa sp. (Janjua, 1942); Stethorus punctillum (Kapur, 1948); Somantum oviformes, Stethorus sexmaculatus, Stethorus sp. (Puttarudriah & ChannaBasavanna, 1953, 1955), Amblyseius (E.) alstoniae, A (P.) multidentatus (Gupta et al., 1971); Stethorus gilvifrons (Mathur, 1979).

Distribution: India, Gujrat, Haryana, Kerala, Bihar, Karnataka, Meghalaya, Punjab, Rajasthan, Tamil Nadu, Orissa; outside India: Worldwide.

76. Tetranychus fijiensis Hirst

Diagnosis: In female, empodium with 2 pairs of empodial hairs; dorsal pair being shorter than ventral pair. Aedeagus much elongate, bends upwards and tapers gradually. In male, tibia I with 3 sensory and 9 tactile setae, tarsus I with 2 sensory and 5 tactile setae proximal to duplex setae; tibia II with 1 sensory and 6 tactile setae, tarsus II with 1 sensory and 4 tactile setae proximal to duplex setae. In female, palp with terminal sensillum 2 times as long as broad. Tibia I with 3 sensory and 9 tactile setae, tarsus I with 2 sensory and 4 tactile setae proximal to duplex setae; tibia II with 1 sensory and 6 tactile setae, tarsus II with 1 sensory and 3 tactile setae.

Hosts: Coconut, orange, papaya, Dieffenbachia sp., Seakerthia, palm, Areca catechu.
Nature of damage: This is a pest of coconut specially in south India and Andaman Nicobar Islands (Cherian, 1931, 1938; Gupta, 1976). Feeding causes the appearance of whitish spots on the leaves. Later, the spots turn brown and coalesce to give brownish patches on the leaves. Kumar & Prasad (1979) reported this mite as pest of mandarin.

Bionomics: No information on bionomics of this species is available.

Control: No work on control of this mite is known from India.

77. *Tetranychus lombardinii* Baker & Pritchard

Diagnosis: Females resemble *T. cinnabarinus* but in this case the lobes of the dorsal striae of idiosoma smaller and more widely spaced. Males also resemble *T. cinnabarinus* but the anterior development of terminal knob is more broadly obtuse. Tarsus I and II with minute empodial spurs.

Hosts: *Indigofera tinctoria*. Meyer (1974) reported it to occur on a number of hosts.

Nature of damage: Though it is a pest of a wide range of hosts like cotton, banana, cucurbits, tomato, spinach, etc. in many parts of the world but in India it has been casually recorded without doing any damage to its hosts.

Bionomics: No information is available on the bionomics of this species.

Distribution: INDIA: Assam; outside India: Africa.

78. *Tetranychus macfarlanei* Baker & Pritchard

Diagnosis: Aedeagal knob tiny with anterior and posterior angulation. Tibia I of male with 4 sensory and 9 tactile setae, tarsus I with 4 tactile setae proximal to duplex setae; tibia II with 7 tactile setae, tarsus II with 1 sensory and 5 tactile setae proximal to duplex setae. In female, tibia I with 1 sensory and 9 tactile setae, tarsus I with 4 tactile setae in line with proximal pair of duplex setae; tibia II with
1 sensory and 6 tactile setae, tarsus II with 1 sensory and 4 tactile setae proximal to duplex setae. Idiosomal setae long and pubescent.

Nature of damage: This mite builds up small colonies on the under-surface of leaves. The sucking on plant juice by all the stages cause yellowing of leaves. The infested leaves dry up. The infestation is more on mature crops than on the young ones. It disappears with rains.

Bionomics: Nothing is known in this regard.

Natural enemies: In Mauritius, Stethorus, Oligota and Feltiella were reported as predators on this mite (Moutia, 1958).

Distribution: INDIA: M. P., Delhi, Nicober Isl.; outside India: Mauritius.

79. Tetranychus ludeni Zacher

Diagnosis: Aedeagal knob very small with no posterior angulation. In male, tibia I with 2 sensory and 10 tactile setae, tarsus I with 2 sensory and 5 tactile setae proximal to duplex setae; tibia II with 1 sensory and 6 tactile setae, tarsus II with 1 sensory and 4 tactile setae proximal to duplex setae. In female, palpus with terminal sensillum 1 1/2 times as long as broad. Tibia I with 1 sensory and 9 tactile setae, tarsus I with 1 sensory and 4 tactile setae proximal to duplex setae; tibia II with 2 sensory and 5 tactile setae, tarsus II with 2 sensory and 4 tactile setae proximal to duplex setae.

Nature of damage: Like other tetranychid mites, it also causes yellowing of leaves. Because of feeding, the leaves first turn yellow, then necrotic patches encompass the leaves and then those leaves dry up.
This is the only tetranychid mite in India known to be vector of plant viral disease, viz. Dolichos Enation Mosaic Virus (DEMV) (Rajagopalan, 1974).

Bionomics: The effect of temperature and relative humidity on the development and oviposition was studied by Puttaswamy & ChannaBasavanna (1980). Among the five temperatures, (20 ± 1°, 24 ± 1°, 27 ± 1°, 30 ± 1° and 32 ± 1°C) and five R. H. (55 ± 3%, 65 ± 3%, 75 ± 3%, 85 ± 3% and 95 ± 3%), the optimum condition for development and maximum survival of eggs were found between 32 ± 1°C and 35 ± 1°C and 65 ± 3% and 75 ± 3% R. H. The optimum condition for development of immatures were 30 ± 1° to 35 ± 1°C. The lowest number of eggs were laid at 20 ± 1°C. High humidity (95 ± 3% R. H.) reduced egg production capacity of adults irrespective of temperature ranges. In their another study (Puttaswamy & ChannaBasavanna, 1980a) they found that females took 12.48 ± 0.16 days and males took 11.96 ± 0.38 days to complete the life cycle. Mated and unmated females had oviposition period as: 1.54 ± 0.30 days and 1.43 ± 0.11 days, respectively and laid on an average 165.88 ± 47.04 eggs and 132.00 ± 28.54 eggs during their ovipositional periods of 22.83 ± 4.56 days and 27.41 ± 4.75 days. The longevity of mated and unmated females were 27.98 ± 4.50 days and 32.14 ± 4.08 days, respectively. This species influenced the population of *Tetranychus neocaledonicus* as it significantly suppressed the population of the latter (Puttaswamy & ChannaBasavanna, 1980b). When the hosts and non-hosts were grown together in different ratios or alternated in multiple cropping sequence, the spread of infestation was completed almost in all the ratios except 1 : 2 and 1 : 3 in which cases the infestation was low (Puttaswamy & ChannaBasavanna, 1979b). Nitrogen fertilizer was found to increase the population of this mite (ChannaBasavanna, 1981; Puttaswamy & ChannaBasavanna, 1982). Eggs receiving 0.1% and 0.01% of juvenile hormone (ZR 856) failed to develop normally (Jagadish, 1979). Further studies in this regard (Jagadish, 1982) indicate that this hormone at the concentration of 100 and 10 ppm has no effect on hatching and at 100 ppm the eggs did not hatch. Puttaswamy & ChannaBasavanna (1981) reported that population occurred throughout the year. It started building during April and peak was seen during May-July. Increase was associated with less rainfall and low R. H. and high mean temperature. Puttaswamy & ChannaBasavanna (1981a) studied the effect of host plants on the development and longevity of this species.

Control: Best results were obtained in the field by spraying dicofol
and sulphur (0.05-0.015%) (ChannaBasavanna, 1981). Sannaveerapanavar & ChannaBasavanna (1983) reported that DDT and carbaril had a strong irritative effect causing dispersal of mites. Jagadish & ChannaBasavanna (1983) reported dicofol (0.025%) giving the maximum mortality while carbaryl (0.025%) provided the minimum mortality after 12 hours. After 24 hours, dicofol and endosulfan recorded cent percent mortality. However, after 48 hours dicofol was at par with others like sulphur, endosulfan and malathion.

Natural enemies: Release of a phytoseiid mite, *Amblyseius* (*Typhilodromips*) *tetranychivorus* (Gupta) was found to be very effective (Puttaswamy, 1978; Puttaswamy & ChannaBasavanna, 1979a; ChannaBasavanna, 1981). Infestation of *Calosporium*, a fungus, also caused 90% mortality within 4 days (Godse & Patil, 1977). Predators like *Scolothrips sexmaculatus*, *Stethorus pauperculus* and *Oligota oviformes* and rainfall appeared to be regulatory factors (Puttaswamy & ChannaBasavanna, 1981). Reddy & Jagadish (1977) also reported *Scolothrips indicus* as predator of this mite.

Distribution: INDIA: Karnataka, Delhi; outside India: South Africa, U. S. A., Austria, South America, Salvador, New Zealand and Europe.

80. *Tetranychus hypogaeae* Gupta

Diagnosis: Idiosomal setae simple, not on tubercles. In male, tibia I with 4 sensory and 9 tactile setae, tarsus I with 1 sensory and 5 tactile setae proximal to duplex setae; tibia II with 1 sensory and 6 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. In female, palpus with terminal sensillum 1 1/2 times as long as broad. Tibia I with 1 sensory and 9 tactile setae, tarsus I with 2 sensory and 2 tactile setae proximal to duplex setae; tibia II with 1 sensory and 6 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae. Aedeagus in male bends dorsad, posterior angulation absent.

Host: *Arachis hypogaeae*.

Nature of damage: This mite was seen to damage ground nut crop in West Bengal. All the infested leaves were heavily covered with webs and all those later turn yellow. The infested plants look sickly and growth is adversely affected. Some of the very infested plants dry up at later stages of development.
Distribution: INDIA: West Bengal.

Remarks: No work has been done on the bionomics and control of this species.

81. *Tetranychus neocaledonicus* André

Diagnosis: Aedeagal knob in male berry like and the anterior rounded projection is better developed than the rounded posterior projection. In male, tibia I with 3 sensory and 8 tactile setae, tarsus I with 2 sensory and 4 tactile setae proximal to duplex setae; tibia II with 7 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae; In female, tibia I with 1 sensory and 7 tactile setae, tarsus I with 2 sensory and 3 tactile setae proximal to duplex setae, tibia II with 1 sensory and 6 tactile setae, tarsus II with 1 sensory and 3 tactile setae proximal to duplex setae.

Nature of damage: It is one of the most serious pests of vegetables in India. The mites in all stages remain confined on the undersurface of leaves covered with thin webs where dust particles get entangled. The continuous sucking from leaves make those spots yellowish and ultimately those turn brownish. All such leaves gradually wither. The plants lose vitality which affects on the yield. The infested leaves also sometimes become crinkled, crumpled and fall off.
Bionomics: According to Khot & Patel (1956), the duration of different stages are: incubation: 3-9 days, larva: 2-5 days, protonymph: 3-4 days, deutonymph: 2-5 days, egg-adult: 13-19 days, preoviposition: 1-2 days, postoviposition: 1-3 days, longevity of female: 6-28 days, and that of male: 8-12 days. According to Rahman & Sapra (1945), the longevity of males and females are: 5-8 days and 10-12 days, respectively, while the fecundity of fertilized and unfertilized females are 61-93 and 33-59 eggs, respectively. Its biology was studied by Puttaswamy & Reddy (1980). Studies on the effect of food and temperature were made and that indicated 30°C was the most favoured temperature and musk melon was the most favoured food (Gupta et al., 1972a). Gupta et al. (1975) evaluated various methods to determine the population density of this mite. In another study they (Gupta et al., 1975a) developed sampling technique for estimating population density of *T. neocaledonicus*. They found no significant difference in population on the basal, middle and distal portions of the same leaf and the population on the leaf was contagious. It was proved statistically that plucking of 53 leaves at random from anywhere of basal, middle or distal portion of the plant and counting population from anywhere of basal, middle or distal part of the leaf from 1 sq. cm area can give true estimation of the population. Population of this species was low during January and the peak was attained in May (Sharma & Pande, 1979). Population was absent or very low during June-December and thereafter increase was sudden. Peak infestation was during January to April. Population increase was significantly controlled with decrease of humidity and nonsignificantly controlled with increase in maximum temperature. Maximum temperature and rainfall exhibited non-significant negative relationship (Lal, 1983). The duration of development time from egg to adult was significantly longer on tapioca than on castor, amaranthus and mulberry (Puttaswamy & ChannaBasavanna, 1982a).

Control: Among the various chemicals tried for the control of this mite, methyl parathion (0.05%), dimethoate (0.05%), phosphamidon (0.025%), malathion (0.08%), chlorophenamidin (0.05%) and dicofol (0.05%) are quite promising (Atwal et al., 1969; Sidhu & Singh, 1971; Gupta et al., 1972; Jagan Mohan & Krishnaiah, 1979). The other promising pesticides are: cyhexatin (0.05%) (Pande & Sharma, 1979); phosphamidon (0.03%) (Ray & Lallan Rai, 1979).

Natural enemies: A few natural enemies are known to feed upon this mite, of those, mention may be made of *A. (E.) alstoniae* (Gupta
et al., 1971). Besides, Stethorus sp. is also known to feed on all stages (Singh & Ray, 1977).

82. *Tetranychus urticae* Koch

Diagnosis: Greenish or yellowish mite with large spots on either sides of body. Axis of the aedeagal knob parallel with axis of shaft. Striae in female bears dorsal lobes, which are large, rounded and some being oblong.

Hosts: Acalphya sp., brinjal, some medicinal plants, *Citrullus vulgaris*, etc.; from outside India a number of other hosts are known (Meyer, 1974).

Nature of damage: This mite has been reported to attack brinjal in West Bengal producing similar symptoms as done by *T. neocalledonicus*. On grape vines and roses, this mite turns the leaves pale and cause the appearance of spots. Later those turn yellowish bronze. Grapes also become under-developed and wrinkled. Vines may be also killed (Mali et al., 1983a). The population dropped with the pruning during April and October.

Control: Mali et al. (1983) found RH-0994 (0.04%) and tetradifon (0.04%) were most effective against this mite on grape vines.

Distribution: India: West Bengal, Uttar Pradesh; outside India: North America, South America, Europe, Israel, Japan.

Remarks: This mite is commonly called 2-spotted spider mite or red-mite and, in fact, the common name refers to a complex of species involving about 59 synonyms each described from different hosts or areas. The mites of this species complex have been recorded in over 150 hosts. Many of these species from this complex were later given specific status because of the differences in morphology, biology, distribution and cross breeding results (Jeppson et al., 1975).

Family *Tuckerellidae* Baker & Pritchard

History: Baker & Pritchard (1953) erected this family with a
single genus. Since then several workers from different parts of the world described species under this genus. Ehara (1975) provided a key for the world species known till then. Altogether 16 species are known from the world, of those, 3 are represented from India.

Diagnosis: Body oval to elongate, with two pairs of eyes. Chelicera not styliform as in *Tenuipalpus*. Palpus 4-segmented, tibia with strong claws, tarsus cylindrical with 4 long pointed setae and a rod. Dorsum smooth or reticulate, distinguished into propodosoma and opisthosoma. Setae fan-like and caudally with a row of variable number of long flagellate setae. Legs short, pretarsus with strong claws, each provided with 2 tenent hairs; empodium splits into 2 fine claw-like processes.

Morphological Characters of Taxonomic Importance

Body semi-oval, truncate posteriorly, dorsal integument strongly reticulate, divided into gnathosoma and idiosoma.

Gnathosoma: It consists of a pair of chelicerae and a pedipalp. Chelicerae styliform, pedipalp 5-segmented, 6th segment developed into distinct thumb with stout terminal setae, in addition to three setae; palp tibial claw well developed.

Idiosoma (Fig. 186A). It consists of propodosoma and hysterosoma. The former bears 4 pairs of palmate setae and the latter with 18 pairs of fan-shaped setae which are of unequal shape; besides, variable number of caudal setae both flagellate and palmate are also present (Fig. 186A).

Venter: Venter with striations and variable number of setae in genitoanal region.

Legs: Legs short and stout; all of nearly same length; a fan-like seta present on tibia, genu and femur; tarsus I-II each with sensory rod, tibia I also with sensory rod.

Genus **Tuckerella** Womersley

(Fig. 186A)

Key to the species of Tuckerella

1. Five pairs of posterior filamentous setae *kumaonensis*
 — Four pairs of posterior filamentous setae *delhiensis*

[* *T. indica* Prasad, is not included in this key since known from male only.]
83. **Tuckerella indica** Prasad

Diagnosis (Male): Body elongated, oval, reddish; with six pairs of long filamentous setae on caudam. Outer pair of the last four hysterosomal setae palmate, subequal to and in a transverse line with inner pair. Tarsi of legs III and IV each with dorsal sensory rod (solenidion). Distal sensory rod on tarsus of leg I shorter than the proximal sensory rod. Hysterosoma with 18 pairs of dorsal palmate setae borne on lightly sclerotized plates.

![Dorsal surface of a tuckerellid mite showing types of setae along with enlargement of posterior portion.](image-url)
118

Zoological Survey of India

Host: Casuarina.

Nature of damage: No damage is known to be caused by this mite.

Distribution: INDIA: Tamil Nadu.

84. Tuckerella delhiensis Ghai & Maninder

Diagnosis: Four pairs of very long caudal filamentous setae, posterior row of fan-like dorsal setae in transverse row. First pair of dorsal propodosomal setae leaf-like and irregularly reticulate.

Host: Terminalia tomentosa.

Nature of damage: No damage is caused.

Distribution: INDIA: Delhi.

85. Tuckerella kumaonensis Gupta

Diagnosis: Five pairs of flagellate setae and 3 pairs of foliaceous setae on caudam, propodosoma with 4 pairs of palmate setae; anterior pair irregularly reticulate, more elongate than outer pairs. Hysterosoma with 18 pairs of palmate setae. Out of four pairs of fan-like setae set on opisthosoma, the inner pair noticeably larger than outer pair and placed posterior to outer pair.

Host: Pine cone.

Nature of damage: No damage is caused by this mite.

Distribution: INDIA: U. P.

Family Tenuipalpidae Berlese

Tenuipalpidae Berlese, 1913, Acarotheca Italica Firenze, Tipograficia di M. Ricci p. 17.

History: Berlese (1913) erected this family. Some good comprehensive publications are available in this family, of those, mention may be made of Baker (1949a), McGregor (1949), Pritchard & Baker (1951, 1958), Baker & Tuttle (1964), Baker et al. (1975), DeLeon (1956-1965), Chaudhri (1971-1974), Mitrofanov (1973, 1973a), Meyer (1979) and over 300 species in 21 genera are known from the world.

Diagnosis: Chelicera stylet like, recurved and arises from eversible stylophore; palpus simple lacking claw on penultimate segment. Propodosoma bears 3 pairs of setae; hysterosoma bears 1-3 pairs of
dorsocentrals, 1 pair of humeral, 5-7 pairs of dorsolaterals; there may be 1-4 pairs of dorsosublateral hysterosomals or those may be lacking. Ventral metapodosoma with 2 pairs of setae but their numbers may vary. There may or may not be a distinct ventral and genital plates. Dorsum is provided with ornamentation in the form of striations, reticulations and rarely it is smooth. The tenent hairs on empodium present on tarsal claws.

These mites are flat, pear shaped, mostly bright coloured, slow moving and are normally found on the under-surface of leaves, near veins, twigs, fruits etc. Sometimes they are also found inside the galls and some feed on barks. Popularity these mites are called false-spider mites as they look like spiders but unlike those they do not spin webs. Majority of the species are of insignificant economic importance but some species are of great economic importance.

Morphological Characters of Taxonomic Importance

These mites are 200-350 microns long, 100-150 microns wide. The body is differentiated into Gnathosoma and Idiosoma and the latter is further distinguishable into Propodosoma and Hysterosoma (Fig. 200).

Gnathosoma: It bears a pair of chelicerae and a pair of pedipalpi, besides the mouth opening.

Chelicerae: It is paired, the bases are fused to form the stylophore. The chelicerae are modified into stylets and are curved proximally.

Pedipalpi: The palpi are also paired, segmented (1-5 segments), simple and without any claw. The terminal segment of palpus, with a sensory rod, besides 1 or 2 setae are also present. The type of pedipalp is an important character for separation of genera (Figs. 187-195).

Idiosoma: The idiosoma is furnished with ornamentation in the form of striations or reticulations (Figs. 200). Only in a few cases it is smooth. It is differentiated into rostral shield, propodosoma and hysterosoma. The rostral shield is on the anterior part of propodosoma in the form of lobed projection. It is variable in shape and serves as a character of generic importance (Figs. 196-199). The propodosoma bears 3 pairs of setae and 2 pairs of eyes (Fig. 200). The hysterosoma is demarcated from propodosoma by a distinct suture. Hysterosoma bears 9-13 pairs of setae (1-3 pairs of dorso-central, 1-4 pairs of sublateral, 5-7 pairs of dorsolateral and 1 pair of humeral), Sublateral setae may be absent as in *Brevipalpus*.
Venter: The ventral side (Fig. 201) is provided with striations or reticulations or may be smooth. It bears 3 pairs of setae, viz. 1 pair of medioventral propodosomal, anterior and posterior medioventral metapodosomals. Ventral plate may be smooth, striated or reticulated with 2 pairs of setae, 1-2 pairs of setae present on genital plate and 1-3 pairs of setae present on anal plate. In males, the venter of opisthosoma bears 1 pair of medioventral setae and 3-4 pairs along genito-anal opening.

Figs. 187-195: Palpi in different genera in Tenuipalpidae:

Legs: Adults with 4 pairs of short legs, segmented and with constant setal pattern. The number of seta on genu I-IV helps in separating the species. A single sensory rod is always present on distal
end of tarsi I and II but sometimes 2 sensory rods may also be present on one or both tarsi. The claw bears several pairs of long outer tenent hairs. The distal hook of claw may be strongly developed, reduced or lacking. Empodium consists of an elongate pad bearing 2 rows of tenent hairs below.

Key to the genera of Tenuipalpidae

1. Hysterosoma with not more than 1 pair of dorsosublateral setae or without dorsosublaterals 2
 — Hysterosoma with 2 or more pairs of dorsosublaterals 7
2. Adults and nymphs with 3 pairs of legs, palpus 1 segmented 3
 — Adults and nymphs with 4 pairs of legs Tenuipalpus
3. Propodosoma with rostral shield anteromedially 4
 — Propodosoma without rostral shield anteromedially 6
4. Hysterosoma with dorsocentral and 1 pair or without dorsosublateral setae; first and second dorsocentral setae simple 5
 — Hysterosoma with 1 pair or without dorsocentral and dorsosublateral setae 5
5. Hysterosoma normally with penultimate pair of dorsolateral setae flagelliform 6
 — Hysterosoma normally with penultimate pair of dorsolateral setae of normal length Terminalichus
6. Palpus 3 segmented 7
 — Palpus 1 segmented Brevipalpus
7. Female with 3 pairs of legs, male with 4 pairs of legs 7
 — Female and male with 4 pairs of legs Dolichotetranychus
8. Palpus with 2 segments 8
 — Palpus with more than 2 segments Obuloides
9. Hysterosoma with 4 pairs of dorsosublaterals 9
 — Hysterosoma with less than 4 pairs of dorsosublaterals Aegyptobia
 — Hysterosoma with 4 pairs of dorsosublaterals Aegyptobia

Genus Aegyptobia Sayed
(Fig. 202)

86. **Aegyptobia mumulus** Chaudhri

Diagnosis: Female with short and broad rostrum reaching up to genu I. Palpus 5-segmented; terminal segmentation with 2 setae and a rod; 2 pairs of eyes present. Propodosoma with longitudinal striation with 3 pairs of minute serrate setae. Hysterosoma with transverse striations mediodorsally, lateral striations directed marginally, striations longitudinal in the posterior part of hysterosoma; hysterosomal setae minutely serrate. Ventral propodosomal part with transverse striations and margins with longitudinal striations.

Fig. 200: Dorsal surface of a tenuipalpid mite: A. Propodosomal seta, B. Humeral seta, C. Dorsocentral hysterosomal seta, D. Sublateral hysterosomal seta, E. Dorsolateral hysterosomal seta.

Fig. 201: Ventral surface of a tenuipalpid mite: F. Leg I, G. Palp, H. Rostrum, I. Anterior medioventral metapodosomal, J. Posterior medioventral metapodosomal, K. Ventral shield, L. Anal shield.
Hosts: Thuja orientalis (Sadana & Chhabra, 1980); Cupressus sp. (Sadana et al., 1981); outside India: Cupressus sempervirens, Dodonaea viscosa.

Nature of damage: No damage is caused by this mite.

Bionomics: Nothing is known.

Distribution: INDIA: Punjab; outside India: Pakistan.

Genus Brevipalpus Donnadieu
(Figs. 203-204)

Brevipalpus Donnadieu, 1875, Recherches pour servir a l'histoire des Tetranyques, pp. 143-145.

Key to the Species of Brevipalpus

1. Hysterosoma without dorsosublateral setae pulchur
 — Hysterosoma with dorsosublateral setae californicus
2. Hysterosoma with 6 dorsolaterals lewisi
 — Hysterosoma with 5 dorsolaterals cucurbitae
3. Tarsus II with a single sensory rod essigi
 — Tarsus II with 2 sensory rods karachiensis
4. Hysterosoma with reticulations californiae
 — Hysterosoma with transverse striations phoenicis
5. Hysterosoma with reticulate pattern in the middle, and broad cells in the sides rugulosus
 — Hysterosoma with reticulations evenly distributed along dorsomedian ridge deleon
10. Propodosoma evenly reticulate mediodorsally
 — Propodosoma without reticulations mediodorsally

Fig. 202: *Aegyptobia* sp.
Figs. 203-204: *Brevipalpus* sp.
Fig. 205: *Tenuipalpus* sp.

\[obovatus \]
11. Propodosoma with reticulation in the middle,
 broad cells on the sides euphorbiae
 — Propodosoma with only even reticulation on
 the middle chilensis

87. **Brevipalpus californicus** (Banks)

Diagnosis: Body pear shaped, flat with regular mediolateral reticulations on propodosoma; hysterosoma with 5 dorsolaterals. Tarsus II with 2 distal solenidia, reticulation pattern usually covers the entire propodosoma.

Nature of damage: It is a serious pest of a number of crops in India, of those, citrus is the most important one. Usually these mites are seen on the under surface of leaves near the midrib but when the infestation is serious they may migrate on the twigs and fruits as well.
The feeding of the mites causes the appearance of yellow spots on the leaves. Later, those spots turn brown and coalesce to form brown patches. The petiolar attachment becomes so weak that all the leaves fall off prematurely. Fruits also suffer premature fall. Similar symptoms are also produced on guava and pomegranate. The infested leaves look sickly and growth and vigour are adversely affected. In Brassica, the attack causes yellowing of leaves. This mite is known to cause leprosis of citrus in some parts of the world.

Bionomics: It remains in the field throughout the year. Out of 85 plants tested for its hosts, 55 were found to be suitable for feeding, oviposition and breeding; 3 were unsuitable for breeding although mites fed on them and 27 were unsuitable for both feeding and breeding (Sadana & Joshi, 1976). Low temperature and low humidity were the most optimum conditions required for population build up. Population was maximum during December-March and declined thereafter (Lakshman Lal & Mukharji, 1980).

Control: Binapacryl (0.025%) is highly effective against this mite as it has quick knockdown effect and high residual effect also. (Gupta, Sidhu & Singh, 1971).

Distribution: INDIA: West Bengal, Assam, Karnataka, Punjab, Delhi; outside India: Africa, Pacific IsIs., North, Central and South America, West Indies, U. S. S. R., Australia.

88. *Brevipalpus chilensis* Baker

Diagnosis: Body flat, propodosoma evenly reticulate, mediolateral dorsal setae of body much shorter than intervals between their longitudinal bases; tarsus II with a single sensory rod. Hysterosoma with 5 dorsolaterals.

Hosts: *Garcinia* sp., *Jasminum angustifolium*, *Strongylodon macrobotrya*; outside India: *Vitis*.

Nature of damage: In Chile, it is a destructive pest but in India it is of no economic value.

Bionomics: Information in this respect is not available from India.

Distribution: INDIA: Karnataka; outside India: Chile, Africa.
89. *Brevipalpus cucurbitae* Mohansundaram

Diagnosis: Red mite; rostrum reaching more than 1/2 the length of femur I. Palpus 4 segmented. Rostral shield bifurcate, shield tip blunt reaching base of femur I. Propodosoma with polygonal reticulation; 3 pairs of dorsal propodosomal present. Hysterosoma with a reticulate pattern in the middle and broader cells in the sides; 3 pairs of dorsocentrals, 1 pair of humerals, 6 pairs of dorsolaterals, all being lanceolate and serrate. Ventrally, propodosoma with a pair of short anterior and a pair of long posterior medioventral setae, one pair of medioventral setae on ventral plate.

Host: *Cucurbita maxima*.

Distribution: INDIA: Tamil Nadu.

Remarks: No economic importance of this species is known.

90. *Brevipalpus euphorbiae* Mohansundaram

Diagnosis: Red mite, rostrum extending beyond the middle of femur I. Palpus 4-segmented. Rostral shield bifurcate with further cleft on the either sides. Hysterosoma with a reticulate pattern in the middle and broad cells on the sides; 5 pairs of dorsolaterals, 1 pair of humerals, 3 pairs of dorsocentrals present, all being lanceolate and serrate. Venter with a pair of medioventral propodosomals; anterior medioventral metapodosomals and posterior medioventral metapodosomals present.

Host: *Croton*.

Distribution: INDIA: Tamil Nadu.

Remarks: The economic importance of this species is not known.

91. *Brevipalpus deleoni* Pritchard & Baker

Diagnosis: Tarsus II with a single sensory rod, dorsal body setae much shorter than the longitudinal intervals between their bases. Propodosoma with longitudinal striae or very slender irregular reticulations mediolaterally, hysterosoma with a narrow mediolateral groove.

Nature of damage: The damage symptoms produced by this mite are almost of similar nature as are produced by *B. californicus*. However, in this case the infested leaves do not fall off so quickly. Further, rarely this mite appears as a pest in India and, hence, in majority of the cases it is of insignificant importance.

Bionomics: Nothing in this regard is known from India.

Distribution: India: Punjab, West Bengal; outside India: U.S.A.

92. *Brevipalpus essigi* Baker

Diagnosis: Hysterosoma with 6 dorsolateral setae. Pedipalp with 2 setae and a sensory peg at distal end. Tarsus II with 1 sensory rod. Rostrum reaching not more than distal end of femur I. Propodosoma with anterior medioventrals greatly shorter than posterior pair. Dorso-central hysterosomal setiform, hysterosoma with reticulation evenly distributed along dorsomedian ridge.

Distribution: India: Car Nicobar Isl.; outside India: California, Mexico.

Remarks: Since this mite has no known economic importance, no work has been done on the bionomics and control.

93. *Brevipalpus lewisi* McGregor

Diagnosis: Hysterosoma with 6 pairs of dorsolateral setae in addition to humeral setae; Tarsus II with 1 solenidion, 3 setae present on distal segment of palpus. Reticulation pattern does not meet dorsally on propodosoma.
Hosts: Sida sp.; outside India: Citrus, Eugenia, Parthenocissus, Rhododendron, Actinider, Alnus, Vitis, Juglans.

Nature of damage: Though it is ranked as a major pest of fruit trees and ornamental plants in other parts of the world, but in India it is of minor importance. It rarely causes any damage to its host.

Distribution: India: U. P.; outside India: California, Bulgaria, Arizona, Maryland, North Carolina, Egypt, Lebanon, Australia.

Remarks: Nothing is known about bionomics and control of this mite from India.

94. **Brevipalpus obovatus** Donnadieu

Nature of damage: Attack of this mite causes the appearance of light brown to dark brown spots on the leaves at the points of feeding. In case of severe infestations, the leaves turn pale yellow. It is not a pest of much importance in northeast India.

Bionomics: From India, nothing is known but works done abroad indicate that the life cycle is completed in 11-26 days and longevity
of adult varied between 3-26 days depending upon the temperature (in Jeppson et al., 1975).

Distribution: INDIA: Himachal Pradesh, West Bengal, Punjab, Delhi; outside India: Hawaii, U. S. A., Venezuela, Argentina, Canada, France, Spain, Cyprus, Israel, Iran, Egypt, Canada, Pakistan, South Africa, Sri Lanka, Australia, Japan.

95. **Brevipalpus phoenicis** (Geij.)

Diagnosis: Scarlet mite, hysterosoma with 5 dorsolateral. Tarsus II with 2 sensory rods. Hysterosomal pores present. Dorsocentral area of propodosoma covered with a scallop pattern and the dorsocentral area of the hysterosoma with irregular striae.

Nature of damage: This is an important pest of a number of fruit trees, ornamental plants, tea, etc. In India, a large population of this mite is seen on the under-surface of leaves specially along the midrib and when the infestation is severe those may occur on the fruits as well. The infested leaves turn pale yellow and at the later stages those turn into brownish patches. Such leaves drop off prematurely. Brownish patches also appear on infested fruits and in some cases those split. In sesamum, due to infestation of this mite, the leaves become twisted and become longitudinally folded. Raised gall like swellings also appear on leaves (Gupta, 1974). Unlike *B. californicus*, it is not
known to cause leprosis of citrus though the saliva injected by this mite causes severe injury to citrus.

Bionomics: Nothing has been done in this regard in India. Jeppson *et al.* (1975) pointed out that its biology is very similar to that of *B. obovatus* and *B. californicus*. It occurs in the field throughout the year on one or the other host. Banerjee (1976) studied the development of this mite on coffee and tea in Africa. Navarajan *et al.* (1976) studied the relative susceptibility of this mite on different varieties of guava.

Control: Mukherjea (1968) reported that carbophenothion was as effective as ethion, binapacryl and dicofol.

Distribution: INDIA: Assam, Bihar, Himachal Pradesh, Karnataka, Maharashtra, Meghalaya, Punjab, Delhi, Orissa, Tamil Nadu; outside India: Hawaii, Columbia, California, Texas, Florida, Trinidad, Argentina, Brazil, Venezuela, Holland, Spain, Portugal, Syria, Sicily, Italy, Kenya, Tanganyika, Ethiopia, Mauritius, Malay, Taiwan, Okinawa Isl., Philippines, Australia.

96. *Brevipalpus karachiensis* Chaudhri, Akbar & Rasool

Brevipalpus karachiensis Chaudhri *et al.*, 1974, pp. 43-44.

Diagnosis: Rostral shield with narrow deep notch, 1 median and 3 lateral lobes on each side; propodosoma with reticulations mediolaterally, dim reticulations in the middle. Hysterosoma with longitudinal irregular striations, lateral striations divided marginally. Dorsal setae on femora I and II longer than width of segment. Ventral propodosoma with striations along the margin, transverse broken striations between apodemes of coxae II.

Nature of damage: It is of no known economic importance.

Distribution: INDIA: Punjab; outside India: Pakistan.

Remarks: Since it is not of any economic importance, no work has been done on bionomics and control of this mite.
Brevipalpus rugulosus Chaudhri, Akbar & Rasool

Diagnosis: Female rostrum reaching up to middle of femur I. Palptarsus with 1 sensory rod and 2 setae; Rostral shield with deep, narrow notch having longitudinal broken striations; tarsus II with 2 sensory rods. Propodosoma with mediolateral reticulations. Dorsal setae on femur II and I equal to the width of the segment; reticulation absent on midportion of propodosoma, absence of transverse broken striations between apodemes of coxae II.

Hosts: Luffa aegyptica, Canna indica, Zinia sp., Cannabis sativa, Polyalthia longifolia, Tabernaemontana divaricata, Tagetes erecta, Acacia arabica, Solidago canadensis, Solanum nigrum, Campsis grandiflora, Acalypha wilkesiana, Colocasia sp., Citrus lemon, Cosmos sp., Rosa indica, Plumeria acutifolia, Ricinus communis, Valaris solanacea, Datura alba.

Distribution: India: Punjab; outside India: Pakistan.

Remarks: No information on bionomics and control is available.

Brevipalpus pulchur (C. & P.)

Diagnosis: Propodosoma with large polygonal reticulations dorsally; gnathosoma not reaching end of femur I. Hysterosoma with 6 pairs of dorsolateral setae. Dorsal body setae tapering and setiform.

Nature of damage: In India, it is not known to cause any damage to its hosts but in other parts of the world (European countries) it is a cosmopolitan pest of neglected orchard.

Distribution: India: Delhi; outside India: England, Denmark, Holland, Portugal, Austria, Bulgaria, Libya, Iran, Syria, Germany, Italy, Sicily, Cyprus, Lebanon, Algeria, Egypt, Israel, Turkey, Afghanistan, Georgian S.S.R., Crimea, Transcaucasia, Soviet Central, Ankara.

Remarks: Information on bionomics and control of this mite from India is not available.
Genus **Dolichotetranychus** Sayed

(Fig. 206)

99. **Dolichotetranychus floridamus** (Banks)

Diagnosis: It is bright red, slender mite, hysterosoma with 2 pairs of dorsocentrais, one pair of dorsosublateral and 5 pairs of dorsolaterals; short dorsal setae present on femur II. Striation on the genital plate of female smooth and without lobes.

Nature of damage: In India, this mite is not known to cause any significant damage to its host. However, elsewhere, it is known to feed on the tender white tissues at the base of pineapple plants. Bud rots start at the points of injuries because of the growth of the fungi and bacteria.

Distribution: India: Karnataka; outside India: Florida, Cuba, Puerto Rico, Panama, Honduras, Mexico, Central America, Hawaii, Africa, Egypt, Philippines, Japan, Okinawa IsI., Java.

Genus **Larvacarus** Baker & Pritchard

(Fig. 207)

100. **Larvacarus transstitialis** (Ewing)

Diagnosis: Adults with 3 pairs of legs. Pedipalp rudimentary.

Host: *Zizyphus jujuba*.

Nature of damage: It occurs inside the galls. However, it is not known how far it is responsible to produce the galls.

Distribution: India: Bihar.

Remarks: No information is available on bionomics of this species.
Genus *Obuloides* Baker & Tuttle
(Fig. 208)

101. **Obuloides rajamohani** Baker & Tuttle

Fig. 206 : *Dolichotetranychus* sp.
Fig. 207 : *Larvacarus* sp.
Fig. 208 : *Obuloides* sp.
Fig. 209 : *Pentamerismus* sp.
Diagnosis: Pelpi completely reduced, consisting of a slight indentation on each side of the rostrum, each bearing a solenidion and a seta. Dorsal body setae long, strong and serrate except for anterior pair of minute propodosomal setae. Hysterosomals with 5 pairs of dorsolaterals; dorsal striae on hysterosoma with strong lobes. Tarsi I and II each with a long rod-like seta.

Host: *Hibiscus* sp.

Distribution: INDIA: Tamil Nadu.

Remarks: This mite has no known economic importance.

Genus Pentamerismus McGregor

(Fig. 209)

102. **Pentamerismus oregonensis** McGregor

Diagnosis: Hysterosoma with 6 dorsolaterals, all narrowly lanceolate and serrate; 2 dorsosublateral hysterosomal setae present.

Hosts: *Cupressus funebris*, *Cupressus* sp., *Juniperus* sp.

Distribution: INDIA: Karnataka; outside India: Japan, U. S. A.

Remarks: The economic importance of this species is unknown.

Genus Phytoptipalpus Trägårdh

(Fig. 210)

103. **Phytoptipalpus albizziae** Pritchard & Baker

Diagnosis: Females with 3 pairs of legs, males with 4 pairs of legs. Idiosoma with dorsal setae setiform, minutely serrate; 5 pairs of dorsolateral hysterosomals, dorsal integument closely striate, mostly transverse.

Host: *Albizia procera*.
Distribution: INDIA: Assam.
Remarks: No economic importance of this species is known.

Genus Raoiella Hirst
(Fig. 211)

Fig. 210: Phytopiptalpus sp.
Fig. 211: Raoiella sp.
Fig. 212: Temnialpus sp.
Key to the Species of Raoiella

1. Fourth dorsosubilateral hysterosomal much longer than first three macfarlanei
 — Fourth dorsosubilateral hysterosomal shorter than first indica

104. Raoiella indica Hirst

Diagnosis: Reddish mite. Idiosoma with dorsum smooth. Hysterosoma with first pair of dorsocentral longer than others; 4th pair of dorsocentral setae shorter than others. All dorsal body setae slightly clubbed and serrate.

Hosts: Coconut, arecanut, *Phoenix*, cotton.

Nature of damage: It is an important pest of coconut and arecanut in India. The infestations occur on the under-surface of leaves in both young and adult plants. The infestation results in the appearance of reddish spots on the leaves. The colonies remain covered with thin silken webs.

Bionomics: Nothing in this regard is known from India. However, information, as available from abroad, indicates that the average duration of different life stages are: egg—6.5 days, larva—9.5 days, protonymph—6.5 days, deutonymph—10.5 days. Average time required to complete the life cycle was 33 days. Females lay in average 2 eggs/day (Jeppson *et al.*, 1975). In Mauritius, this mite is abundant during September-March except during rainy season in November-January.

Control: Thiometon, rogor and parathion are quite effective against adults while dicofol is quite effective against eggs (Kanta *et al.*, 1963a). Parathion and malathion (0.03%) are also known to register 80% mortality (Ponuuswami, 1967).

Natural enemies: Puttarudriah & ChannaBasavanna (1956) reported *Stethorus tetranychii* Kapur, *S. parcepunctatus* Kapur and *Jauravia* sp., feeding on this mite. *Amblyseius* (*Typhlodromips*) *tetranychivorus* (Gupta) has also been seen to feed upon this mite (Jagadish & Nagesha Chandra, 1979).

Distribution: India: Karnataka, Tamil Nadu, Punjab; outside India: Mauritius.
105. *Raoiella macfarlanei* Pritchard & Baker

Diagnosis: Dorsum of idiosoma smooth. Fourth dorsosublateral hysterosomal very long and longer than first three dorsosublateral. Hysterosoma with dorsocentrals clavate about as long as longitudinal intervals between them.

Hosts: *Jambosa vulgaris*, golden dew drops, mango; outside India: olive.

Distribution: INDIA: Karnataka, Kerala, Gujarat; outside India: Rasel Hila, Cyrenaica.

Remarks: No economic importance of this species is known.

Genus Tenuipalpus Donnadieu

(Figs. 205, 212)

Tenuipalpus Donnadieu, 1875, *Recherches pour servir a l'histoire des Tetranyques*, pp. 139-145.

Key to the Species of Tenuipalpus

1. Hysterosoma without a flagellate dorsolateral seta.
 - Hysterosoma with a flagellate dorsolateral seta. **quadrisetosus**
2. Hysterosoma with 3 pairs of nonflagellate caudal seta. **2**
 - Hysterosoma with 4 pairs of nonflagellate caudal seta. **6**
3. One pair of posterior medioventral seta. **4**
 - Three to four pairs of posterior medioventral seta. **crassus**
4. Third pair of dorsocentral hysterosomal widened. **tetrazygae**
 - Third pair of dorsocentral hysterosomal not widened. **5**
5. Dorsolateral hysterosomal very long. **labbaghensis**
 - Dorsolateral hysterosomals much shorter. **punjabensis**
6. Hysterosoma with a differentiated expansion anterior to coxae III. **7**
HANDBOOK: *Plant mites of India*

- Hysterosoma without a differentiated expansion anterior to coxae III.
 - Anterior expansion of hysterosoma broad and subquadrate.
 - Anterior expansion of hysterosoma conical.
 - Gnathosoma without a ventral seta.
 - Gnathosoma with 1 or 2 pairs of ventral setae.
 - Dorsum with a few thin reticulations.
 - Dorsum with strong reticulations or striations.
 - Dorsum without reticulations.
 - Dorsum with thick reticulations but middle of propodosoma with thin reticulations.
 - Dorsocentral setae 1 pair.
 - Dorsocentral setae 3 pairs.
 - Gnathosoma with 1 pair of ventral setae.
 - Gnathosoma with 2 pairs of ventral setae.
 - All setae on dorsum laminate except penultimate one.
 - All setae on dorsum laminate and serrate except penultimate one.
 - Rostrum reaching more than half of femur I.
 - Rostrum reaching basal 1/3 portion of femur I.
 - Hysterosoma with reticulate pattern in middle and elongated wavy lines on sides.
 - Hysterosoma not like above.
 - Propodosoma with wavy cross line in middle and clear areas on sides.
 - Propodosoma with clear areas in middle and wavy lines on either sides.
 - Anterior medioventral metapodosomal setae 2 pairs.
 - Anterior medioventral metapodosomal setae 1 pair.
 - Setae on femora IV 4-4-2-1.
 - Setae on femora IV 5-5-2-2.
 - Posterior medioventral metapodosomal seta 1 pair; dorsum with transverse striations.

- micheli
- hastaligni
- aboharensis
- yousefi
- punicae
- caudatus
- granati
- ghaii
- tectonae
- coimbatorensis
- pernicis
- cissampelosae
- mustus
— Posterior medioventral metapodosomal seta 2 pairs; dorsum with or without polygonal reticulations. 20

20. Dorsum with polygonal reticulations. 21
— Dorsum without polygonal reticulations. 24

21. Second dorsolateral hysterosomal pair reaching upto the base of 3rd dorsolateral pair. dimensus
— Second dorsolateral hysterosomal pair not reaching upto the base of 3rd dorsolateral pair. 22

22. Rostral shield reaching upto the anterior end of trochanter I. pyrusae
— Rostral shield reaching upto the middle of femur I. 23

23. Setae on trochanter I-IV 1-1-2-1, on tibia 5-5-3-3 ; ludhianaensis
— Setae on trochanter I-IV 1-1-2-2 ; on tibia 4-4-3-3. pruni

24. Dorsal body setae lanceolate. 25
— Dorsal body setae not lanceolate, 26

25. Dorsum with broad ridges and furrows. ixorae
— Dorsum with simple but prominent ridges... ... fici

26. Second palpal segment as long as broad 27
— Second palpal segment considerably longer than broad 28

27. Rostral shield extending beyond the middle of femur I faresianus
— Rostral shield extending slightly above the anterior end of trochanter acacil

28. Second palpal segment with false segments; propodosoma with semicircular linings in the middle indicus
— Second palpal segment with false segmentations; propodosoma with irregular pattern of transverse and longitudinal reticulations amygdalusae

106. Tenuipalpus aboharensis Sadana & Chhabra

Diagnosis: Hysterosoma with flagellate dorsolateral setae, 4 pairs of nonflagellate caudal setae without a differentiated expansion anterior
to coxae III. Gnathosoma with a ventral seta. Dorsum with a few thin reticulations. Propodosomal setae 3 pairs, I and II minute, III lanceolate. Lateral setae 6 pairs, II and III shorter than the distance between II and III and III and IV, respectively, IV longer than distance between IV and V. Ventral propodosomal portion without striations. Ventral and genital plates without striations.

Host: *Punica granatum*.

Distribution: *India*: Punjab.

Remarks: No economic importance of this species is known.

107. **Tenuipalpus acacii** Maninder & Ghai

Diagnosis: Rostral shield bifurcate and remaining below the middle of femur I; hysterosoma with transverse broken lines in medio-posterior portion and longitudinal line laterally all along its length; hysterosoma with 6 pairs of dorsolaterals and 3 pairs of dorsocentrals, all setae on dorsum serrate.

Host: *Acacia arabica*.

Distribution: *India*: Delhi.

Remarks: This species is not known to have any economic importance.

108. **Tenuipalpus amygdalusae** Maninder & Ghai

Diagnosis: Propodosoma with irregular pattern of longitudinal and transverse ornamentation; hysterosoma with similar type of ornamentation as in propodosoma; 6 pairs of dorsolaterals and 3 pairs of dorsocentral hysterosomals present. All setae on dorsum narrowly lanceolate, serrate.

Host: *Amygdalus communis*.

Distribution: *India*: Maharashtra.

Remarks: No economic importance of this mite is known.
109. **Tenuipalpus crassus** André

Diagnosis: Hysterosoma with 3 pairs of non-flagellate setae caudally. Podosoma with 3 or 4 pairs of posterior medioventrals.

Host: *Garcinia* sp.

Distribution: INDIA: Karnataka; outside India: California, Oregon.

110. **Tenuipalpus cissampelosa** Maninder & Ghai

Diagnosis: Propodosoma having irregular, broken, longitudinal and transverse striae; hysterosoma with longitudinal striations medially in metapodosomal region. Six pairs of dorsolaterals and 3 pairs of dorsocentrals; all setae on dorsum slightly lanceolate and serrate.

Host: *Cissampelosa parcira*.

Distribution: INDIA: Delhi.

Remarks: It is not known to have any economic importance.

111. **Tenuipalpus dimensus** Chaudhri

Diagnosis: Propodosoma with reticulations thick walled, polygonal cells having membranous integument covering majority of propodosoma; thick transverse striations laterally; hysterosoma reticulate with thick walled polygonal cells in the middle whereas they become elongated marginally and caudally. A few striations present laterally; 6 pairs of dorsolateral hysterosomals and 3 pairs of dorsocentral hysterosomals present.

Hosts: *Pyrus malus, P. persica*.

Distribution: INDIA: Delhi; outside India: Pakistan.

112. **Tenuipalpus faresianus** Maninder & Ghai

Diagnosis: Propodosoma with transverse broken striations in posteromedian and anteromedian regions and longitudinal broken
striations on the outer portion. Hysterosoma with prominent longitudinal, broken striations in the anteromedian and all along its lateral sides; transverse broken striations at posteromedian region. Six pairs of dorsolateral hysterosomals and 3 pairs of dorsocentral hysterosomals present.

Host: *Acacia farnesiana*.

Distribution: *India*: Delhi.

Remarks: This mite is not known to cause any damage to its host. No work has been done on its bionomics.

113. *Tenuipalpus fici* Maninder & Ghai

Diagnosis: Propodosoma with some prominent broken lateral lines, a few transverse lines towards anterior end; hysterosoma with some prominent lateral longitudinal lines along its length. Six pairs of dorsolateral hysterosomals and 3 pairs of dorsocentrals present, all setae on dorsum broadly lanceolate and serrate.

Host: *Ficus carica*.

Distribution: *India*: Delhi.

Remarks: No economic importance of this species is known.

114. *Tenuipalpus granati* Sayed

Diagnosis: Dorsal body striations consist of a few longitudinal markings. Propodosoma with 2 pairs of posterior medioventrals; hysterosoma with 1 pair of dorsocentrals.

Distribution: *India*: Delhi; outside India: Egypt, Greece, Georgian S. S. R.

Remarks: It has been recorded casually without doing any damage to its host.
115. **Tenuipalpus hastaligni** DeLeon

Diagnosis: Hysterosoma with dorsocentals minute and setiform. Opisthosoma with medioventral and genital setae nude; hysterosoma with differentiated expansion anterior to coxae III; anterior expansion of hysterosoma conical; hysterosoma with II dorsolateral longer than distance between II and III dorsolaterals; III dorsal propodosomals very attenuate and about 1/2 as long as distance between its base and posterior margin of propodosoma.

Host: Undet. plant.

Distribution: INDIA: Andaman Nicobar Isl.; outside India: Florida.

Remarks: This mite is of no known economic importance.

116. **Tenuipalpus indicus** Maninder & Ghai

Diagnosis: Propodosoma with transverse, broken striations giving semicirculate appearance at anteromedian end, longitudinal broken striations laterally below eyes; hysterosoma with transverse dorso-median and lateral longitudinal broken lines, all setae on dorsum serrate; 3 pairs of medio-ventrals.

Host: *Acacia farnesiana*.

Distribution: INDIA: Haryana.

Remarks: It has not been reported to cause any damage to its host.

117. **Tenuipalpus ixorae** Maninder & Ghai

Diagnosis: Propodosoma with transverse ridges and furrows at anterior and posteromedian position and longitudinal ridges and furrows on rest of regions. Hysterosoma with prominent ridges and furrows. All setae on dorsum broadly lanceolate and serrate; 3 pairs of medio-ventrals.

Host: *Ixora parviflora*.

Distribution: INDIA: U. P.
Remarks: So far this mite is not known to have any economic importance.

118. Tenuipalpus lalbaghensis Channa Basavanna & Lakkundi

Diagnosis: Hysterosoma with 1 pair of flagellate and 3 pairs of non-flagellate dorsolateral setae; single pair of posterior medioventral setae; 3 pairs of tuberculate and serrate dorsocentral hysterosomals, gradually reducing in length from first to third.

Host: _Artocarpus integrifolia._

Nature of damage: The feeding induces yellowing of leaves.

Bionomics: The population is fairly high during October (Channa Basavanna & Lakkundi, 1977).

Distribution: INDIA: Karnataka.

119. Tenuipalpus caudatus (Dugès)

Diagnosis: In female, hysterosoma with penultimate dorsolateral seta flagellate, hysterosoma with 4 pairs of non-flagellate setae caudally; propodosoma with 1 pair of anterior medioventral and 1 pair of posterior medioventrals; dorsocentral hysterosomals well developed except 3rd pair which is minute.

Hosts: _Acacia arabica_; outside India: _Viburnum_ sp.

Distribution: INDIA: Punjab; outside India: Europe.

Remarks: No economic importance of this species is known.

120. Tenuipalpus ludhianaensis Sadana & Chhabra

Diagnosis: Hysterosoma with flagellate dorsolateral setae and 4 pairs of nonflagellate caudal setae; gnathosoma with a pair of ventral setae. Dorsocentral hysterosomals 3 pairs, anterior medioventral metapodosomal setae 1 pair; posterior medioventral metapodosomal setae 2 pairs. Dorsum with polygonal reticulations. Second dorsolateral hysterosomal pair not reaching upto the base of 3rd dorsocentral
pair. Rostral shield reaching upto middle of femur I. Setae on trochanters I-IV 1-1-2-1.; on tibia 5-5-3-3.

Hosts: *Pyrus communis, Melia azedarach.*

Distribution: INDIA: Punjab.

Remarks: Economic importance of this species is not known.

121. *Tenuipalpus mustus* Chaudhri

Diagnosis: Hysterosoma with flagellate dorsolateral seta and 4 pairs of nonflagellate caudal setae; hysterosoma without differentiated expansion anterior to coxae III. Gnathosoma with a pair of ventral setae. Dorsocentral hysterosomal setae 3 pairs, anterior medioventral metapodosomal setae 1 pair. Posterior medioventral metapodosomal setae 1 pair. Dorsum with transverse striations.

Hosts: *Xanthium* sp., *Tagetes erecta, Melia azedarach.*

Distribution: INDIA: Punjab; outside India: Pakistan.

122. *Tenuipalpus micheli* Lawrence

Diagnosis: Hysterosoma with penultimate dorsolateral setae flagellate, and with 4 pairs of nonflagellate setae caudally; propodosoma with 1 pair of anterior medioventrals and 1 pair of posterior medioventrals. Hysterosoma with dorsocentrals minute and setiform; opisthosoma with medioventral and genital setae nude.; hysterosoma with a differentiated expansion anterior to coxae III.

Hosts: *Syzygium* sp.; outside India: *Chaetacme* sp.

Distribution: INDIA: Karnataka, Andaman Isl.; outside India: Natal.

Remarks: It is of no economic importance.

123. *Tenuipalpus pernicis* Chaudhri, Akbar & Rasool

Diagnosis: Three pairs of dorsocentral setae; posterior medioventral metapodosomal setae 1 pair; 2 pairs of anterior medioventral
metapodosomal setae; dorsal setae setiform, serrate; rostral shield with lobes on each sides; lateral setae VI broadly lanceolate.

Hosts: *Trianthema microphila, Calotropis procera.*

Distribution: **India**: Delhi; **outside India**: Pakistan.

Remarks: No economic importance of this species has been reported and no work has been done on its bionomics.

124. *Tenuipalpus pruni* Maninder & Ghai

Diagnosis: Hysterosoma with 4 pairs of nonflagellate caudal setae; gnathosoma with a pair of ventral setae; 3 pairs of dorsocentral hysterosomal setae; anterior medioventral metapodosomal setae 1 pair. Dorsum with polygonal reticulations, II dorsolateral hysterosomals not reaching up to base of III dorsolateral pair. Rostral shield reaching up to middle of femur I.

Host: *Prunus persica.*

Distribution: **India**: Himachal Pradesh.

Remarks: This species has so far no known economic importance.

125. *Tenuipalpus punicae* Pritchard & Baker

Diagnosis: Hysterosoma with the penultimate dorsolateral seta flagellate and 4 pairs of nonflagellate setae caudally. Propodosoma with 1 pair of posterior medioventrals and 1 pair of anterior medioventrals. Hysterosoma with dorsocentrales minute and setiform; opisthosaoma with medioventral and genital setae nude; hysterosoma without a differentiated expansion anterior to coxae III; propodosoma rugose mediodorsally. Genu II and I each with a seta on outer face.

Hosts: *Punica granatum, Psidium guajava, Prunus* sp. *Tecoma stans.*

Nature of damage: This mite occurs on the under-surface of leaves as well as on twigs. The small colonies are usually seen near the midrib. The feeding on the leaves causes the appearance of brownish patches. Such leaves ultimately fall off.

Bionomics & Control: No information in these regards are available.
Distribution: INDIA: Punjab, Meghalaya, Delhi; outside INDIA: Spain, Palestine.

126. Tenuipalpus pyrusae Maninder & Ghai

Diagnosis: Hysterosoma with 4 pairs of nonflagellate setae caudally, gnathosoma with a pair of ventral setae, 3 pairs of dorsocentral hysterosomals setae, anterior medioventral metapodosomal setae 1 pair. Dorsum with polygonal reticulations. Second dorsolateral hysterosomal pair not reaching upto the base of 3rd dorsolateral pair. Rostral shield reaching upto anterior end of trochanter I.

Hosts: Pyrus malus, Pyrus communis.

Distribution: INDIA: Delhi.

Remarks: This mite is of no known economic importance.

127. Tenuipalpus quadrisetosus Lawrence

Diagnosis: Hysterosoma without a flagellate dorsolateral seta. Dorsocentral hysterosomals well developed.

Host: Undet. plant.

Distribution: INDIA: Andaman Isl.; outside India: Africa.

Remarks: No economic importance of this species is known.

128. Tenuipalpus tetrasygae DeLeon

Diagnosis: Hysterosoma with penultimate dorsolateral seta flagellate and with 4 pairs of nonflagellate caudal setae. Podosoma with 1 pair of anterior medioventrals and 1 pair of posterior medioventrals. Hysterosoma with dorsocentrals well developed, narrowly lanceolate and third pair being widened.

Hosts: Undet. plant; outside India; *Tetrasygia*.

Distribution: INDIA: Andaman Isl.; outside India: Florida.

Remarks: This mite causes no damage to its host. No work has been done on its bionomics.
129. Tenuipalpus coimbatorensis Mohansundaram

Diagnosis: Rostrum reaching up to half the length of femur I. Palpus 3 segmented. Propodosoma with a few wavy lines on either side with a clear area in the middle; 3 pairs of dorsal propodosomal setae. Hysterosoma with longitudinal lines and a few cross lines with 3 pairs of dorsocentrales, 1 pair of humeral, 6 pairs of dorsolaterals, penultimate setae flagellate, all setae on dorsum lanceolate and serrate. Venter with a pair of medioventral propodosomals; 2 pairs of anterior medioventral propodosomals, a pair of pregenitals on ventral plate, 1 pair of genitals and 2 pairs of anal setae.

Host: Undet. plant.

Distribution: India: Tamil Nadu.

Remarks: No economic importance of this species is known.

130. Tenuipalpus ghaii Mohansundaram

Diagnosis: Rostrum reaching up to more than 1/2 the length of femur I. Palpus 3 segmented. Rostral shield bifurcate reaching up to basal 0.3 of femur I. Propodosoma with a reticulate pattern in the middle and diagonal lines in posterior corners. Hysterosoma with 3 pairs of dorsocentral hysterosomals, 1 pair of humerals; 6 pairs of dorsolaterals, penultimate setae flagellate, all setae lanceolate and serrate.

Host: Undet. plant.

Distribution: Tamil Nadu.

Remarks: No economic importance of this species is known.

131. Tenuipalpus laminasetae Mohansundaram

Diagnosis: Rostrum reaching more than 1/2 the length of femur I. Palpus 3 segmented. Rostral shield bifurcate reaching more than 1/2 the length of femur I, with 3 pairs of dorsal propodosomal setae, laminate with spine like protuberances. Hysterosoma with wavy lines forming a characteristic pattern of cross lines, 3 pairs of dorsocentral, 1 pair of humerals, 6 pairs of dorsolaterals, all laminate with spines except
the penultimate dorsolaterals. Venter with a pair of medioventral propodosomals, a pair of anterior medioventral metapodosomals, a pair of posterior medioventral metapodosomals.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

Remarks: No economic importance of this species is known.

132. **Tenuipalpus malligai** Mohansundaram

Diagnosis: Rostrum reaching up to half the length of femur I. Palpus 3 segmented. Rostral shield bifurcate reaching up to the basal portion of femur I. Propodosoma with wavy cross lines in the middle. Hysterosoma with 3 pairs of dorsocentrals, 1 pair of humerals, 6 pairs of dorsolaterals; penultimate setae flagellate, all setae on dorsum lanceolate and serrate. Venter with a pair of medioventral propodosomals, a pair of anterior medioventral metapodosomals, a pair of paragenital setae, genitoventral plate with transverse striae.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

Remarks: No economic importance of this species is known.

133. **Tenuipalpus punjabensis** (Maninder & Ghai)

Diagnosis: Propodosoma with transverse ornamentation medially and longitudinal laterally. Hysterosoma with transverse and longitudinal ornamentations; 5 pairs of dorsolaterals, of these, penultimate pair flagellate, all setae on dorsum lanceolate and serrate, rostral shield with lateral angular extension.

Host: *Nerium indicum*.

Distribution: INDIA: Punjab.

Remarks: No economic importance of this species is known.

134. **Tenuipalpus tectonae** Mohansundaram

Diagnosis: Reddish mite; rostrum reaching up to basal 0.3 length of femur I, palpus 3 segmented. Rostral shield bifurcate reaching just
below the basal 0.3 length of femur I. Hysterosoma with reticulate pattern in middle and elongated wavy lines on sides, 3 pairs of dorso-centrals, 1 pair of humerals, 6 pairs of dorsolaterals; penultimate setae flagellate and coarse, all setae on dorsum lanceolate and serrate. Venter with 2 pairs of medioventral propodosomals, a pair of anterior medioventral metapodosomals, 2 pairs of posterior medioventral metapodosomals between coxa IV, a pair of pregenital setae on ventral plate. Genitoventral plate with transverse striae.

Host: Tectona grandis.

Distribution: INDIA: Tamil Nadu.

Remarks: No economic importance of this species is known.

135. **Tenuipalpus yousefi** Nassar & Ghai

Diagnosis: Rostral shield notched reaching beyond the base of trochanter I, propodosoma with transverse thick line, striations on the middle, longitudinal, broken striation laterally below eyes; hysterosoma with transverse striations dorsomedian and longitudinal broken lines laterally. Dorsal body setae minute and setiform. Propodosoma with 3 pairs of setae; hysterosoma with 1 pair of humerals and 5 pairs of dorsolateral setae. Gnathosoma with 1 pair of minute setae. Venter provided with a pair of short anterior medioventral metapodosomals, a pair of posterior medioventral metapodosomals, in addition, 1 pair of ventral, 2 pairs of genitals and 2 pairs of anal setae present.

Host: Psidium guajava.

Distribution: INDIA: Delhi.

Remarks: No economic importance of this species is known.

Genus **Terminalichus** Anwarullah & Khan

Key to the Species of Terminalichus

1. Anterior pair of dorsocentral setae present... ... *panajiensis*
 — Dorsocentral setae absent. 2
2. Hysterosoma with prominent furrow. 3
 — Hysterosoma without furrow. *karachiensis*
3. Second pair of prodoposomal setae more than 3 times as long as third pair of propodosomal setae.

— Second pair of propodosomal setae less than 2 times as long as third pair of propodosomal setae.

136. **Terminalichus delhiensis** Maninder & Ghai

Diagnosis: Rostrum long, reaching to the distal end of femur I, palpus 3 segmented, basal segment very small, second longest with a serrate seta, third short. Rostral shield bifurcate not reaching middle of femur I, propodosoma with few longitudinal broken lines and 3 pairs of setae. Hysterosoma with irregular lateral furrow all along its length, a pair of humerals and 4 pairs of dorsolaterals, dorsocentrals absent. Venter with a pair of medioventral propodosomals, a pair of anterior medioventral metapodosomals; 2 pairs of genitals and 2 pairs of anal setae present.

Host: *Terminalia arjuna*.

Distribution: INDIA: Delhi.

Remarks: No economic importance of this species is known.

137. **Terminalichus karachiensis** Anwarullah & Khan

Hosts: *Terminalia arjuna, Psidium guajava*; outside **INDIA:** *Terminalia catappa*.

Remarks: No economic importance of this species is known.

Distribution: INDIA: Delhi; outside INDIA: Pakistan.

138. **Terminalichus panajiensis** Maninder & Ghai

Diagnosis: Rostrum long reaching to the distal end of femur I, palpus 3 segmented, basal segment very small, second longest with a serrate seta anteriorly and the third short nearly 1/3 of second with a spine like terminal seta. Rostral shield bifurcate reaching to the middle
of femur I. Propodpsoma with broken longitudinal lines, 3 pairs of dorsal setae. Hysterosoma with irregular lateral furrow along its length, a pair of humeral, 4 pairs of dorsolaterals, one pair of dorsocentrals; a pair of dorsal scale-like markings at posteromedian position. Venter with a pair of medioventral propodosomal, a pair of anteromedioventral metapodosomal, a pair of posteromedioventral metapodosomal; 2 pairs of genitals and 2 pairs of anal setae.

Host: Terminalia sp.

Distribution: India: Goa.

Remarks: No economic importance of this species is known.

139. Terminalichus serratus Nassar & Ghai

Diagnosis: Rostrum reaching to the distal end of femur I, rostral shield bifurcate, not reaching up to middle of femur I. Propodosoma without any striae, while hysterosoma with a regular lateral furrow. Dorsal setae slender strongly serrate; propodosoma with 3 pairs of setae; second about 2 times the length of first pair and 3 times as long as 3rd. Hysterosoma with 1 pair of humerals, 4 pairs of dorsolaterals and no dorsocentrals. Palpus 3 segmented. Venter with a few broken transverse striae at the position of anterior medioventral setae. Ventrogenital plate extending behind the posterior margin of coxae IV.

Host: Psidium guajava.

Distribution: India: Delhi.

Remarks: No economic importance of this species is known.

Sup. family: Eriophyoida Nalepa

History: Murray (1877) erected the family Phytoptidae based on the genus Phytoptus Dujardin (1851). Nalepa (1898) adopted the name Eriophyidae based on Eriophyes Siebold (1850). The important contributions in this family came from Nalepa (1891, 1918), Keifer (1938-1966), Jeppson et al. (1975), etc. The other taxonomic literatures have been excellently reviewed by Channa Basavanna (1966) and the interested workers may refer to the same for further information.

Diagnosis: Minute, elongate, worm like mites, having only 2 pairs of legs in immature and adults, placed near the anterior end. Body divided into short cephalothorax, covered over dorsally and on the
sides by the cephalothorasic shield and a longer tapering abdomen with annulation which may or may not show dorsoventral differentiation. Rostrum anteriorly projecting or downcurved with needle like or lancet like chelicerae. Genital opening transverse. Body setation is reduced to minimum.

Morphological Characters of Taxonomic Importance

Body is differentiated into cephalothorax and abdomen.

Cephalothorax: It consists of rostrum and 2 pairs of legs. It is covered over dorsally and laterally by a shield (Figs. 213, 214) and the structure and nature of shield design are of taxonomic importance. In a typical case, the shield bears a median longitudinal line (Fig. 217) dividing the shield into right and left halves, two admedian lines, one on either side of the median line and one or more submedian lines on each side. These lines may be complete extending from anterior to rear margin of shield or may be incomplete. The lines may be simple, sinuate, branched and so on. In addition, there may be lines on the side of the shield. The shield bears 2-4 tubercles each with a seta, in some they may be absent. The number of setiferous tubercles serves as important taxonomic character. The rostrum is characteristic and beak like and it also forms an important character. Chelicerae needle like (Figs. 213, 214), straight or evenly curved. The first segment of palpi fused to form pharyngeal pump. The pump is held by two arms called 'Pump braces' and from the upper anterior end of pump arises a curved stylet called 'Oral stylet' which extends anteriorly. The cheliceral stylets lie within a membraneous structure called 'Cheliceral sheath'. On the upper anterior edge of the proximal segment, there are two significant pairs of structures, a spine on each side curving centrally over the chelicerae, termed together 'Cheliceral retainer' and just below and outside each is a basal seta. Legs 6-segmented (Fig 221). Coxal surface may be smooth or ornamented with lines, stripes and granules and all these along with leg chaetotaxy serve as important taxonomic characters. Tarsus is provided with 2 subdorsal setae towards the proximal end called 'Claw' and 'Feather claw' and whether the latter is divided or simple is of generic importance and the number of rays on feather claw helps in species diagnosis.

Abdomen: It is elongate (Figs. 213, 214), tapering caudally, showing series of annulations, which may form complete ring or may be distinguished into tergites and sternites. The annular rings are
ornamented with tubercles, microtubercles, and this character is of specific importance. Abdominal setae exhibit a typical number and arrangement which consists of a pair of lateral, 3 pairs of ventral setae, a pair of long caudal setae, a pair of accessory setae and in some cases a pair of subdorsal setae. The relative length of setae have importance in recognition of species while the number of abdominal setae has generic significance.

Genitals: The female genital opening is transverse, located anteriorly and is covered with genital flap (Figs. 216, 222), which may bear externally longitudinal or crescentic ribs (Fig. 222) or stripes or granular or smooth. The cover flap design helps in generic diagnosis. Internally, there is a structure where the spermatheca appears to be attached and is called 'Internal genitalia' (Fig. 216) or 'Internal apodeme.' The length of stem and general shape are of generic significance. A pair of genital setae is present on posterior lateral border of genitalia. Their length is also of much importance.

Key to the Families of Eriophyoidea (modified from Jeppson et al., 1975)

1. Gnathosoma with 3 or 4 shield setae or rarely with dorsal seta pair minute or absent, all feather claws simple, female genital cover flap not ribbed; no erineum is formed, may be vagrants ... **Fam. Nalepellidae**
 - Gnathosoma with 2 rear (dorsal) setae or none, feather claw simple or divided, female genital cover flap with ribs or smooth; may cause erineum or vagrants ...
2. Rostrum of various sizes usually small in comparison to body size; feather claw small, simple or divided. Female genital cover flap usually ribbed; mostly gall makers or rust mites, cause considerable damage ... **Fam. Eriophyidae**
 - Rostrum large in comparison to body; feather claw often large, simple or deeply divided; female genital cover flap smooth, less often ribbed; mostly vagrants, rarely cause much damage to plants. ... **Fam. Rhyncaphytoptidae**

Family **Nalepellidae** Newkirk & Keifer

Diagnosis: Cephalothoracic shield with 3-4 shield setae, or rarely with dorsal pair seta minute or absent. Rostrum may be large or
Figs. 213-214: Diagram of Eriophyidae showing parts of taxonomic importance.

Fig. 215: Crescentic scoring in eriophyid mite.
Fig. 216: Internal female genital organ.
downcurved containing short form oral stylet. Legs with standard setae, often foretibial spur present. All feather claw simple. Abdomen with all standard setae. Female genital cover flap not known to be ribbed. Spermathecal tubes extending diagonally ahead from central rear attachment.

Figs. 217-222: Different parts of Eriophyidae of taxonomic importance:
Key to the Subfamilies of Nalepellidae (modified from Jeppson et al., 1975)

1. One central anterior shield seta; dorsal pair present or absent; internal spermathecal tubes 3-5 times longer than spermatheca; bodies either worm-like and with subdorsal thanosomal seta present or lacking these, and usually more robust. Subfam. Nalepellinae

 — Four shield setae, rear pair rarely minute, spermathecal tubes short. 2

2. Body worm-like, with abdominal rings, sub-equal dorsoventrally, rear pair of shield setae pointing up, if short, ahead, if long; subdorsal abdominal seta pair present. Subfam. Phytoceptellinae

 — Body more fusiform and often flattened, abdominal rings with lateral tergal-sternal differentiation; subdorsal anterior thanosomal seta pair present or absent. ... Subfam. Sierraphytoptinae

Subfamily Nalepellinae Roivanien

Genus Neophantacrus Mohansundaram

(Figs. 223-225)

140. Neophantacrus mallotus Mohansundaram

Diagnosis: Shield triangular, dorsal tubercles at rear shield margin. Shield with faint markings, median line represented at rear end; admedians converging anteriorly; submedians joined with admedians at the posterior 1/3 and extending forward, rest of the shield area clear. Abdomen with 28 tergites, anterior 3 tergites normal, followed by 7 upward projecting lobes intervened with one or two rings. Sternites 70, fine elongate, microtuberculate. Female genital coverflap with 10-12 faint longitudinal lines.

Host: Mallotus philippinensis.

Distribution: India: Tamil Nadu.

Remarks: No economic importance of this species is known.
Genus Mackiella Keifer
(Figs. 226-228)

141. Mackiella borasis Mohansundaram

Diagnosis: Rostrum uniformly curved forward; dorsal setae pointing upward and forward; frontal setae pair present at the anterior...
shield margin. Shield area clear except for the short incomplete admedians and one pair of submedians. Feather claw 5-6 rayed. Abdomen with about 65 rings uniformly microtuberculate. Female genital coverflap without lines.

Host: *Borassus flabellifer*.

Distribution: India: Tamil Nadu.

Remarks: No economic importance of this species is known.

Subfamily Phytoptellinae Newkirk & Keifer

Genus *Anchiphytoptus* Keifer

(Figs. 229-231)

142. *Anchiphytoptus giganticus* Mohansundaram

Diagnosis. It measures 500 microns. Rostrum long, evenly projecting forward and downward. Shield area clear except for the faint representations of the median, admedians and one submedian in rear part of the shield. Dorsal seta pointing upward, dorsal tubercle just away from shield margin. Feather claw 5 rayed. Abdomen with about 88 rings, uniformly microtuberculate, microtubercles elongated.

Host: *Cyperus rotundus*.

Distribution: India: Tamil Nadu.

Remarks: No economic importance of this species is known.

Family Eriophyidae Nalepa

Eriophyidae Nalepa, 1898, *Das Tierreich*, 4 : 5.

Key to the subfamilies of Eriophyidae (after Jeppson et al., 1975)

1. Tibiae reduced or completely fused with tarsi; foretibiae never with seta. 2
 — Tibiae always amply distinct from tarsi; foretibial seta nearly always present except in a few genera. 3
2. Spatulate or shovel shaped projections present on either rostral termen or on tarsi; legs when without spatulate appendages very stout, segments shortened or combined; feather claws large.

— Lacking spatulate projections for burrowing; legs of average thickness; forecoxae fused across centre line with sternal line faint or absent; first setiferous coxal tubercle usually absent; feather claws relatively small.

3. Genitalia, specially female genitalia noticably projecting from thanosomal venter, appressed to coxae, usually separating coxae more than normal; anterior female internal apodeme bent up and appearing shortened; usually present as heavy transverse line in ventral view; ribs of female coverflap typically in two uneven ranks; forecoxae usually connete at center line; sternal line shortened; coxae, specially forecoxae with curving lines outlining produced coxal setiferous tubercles. This is well distributed group that moved independently into various habitats on plants. This group included rust mites, bud mites, erineum mites and gall mites.

— Genitalia lying more on level on thanosomal venter, not appressed to coxae and coxae not usually spread apart; sternal line most often of moderate length; internal anterior female apodeme extending moderate distance forward; coxae often ornamented with granules but curved lines when present, weak. Female genital coverflap variably embellished, ribs less often in two ranks; dorsal setae rarely absent from shield.

4. Body worm like, thanosomal ring subequal dorsoventrally, at least on anterior 1/2 or 2/3; shield typically lacking anterior lobe or with slight projection over rostrum bases, if anterior shield projection present over rostrum, then this extension narrow, basally flexible and combined with narrow thanosomal rings.

— Body fusiform and fitted for exterior living; shield usually broad-based and rigid anterior lobe over rostrum; thanosome typically divided laterally into broad and heavy dorsal tergites and narrow and soft sternites; if no...
anterior lobe present or only a slight one, then some form of tergal-sternal differentiation discernible, at least in larger dorsal microtubercles; if no dorsoventral contrast present, then broad shield lobe present. Phylocoptinae

Subfamily Nothopodinae Keifer

Key to the Genera of Nothopodinae (modified from Jeppson et al., 1975)

1. Blunt seta present near the claw of all legs. Neocosella
 → Blunt seta absent. 2

2. First setiferous coxal tubercle and seta present; forecoxae weakly divided; dorsal shield tubercles ahead of rear shield margin and directing setae up and centrada; foretibiae completely fused with tarsi. 3
 → First setiferous coxal tubercle and seta missing, forecoxae either separate or fused along mid-line. 4

3. Dorsal shield tubercle near the rear margin, tibial segment clear, tarsal seta absent; abdomen with broader smooth tergites and narrower 3 times numerous microtuberculate sternites. ... Neocolopodacus
 → Not with above combination of characters. Colopodacus

4. Dorsal tubercle and setae absent from shield, foretibiae distinct but short and without seta. ... Anthopoda
 → Dorsal setae present; foretibiae either fused with tarsi or but slightly distinct. 5

5. No separate projection over rostrum base, dorsal tubercle set somewhat near shield margin, but either tubercle axes longitudinal to body or setae projecting up, foretibiae fused, forecoxae fused along mid-line. Notopoda
 → Dorsal shield with short projection over rostrum. 6

6. Dorsal tubercles on rear shield margin, slightly produced, projecting setae divergently to rear; forecoxae fused across along center line, foretibiae fused with tarsi. Floracarus
 → Dorsal tubercle ahead of rear shield margin, usually projecting dorsal setae up, anterior
shield lobe short but with broad base and with transverse furrows, foretibiae slightly discernible on leg underside

7. Forecoxae separated by short or moderately long sternal line...
 — Forecoxae united with each other and more or less united with subdorsal plate, coxal surface granular or with minute spinules...

Genus Anthopoda Keifer
(Figs. 232-233)

Key to the Species of Anthopoda

1. Feather claw 4 rayed...
 — Feather claw 5 rayed...

2. Genital cover flap with basal granulation and distally with crescentic scorings...
 — Genital cover flap with basal granulation only...

143. Anthopoda fici Mohansundaram

Diagnosis: Shield with clear pattern of lines. Median nearly complete except for the anterior tip, admedian complete with cross lines joining with medians at 3 points; submedian forming network of cells on either sides, sides of shield with scorings. Dorsal tubercles and setae absent. Feather claw 4 rayed. Abdomen with about 68-70 rings, uniformly microtuberculate, microtubercles elongated dorsally and dot like ventrally. Female genital cover flap with basal granulations and distally with crescentic scorings.

Host: Ficus sp.

Distribution: INDIA: Tamil Nadu.

Remarks: No economic importance of this species is known.

144. Anthopoda deviarensis Mohansundaram

Diagnosis: Shield with a clear pattern of lines, median represented in the rear half of the shield, forked anteriorly and joining the
admedians, admedians nearly complete, forked anteriorly with a cross line on the rear half joining with the median. Feather claw 4 rayed. Abdomen with about 64 rings with elongate microtubercles. Genital coverflap with basal granulations.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

145. Anthopoda wightianae Mohansundaram

Diagnosis: Shield with clear pattern of lines; median nearly complete, admedians wavy, with cross lines connecting with the median near the rear end, submedian wavy with forkings. Feather claw 5 rayed. Abdomen with 70 rings with elongated microtubercles. Genital coverflap with basal granulations and without lines.

Host: Litsea wightiana.

Distribution: INDIA: Tamil Nadu.

Genus Colopodacus Keifer

(Figs. 234-235)

Key to the Species of Colopodacus

1. Feather claw 4 rayed.
 — Feather claw more than 4 rayed.
2. Genital coverflap smooth
 — Genital coverflap with lines or granular.
3. Genital coverflap with numerous lines in two rows.
 — Genital coverflap with basal half granular and distal half clear.
4. Feather claw 5 rayed.
 — Feather claw 6 rayed.
5. Female genitalia enlarged, coverflap finelygranular
 — Female genitalia not enlarged, coverflap smooth

2 cinnamomae
combretus
walayarensis
eugeniae
gynalaxtae
bengalensis
146. Colopodacus bengalensis Mohansundaram

Diagnosis: Shield with a clear pattern of lines, median complete except for the anterior end, admedians complete nearly parallel to the median with cross lines connected with median at three points fairly equidistant along the length. Feather claw 5 rayed. Abdomen with 50-55 smooth tergites and an equal number of microtuberculate

Figs. 234-235: *Colopodacus* sp.
Figs. 236-238: *Cosella* sp.
Figs. 239-241: *Disella* sp.
Figs. 242-244: *Floracerus* sp.
sternites, microtubercles elongated and placed along the posterior border of each ring. Genital cover flap smooth.

Host: *Ficus bengalensis*.

Distribution: **INDIA**: Tamil Nadu.

147. **Colopodacus cinnamomae** Mohansundaram

Diagnosis: Shield with admedians represented with wavy lines, complete submedians forming the border of the shield. Dorsal tubercle away from shield margin. Feather claw 4 rayed. Coxae broadly joined, all three setiferous tubercles present. Abdomen with 30 smooth tergites and 55 microtuberculate sternites, microtubercles minute and elongated. Female genital cover flap with numerous fine lines in two rows.

Host: *Cinnamomum* sp.

Distribution: **INDIA**: Tamil Nadu (?), Tengumara da.

148. **Colopodacus combretus** Ghosh & Chakrabarti

Diagnosis: Shield semicircular, without distinct anterior lobe, median line complete; admedian lines sinuate arising from anterior margin of shield, admedian lines meet the median line by three oblique lines on the middle of shield; submedian lines two. Feather claw 4 rayed. Patella with setae. Genital cover flap smooth.

Host: *Combretum decundrum*.

Distribution: **INDIA**: West Bengal.

149. **Colopodacus eugeniae** Mohansundaram

Diagnosis: Shield with median line represented as a short line at midpoint of shield, admedian short, joined on the rear end, anteriorly a curved line, sides of shield clear, dorsal tubercle at rear margin of shield. Feather claw 6 rayed. Abdomen with 35 tergites, 65 microtuberculate sternites. Genital cover flap with 6-8 curved lines at the tip.

Host: *Eugenia* sp.

Distribution: **INDIA**: Tamil Nadu.
150. **Colopodacus gynalaxtae** Mohansundaram

Diagnosis: Shield with small lobes over the rostrum base, median nearly complete, admedians complete, submedians represented by sharp forked lines at about the midregion, anterior shield margin with 3 cells on either sides of abdomen. Feather claw 5 rayed. Abdomen with 35 tergites and 50 sternites, tergites with elongate microtubercles on the lateral sides, sternites with elongate microtubercles in the midregion. Female genitalia closely appressed to coxal base, genital coverflap fairly granular.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

151. **Colopodacus walayarensis** Mohansundaram

Diagnosis: Shield oval to semicircular, with a clear pattern; median represented in the posterior 0·67 with cross bars at about middle and anterior end connected with admedians; admedians wavy, complete, converging with a cross bar anteriorly; sides of shield with short wavy strokes and striations and granular. Feather claw 4 rayed. Abdomen with about 47 rings, tergites and sternites well differentiated, tergites smooth, sternites microtuberculate. Genital coverflap with basal half granular and distal half clear.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

Genus **Cosella** Newkirk & Keifer

(Figs. 236-238)

Key to the Species of Cosella

1. Dorsal setae directed up and lateral, genital coverflap with irregular furrow. *ichnacarpasia*
 — Dorsal setae directed up and inward, coverflap with granules. *fleschneri*
152. **Cosella fleschneri** (Keifer)

Diagnosis: Forecoxae fused which lack the first setiferous tubercles. Shield has slight anterior lobe and ornamented with open network of lines. Dorsal tubercle placed little ahead of rear shield margin and direct the setae up and inward. Feather claw 4 rayed. Abdominal rings moderately wide with fine elongate microtubercles. Forecoxae with fine granules extending up to suboral plate.

Host: Citrus.

Distribution: India: Meghalaya.

153. **Cosella ichnocarpasia** Mondal & Chakrabarti

Diagnosis: Shield semielliptical in dorsal view, with short anterior lobe. Shield design presents longitudinal line which are faint on middle portion of shield, median line almost absent or faintly present on anterior half, admedian distinct on anterior half; median and admedian connected by two oblique lines. Feather claw 4 rayed. Abdomen with 29-31 tergites, 47-50 sternites. Genital coverflap with few irregular furrows.

Host: *Ichnocarpus frutescens*.

Distribution: India: West Bengal.

Genus **Disella** Newkirk & Keifer

(Figs. 239-241)

154. **Disella tectona** Das & Chakrabarti

Diagnosis: Shield smooth, subtriangular, anterior blunt without distinct anterior lobe; eight large cells occupy the anterior margin, median line complete, arises from the junction of two median cells and touches the rear shield margin. Feather claw 4 rayed. Abdomen with 75-90 tergites, 80-100 sternites; sternites all microtuberculate and tergites less so. Genital coverflap with 8-10 longitudinal scorings.
Host: Tectona sp.

Distribution: INDIA: Bihar.

Genus Floracarus Keifer
(Figs. 242-244)

Key to the Species of Floracarus

1. Feather claw 5 rayed
 — Feather claw 4 rayed

2. Dorsal tubercle near rear shield margin
 — Dorsal tubercle away from shield margin

3. Dorsal setae minute (8 microns) pointing backward
 — Dorsal seta longer (17 microns) pointing backward and outward

4. Dorsal setae minute (10 microns) pointing upward and inward
 — Dorsal setae longer (18 microns) pointing upward and outward

155. Floracarus eugenifoliae Mohansundaram

Diagnosis: Shield with a clear pattern of lines, median represented in anterior half of shield, admedians complete with a cross line at the base of the median and joined posteriorly forming a circle. Feather claw 5 rayed. Abdomen with 85 rings, tergites smooth to faintly microtuberculate; sternites with microtubercles. Genital cover flap without lines and with basal granulations.

Host: Eugenia sp.

Distribution: INDIA: Tamil Nadu.

156. Floracarus pollachiensis Mohansundaram

Diagnosis: Female 165-170 long, shield broadly rounded anteriorly with a very short broad lobe over rostrum base. Medians and admedians complete with 3 cross lines connecting them; 1st, 2nd and
3rd submedians forming a network on the sides; sides of shield with fine scorings. Feather claw 4 rayed. Abdomen with 55 smooth tergites and 60 finely microtuberculate sternites.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

157. **Floracarus salvifoliae** Mohansundaram

Diagnosis: Shield blunt at front with a characteristic spiny protuberance over rostrum base, median complete, admedians slightly curved, complete two cross lines across the median line connecting the admedians. Feather claw 4 rayed. Abdomen with 40 smooth tergites, 50 finely microtuberculate sternites. Genital coverflap with basal granulations.

Host: *Alangium salvifolium*.

Distribution: INDIA: Tamil Nadu.

158. **Floracarus siruvaniensis** Mohansundaram

Diagnosis: Shield with clear pattern of lines, median, admedians complete, with 3 cross lines in between them; submedians represented in the anterior region forming cells. Feather claw 4 rayed. Abdomen with 55-60 rings; tergites smooth, sternites microtuberculate. Genital coverflap with two crescentic lines and granulations.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

159. **Floracarus sivakumarii** Mohansudaram

Diagnosis: Shield with a clear pattern of lines, median, admedian, submedian all present forming a network of cells, sides of shield granular. Abdomen with 60 rings uniformly microtuberculate. Genital coverflap granular.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.
Genus Neocosella Mohansundram
(Figs. 245-246)

160. Neocosella ichnocarpae Mohansundaram

Diagnosis: Shield with light 'U' shaped marking, otherwise clear; shield projecting over rostral base. Feather claw 4 rayed, characteristic bent seta present near feather claw. Abdomen with 28-30 smooth tergites, 35-37 microtuberculate sternites, microtubercles

Figs. 245-246: Neocosella sp.
Figs. 247-249: Necolopodacus sp.
Figs. 250-251: Nothopoda sp.
Figs. 252-253: Ectomerus sp.
elongate and widely placed. Genital coverflap with numerous wavy striations.

Host: *Ichnocarpus frutescens*.

Distribution: INDIA: Karnataka.

Genus *Neocolopodacus* Mohansundaram
(Figs. 247-249)

161. *Neocolopodacus mitragynae* Mohansundaram

Diagnosis: Shield overhanging rostral base. shield with clear pattern of lines, median absent, admedians nearly complete, first submedian represented at the central area of the shield diagonally, second submedian represented near dorsal tubercles, third submedian at shield margin with cross lines connecting first and second submedians. Feather claw 4 rayed. Abdomen with about 25 smooth tergites and 60 sternites with elongated microtubercles. Female genital coverflap basally granular, distally with about 16 lines.

Host: *Mitragyna tubulosa*.

Distribution: INDIA: Tamil Nadu (?)

Genus *Nothopoda* Keifer
(Figs. 250-251)

162. *Nothopoda kallarensis* Mohansundaram

Diagnosis: Shield with median line thin, wavy, admedian thick, and wavy, seen from whole length of shield ; submedians represented by faint line only at shield base, sides of shield with wavy lines formed by short thick strokes. Feather claw 4 rayed. Abdomen with 50-60 rings, uniformly microtuberculate. Female genital coverflap without any longitudinal ribs but with one or two crescentic furrows.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.
Subfamily Cecidophyinae Keifer

Key to the Genera of Cecidophyinae

1. Dorsal seta absent 2
 — Dorsal seta present 3

2. Dorsal tubercle placed far ahead of rear shield margin.
 — Dorsal tubercle elongate pointing backward with subapical arista like dorsal seta Epicecidophyes

3. Body robust fusiform and strongly tapering, shield with broad-based anterior basally flexible lobe; dorsal setae projecting to rear.
 — Body worm like, if anterior shield projection present, it is narrow and basally flexible; thanosomal ring subequal dorsoventrally. Gammaphytoptus

4. Shield with narrow basally flexible anterior projection over rostrum.
 — Shield lacking anterior projection over rostrum. Ectomerus

Genus Colomerus Newkirk & Keifer

163. Colomurus vitis (Pgst.)

Diagnosis: Light yellowish mite. Shield with numerous longitudinal lines; admedian lines complete and sinuate; several submedian longitudinal lines present. Dorsal tubercle set a little ahead of rear shield margin. Feather claw 5 rayed. First setiferous coxal tubercle on the forecoxae set slightly ahead of the anterior end of the sternal line. Female genitel coverflap strongly ribbed.

Host: Grape vine.

Nature of damage: This mite is known to infest axillary buds of grape vines in Punjab during January-February. However, no significant damage has been noticed.

Distribution: INDIA: Punjab.

Remarks: Gupta & Dhooria (1972) reported Pronematus elongatus in association with this mite.
Genus *Ectomerus* Newkirk & Keifer
(Figs. 252-253)

164. **Ectomerus chebulae** Mohansundaram

Diagnosis: Shield with a thin projection over the rostrum base and a clear pattern of lines. Medians and submedians broken near the rear end of the shield; first submedian covered and rarely complete; rest of the submedians short; sides of the shield with fine scorings. Coxae with all three setiferous tubercles; coxal area smooth. Abdomen with about 65 uniformly microtuberculate rings. Feather claw 6 rayed.

Host: *Terminalia chebula.*

Distribution: INDIA: Tamil Nadu.

Genus *Epicecidophyes* Mondal & Chakrabarti
(Figs. 254-256)

Key to the Species of Epicecidophyes

1. Feather claw 6 rayed. *indica*
 — Feather claw 5 rayed. *clerodendris*

165. **Epicecidophyes clerodendris** Mondal & Chakrabarti

Diagnosis: Shield subtriangular, with broad anterior lobe, shield design obscure, present only a number of longitudinal lines, median line absent, admedian lines sinuate, faint, arises from the base of the anterior lobe and ends posteriorly just in front of rear shield margin where it is connected with other admedians by transverse lines. Feather claw 5 rayed. Abdomen with 25-27 smooth tergites and 58-63 microtuberculate sternites. Genital coverflap with 10-12 longitudinal stripes.

Host: *Clerodendron viscosum.*

Distribution: INDIA: West Bengal.
166. *Epicecidophyes indica* Mondal, Ghosh & Chakrabarti

Diagnosis: Shield subtriangular with prominent anterior lobe,

Figs. 254-256: *Epicecidophyes sp.*
Figs. 257-259: *Neocecidophyes sp.*
Figs. 260-261: *Acalitus sp.*
Figs. 262-265: *Aceria sp.*
shield design not clearly discernible, median line complete, admedian line faintly present only on anterior half, submedian lines 3-4 in number. Dorsal tubercle ahead of rear shield margin. Feather claw 6 rayed. Abdomen with 23-25 smooth tergites and 28-31 microtuberculate sternites, without any ridge or process. Genital coverflap with longitudinal scorings.

Host: Clerodendron viscosum.

Distribution: INDIA: West Bengal.

Genus Gammaphytoptus Keifer

167. **Gammaphytoptus litseasis** Mondal, Ghosh & Chakrabarti

Diagnosis: Shield triangular with flexible anterior lobe over rostrum; shield design present a number of longitudinal lines, median line distinctly present throughout shield length, admedian lines complete running parallel to median line, submedian 4-6 number. Dorsal tubercle placed on rear shield margin and projecting over first tergite; dorsal seta directed cauded. Feather claw 5 rayed. Abdomen with 34-36 tergites and 47-50 sternites, the former wider than latter. Genital coverflap with longitudinal scorings in two uneven ranks.

Host: Litsea sp.

Distribution: INDIA: West Bengal.

Genus Neoeccidophyes Mohansundaram

(Figs. 257-259)

168. **Neoeccidophyes mallotivagrans** Mohansundaram

Diagnosis: Shield area and sides of shield clear. Dorsal tubercle projecting backward and outward with a subapical arista like dorsal seta. All three setiferous coxal tubercles present. Feather claw 5 rayed. Abdomen with about 21-25 broad rings, not much differentiated into
tergites and sternites, thanosomal rings with dorsal projections and lateral lobes and ventrally with faint tubercles along with the anterior ring border. Female genital coverflap smooth.

Host: *Mallotus* sp.

Distribution: *India*: Tamil Nadu.

Subfamily *Eriophyinae* Nalepa

Eriophyinae Nalepa, 1898, *Das Tierreich*, 4 : 5.

Key to the Genera of Eriophyinae

1. A pair of short blunt spines at the anterior end of triangular shield **Keiferophyes**
 — Not as above 2

2. Dorsal tubercle more or less ahead of rear shield margin and projecting dorsal setae ahead of some degree or tip; dorsal tubercles which are close to rear margin incline ahead, or have longitudinal axes 3
 — Dorsal tubercle on or very near shield margin with transverse basal axes, directing setae to rear, usually divergently 4

3. A blunt lobe of shield overhang rostrum **Neophytopus**
 — Not as above **Phytopus**

4. Foretibae setae present 5
 — Foretibae setae absent **Acalitus**

5. Rear part of thanosome with rings subequal dorsoventrally and divided into tergites and sternites 6
 — Rear to of thanosome with rings divided into border tergites and narrower sternites **Paraphytopus**

6. Dorsal shield setae situated on tubercles or usually ahead of rear shield margin, pointing up necessarily anteriorly **Eriophyes**
 — Dorsal shield setae situated on tubercles on rear shield pointing backward over rostrum **Acelia**

Genus Acalitus Keifer

(Figs. 260-261)

Key to the Species of Acalitus

1. Shield without lines schefflerae
 — Shield with lines 2
2. Feather claw 5 rayed 3
 — Feather claw 4 rayed 4
3. Genital coverflap smooth without longitudinal scorings, setae on femora absent hibisci
 — Genital coverflap with basal granulations and with one or two crescentic scorings in the distal end, setae on femora absent meleosmae
4. Median line strong gossypii
 — Median line faint reticulatae

169. Acalitus gossypii (Banks)

Diagnosis: Body whitish, cylindrical. Shield characterised by a transverse sinuate line near rear margin extending just behind of dorsal tubercles; feather claw 4 rayed.

Host: Cotton.

Nature of damage: This mite produces whitish spots on cotton leaves which increase with subsequent curling of leaves. In some cases the plants fail to recoup its vitality. The infested bolls shrivel and fall off. Damage may be to the extent of 50% (Misra, 1920). Since the cotton leaves turn ashy, the disease has been called ‘Chhasia’ (Jhaveri, 1921). Thaker & Desai (1929) reported the wide spread infestation of this disease in Western India reducing as much as 30% yield of seed cotton. Also in America and West Indies, this species is a serious pest of cotton.

Bionomics: No information in this regard is available from India. This mite is available throughout the year and is known to have short life cycle.

Control: Jhaveri (1921) got excellent control by steeping the seeds in mercuric per chloride solution before sowing. Thaker & Desai (1929) reported the harmful effects of the application of sulphur on plants causing shedding of leaves. Planting mite-resistant variety of cotton will help in eliminating the possibility of the attack of this mite,
Handbook: Plant mites of India

Distribution: India: Tamil Nadu, Gujarat; outside India: U.S.A., West Indies.

170. Acalitus hibisci Mondal & Chakrabarti

Diagnosis: Shield subtriangular, with smaller anterior lobe. Shield design represents some longitudinal lines, median line distinct, present throughout the shield length, admedians sinuate, submedian lines two. Patella without seta. Feather claw simple, 5 rayed. Abdomen with 65 long tergites and almost equal number of sternites, tergites and sternites uniformly microtuberculate. Genital cover flap smooth without longitudinal scorings.

Host: _Hibiscus vitifolius._

Distribution: India: West Bengal.

Remarks: It causes capitate galls on both surfaces of leaves. Cavity of galls are filled with hairy outgrowths.

171. Acalitus meliosmae Mohansundaram

Diagnosis: Shield with a clear pattern of lines, median line represented by a series of broken lines flanked on either sides with a few scorings, admedians clear and complete. Feather claw 5 rayed. Dorsal tubercle at shield margin. Abdomen with 60 rings, uniformly microtuberculate. Female genital cover flap with basal granulations and with one or two crescentic scorings in the distal end.

Host: _Meliosma simplicifolia._

Distribution: India: Tamil Nadu.

172. Acalitus reticulatae Mohansundaram

Diagnosis: Shield clear except for short faint median line and faint admedian lines, sides of shield granular. Dorsal tubercles little ahead of shield margin. Feather claw 4 rayed. Abdomen with 55-60 rings, uniformly microtuberculate. Female genital cover flap with crescentic scorings and coarse punctations.

Host: _Leptadenia reticulata._

Distribution: India: Tamil Nadu.
Acalitus scheffleri Mohansundaram

Diagnosis: Shield without any line, sides of shield granular. Dorsal tubercle at rear shield margin. Feather claw 6 rayed. Abdomen with about 70 rings, uniformly microtuberculate dorsoventrally. Female genital coverflap clear with heavily granular basal area.

Host: Schefflera sp.

Distribution: INDIA: Tamil Nadu.

Genus Aceria Keifer

(Figs. 262-265)

There is a good deal of confusion regarding the status of the genera _Aceria, Eriophyes_ and _Phytoptus_ mostly because of the fixation of their types. The genus _Eriophyes_ was originally erected without nominal species and Keifer (1938) designated _Phytoptus vitis_ Pag., 1857 as its type which was subsequently accepted. But Newkirk & Keifer (1971) discovered that the first nominal species referred to _Eriophyes_ was _E. labilatiflorae_ F. Thomas, 1872, described on the basis of Bremi Wolff's specimen of dried plant parts damaged by this mite and, consequently, that became the type species by subsequent monotype according to code 69(a)(ii)(2). _Phytoptus_ Dujardin, 1851, was originally described without nominal species and Keifer (1938) designated _P. avellanae_ Nal., 1889 as its type species. All the acarologists accepted this designation. However, Newkirk & Keifer (1971) discovered that Pagnstcher (1857) had referred four binomials to _Phytoptus_ and, therefore, designated one of these, _P. tiliae_ as the type species of this genus in accordance with article 69 (a) (ii) (3). On the basis of this, Newkirk & Keifer (1971) re-diagonised _Eriophyes_ and according to his re-diagnosis, _Aceria_ becomes a synonym for _Eriophyes_; _P. vitis_ Pgst., previously regarded as type of _Eriophyes_, was transferred to a new genus _Colomerus_, the definition of _Phytoptus_ became the same as that of the recent usage of _Eriophyes_ when _P. vitis_ was type species and generic concept of _Phytop­tus_, as based on _P. avellanae_, is without a name. The new generic name _Phytocoptella_ was provided by Newkirk & Keifer (1971).

Though all the actions of Newkirk & Keifer (1971) were in accordance with code and are quite logical but most of the acarologists as Shevtchenko (1974), Lindquist (1975) and Boczek (1979) are of opinion that changing of names at this stage is against the principles of stability.
of nomenclature and will lead to confusion to both taxonomists and applied level workers since all these generic names are in use for a pretty long time and changing names at this stage will cause serious difficulties to information storage and retrieval systems and in effective searching through bibliography and abstracting journals for information on specific taxa. Hence, they urged the International commission of Zoological Nomenclature to use its plenary powers to set aside all previous designations of type species for these *Eriophyes* Siebold, 1851 and *Phytoptus* Dujardin, 1851 made prior to the proposed rolling and having done so, to regard *P. vitis* Pgst., 1857 as type of *Eriophyes* Siebold, 1851 and *P. avellanae* Nal., 1889, as type of *Phytoptus* Dujardin, 1851. Manson (1977) also suggested to retain the names *Eriophyes*, *Aceria* and *Phytoptus* as known prior to Newkirk & Keifer (1971) as all these names are standard and all are well recognised genera. Considering this view, in the present work, the generic position prior to Newkirk & Keifer (1971) with regard to *Aceria*, *Eriophyes* and *Phytoptus* are retained.

Key to the Species of Aceria

1. Feather claw 8 rayed *viddhagiriensis* 2
 — Feather claw less than 8 rayed 3
2. Feather claw 7 rayed 3
 — Feather claw less than 7 rayed 9
3. Second ventral seta on abdomen longer than third ventral seta 4
 — Second ventral seta on abdomen shorter than third ventral seta 7
4. Female genital coverflap smooth, without lines *dichrostachyia* 5
 — Female genital coverflap with lines 6
5. Dorsal shield seta as long or longer than rostrum length 6
 — Dorsal shield seta shorter than rostrum length 8
6. Female genital coverflap with 8-10 lines *pongamiae* 8
 — Female genital coverflap with 10-12 lines *dactylomae* 8
7. Forecoxae with longitudinal lines, female genital coverflap with not more than 6 longitudinal lines 8
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Forecoxae granulated, not with stripes; female genital coverflap with more than 6 lines</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Abdomen with 60 uniformly microtuberculate rings</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Abdomen with 65-70 microtuberculate rings</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Feather claw 6 rayed</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Feather claw less than 6 rayed</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Abdomen with over 60 rings</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Abdomen with less than 60 rings</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Female genital coverflap with over 10 lines</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Female genital coverflap with less than 10 lines</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>Female genital coverflap with 10-12 lines</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>Female genital coverflap with over 12 lines</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>Genital seta over 30 microns</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>Genital seta less than 30 microns</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>First ventral and second ventral seta on abdomen equal</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>First ventral and second ventral seta on abdomen unequal</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>Second and third ventral seta on abdomen almost equal</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Second and third ventral seta on abdomen unequal</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>Second ventral seta (\frac{1}{2}) of third ventral seta</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Second ventral seta (\frac{1}{3}) of third ventral seta</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Submedian represented at rear (\frac{1}{2}) of shield</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Submedian represented uniformly on shield</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Lateral seta longer than or as long as first ventral seta</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Lateral seta much shorter than first ventral seta</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Female genital coverflap with longitudinal lines in two series</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Female genital coverflap with longitudinal lines in one series</td>
<td>21</td>
</tr>
</tbody>
</table>
21. Female genital coverflap with 8 longitudinal lines
 — Female genital coverflap with more than 8 longitudinal lines
 \[\text{commelinae} \]

22. Shield with prominent anterior shield lobe
 — Shield truncated at apex
 \[\text{erythrelle} \] \[\text{erythrellea} \]

23. Feather claw 5 rayed
 — Feather claw 4 rayed
 \[\text{24} \] \[\text{33} \]

24. Second ventral seta on abdomen longer than third ventral seta, shield lacking longitudinal wrinkles
 — Second ventral seta on abdomen shorter than third ventral seta; shield lacking longitudinal wrinkles
 \[\text{gastrotrichus} \]

25. Abdominal microtubercles stronger below, sparsely on the dorsum
 — Microtubercles more or less enveloped dorsally and ventrally
 \[\text{medicaginis} \]

26. Shield design usually indistinct, when distinct the first and second submedian lines confluent ahead of dorsal tubercles
 — Shield design, first and second submedian lines not confluent
 \[\text{sheldonii} \]

27. Female genital seta longer than length of genitalia
 — Female genital seta not longer than length of genitalia
 \[\text{28} \] \[\text{29} \]

28. Female genital coverflap smooth
 — Female genital coverflap with 8 longitudinal ribs
 \[\text{agallochae} \] \[\text{infectoreae} \]

29. Coxae smooth
 — Coxae truncated or granulated
 \[\text{mori} \] \[\text{30} \]

30. Coxae sparsely granulated
 — Coxae strongly tuberculated
 \[\text{ficus} \] \[\text{31} \]

31. Second ventral seta \(\frac{1}{2}\) of third ventral seta
 — Second ventral seta nearly \(\frac{1}{2}\) of third ventral seta
 \[\text{antidotalae} \] \[\text{32} \]

32. Median line almost complete with dart shaped mark near rear shield margin
 — Median line on rear shield margin, without a dart shaped mark
 \[\text{lichii} \] \[\text{crotalariae} \]

33. Second coxal seta almost opposite anterior coxal approximation
 \[\text{34} \]
— Second coxal seta well behind anterior coxal approximation ...
34. Median, admedian and submedian all represented by complex pattern of lines ...
litsea
— Not as above ...
35. Median shield line faint but with a dart at rear shield margin, no diagonal line at shield sides ...
holopteleae
— Median line on rear half of shield without a dart at posterior end, three diagonal lines anteriorly on shield sides ...
fastigatus
36. Genital shield bare with no longitudinal line on midshield ...
37
— Shield with one or more longitudinal lines on midshield ...
39
37. Transverse line present near rear shield margin ...
38
— Transverse line near shield margin absent ...
jasmini
38. Transverse line sinuate, female genital seta very short, inconspicuous ...
puttarudria
— Transverse line evenly arched, female genital seta conspicuous, as long as genitalia ...
nerii
39. Median line indistinct ...
boraginae
— Median line distinct ...
40
40. Median line forking to form a trapezium on rear shield, female genital coverflap with indistinct longitudinal scorings only in the middle ...
nandiensis
— Median line not forking to form a trapezium; longitudinal scoring on coverflap evenly distributed over entire width ...
41
41. Shield sides granulated or microtuberculated ...
42
— Shield side not granulated ...
45
42. Coxae granulated ...
44
— Coxae smooth ...
43
43. Abdomen with about 65 rings ...
lycopersici
— Abdomen with about 75 rings ...
maloticona
44. Median represented by a paired line at middle of shield area ...
pustulatus
— Median line with a dart at rear shield margin ...
46
45. First coxal setae opposite anterior coxal junction and second coxal setae much ahead and close to first coxal seta ...
granati
— Second coxal seta in the usual position and not close to first coxal seta

46. Median line on apical half, shield with admedian and submedian lines absent
 — Median line almost complete; admedians and submedians present

47. Admedian lines on shield complete
 — Admedian lines incomplete evident on midshield only

48. Abdomen with oblong, close set microtubercles not touching the ring margins, shield side with a wing like expansion near rear margin
 — Abdomen with more or less oval microtubercles touching rear ring margins, shield sides without wing like expansion

According to Mohansundaram (through personal communication) *sacchari* ChannaBasavanna is a synonym of *saccharini* Wang because of priority.

174. Aceria antidotalae (Mohansundaram)

Diagnosis: Shield with median nearly complete except for the anterior end, admedians complete, slightly converging anteriorly, first submedian complete, diverge on the posterior end; second submedian represented in anterior half of shield, 3rd submedian represented at about middle of shield, sides of shield with strokes. Feather claw 5 rayed. Abdomen with about 58 rings uniformly microtuberculate, microtubercles elongate on posterior margin of each ring. Genital cover flap with 6 lines.

Host: *Panicum antidotale*.

Distribution: INDIA: Tamil Nadu.

Remarks: It causes witches’ brooms effect.

175. Aceria delhiensis (Mohansundaram)

Diagnosis: Shield with median complete, admedians complete, submedian represented in the rear 3/4th, rest of the area and sides of shield clear. Dorsal seta at rear shield margin, pointed backwards.
Feather claw 6 rayed. Abdomen with 70 uniformly microtuberculate rings. Female genital cover flap with 14-16 lines.

Host: Undet. shrub.

Distribution: India: Delhi.

176. *Aceria dichrostachyia* (Tucker)

Diagnosis: Feather claw 7 rayed. Shield with median, admedian and submedian lines complete, sides of shield granular. Coxal area completely granular. Genital cover flap without any line.

Hosts: _Acacia pennata, Dichrostachys cinerea._

Distribution: India: Tamil Nadu; outside India: S. Africa.

Remarks: The secondary rachis and leaflets of the compound leaves are thickened, united and gall like. The white mites are found inside the galls.

177. *Aceria erythreensis* (Chakrabarti & Ghosh)

Diagnosis: Shield with prominent anterior shield lobe, median line absent, admedian complete, first submedian straight, second submedian gradually curve inwardly to meet the rear shield margin. Feather claw 6 rayed. Abdomen with 58-63 tergites and sternites, which are uniformly microtuberculate. Female genital cover flap with 12-14 longitudinal scorings on upper margin.

Host: _Erythrina sublobata._

Distribution: India: West Bengal.

178. *Aceria litsea* Keifer

Diagnosis: Feather claw 4 rayed. Shield with median, admedians and submedians represented by complex pattern of lines of granules, sides of shield granular. Coxal area granular with scorings. Genital cover flap with 10 longitudinal ribs.

Host: _Litsea wightiana._

Distribution: India: Tamil Nadu; outside India: Singapore.
179. **Aceria trichocnemum** (Nalepa)

Diagnosis: Feather claw 6 rayed, simple. Shield with median, admedians complete, submedians wavy; sides of shield granular. Coxal area granular around the base of coxal setae. Female genital coverflap with 10-12 longitudinal scorings; genital seta 32 long.

Host: *Indigofera viscosa*.

Distribution: INDIA: Tamil Nadu; outside India: Java.

Remarks: Mites on leaflets cause light erineum.

180. **Aceria viddhagiriensis** (Mohansundaram)

Diagnosis: Shield area clear, sides of shield with few lines in anterior end, dorsal tubercle at rear shield margin. Feather claw 8 rayed. Abdomen with 55-58 uniformly microtuberculate rings, telosomal sternites with microstriations. Genital coverflap of female with 12-14 lines.

Host: *Acacia ferruginea*.

Remarks: It causes pin-head sized leaflet gall and the large sized inflorescens galls. A large number of mites including their eggs will be seen inside the galls.

Distribution: INDIA: Tamil Nadu.

181. **Aceria commelinae** (Mohansundaram)

Diagnosis: Shield with median represented in the posterior half, admedians complete, first submedian sigmoid, complete, converging anteriorly; second submedian curved represented in the posterior half of shield, third submedian forming the border of the shield, sides of shield clear. Feather claw 6 rayed. Abdomen with 55 uniformly tuberculate rings, microtubercles at rear margin of each ring. Female genital coverflap with 8 lines.

Host: *Commelina jacobi*.

Distribution: INDIA: Tamil Nadu.
182. *Aceria boraginae* Mohansundaram

Diagnosis: Shield, broad, triangular, median line not distinct, admedian broken at base, mid part of shield clear, one clear submedian at border of shield and bent towards the anterior end, sides of shield with small broken lines. Dorsal tubercle at rear shield margin. Feather claw 4 rayed. Abdomen with 65 rings uniformly microtuberculate, telosoma with microstriations. Female genital coverflap with 10-12 lines.

Host: Cordia sp.

Distribution: INDIA: Tamil Nadu.

183. *Aceria polygalae* Mohansundaram

Diagnosis: Shield with clear pattern. Median line straight, admedians wavy, slightly converging anteriorly, first submedian and second submedian represented only at the anterior half of the shield with an oblique line joining both on either side at about the middle. Dorsal tubercle at rear shield margin. Feather claw 6 rayed. Abdomen with 70-75 rings, uniformly microtuberculate, microtubercles round and dot like at posterior 1/3 of each ring. Female genital coverflap with 10-12 lines.

Host: Polygala chinensis.

Distribution: INDIA: Tamil Nadu.

184. *Aceria dichotomae* Mohansundaram

Host: Cordia dichotoma.

Distribution: INDIA: Tamil Nadu.
185. Aceria dactylonae Mohansundaram

Diagnosis: Shield with a clear pattern of lines. Median line complete, admedians complete, first submedian curved at the anterior end, forked in the middle, broken in the posterior end, second submedian represented in the mid part of the shield with a forking anterior end, third and fourth submedians represented by broken lines. Feather claw 7 rayed. Abdomen with about 75 rings, uniformly microtuberculate, microtubercles oval in shape at posterior ring margin. Female genital coverflap with 9-10 thick lines.

Host: *Cynodon dactylon.*

Distribution: INDIA: Tamil Nadu.

186. Aceria donacis Mohansundaram

Diagnosis: Shield with clear pattern of lines. Median faint represented in the rear part of the shield, admedians thick, wavy, forked at rear end and anterior 1/3. Two short submedians on either sides in the posterior end of shield. Feather claw 7 rayed, simple. Abdomen with about 60 uniformly microtuberculate rings. Female genital coverflap with 4 lines.

Host: *Arundo donax.*

Distribution: INDIA: Tamil Nadu.

187. Aceria eragrastae Mohansundaram

Diagnosis: Shield with a pattern of lines. Median complete, admedians complete curved towards the median in the rear shield margin; first submedian curved and broken represented at posterior half of shield; second submedian complete; third submedian at border of shield with numerous scorings. Feather claw 6 rayed. Abdomen with about 60 rings, uniformly microtuberculate, microtubercles oval, prominent, sparsely placed dorsally and ventrally and closely placed laterally. Female genital coverflap with 6-8 lines.

Host: *Eragrastis tenella.*

Distribution: INDIA: Tamil Nadu.
188. Aceria pustulatus Mohansundaram

Diagnosis: Shield triangular, median represented by a paired line at the middle of the shield area; admedians short, represented near the rear margin only; first submedian complete, curved; second and third submedians complete; 4th submedians form the border of the shield; sides of shield with fine scorings. Feather claw 4 rayed. Abdomen with about 70 rings, uniformly microtuberculate; microtubercles elongated dorsally and oval ventrally. Female genital coverflap with 6 lines.

Host: Ficus sp.

Distribution: INDIA: Tamil Nadu.

189. Aceria balanites (Massee)

Diagnosis: Feather claw 6 rayed; female genital coverflap with longitudinal stripes in two series; abdomen with microtubercles almost circular in outline; last 10-12 rings with microtubercles obscure.

Host: Balanites aegyptica.

Distribution: INDIA: New Delhi.

Remarks: This species is not known to have any economic importance. No work on bionomics has been done.

190. Aceria bambusae ChannaBasavanna

Diagnosis: Feather claw 7 rayed, second ventral seta on abdomen much shorter than third ventral seta; forecoxae with longitudinal lines; female genital coverflap with not more than 6 longitudinal stripes. Abdomen with 65-70 rings, microtuberculate; microtubercles on dorsum of 3 rings just behind shield elongate; those on rings beyond third ventral setae elongate ventrally and obscure dorsally; remaining area with almost conical microtubercles nearer the rear margins and tend to form longitudinal rows.

Host: Bambusa vulgaris.

Nature of damages: These mites are found between stem and enveloping leaf-sheath on terminal shoots without causing an apparent injury (ChannaBasavanna, 1966).
191. Aceria barleriae ChannaBasavanna

Diagnosis: Feather claw 4 rayed; second coxal setae well behind anterior coxal approximation; shield with one or more longitudinal lines on midshield; longitudinal scoring on cover flap evenly distributed over entire width; shield sides not granulated; second coxal setae well apart from first coxal setae; abdominal lines on shield complete.

Host: Barleria cristata.

Nature of damage: These mites induce whitish erineum patches, which are slightly depressed, both on the under and upper surfaces of leaves (ChannaBasavanna, 1966).

Bionomics & Control: No information is available.

Distribution: INDIA: Karnataka.

192. Aceria cajani ChannaBasavanna

Diagnosis: Feather claw 6 rayed; female genital cover flap with longitudinal stripes in single series; shield sides with close set, longitudinal fine lines. Abdomen with about 68 rings, uniformly microtuberculate excepting the dorsum of the rear 6-10 rings which is almost bare; microtubercles sparsely distributed on dorsum and more close set on lateral and ventral sides.

Host: Cajanus cajan.

Nature of damage: Mitra (1931) reported the occurrence of the sterility disease on pigeon pea in Bihar. Capoor (1952) proved the virus nature of the disease by successfully transmitting the disease through grafting. Kundaswamy & Ramakrishnan (1960) reported that the disease was not sap transmissible one. Seth (1962) found that this mite acts as a vector. The mites could acquire the virus in 4 days from leaves and could produce symptoms in 3-5 weeks. Siddappaji et al. (1979) reported that this is a serious disease of red gram and observed that the shade of the tall growing crops appeared to favour multiplication of mites. They also studied the effect and spread of the virus diseases under different combination of crops and row-spacing.
Bionomics & Control: No information in these regards is available.

Distribution: INDIA: Karnataka, Maharashtra, Delhi.

193. Aceria clerodendronis Farkas

Diagnosis: Abdomen with oblong, close set of microtubercles, not touching the ring margins; shield side with a wing-link expansion near rear margin. Feather claw 4 rayed.

Hosts. _Clerodendron inerme, Clerodendron viscosum_.

Nature of damage: This mite causes the formation of hemispherical galls on leaves. It induces violet coloured warty patches, specially on upper surface of leaves. Mites live in all stages of development amidst closely packed papillae forming these warty patches (ChannaBasavanna 1966).

Bionomics & Control: Information in this regard is not available.

Distribution: INDIA: Karnataka.

194. Aceria cordiae ChannaBasavanna

Diagnosis: Whitish mite, shield broadly rounded in front, median line incomplete arising a little distance away from apex and at about 1/3 from rear shield margin.

Host: _Cordia myxa_.

Nature of damage: This mite induces white warty patches mostly on underside of leaves. These patches sometimes cover entire leaf surface (ChannaBasavanna, 1966).

Distribution: INDIA: Rajasthan, Karnataka, West Bengal, Bihar.

Bionomics & Control: Information in this regard is not available.

195. Aceria crotalariae ChannaBasavanna

Diagnosis: Feather claw 5 rayed, second ventral seta on abdomen shorter than third ventral seta; shield lacking longitudinal wrinkles; microtubercles more or less evenly developed dorsally and ventrally; shield design distinct; female genital setae shorter than length of genitalia; coxae strongly tuberculated; median line on rear half shield without a dart shaped mark.
Hosts: Crotalaria juncea, C. biflora, C. retusa, Desmodicum triflorum, C. verrucosa.

Nature of damage: This mite induces slight growth of erineum on tender shoots which show a slight stunting (ChannaBasavanna, 1966).

Distribution: INDIA: Karnataka, West Bengal, Tamil Nadu.

Remarks: No work has been done on bionomics of this species.

196. Aceria dalbergiae ChannaBasavanna

Diagnosis: Body whitish, shield broadly rounded in front, shield design obscure; median line on anterior half; a faint sinuate line across rear shield margin bending forward in front and a little latered of dorsal tubercles, not reaching anterior margin, feather claw 4 rayed.

Host: Dalbergia sissoo.

Nature of damage: This mite causes pale green or whitish yellow warty patches on leaf surface; these patches later turn brown (Channa-Basavanna, 1966).

Distribution: INDIA: Delhi, Tamil Nadu.

Remarks: No work on bionomics of this species has been done.

197. Aceria erythrinae ChannaBasavanna

Diagnosis: Feather claw 6 rayed; female genital cover flap with longitudinal stripes in single series; abdomen with microtubercles even dorsally and ventrally; forecoxae with five wavy lines; shield sides densely granulated; first submedian short, on anterior half of shield, almost straight.

Host: Erythrina indica.

Nature of damage: No apparent damage is caused except the appearance of brownish spots on leaves.

Distribution: INDIA: Karnataka, Tamil Nadu.

Remarks: Information on bionomics of this species is not known.

198. Aceria ficus (Cotte)

Diagnosis: Whitish or light brownish mite, coxae sharply
granulated; female genital setae not longer than length of female genitalia; shield design distinct; first and second submedian lines not confluent; feather claw 5 rayed.

Host: Fig.

Nature of damage: Nagaich & Vashisth (1962) reported for the first time that fig mosaic may be transmitted by this mite in India. The infested fig plants show yellowish green spots scattered over the leaf lamina. In severe cases, the spots coalesce together and present a variable shape and size. The leaves may become mottled white and irregularly shaped. Such plants show stunted growth. This mite is capable of transmitting virus to *Ficus carica, F. palmata,* and *F. nemoralis.* Vashisth & Nagaich (1965) showed that the disease is also transmitted to *Morus alba* through grafting. Three mites/plant are sufficient to transmit the virus (Vashisth & Nagaich, 1968).

Bionomics: Nothing in this regard is known.

Control: Spraying with methyl demeton was found to be effective in killing these mites.

Distribution: INDIA: Delhi, Himachal Pradesh.

199. *Aceria gastrotrichus* (Nalepa)

Diagnosis: Feather claw 5 rayed; second ventral seta on abdomen longer than third ventral seta; shield surface with close-set longitudinal fine wrinkles.

Host: *Ipomoea staphylina.*

Nature of damage: These mites form irregular galls on upper surfaces of leaves and stem. Severe defoliation may be caused in case of heavy infestation.

Distribution: INDIA: Karnataka, Tamil Nadu; outside India: East Indies.

Remarks: No work on bionomics of this species has been done.

200. *Aceria granati* (Canestrini & Masalongo)

Diagnosis: Coxae slightly tuberculated; median line with dart at
rear shield margin; shield with one or more longitudinal lines on mid-shield,

Host: Pomegranate.

Nature of damage: These eriophyid mites live in tight rolls at the edges of the leaves of pomegranate. The infested leaves become thinner and highly deformed. In severe cases, the leaves are very much deformed and narrowed acutely (Puttarudriah & ChannaBasavanna, 1959; ChannaBasavanna, 1966).

Bionomics: No work has been done.

Distribution: India: Delhi, Karnataka, Tamil Nadu.

201. Aceria holopteleae ChannaBasavanna

Diagnosis: Feather claw 4 rayed; second coxal seta almost opposite anterior coxal approximation; median shield line faint but with a dart at rear shield margin.

Host: Holoptelea integrifolia.

Nature of damage: This mite induces irregular depressions lined with compact papillae. In severe cases of infestation the leaves become distorted.

Bionomics: No work has been done.

Distribution: India: Tamil Nadu.

202. Aceria infectoriae ChannaBasavanna

Diagnosis: Feather claw 5 rayed, second ventral seta on abdomen shorter than third ventral seta; shield lacking longitudinal wrinkles; microtubercles more or less evenly developed dorsally and ventrally. Female genital setae not longer than length of genitalia.

Host: Ficus infectoria.

Nature of damage: This mite lives underneath bud scales. The infested branches of plants show reduced or malformed leaves (ChannaBasavanna, 1966).

Distribution: India; Delhi, West Bengal, Tamil Nadu.

Remarks: Nothing about its bionomics is known.
203. Aceria jasmini ChannaBasavanna

Diagnosis: Body cylindrical, feather claw 4 rayed; shield design obscure, only short longitudinal line on rear shield just in front and latered of dorsal tubercles; shield strongly granulated.

Host: Jasmine.

Nature of damage: This mite causes felt-like white hairy outgrowth on the leaves, tender stems and flower buds. The affected plants show stunted growth (Subramaniam, 1936). Medium-cum-pointed buded varieties are highly resistant while long-cum-pointed buded varieties are highly susceptible (Sundaraj *et al.*, 1967).

Bionomics: According to Letchoumanane (1979) the life cycle takes 2-3 weeks while the duration of eggs and nymphal periods are respectively 3-5 and 8-11 days. Mite population is abundant during April-October and declines thereafter until February. High temperature and low R.H. favoured the build up of population.

Control: Aldicarb (2kg toxicant/ha) provided good control over this mite.

Distribution: INDIA: Karnataka, Maharashtra, Tamil Nadu.

204. Aceria justiciae ChannaBasavanna

Diagnosis: Feather claw 4 rayed; second coxal setae almost opposite anterior coxal approximation; median line on rear half shield without a dart at posterior end; three diagonal lines anteriorly on shield sides.

Hosts: *Justicia betonica*, *Justicia glabra*, *Achyranthus aspera*.

Nature of damage: These mites produce patches of dense hairy outgrowths on upper surface of leaves and stems (ChannaBasavanna, 1966).

Distribution: INDIA: Tamil Nadu.

Remarks: No information on bionomics of this species is available.

205. Aceria litchii (Keifer)

Diagnosis: Brownish mite, feather claw 5 rayed, median line almost
complete with a dart shaped mark near rear shield margin; coxae strongly tuberculated.

Host: Litchi.

Nature of damage: These mites normally infest the leaves. Its feeding causes deformations as well as twisting and appearance of chocolate brown erineum on the lower surface of leaves (Misra, 1912; Puttarudriah & ChannaBasavanna, 1959; Gupta, 1980). The erineum is whitish brown at the initial stage and later turns into chocolate brown. Sometimes fruits are also damaged (Mathur, 1972).

Bionomics: The population of this mite is seen in the field throughout the year. Its population is more during May-June, declines with the onset of monsoon, reappears in late September and is maintained at low level upto December. Thereafter, it becomes negligible (Gupta, 1980).

Control: Sparyings of Akar 338, phosphamidon, thiometon, dimethoate or docofol at 10 days intervals were found to be quite effective (Mathur, 1972). Prasad & Singh (1972) found, 1. pruning of infested twigs continuously for three years, 2. pruning twice during June-August for 2 years and spraying with Mico Wet sulphur (0.04%) to be quite effective.

Distribution: INDIA: Karnataka, Bihar, West Bengal, Tripura; outside India: Pakistan, Hawaii.

206. **Aceria lycopersici** (Wolff.)

Diagnosis: Feather claw 4 rayed; shield with indistinct median line, admedian complete; shield sides with prominent punctations intermingled with short wavy lines. Abdomen with 58-68 rings, microtuberculate, tubercles sparser on the dorsum, oval. Genital cover flap with 10-12 longitudinal ribs.

Hosts: Brinjal, tomato.

Nature of damage: This mite lives on the under surface of leaves causing the appearance of abnormal growth of hairs both on stems and leaves. The affected plants turn greyish white.

Bionomics: It is seen throughout the year but more common during June-November.

Control: Gupta, Sidhu & Singh (1975) reported that carbopheno-
thion, carbofuran, dicrotophos, fenitrothion, fenthion, monocrotophos, phosalone and vamidothion all at 0.015% could bring effective control of the pest and cause mortality as much as 90%.

Distribution: INDIA: Punjab, Karnataka, Delhi, Tamil Nadu, West Bengal; outside India: World wide.

207. *Aceria malloticola* (Mohansundaram)

Diagnosis: Shield with a pattern of lines; median and admedians complete; first submedian represented in the anterior 3/4; second submedians in the shield borders; sides of the shield with fine scorings. Feather claw 4 rayed. Coxae with a clear sternal line, coxal area fairly clear. Abdomen with about 75 rings, uniformly microtuberculate.

Host: *Malloptus philippinensis._

Distribution: INDIA: Tamil Nadu.

Remarks: No economic importance of this species is known.

208. *Aceria mangiferae* Sayed

Diagnosis: Shield broad, rounded at the apex, median line almost complete, admedian lines complete; first submedian bulging in semicircle finally curving to meet the rear ends of the admedian lines. Forecoxae with few indistinct longitudinal lines. Abdomen with 55 rings, uniformly microtuberculate. Female genital coverflap with 2 series of longitudinal scorings.

Host: Mango.

Nature of damage: This is a serious pest of mango in India and in the other mango growing areas of the world. It causes two types of malformations, _viz._ vegetative malformation and floral malformation. In case of the former, the bracts become much elongated and floral parts become rudimentary. There is a swelling of several buds at a place and small shootlet crowded with leaf rudiments appear giving the shape of bunchy top on the shoot. In floral malformation, the phyllotaxy of inflorescence is similar to normal panicles. The floral parts look like normal flowers but are thicker, stouter and enlarged. In normal panicle, the development and growth come to
an end after fertilization but in the malformed ones the panicles continue to grow even after fertilization. Thus, they remain fresh for a long time. The association of this mite with mango malformation was first reported by Narasimhan (1954). Constant association of this mite with diseased panicles prompted the bud-mite toxin theory (Puttarudriah & ChannaBasavanna, 1961; Nariani & Seth, 1962). However, Satter (1946) considered this disease either of virus origin or because of physiological disorders. Through a series of experiments, Bindra & Bakhetia (1971) disproved: 1. that the malformation is due to imbalance in nutrition (NPK), 2. that the malformation is due to injection of toxins by bud-mite and 3. that the mite acted as a vector. According to them, it was due to some graft transmissible pathogene. According to the present knowledge, this disease is most probably caused by a fungus called *Fusarium moniliforme*, the spores of which are borne externally by the mite (Summanwar *et al.*, 1966; Summanwar, 1967; Summanwar & Roychaudhuri, 1968).

Bionomics: Population dynamics of this mite was studied in Punjab by Bindra & Bakhetia (1969). They also studied the inter-varietal variation of mite population in different varieties of mango. No variety was found to have real resistance against this mite. No correlation between mite population and incidence of malformation could be established. It was also found that bud-mite population was not significantly higher in malformed buds than in apparently healthy buds.

Control: Various recommendations are known for the control of this mite. Those are: pruning (Narasimhan, 1959; Singh, 1956; Puttarudriah & ChannaBasavanna, 1961; Prasad & Singh, 1972a); spraying of pesticides before brusting of buds (Prasad *et al.*, 1965); diazinon and phorate as 0.03% EC @ 25 L/acre (Rai *et al.*, 1966); dimethoate, methyl demeton or phosphamidon as 0.01% EC (Yadav & Varma, 1969); methyl bromide fumigation (Seth & Nariani, 1966), aldicarb 0.05 gm/plant (Varma & Yadav, 1970); diazinon, monocrotophos or phosphamidon as 0.1% EC (Srivastava, 1974) and diazinon 0.01% (Butani & Srivastava, 1979). While comparing three methods of pesticidal applications, *viz.* bark application, trunk application and foliar spray, the bark application of dicrotophos as 11 ml ai/100 cm. of circumference and 1 mt. above ground level was found to be most effective while foliar application of dimethoate and phorate as 0.1-0.2% EC in the summer months was also very effective (Bindra & Bakhetia, 1971a).
Natural enemies: Gupta et al. (1971) reported *T. eharai* and *Cheyletus fortis* feeding upon this mite.

Distribution: INDIA: Punjab, Haryana, Delhi, Bihar, Karnataka, Tamil Nadu, West Bengal; outside India: Egypt, Southern Asia, Brazil.

209. **Aceria medicaginis** (Keifer)

Diagnosis: Feather claw 5 rayed; second ventral seta on abdomen shorter than third ventral seta; shield lacking longitudinal wrinkles; abdominal microtubercles stronger below, suppressed on the dorsum.

Host: *Medicago sativa*.

Distribution: INDIA: Karnataka, Tamil Nadu.

Remarks: No economic importance of this species is known.

210. **Aceria mori** (Keifer)

Diagnosis: Light creamish mite, feather claw 5 rayed; microtubercles more or less evenly developed dorsally and ventrally; shield design distinct; first and second submedian lines not confluent; female genital setae not longer than length of genitalia; coxae smooth.

Host: Mulberry.

Distribution: INDIA: Punjab, Delhi.

Remarks: The economic importance of this mite is unknown.

211. **Aceria nandiensis** ChannaBasavanna

Diagnosis: Feather claw 4 rayed, second coxal setae well behind anterior coxal approximation; shield with one or more longitudinal lines on mid-shield; median line forking to form a trapezium on rear half shield; female genital coverflap with indistinct longitudinal scoring only in the middle.

Host: *Strobilanthus* sp.

Nature of damage: This mite induces whitish erineum patches on both surfaces of leaves (ChannaBasavanna, 1966).
Bionomics: Nothing is known.

Distribution: India: Karnataka.

212. Aceria nerii ChannaBasavanna

Diagnosis: Pale yellow mite, shield obsolete, ending laterally in front of dorsal tubercles; dorsal tubercles at rear shield margin elongate; feather claw 4 rayed.

Hosts: *Nerium odorum, N. idicum.*

Distribution: India: Karnataka, Punjab, Delhi, West Bengal, Tamil Nadu.

Remarks: No economic importance of this species is known.

213. Aceria pongamiae ChannaBasavanna

Diagnosis: Body cylindrical, whitish or creamy, feather claw 7 rayed; shield design narrowly truncated in front; median line not clear; admedian lines close to one another, complete, meet at rear shield margin, second submedian stopping short 1/3 from rear margin to meet first submedians and admedian. Abdomen with about 70 rings uniformly microtuberculate.

Hosts: Pongamia glabra, Pongamia pinnata.

Nature of damage: This mite produces elongated pouch shaped galls on tender leaves opening on upper surface. Mites live amidst hairy outgrowths lining the inner surface of galls (ChannaBasavanna, 1966).

Distribution: India: Karnataka, West Bengal, Tamil Nadu.

Remarks: Work on bionomics of this species has not been done.

214. Aceria puttarudriahi ChannaBasavanna

Diagnosis: Body cylindrical, whitish or light creamish; shield characterised by a transverse sinuate line near rear margin extending just latered of dorsal tubercles where it joins a longitudinal line from the margin; remaining shield bare; feather claw 4 rayed.

Host: Cotton.
Nature of damage: This mite produces felt-like outgrowths of white hairs on tender shoots including squares, leaves etc. As a result, the plants are stunted and boll formation is affected (ChannaBasavanna, 1966).

Bionomics: Nothing is known in this regard.

Distribution: India: Karnataka, Tamil Nadu.

215. Aceria ruelliae ChannaBasavanna

Diagnosis: Feather claw 4 rayed; second coxal seta well behind anterior coxal approximation; shield with one or more longitudinal lines on mid-shield; longitudinal scorings on coverflap evenly distributed over entire width; shield sides not granulated; second coxal seta away from first coxal seta, abdominal lines incomplete, evident on mid-shield only; abdomen with about 65 rings with more or less uniformly microtubercles, touching rear ring margins.

Host: Ruellia patula.

Nature of damage: This mite induces whitish erineum patches on stem and leaf surfaces of tender shoots.

Bionomics: Nothing is known.

Distribution: India: Tamil Nadu.

216. Aceria saccharini Wang

Diagnosis: Body creamish; shield truncated at apex, median line almost complete, very gently sinuate but broken up in short length more specially on rear half; sides of shield granular, intermingled with short strokes and slightly longer lines; rear of shield between dorsal tubercles also with sparse short strokes. Feather claw 7 rayed.

Host: Sugarcane.

Nature of damage: The formation of erineum by this mite on sugarcane was first reported from south India (Muthukrishnan, 1956). These mites form gall like pustules. Those are firstly light green and later become rusty red. Some saprophytic fungi like Alternaria sp., Fusarium sp., etc. may also establish in some cases. According to some workers, the formation of erineum is because of injection of certain toxins and excretion of nitrogenous wastes and these affect the
epidermal layer causing disruption of tissues (Agarwal & Kandasami, 1959). Subsequently, this disease was reported from different other parts of India (Puttarudriah & Usman, 1957; Puttarudriah, 1960; Puttarudriah & ChannaBasavanna, 1961a; Agarwal & Bhatia, 1965; Singh, 1966). The content of phosphorus, potassium and nitrogen are higher in the infested regions while the content of total sugar is increased insignificantly. Though no change takes place at the level of sodium but the level of silica, calcium and magnesium are marginally reduced in the infested regions (Sithanantham et al., 1975). The colonisation of mite in different sugarcane varieties depended not only on the physico-chemical differences of varieties but also on the anatomical characters of leaf sheath (Sithanantham & Velayuthan, 1979). The association of streak virus disease with the mite infestation has also been shown in the recent years (Sithanantham, 1979).

Bionomics: The eggs are laid singly or in groups of 6-7 in pustules where the entire life cycle is spent within it. The life cycle takes 15 days at 71-84°F. Overlapping of several generations in a year also takes place.

Control: No information in this regard is available.

Distribution: INDIA: Karnataka, Punjab, Tamil Nadu, Andhra Pradesh.

217. Aceria sapindi ChannaBasavanna

Diagnosis: Feather claw 6 rayed; female genital coverflap with longitudinal stripes in single series; abdomen with microtubercles even dorsally and ventrally; forecoxae with longitudinal wavy lines; shield sides very sparsely granulated; first submedian recurving out in front of dorsal tubercles.

Hosts: Soap-nut (*Sapindus saponaria*), *Sapindus emarginatus*.

Distribution: INDIA: Karnataka, Tamil Nadu.

Remarks: This mite is of no known economic importance.

218. Aceria sheldoni (Ewing)

Diagnosis: Shield design indistinct or may be distinct. It has
5 rayed feather claw. The coxae are granular and there is short sternal line between the forecoxae. Abdominal microtubercles elliptical in some mites, the microtubercles tend to be pointed over the telosomal ring margins. The female genital coverflap has 10-12 longitudinal ribs.

Host: Citrus.

Nature of damage: No significant damage is caused by this mite in India. However, elsewhere, it infests all stages of buds and causes their withering. The feeding is also known to cause multiple budding in infested twigs. Leaves from such buds are of curious shapes.

Bionomics: The time required to complete egg to egg stage is 12-33 days (Jeppson et al., 1975). The biology has been studied by Sternlicht (1970).

Distribution: **India**: Karnataka, Punjab.

219. *Aceria sorghi* Channa Basavanna

Diagnosis: Feather claw 6 rayed; female genital coverflap with longitudinal stripes in single series; abdomen with elongate close-set microtubercles on dorsum, remaining surface with sparser less elongate microtubercles.

Host: Sorghum vulgare.

Distribution: **India**: Delhi, Tamil Nadu.

Remarks: No economic importance of this mite is known.

220. *Aceria tulipae* (Keifer)

Diagnosis: Forecoxae granulated, not with stripes; female genital coverflap with more than 6 longitudinal stripes; second ventral seta on abdomen much shorter than third ventral seta; feather claw 7 rayed.

Host: Garlic.

Distribution: **India**: Karnataka; outside India: U.S.A.

Nature of damage: It causes significant damage to garlic in Mysore (Puttarudriah & Channa Basavanna, 1958). The infestation causes checking the growth of the plants. The younger leaves become arched
and their tips touch the next old leaf in a characteristic way. Such leaves never unfurl properly and sizes of bulbs become reduced (Puttarudriah & ChannaBasavanna, 1959). It is known to transmit wheat streak mosaic virus in different parts of the world (Oldfield, 1970) including India (Jeppson et al., 1975). A linear relationship exists between length of acquisition-feeding period and percentage of plants that become infested. The virus persists in this species at least for 6 days even through the moult. It also serves as a vector for wheat spot mosaic virus.

Bionomics & Control : Nothing is known in this regard.

Distribution : **INDIA** : Karnataka ; **outside India** : Europe, Canada, U.S.A.

221. Aceria agallochae Mohansundaram

Diagnosis : Shield area fairly clear except for the faint representation of admedians in the anterior part of shield and a pair of fork like markings below shield tubercles ; sides of shield with fine scorings. Feather claw 5 rayed. Abdomen with 55 rings uniformly microtuberculate except for the telosomal tergites. Female genital coverflap smooth.

Host : *Excoecaria agallocha*.

Distribution : **INDIA** : Tamil Nadu.

222. Aceria setaceus Mohansundaram

Diagnosis : Shield with median line represented in the posterior 1/3 of the shield, admedians complete ; first submedian complete, second submedian complete and converge anteriorly, an inverted 'V' shaped fork on either side in line with the dorsal tubercles between first and second submedians ; third submedians form the border of the shield, sides of shield with fine scorings. Feather claw 6 rayed. Abdomen with about 75 rings, uniformly microtuberculate, microtubercles reduced in the telosomal dorsum. Female genital coverflap with 10 lines.

Host : *Aristida setaceae*.

Distribution : **INDIA** : Tamil Nadu.
Genus *Eriophyes* von Siebold

(Figs. 266-268)

Key to the Species of Eriophyes

1. Feather claw 4 rayed
 - Feather claw more than 4 rayed
2. Feather claw 5 rayed
 - Feather claw more than 5 rayed

ladakhensis
2
acaciae
3

Figs. 266-268: *Eriophyes* sp.
Fig. 269: *Keiferophyes* sp.
Fig. 270: *Paraphytoptus* sp.
Figs. 271-272: *Neophytoptus* sp.
3. Feather claw 6 rayed
 — Feather claw more than 6 rayed

4. Shield with median line represented in the posterior \(\frac{1}{2} \) either continuously or as short broken lines; dorsal tubercle at posterior margin of shield; abdomen with 80-85 rings, female genital coverflap with 10-14 lines
 — Shield with median line complete with very prominent dart at rear shield margin, dorsal tubercle ahead of rear shield margin; abdomen with 75 rings; female genital coverflap with longitudinal lines

5. Feather claw 7 rayed
 — Feather claw 8 rayed

** The species *cernuus* could not be included in key for lack of adequate description and also the original description was not available to the author.

223. *Eriophyes acaciae* Mohansundaram

Diagnosis: Shield triangular, median line complete at posterior half, admedian complete, wavy; first submedian broken forming border of shield, shield area granular, sides with fine striations. Dorsal tubercle at rear shield margin. Feather claw 5 rayed. Abdomen with 70 uniformly microtuberculate rings. Genital coverflap of female with 6 lines.

Host. Acacia sp.

Distribution: INDIA: Tamil Nadu.

Remarks: This mite causes reddish pink leaflet galls. The compound leaf turns into elongated gall without any trace of leaflet. Inside of galls are hairy where all stages of mites are seen.

224. *Eriophyes alangii* Nalepa

Hosts: Alangium salvifolium, Gyrocarpus sp.

Distribution: INDIA: Tamil Nadu.

Remarks: These mites are found in the erineum patches resulting in gall like depressions on the lower sides of the leaves.
225. Eriophyes casuarinae Channabasavanna

Diagnosis: Feather claw 6 rayed, median line ending in a prominent dart at rear shield margin; abdomen with about 75 rings, uniformly microtuberculate; microtubercles oval in outline, close set occupying about 3/4 width from rear ring margins.

Host: _Casuarina equisetifolia_.

Distribution: _India_: Karnataka.

226. Eriophyes cernuus Massee

Diagnosis: Brownish mite found within ber galls.

Host: _Zizyphus jujuba_.

Remarks: It is associated with galls in _Z. jujuba_. No definite information on its etiology is available. Population is maximum on young galls.

Distribution: _India_: Tamil Nadu, Karnataka, Punjab.

227. Eriophyes cheriani Massee

Diagnosis: Body cylindrical, narrowly tapering at caudal end. Shield ornamented with longitudinal furrows in middle marking at sides of shield not so conspicuous, short and curved. Rostrum strongly curved. Feather claw 8 rayed. Abdomen narrowly ringed, about 80 rings. Dorsum and venter strongly punctate. Genital coverflap conspicuous and marked with pronounced longitudinal lines.

Host: _Pongamia glabra_.

Nature of damage: Mani (1933) reported this mite associated with the formation of cephalic galls on the leaves of _Pongamia glabra_. The galls are of 1/2 inch and are seen on the upper surface of leaves and occasionally on the lower surface of leaves as well. The galls are green in colour.

Distribution: _India_: Tamil Nadu, Himachal Pradesh, Punjab.
228. **Eriophyes cymbopogonis** Mohansundaram & Subramaniam

Diagnosis: Feather claw 6 rayed, presence of wavy crosslines connecting the admedians with the base of the submedians on either sides; shield pattern clear, sides of shield with short wavy lines and granulations. Abdomen with 80-85 rings, uniformly microtuberculate, microtubercles elongate situated at the posterior margin of each ring.

Host: *Cymbopogon martini.*

Nature of damage: This mite causes the twisting of emerging leaves. The affected plants are paler in colour and normal leaves are not developed (Mohansundaram & Subramaniam, 1978).

Distribution: *India*: Tamil Nadu.

229. **Eriophyes ladakhensis** Rishi & Rather

Diagnosis: Shield lack markings. Dorsal setae project backward. Feather claw 4 rayed. Abdomen with 65-70 rings, uniformly microtuberculate; microtubercles triangular in outline. Female genital coverflap with 10-12 longitudinal ribs.

Hosts: *Indigofera heterantha, Setaria italica, Bougainvillea sp.*

Distribution: *India*: Jammu & Kashmir.

230. **Eriophyes prosopidis** Saxena

Diagnosis: Body reddish, cylindrical narrow posteriorly. Feather claw 7 rayed, third coxal setae long, second short, first longer than second. Abdominal rings about 80 in numbers.

Host: *Prosopis spicigera.*

Nature of damage: The development of the normal floral parts in *Prosopis spicigera* is checked due to the activities of this mite.

The mites attack young buds and produce irregular globose agglomerated semisolid galls.

Distribution: *India*: Delhi.
Genus Keiferophyes Mohansundaram
(Fig. 269)

231. Keiferophyes avicenniae Mohansundaram

Diagnosis: Shield with median line absent, admedians complete, submedians represented in the anterior half, rest of shield area and sides of shield granular. Dorsal tubercle at shield margin. Feather claw 5 rayed. Abdomen with about 65 rings, uniformly microtuberculate. Female genital coverflap granular and without lines.

Host: Avicennia officinalis.

Distribution: India: Tamil Nadu.

Genus Paraphytoptus Nalepa
(Fig. 270)

232. Paraphytoptus chrysanthemi Keifer

Diagnosis: Feather claw 5 rayed. Shield with median line complete ending at the rear margin in a dart shaped mark; admedians complete, gradually diverging; first submedian runs back only half way, second submedian line forks twice in front of the dorsal tubercle. Dorsal setae quite long. Abdomen differentiated into tergites and sternites at about the rear 1/4, each of these tergites cover about two sternites. Female genital coverflap with 3 basal transverse lines of granules and about 16 longitudinal ribs.

Host: Chrysanthemum.

Nature of damage: Though in other parts of the world this mite is known to cause malformation of shoots and witches' brooms effects, but in India, no apparent injury is caused by it. Feeding of this mite causes stunting and backward curling of apical leaves. The infested leaves become reddish and brittle. It also causes flower phyllody (Jeppson et al., 1975).

Distribution: India: Karnataka, Delhi, Tamil Nadu.
Genus Neophytoptus Mohansundaram
(Figs. 271-272)

233. Neophytoptus ocimae Mohansundaram

Diagnosis: Shield triangular, marked with thick, short broken lines dorsally and laterally. Dorsal tubercle a little ahead of rear shield margin. Feather claw 4 rayed. Abdomen with about 60 tergites and 82 sternites, microtuberculate. Female genital coverflap with basal irregular scorings and distal longitudinal lines.

Host: Ocimum sp.

Distribution: INDIA: Tamil Nadu.

Genus Phytoptus Dujardin
(Figs. 273-274)

Key to the Species of Phytoptus (after Mohansundaram, 1981)

1. Feather claw 4 rayed
 — Feather claw more than 4 rayed
2. Fore and hind claw not equal in length
 — Fore and hind claw equal in length, shield with a pattern of thin broken lines; tibial setae very long
3. Lateral seta longer than first ventral seta, coxae with long scorings; shield with clear pattern of lines
 — Lateral seta not longer than first ventral seta, coxal area smooth, shield with faint lines
4. Feather claw 5 rayed
 — Feather claw 6 rayed
5. Coxal area granular or with scorings
 — Coxal area smooth without any markings
6. Coxae granular, shield with bold lines
 — Coxae with long scorings, shield with thin lines
7. Tibial seta 7 microns long, fore and hind claw equal in length...
 — Tibial seta shorter, hind claw longer than fore claw... rodae
8. Second ventral seta very short; shield with median as broken line, admedians complete, sides with scorings...
 — Second ventral seta more than 5 microns long, shield otherwise... subbaraoi
9. Hind claw more than twice the length of fore claw; medians and admedians represented as broken lines...
 — Hind claw less than twice the length of fore claw... karnatakaensis
10. Shield pattern with longer lines...
 — Shield pattern represented with short broken lines... 11
11. First and second ventral setae not equal in length...
 — First and second ventral setae equal in length, tibial seta absent... elelariae
12. Second ventral seta longer than first ventral seta; all shield lines faintly represented...
 — Second ventral seta not longer than first ventral seta... terminaliae
13. Genital coverflap without any line...
 — Genital coverflap with lines... morindae
14. Genital coverflap with about 20 lines; shield without any line in central area...
 — Genital coverflap with about 14 lines; shield with all lines present... breyniae
15. Coxal area smooth...
 — Coxal area with fine scorings, shield marked with short lines... laurae
16. Shield with median line broken, admedians complete, sides with scorings...
 — Shield with all lines complete... glycosmisae casuarinae

234. Phytoptus alangii (Nalepa)

Diagnosis: Feather claw 5 rayed, simple. Shield with all lines
represented by broken lines, sides of shield with lines. Coxal area smooth. Female genital coverflap with 14 longitudinal scorings.

Hosts: *Alangium salvifolium, Gyrocarpus* sp.

Distribution: INDIA: Tamil Nadu; outside India: Java.

Remarks: This species appears to be same as *E. alangii* Nal.

235. *Phytoptus breyniae* Mohansundaram

Diagnosis: Shield clear, sides of shield with numerous fine broken lines. Dorsal tubercle at rear shield margin. Feather claw 5 rayed. Abdomen with about 50 uniformly microtuberculate rings, microtubercules round. Female genital coverflap with about 20 lines.

Host: *Breynia patens*.

Distribution: INDIA: Tamil Nadu.

236. *Phytoptus canthii* (ChannaBasavanna)

Diagnosis: Feather claw 4 rayed; coxae almost smooth; third ventral a little shorter than lateral and much shorter than first ventral setae on abdomen. Abdomen with 48-54 rings, uniformly microtuberculate; microtubercles oval in outline occupying the entire widths of ring from rear margins; last 6-8 rings almost bare dorsally with elongate microtubercles ventrally.

Host: *Canthium parviflorum*.

Nature of damage: This mite produces gall-like pustules on both surfaces of leaves, each gall contains a number of mites in all stages of development.

Distribution: INDIA: Karnataka.

237. *Phytoptus carissae* Mohansundaram

Diagnosis: Shield broadly rounded in front with very thick clear lines, median line complete except for short distance towards the apex, admedians slightly converging towards the apex. Dorsal tubercle at rear shield margin. Feather claw 5 rayed. Abdomen with 55 rings, with elongated microtubercules ventrally. Female genital coverflap with faint lines.

Host: *Carissa* sp.

Distribution: INDIA: Kerala.
238. **Phytoptus cyperi** (ChannaBasavanna)

Diagnosis: Feather claw 4 rayed; coxae ornamented with short lines; third ventral setae longer than lateral and other ventral setae on abdomen. Abdomen with 75 rings uniformly microtuberculate, microtubercles elongate, oval, occupying about 3/4 width of rings and extending slightly beyond rear margins.

Hosts: *Cyperus pangorii, C. rotundus.*

Distribution: **India:** Karnataka.

239. **Phytoptus eletariae** Mohansundaram

Diagnosis: Shield with median, admedian and submedian lines represented as broken lines. Dorsal tubercle a little away from shield margin. Feather claw 5 rayed. Abdomen with about 68-70 rings, uniformly microtuberculate. Female genital coverflap with 12-14 lines.

Host: *Eletaria cardamomum.*

Distribution: **India:** Tamil Nadu.

240. **Phytoptus casuarinae** (ChannaBasavanna)

Diagnosis: Feather claw 6 rayed, median line ending in a prominent dart at rear shield margin; abdomen with about 75 rings, uniformly microtuberculate; microtubercles oval in outline, close-set occupying about 3/4 width from rear ring margins.

Host: *Casuarina equisetifolia.*

Distribution: **India:** Karnataka.

241. **Phytoptus ficivorus** (ChannaBasavanna)

Diagnosis: Body whitish; shield with median line near 1/3 only; shield sides granulated.

Host: *Ficus infectoria.*

Nature of damage: The infested leaves become paler and some become malformed.

Distribution: **India:** Delhi.
242. Phytoptus glycosmisae Mohansundaram

Diagnosis: Shield with a clear pattern of lines. Median faint, broken, represented in posterior half only; admedians clear and complete, first submedian represented in the anterior half of shield; second and third submedians represented in midportion of shield.
Dorsal tubercle a little away from shield margin. Feather claw 6 rayed. Abdomen with 58-60 rings, uniformly microtuberculate. Genital cover flap with 16 lines.

Host: *Glycosmis pentaphylla.*

Distribution: INDIA: Tamil Nadu.

243. *Phytoptus lantanae* Mohansundaram

Diagnosis: Shield with standard shield markings not discernible, shield with a series of wavy broken lines. Dorsal tubercle near rear shield margin. Feather claw 4 rayed. Abdomen with about 65 rings, uniformly microtuberculate. Genital cover flap with 14 lines.

Host: *Lantana camera.*

Distribution: INDIA: Tamil Nadu.

244. *Phytoptus laurae* Mohansundaram

Diagnosis: Shield area and sides of shield with series of short lines. Dorsal tubercle just away from rear shield margin. Feather claw 6 rayed. Abdomen with about 70-75 rings, uniformly microtuberculate. Genital cover flap with 12-18 lines.

Host: *Litsea wightiana.*

Distribution: INDIA: Tamil Nadu.

245. *Phytoptus morindae* Mohansundaram

Diagnosis: Shield broadly rounded at apex at dorsal view, median line absent, admedians and submedians faintly represented or nearly indistinct, sides of shield granular. Abdomen with 40-45 rings, uniformly microtuberculate. Female genital cover flap without lines.

Host: *Morinda tinctoria.*

Distribution: INDIA: Tamil Nadu.

246. *Phytoptus karnatakaensis* Mohansundaram

Diagnosis: Shield with thin markings, median line represented clearly in the basal region and broken anteriorly; admedians broken in
the centre; submedian represented in the anterior half of shield margin. Feather claw 5 rayed. Abdomen with about 65 uniformly microtuberculate rings. Female genital coverflap with 10-12 lines.

Host: Undet. shrub.

Distribution: INDIA: Karnataka.

247. **Phytoptus rosae** Mohansundaram

Diagnosis: Shield with median line broken, admedians complete; 3 submedians represented as broken lines. Feather claw 5 rayed. Abdomen with about 95 uniformly microtuberculate rings. Female genital coverflap with 12 lines.

Host: *Rosa* sp.

Distribution: INDIA: Tamil Nadu.

248. **Phytoptus subbaraoi** Mohansundaram

Diagnosis: Shield with median line represented with broken lines in the posterior 3/4, admedian nearly complete, represented in posterior region. Feather claw 5 rayed. Abdomen with about 55 rings, uniformly microtuberculate. Female genital coverflap with 10-14 lines.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

249. **Phytoptus rubifoliæ** (ChannaBasavanna)

Diagnosis: Feather claw 5 rayed, second ventral setae on abdomen shorter than third ventral setae; shield with median line complete; sides ornamented with short strokes.

Host: *Rubus racemosus.*

Distribution: INDIA: Tamil Nadu.

250. **Phytoptus terminaliae** (ChannaBasavanna)

Diagnosis: Feather claw 5 rayed; second ventrial seta on abdomen longer than third ventral seta. Coxae almost smooth.

Hosts: *Terminalia arjuna, Terminalia entappa.*
Nature of damage: These mites live in the tight rolls of the leaves. The edge rolls become rough and brittle externally and a little spongy inside.

Distribution: India: Delhi, Punjab, West Bengal.

Subfamily Phyllocoptinae Nalepa

Phyllocoptinae Nalepa, 1898, Das Tierreich, 4: 45.

Key to the Sections of Phyllocoptinae (after Jeppson et al., 1975)

1. Feather claw divided
 — Feather claw simple with central stem undivided

2. No prominent dorsal shield setae, dorsal tubercles present, or absent, if present, with or without minute seta
 — Dorsal tubercles and prominent shield setae present

3. Tergites laterally extended into lobes or pointed projections, either from each tergite or from part of them, or from lateral anterior abdominal expansion
 — Tergites rather evenly downcurved over abdominal sides and lacking lateral extensions; thanosomal dorsum varying from evenly arched in cross sections, to flattened ridged or furrowed

4. Dorsal tubercles set more or less ahead of rear shield margin and directing setae ahead, up or diagonally centrad; if these tubercles are near rear margin, then they are subcylindrical and bent forward, or their axes longitudinal diagonal to body
 — Dorsal tubercles on or very near rear shield margin, directing setae to rear, usually divergently; dorsal tubercles either subcylindrical or with axes at right angles to body

Section I

Key to the Genera of Section I

1. First setiferous coxal tubercles present
 — First setiferous coxal tubercles absent

 Paracaphylla,
 Acaphyllisa

 Acaphylla
Genus **Paracaphylla** Mohansundaram

(Figs. 275-276)

251. **Paracaphylla streblae** Mohansundaram

Diagnosis: Shield with the entire area clear. Dorsal tubercle away from rear shield margin, dorsal seta thick. Feather claw divided with 7-8 rays in each. Abdomen with tergal, sternal differentiation, with about 40 broad tergites with microtubercles on the ridges, and about 60 narrow finely microtuberculate sternites. Female genital cover flap with numerous fine scorings at the basal half and a clear distal end.

Host: *Streblus asper*.

Distribution: INDIA : Tamil Nadu.

Genus **Acaphyllisa** Keifer

252. **Acaphyllisa parindiae** Keifer

Diagnosis: Divided feather claw each with 3 rays. Shield with median absent, admedian wavy, submedians broken, sides of shield clear. Coxae with thin scorings. Female genital flap with basal granulations and two ranks of scorings, 12-14 lines in each.

Host: *Thea sinensis*.

Distribution: INDIA : Tamil Nadu.

Genus **Acaphylla** Keifer

(Figs. 277-278)

Key to the Species of Acaphylla

1. Feather claw 3-4 rayed 2
 — Feather claw more than 3-4 rayed 3
2. Feather claw 3 rayed, dorsal tubercle small and ahead of rear margin; female genital coverflap with numerous fine basal longitudinal lines with numerous granular ribs which are faint

Feather claw 3-4 rayed; female genital coverflap with 10-12 slightly diagonal stripes

Thanosome narrower than shield, first setiferous coxal tubercle present

Thanosome bulges out wider, first setiferous coxal tubercle absent

253. Acaphylla indicae Keifer

Diagnosis: Flattened whitish mite with 8 rayed feather claw. Shield pattern is involved with admedian lines that branch 2-3 times, the caudal parts joining each other just in front of rear margin.

Host: *Thea sinensis.*

Nature of damage: The damage done on tea is not of much significance. It causes discolouration of leaves.

Distribution: INDIA: Assam.

254. Acaphylla steinwedeni Keifer

Diagnosis: Orange mite living on undersides of leaves. Thanosome narrower than shield. Feather claw bifurcate each with 3 rays. Admedian shield lines extend back from the notched anterior lobe. Dorsal tubercle short and well ahead of rear margin. Female genital coverflap with fine basal longitudinal lines with numerous granules.

Host: *Thea sinensis.*

Distribution: INDIA: Tamil Nadu; outside India: U. S. A.

255. Acaphylla syzygii ChannaBasavanna

Diagnosis: Shield with wrinkles and roughened surface; abdomen with distinct, short lateral ridges; first coxal seta absent; dorsal tubercles located on longitudinal carina, well ahead of rear shield margin; forecoxae hardly meeting at base, elongate, granulate base and rest with faint longitudinal lines. Abdomen with 51 smooth narrow tergites and 74 microtuberculate sternites.
Host: *Syzygium operculatum*.

Nature of damage: It causes no damage to its host.

Distribution: India: Delhi.

256. *Acaphylla theae* (Watt)

Phytoptus theae Watt, 1898, Pests & Blights of Tea plant, pp. 400-408.

Diagnosis: Orange in colour, sometimes with reddish tinges, spindle shaped, blunt anteriorly and progressively narrowed at posterior end. It can be distinguished from *A. indiae* as the thanosome on *theae* is narrower than the shield but bulges out wider in *indiae*. Further, *indiae* has the first forecoxal setiferous tubercles, but absent on *theae*.

Host: Tea.

Nature of damage: It infests both the surfaces of leaves, petiols and tender stems causing discolouration of leaves. The affected leaves become pale coloured, often leathery and veins and margins specially on the undersurface of leaves show pinkish discolourations. This is the reason why this mite is called the pink mite (Watt, 1898; Das & Sengupta, 1958; Das, 1965). The Assam variety is preferred over the Chinese variety. The extent of loss is sometimes very huge (Watt & Mann, 1903).

Bionomics: The average time to complete the life cycle is 8.4 days ranging from 8.0 to 8.7 days in March, 5.5 to 7.0 days in July-August and 12.0 to 19.5 days during December-January. Adult longevity is 8.16 days under laboratory conditions (Das & Sengupta, 1958). The population of this mite was negatively correlated with maximum temperature. The top portion of the bushes harboured 70.82% of the population. It was followed by middle portion (25.18%) and bottom portion (4%) (Muraleedharan & Chandrasekharan, 1981).

Control: Sulphur, lime sulphur and Akar are highly effective against this mite (Das & Sengupta, 1958). The other promising pesticides are dicofol (1:200) or ethion (1:200) by power spray @ 1:400 high volume spray.

Natural enemies: *Amblyseius* (*Amblyseius*) rhabdus, *A. (A.)* herbicolus and *Tydeus* sp. are known to feed upon this mite (Muraleedharan & Chandrasekharan, 1981).

Distribution: India: Assam, Tamil Nadu; Outside India: Southern Asia and East Indies.
SECTION II

Key to the Genera of Section II

1. Foretibial seta absent
 — Foretibial seta present

Genus Calacarus Keifer

(Figs. 279-281)

Key to the Species of Calacarus

1. Feather claw 4 rayed
 — Feather claw more than 4 rayed

2. Genital cover flap smooth
 — Genital cover flap with lines or ribs

3. Median line absent; genital cover flap with 10-12 faint lines
 — Median line distinct only on the lobe; cover flap with few longitudinal ribs

4. Feather claw 5 rayed
 — Feather claw more than 5 rayed

5. Cover flap with 15-17 scorings arranged in a single row; median line present only on posterior half of the shield; granules present at the junction of tergites and sternites; first coxae connate apically on Jasminum sambac
 — Cover flap with discontinuous lines or without lines

6. Cover flap with discontinuous lines in two ranks
 — Cover flap without lines

7. Median line and submedian line apparently absent; claws with large knob, rudiments of dorsal tubercles present, on Thea sinensis
 — Median line present, distinctly on anterior lobe and posterior half and faintly present on rest of middle part of shield; only posterior coxae ornamented, number of tergites greater than sternites, on Capsicum frutescens

8. Lower tarsal setae absent, feather claw 8 rayed, median line confined to a short distance at the anterior end of shield; on Phyllanthus acidus

Procalacarus

Calacarus

millingtoniae

polyalthiae

brionesae

jasmini

malvae

carinatus

capsica, citrifolii

channabasavannae
— Lower tarsal setae present, feather claw 6 or 7 rayed

9. Genital cover flap smooth

— Genital cover flap with distinct or indistinct lines

10. Median line absent

— Median line faint

11. Median line distinctly present throughout the shield length, a cell present just behind the anterior lobe, on *Aralia* sp.

12. Foretibial seta absent, only two cells present behind the anterior lobe; on *Clerodendrum viscosum*

— Foretibial seta present; each apical cell by division form 4 cells; on *Quisqualis indica*

257. *Calacarus araliae* Chakrabarti & Mondal

Diagnosis: Shield subtriangular with a small blunt anterior lobe lacking dorsal tubercles and dorsal setae, network of cells represented. Median line present throughout the shield; admedian and submedian sinuate, both connected with crosslines. Feather claw 6 rayed. Abdomen with 5 longitudinal wax bearing ridges. Sternites with microtubercles, tergites microtuberculate. Genital cover flap with 11 faint longitudinal lines.

Host: *Aralia* sp.

Distribution: INDIA : West Bengal.

258. *Calacarus carinatus* (Green)

Diagnosis: Purple coloured mite with 5 white ridges of waxy material running longitudinally on the dorsal side of the abdomen. Body spindle shaped.

Host: Tea.

Nature of damage: It is popularly known as purple mite of tea and is an important pest in north-east India. The affected leaves develop copperish-brown discolourations which later turn into purplish bronze.
The growth of the affected plants is checked and the leaves fall off prematurely (Das & Sengupta, 1963).

Bionomics: The life cycle is completed in 12.5 to 13.5 days in January, 8.5 to 9.3 days in March-April and 6.0 to 7.5 days in July-August. The incubation period is 6.5 to 8.0 days and the nymphal stage takes 3-6 days depending upon the period of the year. It occurs in the field throughout the year, however, the population dwindles during rainy season to reappear in October. The rate of multiplication is more during February to early March (Das & Sengupta, 1963). Population was positively correlated with maximum and minimum temperatures. Its population was more or less equal in top (45.85%) and middle (42.40%) portions of bushes while it was low (11.75%) at the bottom. The population of this mite was higher than that of *theae* in the Annamalies (Muraleedharan & Chandrasekharan, 1981).

Distribution: INDIA ; Assam, Himachal Pradesh, Tamil Nadu.

259. Calacarus brionesae Keifer

Diagnosis: Shield with short anterior lobe; median line distinct only on the lobe. Admedian lines curve back from the sides of the anterior lobe; admedians broadly convex outwardly to their rear 2/3 and abruptly recurve out at rear shield margin. The shield has series of enclosed cells. Thanosome with 5 ridges. Feather claw 4 rayed. Female genital coverflap with short dashes basally and longitudinal ribs apically.

Host: Carica papaya.

Distribution: INDIA : Tamil Nadu ; outside India : Philippines.

260. Calacarus capsica Chakrabarti & Mondal

Diagnosis: Shield subtriangular with a distinct anterior lobe, lacking dorsal tubercles and dorsal setae, represent a network of characteristic pattern of cells. Feather claw 5 rayed. Abdomen with 5 longitudinal ridges gradually becoming narrower caudad. Sternites 79-87, microtuberculated except 6-7 thanosomal sternites which are
microstriate; tergites about 75. Genital cover flap with many fine distinct longitudinal lines in two ranks.

Hosts: *Capsicum frutescens, Capsicum annuum.*

Distribution: INDIA: West Bengal, Tamil Nadu.

261. **Calacarus channabasavannae** Lakkundi

Host: *Phyllanthus acidus.*

Distribution: INDIA: Karnataka, Tamil Nadu.

262. **Calacarus citrifolii** Keifer

Diagnosis: Body fusiform, robust, with longitudinal white stripes of wax on the abdomen. Feather claw 5 rayed. Shield pattern shows network; admedianst do not have usual vertical dashes along them, median line present on anterior lobe; submedian line with branches, form three large cells on outside of admedian. Female genital cover flap with numerous fine longitudinal lines in 2 ranks.

Hosts: *Hibiscus micranthus, Lantana camera, Crossandra undulacea-folia, Priva leptostachya, Leptadenia reticulata, Brayenia sp., Capsicum annuum, Ipomoea sp.*

Distribution: INDIA: Tamil Nadu; outside India: S. Africa.

263. **Calacarus jasmini** Chakrabarti & Mondal

Diagnosis: Body robust, fusiform, with white longitudinal waxy ridges. Sternal shield lacking dorsal tubercles and dorsal setae. Feather claw 5 rayed. Anterior coxae connate apically, gradually becoming narrowed caudad; microtubercles small; female genital cover flap with 15-17 longitudinal lines; abdomen strongly sinuate and undulating arising from bases of anterior lobe.

Host: *Jasminum sambac.*

Nature of damage: This mite is normally a vagrant but heavy infestation may cause the appearance of whitish or yellowish patches on leaves (Chakrabarti & Mondal, 1979).

Distribution: INDIA: West Bengal, Tamil Nadu.
264. **Calacarus keiferi** Chakrabarti & Mondal

Diagnosis: Shield with short anterior lobe and lacking dorsal tubercles and dorsal setae with some curved lines and representing network. Median line present distinctly on anterior lobe and on posterior half of shield and absent on rear middle part of shield, admedians sinuate arising from sides of anterior lobe, submedian posteriorly connected with admedian. Feather claw 7 rayed. Abdomen with 5 longitudinal waxy ridges, 62 tergites, microtuberculated; 87 sternites with fine microtubercles posteriorly except last 4-5 sternites which are microstriate. Coverflap with 24-26 indistinct longitudinal scorings.

Host: *Clerodendron viscosum*.

Distribution: **INDIA**: West Bengal.

265. **Calacarus malvae** Mohansundaram

Diagnosis: Shield with median line faintly represented in midpart of shield, admedians wavy and bifurcate posteriorly and joining in the middle; first submedian represented as curved line; second and third submedians represented in the border of the shield, curved and wavy; shield area and sides of shield with short scorings; dorsal tubercle just away from shield margin. Feather claw 5 rayed. Abdomen with about 90 rings, uniformly microtuberculate. Female genital coverflap without lines.

Host: *Hibiscus vitifolius*.

Distribution: **INDIA**: Tamil Nadu.

266. **Calacarus microrostrus** Chakrabarti & Mondal

Diagnosis: Body fusiform, shield subtriangular, anterior shield lobe absent, admedians complete, sinuate bifurcate. Dorsal tubercle and setae absent. Feather claw simple and 7 rayed. Abdomen with 70-74 tergites and 81-84 sternites; tergites with 5 longitudinal waxy ridges which gradually become narrower caudad. Female genital coverflap smooth.

Host: *Pavetta* sp.

Distribution: **INDIA**: West Bengal.
267. **Calacarus millingtoniae** Mohansundaram

Diagnosis: Shield overhanging rostrum base, dorsal tubercle just away from rear shield margin. Anterior shield lobe with apical cells, sides of shield with 4 cells on each, median absent, admedians complete and wavy. Feather claw 4 rayed. Abdomen with about 80 rings, tergites smooth with wax bearing areas forming dorsal and two lateral lines; sternites finely microtuberculate. Genital coverflap smooth.

Host: *Millingtonia hortensis*.

Distribution: INDIA: Tamil Nadu.

268. **Calacarus polyalthiae** Mohansundaram

Diagnosis: Shield area highly granular, median line absent; admedians curved, joined at both ends forming a trough like depression in the middle; four cells on each side on the shield. Feather claw 4 rayed. Abdomen with 40 wavy wax bearing smooth tergites and 60 finely microtuberculate sternites. Female genital coverflap with 10-12 faint lines.

Host: *Polyalthia longifolia var pendula*.

Distribution: INDIA: Goa.

269. **Calacarus swietensis** Chakrabarti & Mondal

Diagnosis: Shield lacking dorsal tubercles and dorsal setae, represent network of characteristic pattern of cells, admedians bifurcate. Abdomen with 5 waxy ridges, the middle one is longest, 65 tergites and 73 sternites; microtubercles absent on tergites. Female genital coverflap smooth.

Host: *Swietenia mahogoni*.

Distribution: INDIA: West Bengal.

270. **Calacarus quisqualis** Chakrabarti & Mondal

Diagnosis: Shield subtriangular, lacking dorsal tubercles and dorsal setae represent a network of characteristic pattern of cells laterally, median line indistinct; admedian and submedian lines sinuate and
connected with other by cross lines. Feather claw 6 rayed. Abdomen with 5 longitudinal white waxy ridges; 66-77 tergites, 85-92 sternites, sternites microtuberculated except last few sternites which are microstriated. Female genital coverflap with a very short longitudinal scoring near the anterior coverflap margin.

Host: Quisqualis indica.

Distribution: INDIA: West Bengal, Tamil Nadu.

Genus Procalacarus Mohansundaram

(Figs. 282-283)

271. Procalacarus aliyarensis Mohansundaram

Diagnosis: Shield with a clear pattern of lines projecting over the rostrum; median line absent; admedians wavy with short projection on either side; first submedian short and joins with the admedians in basal 1/3 length; 2nd submedian curved and joins with admedians above the first submedian; sides of shield with 5 cells on each side; dorsal tubercle without seta. Feather claw 5 rayed. Abdomen with 66 smooth tergites and 80 microtuberculate sternites. Female genital coverflap with fine scoring on the anterior half.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

SECTION III

Key to the Genera of Section III

1. Anterior part of thanosome with broad lateral expansion and bearing 3 stiff lateral lines, rear of thanosome abruptly narrower ...

- Thanosome tapering gradually to telosome, most thanosomal tergites with lateral lobes, either of even length or alternate length, lobes varying from rounded off to apically sharp; femoral seta present ...

Scolocenus

Tegonotus

Genus Scolocenus Keifer

272. Scolocenus spiniferus Keifer

Diagnosis: Shield broad; immediately followed by broad expansion of the anterior part of thanosome; from the side of thanosomal expansion 3 spines project. Forecoxae lack setiferous tubercle. Female genital cover flap completely covered with fine longitudinal lines.

Host: *Cocos nucifera*.

Distribution: *India*: West Bengal; *outside India*: Philippines.

Genus *Tegonotus* Nalepa

(Figs. 284-285)

Key to the Species of Tegonotus

1. Feather claw 3 rayed
 - Feather claw more than 3 rayed
2. Feather claw 4 rayed
 - Feather claw more than 4 rayed
3. Female genital cover flap smooth
 - Female genital cover flap with lines
4. Female genital cover flap with clear segmentation between upper and lower rows
 - Female genital cover flap with fine close set longitudinal scoring into two series.
5. Feather claw 5 rayed
 - Feather claw 6 rayed
6. Female genital cover flap with wavy scorings in two ranks
 - Female genital cover flap with longitudinal scorings
7. Two spine like structures present on anterior shield lobe
 - Such character absent

273. *Tegonotus bassius* Das & Chakrabarti

Diagnosis: Shield subtriangular, apical lobe prominent and present over the rostral base as a thick body. Shield design a complete network
of prominent cells, median, admedian and submedians not clearly discernible; a large apical cell, a central cell and 3 lateral cells on upper half and lateral cells on lower half of the shield present. Feather claw 3 rayed. Abdomen gradually tapering to caudad, with 20-24 tergites, non-microtuberculate. Genital cover flap with 8-10 longitudinal scorings.

Host: Bassia sp.

Distribution: INDIA: Bihar.

274. **Tegonotus bengalensis** Mandal & Chakrabarti

Diagnosis: Body wide, elongate, wedge shaped, yellowish. Rostrum projecting obliquely down. Shield semicircular, with board anterior lobe; admedian lines almost absent. Dorsal tubercle placed ahead of rear shield margin. Feather claw simple, 5 rayed. Anterior coxae connate apically. Abdomen with about 25 tergites and 49 sternites, tergites broad and produced laterally as broad bluntly rounded process over the sternites. Genital cover flap with about 8 longitudinal stripes.

Host: Shorea robusta.

Nature of damage: This mite is seen associated with small beaded galls on upper surface of leaves but it is not certain whether the galls are produced by this mite (Mondal & Chakrabarti, 1980) in view of the fact that another eriophyid mite is also associated with the same host.

Distribution: INDIA: West Bengal.

275. **Tegonotus cardiavagrans** Mohansundaram

Diagnosis: Shield with an anterior lobe overhanging rostrum, shield clear except for the faint representations of admedians; dorsal tubercle near rear shield margin. Coxae with all setiferous tubercles. Feather claw 4 rayed. Abdomen with about 20 broad tergites with elongate microtuberculation; about 70 sternites with fine microtuberculations. Female genital cover flap without lines.

Host: Cordia sp.

Distribution: INDIA: Tamil Nadu.
276. Tegonotus coimbatorensis Mohansundaram

Diagnosis: Shield projecting over rostrum, median absent, admedian complete, wavy and converge at both ends; sides of shield granular; shield area with fine faint irregular scoring. Feather claw 4 rayed. Abdomen with about 30 smooth tergites and about 60 finely microtuberculate sternites. Female genital cover flap with clear segmentation between upper and lower rows.

Host: Undet. plant.

Distribution: India: Tamil Nadu.

277. Tegonotus convolvuli (ChannaBasavanna)

Diagnosis: Body elongate, fusiform, dorsoventrally flattened, yellow; female genital cover flap having two series of longitudinal lines. Feather claw bent dorsally, just beyond the second ray giving it a divided appearance in ventral and dorsal view.

Hosts: *Ipomoea batatus, I. palmata, I. sepiaria.*

Nature of damage: David (1959, 1960) reported the occurrence of this eriophyid mite on sweet potato. The affected leaves become rolled up, look shiny and rusty in colour. The mites feed on both the surfaces of leaves. The infestation affects vigour of the plant, reduces yield and causes stunting of growth.

Bionomics & Control: It remains active in the field throughout the year. *Ipomoea batatus* serves as the alternate host. Eradication of weeds (*I. sepiaria*) helps in checking the pest. Spraying with parathion or Aramite can effectively control this mite.

Distribution: India: Karnataka, Tamil Nadu.

278. Tegonotus jambolensis Mondal, Ghosh & Chakrabarti

Diagnosis: Shield with a prominent anterior lobe which is tipped with 2 spines, shield design represents a number of longitudinal lines, median faintly present posteriorly, admedian line arising from base of anterior lobe extending backwards cover gently from distance and then divergently and again converge. Dorsal tubercle ahead of rear shield

Host: *Eugenia jambolana*.

Distribution: INDIA: West Bengal.

Remarks: It causes brownish patches on leaves.

279. *Tegonotus mangiferae* (Keifer)

Diagnosis: Feather claw 6 rayed. Shield rough and subtriangular. Middorsal thanosomal ridge present on thanosome.

Host: Mango.

Distribution: INDIA: West Bengal; outside India: Hawaii.

Remarks: It causes rusting on the undersurface of leaves.

280. *Tegonotus parviflorae* Mohansundaram

Diagnosis: Feather claw 5 rayed, simple. Shield clear except for an 'U' shaped groove facing anteriorly. Coxae smooth. Female genital coverflap with fine irregular scorings in two ranks.

Host: *Canthium parviflorum*.

Distribution: INDIA: Tamil Nadu.

Section IV

Key to the Genera of Section IV (after Jeppson et al., 1975)

1. Dorsal thanosome flat or furrowed or with longitudinal trough ...
 ... 3
 — Dorsum of thanosome with central ridge ...
 ... 5
 — Dorsum of thanosome evenly arched somewhat flattened in some genera ...
 ... 2
2. Dorsal tubercle usually ahead of rear shield margin, directing setae ahead or up and centrad; if dorsal tubercle close to rear margin, then directing setae forward; tubercles on rear margin with longitudinal axes and directing setae either centrad or convergently to rear ... Phyllocoptes
— Dorsal tubercle on rear shield margin, the tubercle either having diagonal axes or directing setae up \textit{Vasates}

3. Patellar seta missing on second leg, elongate species with trough almost entire length of thanosome; dorsal tubercle set ahead of rear shield margin but seta direction varies \textit{Notostrix}

— Patellar seta present on second leg, body not long attenuate 4

4. Trapezoidal species, widest across rear of shield, with central hump in start of dorsal longitudinal trough on thanosome; dorsal tubercles on rear shield margin but with longitudinal axes and directing setae centrad \textit{Indonotalox}

— Dorsal tubercle set ahead of rear shield margin; no appreciable hump just behind shield, more elongated species \textit{Phyllocoptura}

5. Middorsal ridge ending in broad trough before the end of the subdorsal ridge \textit{Calepitrimerus}

— Middorsal ridge fading simultaneously with subdorsal or lateral ridges, the shallow subdorsal trough making the ridge often weak \textit{Epiririmerus}

Genus \textit{Calepitrimerus} Keifer

(Figs. 286-288)

Key to the Species of \textit{Calepitrimerus}

1. Feather claw 4 rayed 2

— Feather claw more than 4 rayed 3

2. Dorsal tubercle very close to rear shield margin; abdomen with 27 smooth tergites and 40-60 microtuberculate sternites; female genital coverflap with 14-16 longitudinal stripes \textit{azadiracthae}

— Dorsal tubercle at shield margin; abdomen with 30 smooth tergites and 56 microtuberculate sternites; female genital coverflap with 10-12 lines \textit{asperimae}

3. Feather claw 5 rayed 4

— Feather claw 6 rayed \textit{lucullus}

4. Shield design simple 5

— Shield design a complicated system of carinae \textit{mysorensis}
5. Median line lacking on anterior 0.25 and posterior 0.20 portions
— Median line lacking only anterior 0.45 portion
6. Female genital coverflap with prominent scorings in two tires; abdomen with 60-67 sternites
— Female genital coverflap with prominent scorings; abdomen with 42-49 sternites

281. Calepitrimerus antedesmae Chakrabarti & Das

Calepitrimerus antedesmae Chakrabarti & Das, 1982, Entomon, 7(1) : 33-34.

Diagnosis: Shield smooth, subtriangular, with distinct anterior lobe, median line faint, not continuous, absent on anterior 0.33 part, admedian line jointed anteriorly just anterior to the median line and bifurcate just below the dorsal tubercle. Dorsal tubercles centrad, setae ahead of rear shield margin. Feather claw 5 rayed. Abdomen tapering conically at caudad end; 24-28 tergites and 42-49 sternites, last 5-6 tergites not differentiated from sternites; middorsal ridge absent on last 7-8 tergites giving a trough; sternites with very fine microtubercles. Genital coverflap with fine granules present on lower margin.

Host: Antedesma ghesembilla.

Distribution: INDIA: West Bengal.

282. Calepitrimerus asperrimae Mohansundaram

Diagnosis: Central area of shield with short scorings or lines, anterior margin granular, sides of shield granular. Dorsal tubercle at shield margin. Feather claw 4 rayed. Abdomen with about 30 smooth tergites, 56 microtuberculate sternites. Female genital coverflap with two rows of scorings.

Host: Ficus asperrima.

Distribution: INDIA: Tamil Nadu.

283. Calepitrimerus azadirachtae ChannaBasavanna

Diagnosis: Body thick, wedge shaped, pinkish brown, shield design
a complicated system of cells and longitudinal lines. Median line almost complete, not extending to anterior lobe. Feather claw 4 rayed. Forecoxae with longitudinal lines, hind coxae almost smooth. Abdomen with short tergites and microtuberculate sternites. Female genital coverflap with longitudinal scoring, setae longer than length of genitalia.

Host: *Azadirachta indica*.

Distribution: INDIA: Karnataka, Tamil Nadu.

284. **Calepitrimerus cordiae** Chakrabarti & Das

Diagnosis: Shield subtriangular, more or less blunt anteriorly without distinct anterior lobe. Shield design simple, median line conspicuous lacking in 0.25 portion and posterior 0.20 portion, admedian line sinuate arising directly from shield margin, submedian lines two. Feather claw 5 rayed, simple. Thanosome with 25-28 tergites and 60-67 sternites, tergites with central ridge fading caudad and almost absent in last at least 5-6 tergites; a subdorsal ridge also present. Genital coverflap with scorings in two tiers, upper one contains 16-24 and lower one contains 14-16 in number.

Host: *Cordia myxa*.

Distribution: INDIA: West Bengal.

285. **Calepitrimerus leucadis** ChannaBasavanna

Diagnosis: Second ventral seta on abdomen shorter than third; feather claw 6 rayed; female genital coverflap bare with seta shorter than the length of genitalia; shield design without cells. Abdomen with 40 smooth tergites and about 75 microtuberculate sternites.

Host: *Leucas aspera*.

Distribution: INDIA: Karnataka.

286. **Calepitrimerus massanjoris** Das & Chakrabarti

Diagnosis: Shield subtriangular, shield design simple, median line prominent from anterior 0.45 portion to rear shield margin; admedian and submedians also present. Feather claw 5 rayed. Abdomen with 36-42 tergites and 55-56 sternites, thanosome with a middorsal and
2 subdorsal ridges fading caudad with a dorsal trough at rear end; tergites and sternites well microtuberculated. Female genital coverflap with 15-16 scorings at lower half.

Host: Tectona sp.

Distribution: INDIA: Bihar.

Remarks: This mite causes black spots on lower surface of leaves.

287. Calepitrimerus mysorensis ChannaBasavanna

Figs. 282-283: *Procalacarus* sp.

Figs. 284-285: *Tegonotus* sp.

Figs. 286-288: *Calepitrimerus* sp.

Figs. 289-290: *Epitrimerus* sp.
Diagnosis: Body thick, fusiform, pale yellowish, 3 wax bearing ridges on abdomen. Shield subtriangular; shield design a complicated system of carinae which bears wax band all along the margin; median line indistinct; admedian line arising on anterior lobe, gently diverging, then gently going straight back and finely converging on midshield to meet at base of median line. Feather claw 5 rayed. Forecoxae strongly diverging to front, moderately connate with faint close set lines. Abdomen with smooth tergites and microtuberculate sternites. Second ventral seta on abdomen longer than third.

Host: *Neolitsea zeylanica.*

Distribution: **India**: Karnataka.

Genus Epitrimerus Nalepa

(Figs. 289-290)

Key to the Species of Epitrimerus

1. Feather claw 4 rayed
 - Feather claw 3 rayed

288. **Epitrimerus azimae** Mohansundaram

Diagnosis: Shield with a broad lobe overhanging rostrum base. Shield area clear except for a pair of broken line in the anterior and a pair of submedians connected to dorsal tubercles. Dorsal tubercles diffuse, broadened longitudinally very characteristic. Feather claw 4 rayed. Abdomen with about 52-55 tergites with fine elongated microtubercles on the middle and side ridges, about 80 finely dot-like microtuberculate sternites. Female genital coverflap basally with fine scorings and distally with about 18 lines.

Host: *Azima tetracantha.*

Distribution: **India**: Tamil Nadu.

289. **Epitrimerus chandramohani** Mohansundaram

Diagnosis: Shield with a faint pattern of thin lines in the middle and anterior border. The thin lines are wavy and broken and could
not be differentiated as median, submedians and admedians. Feather claw 3 rayed. Abdomen with about 50 smooth tergites and 75 micro-tuberculate sternites. Female genital coverflap with about 16 lines distally and basally with minute striations.

Host: Undet. plant.

Distribution: INDIA: Maharashtra.

Genus *Indonotalox* Ghosh & Chakrabarti
(Fig. 291)

290. *Indonotalox sudarsani* Ghosh & Chakrabarti

Diagnosis: Shield more or less triangular with prominent anterior shield lobe over the rostral base and a horny projection from the rear shield end, median line present on posterior half of shield, admedian complete, dorsal tubercle and setae projecting up and divergent. Feather claw simple, 6 rayed. Abdomen with equal number of tergites and sternites. Female genital coverflap smooth.

Host: Combretum decundrum.

Distribution: INDIA: West Bengal.

Genus *Notostrix* Keifer
(Figs. 292-293)

291. *Notostrix flabelliferae* Mohansundaram

Diagnosis: Shield area without lines but with uniformly placed dot like projections. Dorsal tubercles near rear shield margin, setae pointing backward and centrad. Feather claw 5 rayed. Abdomen with 35 broad smooth tergites with shallowed dorsal trough running for 3/4 length of abdomen, tergites with waxy fringes on the sides of each segment; 85-90 sternites finely and uniformly microtuberculate. Female genital coverflap with 9 longitudinal lines.
Host: Borasus flabellifer.

Distribution: INDIA: Tamil Nadu.

Genus **Phyllocoptes** Nalepa

(Figs. 294-295)

Fig. 291: Idonotalox sp.

Figs. 292-293: Notostrix sp.

Figs. 294-295: Phyllocoptes sp.

Figs. 296-297: Phyllocoptotrata sp.
Key to the Species of Phyllocoptes

1. Feather claw 8 rayed
 — Feather claw less than 8 rayed

2. Feather claw 6 rayed
 — Feather claw 5 rayed

3. Abdomen with 25-30 tergites
 — Abdomen with over 25-30 tergites

4. Female genital cover flap with 10-14 lines
 — Female genital cover flap with over 14 lines

5. Female genitalia closely approximate to coxal base
 — Female genitalia away from coxal base

6. Genital cover flap with 10-12 lines
 — Genital cover flap with 15 lines

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

immigrans
simplicifoliae
aliyamagarensis
asperaevagrans
indicae
salmaliae

292. Phyllocoptes aliyamagarensis Mohansundaram

Diagnosis: Shield lobe overhanging rostrum base, median absent, admedians represented in the posterior half; submedian curved, placed beyond the dorsal setae, sides of shield clear. Feather claw 5 rayed. Abdomen with about 25 broad smooth tergites, 60 microtuberculate sternites. Female genital cover flap with 10-12 lines.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

293. Phyllocoptes ficivagrans Mohansundaram

Diagnosis: Shield area clear except for the faint markings near the rear shield margin, dorsal tubercle just away from rear shield margin, dorsal setae pointing upward. Feather claw 5 rayed, appearing divided in dorsal view. Abdomen with broad smooth tergites and 72-75 microtuberculate sternites. Genital cover flap with 14-18 thin lines.

Host: Ficus sp.

Distribution: INDIA: Tamil Nadu.
294. *Phyllocopes asperaevagrans* Mohansundaram

Diagnosis: Anterior portion of shield faintly granulate, rest of the area showing faint mosaic pattern, sides of shield heavily granular, median absent, admedians broken, represented in the posterior half. Feather claw 5 rayed. Abdomen with about 25 broad smooth tergites, 45 microtuberculate sternites. Female genital cover flap with 12-14 lines.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

295. *Phyllocopes immigrans* Keifer

Diagnosis: Feather claw 8 rayed, simple. Shield clear without any lines. Coxal area smooth without lines or granules. Genital cover flap smooth, obtusely pointed, genital seta 50 microns long.

Host: Tamarix plumosus.

Distribution: INDIA: Tamil Nadu; outside India: California.

296. *Phyllocopes indicae* Mohansundaram

Diagnosis: Shield with a clear pattern of wavy lines, median represented in rear half, admedians complete, four submedians running diagonally and joining with the admedians. Dorsal tubercle a little ahead of rear shield margin. Feather claw 5 rayed. Abdomen with about 42 smooth wavy tergites, 65 microtuberculate sternites. Female genital cover flap with 10-12 lines.

Host: Anisomeles indica.

Distribution: INDIA: Tamil Nadu.

297. *Phyllocopes salmaliae* Chakrabarti & Mondal

Diagnosis: Body fusiform, pink, with central longitudinal groove, rostrum projecting low, with subapical seta. Shield broadly triangular.
Median line arises from a cross line between the admedians, extend posteriorly and meet with the median at dorsal tubercle level to reach rear shield margin; admedian line sinuate, meet each other at cross line; foreleg claw knobbed, feather claw 5 rayed. Abdomen with middorsal groove from rear shield margin upto thanosome except last 4-6 tergites; thanosome with 35-53 tergites and 60-71 sternites. Genital coverflap with 15 longitudinal lines.

Host: *Salmalia malabarica*.

Distribution: **INDIA**: West Bengal.

Remarks: Infested leaves become yellow and brown.

298. *Phyllocoptes simplicifolii*ae Mohansundaram

Diagnosis: Shield lobe projecting over rostrum base, admedians alone represented, dorsal tubercle away from shield margin. Feather claw 6 rayed. Abdomen with about 28 broad smooth tergites, 45 microtuberculate sternites. Female genital coverflap with 6 short lines.

Host: *Miliosma simplicifolia*.

Distribution: **INDIA**: Tamil Nadu.

Genus *Phyllocoptruta* Keifer

(Figs. 296-297)

Key to the Species of Phyllocoptruta

1. Feather claw 3 rayed *odinae*
 — Feather claw more than 3 rayed 2
2. Feather claw 4 rayed *malgai*
 — Feather claw more than 5 rayed 3
3. Genital coverflap with 10-12 lines, median line on shield absent, a thick 'V' shaped line between dorsal tubercles *odayarae*
 — Genital coverflap with 14-16 lines, 'V' shaped margin on shield absent *oleivora*
299. *Phyllocoptruta malligai* Mohansundaram

Diagnosis: Shield area with very fine scorings, the median and admedians visible in a few specimens. Dorsal tubercle away from rear shield margin. Feather claw 4 rayed. Abdomen with well differentiated tergites and sternites. Female genital coverflap with 15-20 lines.

Host: *Ipomoea staphylina*.

Distribution: INDIA: Tamil Nadu.

300. *Phyllocoptruta odayarae* Mohansundaram

Diagnosis: Shield with an anterior lobe overhanging rostrum. Median absent, a thick 'V' shaped line between dorsal tubercles, admedians curved with a cross line at about the middle joining with a branch from the admedian. Sides of shield with wavy lines. Feather claw 5 rayed. Abdomen with about 34 broad tergites with a broad dorsal trough flanked on either sides with ridges. Female genital coverflap with 10-12 lines.

Host: *Odina wodier*.

Distribution: INDIA: Tamil Nadu.

301. *Phyllocoptruta odinae* Mohansundaram

Diagnosis: Shield triangular with a clear pattern. Median line represented at the basal half and at anterior end with a break in the middle. Admedians wavy forming cells along the anterior margin of the shield. Feather claw 3 rayed. Abdomen with broad tergites with faint elongate microtubercles, tergites 40, sternites 65. Female genital coverflap with 12 lines.

Host: *Odina wodier*.

Distribution: South India.

Remarks: This mite causes slight rusting of leaves on both sides.
302. **Phyllocoptruta oleivora** (Ashmead)

Diagnosis: Flattened fusiform mite, feather claw 5 rayed. The shield has moderately produced anterior lobe with a transverse furrow across the front edge. Admedian shield line arises from each side of the anterior lobe and curves out to the area just past the lobe base. The abdomen has the broad longitudinal trough and the microtubercles present only on sternites, each tergite covers 2-3 sternites. The basal area of the female genital cover flap is granulate with a median longitudinal line apically, cover flap has 14-16 longitudinal ribs.

Host: Citrus.

Nature of damage: This is a serious pest of citrus. It occurs on both the surfaces of leaves and also on fruit skin. The feeding causes the appearance of silvery skin which later turns reddish or blackish. In some cases the mites give shark skin appearance to the fruits. Rinds of silver fruits become thicker than undamaged fruits and loose water faster.

Bionomics: Though no study has been made in this country on the biology of this mite, but the information available in literature indicates that a complete life cycle takes 7-10 days in summer and 14 days in winter. Adult may live for as many as 20 days (Yothers & Mason, 1930). In another study (Swirski & Amitai, 1958) it was found that the theoretic threshold for egg and larva was 9.2°C. In summer, the development of these stages took 4-6 days and about 2 months in winter. Adult longevity was 36-37 days at 12-18°C, 24 days at 20-23°C and 20 days above these temperatures. Death rate was lowest at 16-18°C and highest at 12-13°C. They observed 28 or more generations at Rehovot in a year.

Distribution: **INDIA**: West Bengal, Tamil Nadu; **outside India**: U. S. A., South Africa, Israel, Mauritius.

Genus *Vasates* Shimer

(Figs. 298-299)

Key to the Species of Vasates

1. Feather claw 7 rayed
 - Feather claw 8 rayed

Vasates cassiae (Shimer, 1869)

Key to the Species of Vasates

1. Feather claw 7 rayed
 - Feather claw 8 rayed

S. dhodabettaensis (Shimer, 1869)

303. *Vasates cassiae* Mohansundaram

Diagnosis: Shield with a clear pattern of lines. Median line complete and fairly straight, admedians converge towards the anterior end with cross lines connecting with the median at three points fairly equidistant from each other. First submedian broken and represented in the anterior and middle of shield; second submedian curved, converge towards the anterior end and joins with first submedian; third submedian forms the shield margin. Feather claw 7 rayed. Tergites with 42 rings with faint microtuberculation, sternites 65 with dot like clear microtuberculation. Female genital coverflap with 12-14 lines.

Figs. 298-299: *Vasates* sp.
Figs. 300-302: *Abacarus* sp.
Figs. 303-304: *Aculops* sp.
Figs. 305-307: *Aculus* sp.
Hosts: *Cassia auriculata, Ciba pentandra.*

Distribution: INDIA: Tamil Nadu.

304. **Vasates dhodabettaensis** Mohansundaram

Diagnosis: Shield with a pointed lobe overhanging the rostrum. Dorsal tubercle cylindrical at shield margin. Abdomen with 38 smooth tergites and 68 microtuberculate sternites. Female genital coverflap with 10 lines.

Host: *Alnus* sp.

Distribution: INDIA: Tamil Nadu.

SECTION V

Key to the Genera of Section V (after Jeppson *et al.*, 1975)

1. Dorsum evenly arched transversely. ... 4
 - Thansosome with middorsal longitudinal furrow or trough. ... 2
 - Thansosome with central longitudinal ridge. ... 9
2. Anterior dorsal tergal plate present. ... 3
 - Anterior dorsal tergal plate absent. ... *Tetra, Paratetra*
3. First setiferous coxal tubercle missing. ... *Neomesalox*
 - First setiferous coxal tubercle present. ... *Bakeriella*
4. First setiferous coxal tubercle and seta missing. ... 5
 - First setiferous coxal tubercle present. ... 6
5. Dorsal tubercle away from rear shield margin and dorsal seta pointing upward and forward. ... *Neometaculus*
 - Not like above. ... *Metaculus*
6. Anterior shield lobe over rostrum flanked on each side by lateral furrowed extension of shield, female genitalia unusually elongate and coverflap acuminate. ... *Keiferana*
 - No auxiliary anterior shield projection besides anterior shield lobe; female genital coverflap bowl shaped, not acuminate. ... 7
7. Thansosomal tergites unusually broad and abruptly contrasting with narrower telosomal rings. ... *Anthocoptes*
— Thanosomal tergites narrowing to and blending with telosomal rings. 8

8. Anterior shield rather broad and rounded off, with 2-4 small spines or spinules projecting forward from under front edge. Aculops
— Anterior shield lobe usually more acuminate frequently ending with a sharp center point; never with spinules from under front edge. ...

9. Cephalothoracic shield with pit. 10
— Cephalothoracic shield not with pit. 11

10. With a pair of pits. Ditrymacus
— With a single pit. Monotrinacicus

11. Central thanosomal ridges extra broad; 4 anterior spinules on anterior shield lobe. Thamnacicus
— Central longitudinal ridges narrower. 12

12. Foretibial seta absent; 5 longitudinal wax bearing ridges on dorsum separated by moderately broad furrows; dorsal tubercle on rear shield margin. Neocalacarus
— Foretibial seta present, thanosomal dorsum with at most 3 ridges. 13

13. Lateral ridges present or absent. 14
— Lateral ridges absent. Indotegolophus

14. Middorsal ridge shorter than subdorsal ridges and ending in dorsal trough. Abacarus
— Middorsal ridge not ending before such lateral or subdorsal ridges as are present. 15

15. Tergites on thanosome of various widths according to spines but all reaching same level in lateral view. Tegolophus
— Deep cleft between shield and thanosome, with first tergite projecting up further than those following. 16

16. First tergite enlarged. Proneotegonotus
— First tergite not enlarged. Neotegonotus

Genus Abacarus Keifer
(Figs. 300-302)

Key to the Species of Abacarus

1. Feather claw 4 rayed. anacardiae
— Feather claw more than 4 rayed. 2
Zoological Survey of India

2. Feather claw 5 rayed. 3
 — Feather claw more than 5 rayed. 4
3. Median line complete. 5
 — Median line represented at rear of shield. arjunalis gossypii
4. Feather claw 6 rayed. asiatica
 — Feather claw 7 rayed. 6
5. Shield with median line absent. sacchari
 — Shield with median line present. delhiensis goaensis
6. Sternites as numerous as tergites. 7
 — Sternites more in number than tergites. 8

305. Abacarus anacardiae Mohansundaram

Diagnosis: Shield triangular, anterior tip overhanging the rostral base, with faint marking, medians and admedians represented as furrows in a faint manner. Dorsal tubercle a little away from shield margin. Feather claw 4 rayed. Abdomen with 58-62 distinct tergites and equal number of sternites.

Host: Anacardium occidentale.

Distribution: India: Tamil Nadu.

306. Abacarus arjunalis Mondal, Ghosh & Chakrabarti

Diagnosis: Shield subtriangular with short and blunt anterior lobe, shield design presents a number of longitudinal lines, median line complete, admedians arise from anterior tip of shield lateral to median line; submedian lines not clearly discernible. Dorsal tubercle placed near the rear shield margin, dorsal seta directed forward. Feather claw 5 rayed. Abdomen with 32-35 smooth tergites and 42-45 micro-tuberculate sternites. Dorsal thanosome with 3 distinct wax bearing ridges. Genital coverflap smooth.

Host: Terminalia arjuna.

Distribution: India: West Bengal.

Remarks: It causes curling of leaf margins and ventral erineum.

307. Abacarus asiatica Mohansundaram

Diagnosis: Shield with median and admedians complete,
first submedian joining with admedian in the anterior 1/3; second submedian forming the border of the shield; sides of shield, and areas between admedians and between first and second submedians granular. Feather claw 6 rayed. Abdomen with 65 rings, tergites smooth, sternites with microtuberculations. Genital coverflap with 12-16 lines.

Host: *Gmelia asiatica.*

Distribution: INDIA: Tamil Nadu.

308. *Abacarus delhiensis* Channa Basavanna

Diagnosis: Flattish, elongate, whitish with two prominent subdorsal ridges of waxy processes. Feather claw 7 rayed. Forecoxae connate with longitudinal wavy lines. Admedian with middorsal ridge. Sternites about as numerous as tergites, microtubercles being beads along rear margins and those on sternites beyond third ventral seta microstriate. Female genital coverflap with 10 longitudinal stripes.

Host: *Saccharum spontaneum.*

Distribution: INDIA: Delhi, Tamil Nadu.

309. *Abacarus goaensis* Mohansundaram

Diagnosis: Shield with median represented in the rear 3/4; admedians wavy and complete, first and second submedians curved and branched anteriorly. Dorsal tubercle at shield; side of shield granular, abdomen with 40 tergites and 68 sternites. Female genital coverflap with 12 lines.

Host: Undet. plant.

Distribution: INDIA: Goa.

310. *Abacarus gossypii* Mohansundaram

Diagnosis: Shield triangular, median line represented as short line at rear of shield, admedians short represented at the rear of shield and join the median at the point of bifurcation; first and second submedians represented as short lines in the basal half of shield. Feather claw
5 rayed. Abdomen with tergites having microtuberculation at middorsal and lateral regions. Female genital cover flap with 2 rows of scorings.

Host: *Gossypium arboreum*.

Distribution: INDIA: Tamil Nadu.

311. *Abacarus sacchari* Channa Basavanna

Diagnosis: Yellow, pink body with white waxy covering and 3 longitudinal rows of waxy processes on dorsum including cephalothorax. Feather claw 7 rayed with a short projection. Abdomen with 38-42 tergites and 68-70 microtuberculate sternites.

Host: Sugarcane.

Distribution: INDIA: Karnataka, Tamil Nadu, Delhi, Bihar, West Bengal.

Genus *Aculops* Keifer

(Figs. 303-304)

Key to the Species of Aculops

1. Feather claw 7 rayed
 — Feather claw less than 7 rayed
2. Feather claw 6 rayed
 — Feather claw less than 6 rayed
3. Feather claw 4 rayed
 — Feather claw 5 rayed
4. Female genital cover flap with 6 lines
 — Female genital cover flap with 12-14 lines
5. Shield area clear
 — Shield area with admedian and submedian lines
6. Genital cover flap with 10-12 lines
 — Genital cover flap with 16 lines
7. Shield area with admedian line alone
 — Shield with admedian and submedian lines
8. Genital cover flap with 12-14 lines
 — Genital cover flap with 7-10 lines

extensae
abutiloni
niphocladae
kumari
betonicae
leguminæ
xanthocarpi
9. Abdominal tergites smooth 10
 — Abdominal tergites microtuberculate
10. Coxal area with scorings privae
 — Coxal area smooth and clear pittosporae
11. Microtubercles prominent boerhaeavie
 — Microtubercles not prominent excoecaria

312. Aculops acanthae Mohansundaram

Diagnosis: Shield clear, without any line, sides of shield granular, dorsal tubercle at shield margin. Feather claw 4 rayed. Abdomen with 23 tergites and 55 sternites. Tergites broad and smooth, without microtubercles. Female genital cover flap with 6 faint lines.

Host: Acanthaceae.

Distribution: INDIA: Karnataka.

313. Aculops abutilonii Mondal & Chakrabarti

Diagnosis: Body wide, whitish or faint brownish. Shield subtriangular, shield design with longitudinal and curved lines forming a complete network, median line faint; admedian lines sinuate. Dorsal tubercles at rear margin of shield, 38.25 apart from each other. Feather claw simple, 6 rayed. Anterior coxae broadly connate and with median suture, both coxae ornamented with a few longitudinal lines. Abdomen with 38-40 tergites and 71 sternites, the former microtuberculate. Genital cover flap with about 12-14 faint longitudinal scorings.

Host: Abutilon indicum.

Distribution: INDIA: West Bengal.

Remarks: It remains on the undersurface of leaves causing no appreciable damage to the plants.

314. Aculops betonicae Mohansundaram

Diagnosis: Shield triangular without any markings; dorsal tubercle at rear shield margin. Feather claw 6 rayed. Abdomen with 22 broad
smooth tergites and 65 finely microtuberculate sternites. Genital coverflap with 16 lines.

Host: *Justicia betonica.*

Distribution: INDIA: Tamil Nadu.

Remarks: Infestation causes the appearance of sunken spots on the lower sides of leaves. Light specklings also appear at feeding sides.

315. *Aculops boerhaeaviae* Mohansundaram

Diagnosis: Shield broadly rounded at apex; median line represented only at base, first submedian short and thick, represented only at basal 1/4; second submedian placed widely apart. Dorsal tubercle at rear shield margin. Feather claw 5 rayed. Abdomen with 44-48 tergites, 68-74 sternites, tergites with spine like tubercles; sternites microtuberculate. Female genital coverflap with 11-14 lines.

Host: *Boerhaeavia diffusa.*

Distribution: INDIA: Tamil Nadu.

316. *Aculops excoecaria* Mondal & Chakrabarti

Diagnosis: Shield subtriangular with prominent anterior lobe, median line prominent present throughout shield length, admedian sinuate, submedian one bifurcating on 1/3 anteriorly. Feather claw 5 rayed. Abdomen with 38 tergites and 67 sternites; tergites less prominently microtuberculate. Female genital coverflap with 12-14 longitudinal stripes.

Host: *Excoecaria aquallocha.*

Distribution: INDIA: West Bengal.

317, *Aculops extensae* Mohansundaram

Diagnosis: Shield including lobe overhanging rostrum base, median line on posterior half only, admedians wavy, complete; first submedian represented at about the middle with posterior forking, second submedian on anterior part of shield. Dorsal tubercle at rear
shield margin. Feather claw 7 rayed. Coxae with clear sternal line, coxal area with fine scorings; 3 setiferous coxal tubercles present. Abdomen with 58 smooth tergites and 75 sternites with fine microtubercululations. Genital coverflap with 12 lines.

Host: *Pergularia extensa.*

Distribution: INDIA: Tamil Nadu.

318. **Aculops kumari** Mohansundaram

Diagnosis: Shield without any line. Dorsal tubercle at rear shield margin. Feather claw 5 rayed. Abdomen with 40 tergites and 55 sternites. Tergites smooth, sternites uniformly microtuberculate along the hind margin of each ring. Coverflap with 10-12 thin lines.

Host: Undet. plant.

Distribution: INDIA: Delhi.

319. **Aculops leguminae** Mohansundaram

Diagnosis: Shield triangular, admedian alone faintly represented which are joined at the rear; otherwise shield bare and sides of shield clear. Dorsal tubercle at rear shield margin. Feather claw 5 rayed. Abdomen with 40 smooth tergites and 65 microtuberculcate sternites. Female genital coverflap with 10 lines.

Host: *Dolichos lablab.*

Distribution: INDIA: Tamil Nadu.

320. **Aculops niphoicladae** Keifer

Diagnosis: Feather claw simple, 4 rayed. Shield with a design of narrow lines bearing granules and short dashes forming a network of cells, sides of shield granular. Coxae with thick scorings. Female genital coverflap with 12-14 longitudinal ribs.

Host: *Salix niphoicladae.*

Distribution: INDIA: Uttar Pradesh; outside India: Canada.
321. *Aculops pittosporae* Mohansundaram

Diagnosis: Shield with a clear pattern covered over with wax in un cleared specimens. Median line absent; admedian wavy with 3 cross lines; submedian bent anteriorly and join with admedian. Dorsal tubercle present. Feather claw 5 rayed. Abdomen with 26 tergites, broad and smooth, 55 microtuberculate sternites. Female genital cover flap with 12-14 thin lines.

Host: *Pittosporum floribundum*.

Distribution: *India*: Tamil Nadu.

322. *Aculops privae* Mohansundaram

Diagnosis: Shield with a clear pattern of lines; median line represented at rear half of shield with anterior bifurcation which joins the admedians. Abdomen bifurcated at rear margin of shield, wavy complete; submedians forming curved lines on either side. Dorsal tubercle at rear shield margin. Feather claw 5 rayed. Abdomen with 42 broad tergites, 70 sternites with fine microtuberculations. Female genital cover flap with 12-14 lines.

Host: *Priva leptostachya*.

Distribution: *India*: Tamil Nadu.

323. *Aculops xanthocarpi* Mondal & Chakrabarti

Diagnosis: Shield corrugated laterally, subtriangular shield design with a number of longitudinal lines; median line distinct present throughout shield length, admedian line smooth. Dorsal tubercle placed on rear shield margin. Feather claw 5 rayed. Abdomen with equal number of tergites and sternites. Female genital cover flap with 9-10 longitudinal scorings.

Host: *Solanum xanthocarpum*.

Distribution: *India*: West Bengal.
Genus Aculus Keifer

Key to the Species of Aculus

1. Feather claw 4 rayed
 - Feather claw 6 rayed
 - Feather claw 7 rayed
2. Median line on shield absent
 - Median line on shield complete
3. Shield design obsolete
 - Shield design distinct
4. Genital cover flap with 16 lines
 - Genital cover flap with 10 lines
5. Abdomen with 28-30 tergites
 - Abdomen with over 30 tergites
6. Dorsal shield setae much shorter than shield length of genitalia
 - Dorsal shield setae much longer than shield length
7. Abdomen phyllocoptiform with well differentiated tergites and sternites
 - Abdomen eriophyrid form with sternites about as numerous as tergites
8. Second ventral seta on abdomen longer than or as long as third ventral seta; dorsal shield setae almost as long as shield; punctations present on rear mid shield
 - Second ventral seta shorter than third ventral; dorsal setae shorter than length of shield; punctations on rear mid shield absent

324. Aculus atturensis Mohansundaram

Diagnosis: Body dorsoventrally flattened, shield rough with an inverted ‘U’ shaped marking in the centre; no other line present. Feather claw 4 rayed. Abdomen with about 22 broad smooth tergites and 55 finely microtuberculate sternites.
Host: Acanthaceae (Mohansundaram, 1980).

Distribution: INDIA: Tamil Nadu.

325. *Aculus asperus* Channa Basavanna

Diagnosis: Abdomen with about 36-37 tergites and 62 sternites, last 5-6 tergites forming complete rings; tergites almost smooth except for faint crescentic markings along with the middle of tergites; sternites with rounded microtubercles set along the margin; feather claw 4 rayed; shield design obsolete.

Host: *Leucas aspera*.

Distribution: INDIA: Karnataka.

326. *Aculus colei* Channa Basavanna

Diagnosis: Feather claw 4 rayed; dorsal shield setae much shorter than shield length; female genital seta shorter than length of genitalia; shield design of a faint net work of small and large cells; median line absent; abdomen with 39-40 tergites inclusive of 6-7 complete rings and about 64 microtuberculate sternites.

Host: *Coleus amboinicus*.

Distribution: INDIA: Tamil Nadu.

327. *Aculus cassiae* Mondal & Chakrabarti

Diagnosis: Body elongate, fusiform, yellowish. Shield subtriangular with prominent anterior lobe with small spines at anterior tip; shield design represents network. Median line complete, admedian lines sinuate arising form tip of anterior lobe. Dorsal tubercles placed at rear margin. Feather claw 6 rayed. Abdomen with about 45-47 tergites and 64-70 sternites, all microtuberculate; tergites smooth with hyaline areas. Genital coverflap with about 13 longitudinal scorings.

Hosts: *Casia sophora*, *Casia tora*.

Nature of damage: In case of heavy infestation, black erineum appears on the leaves. The maximum population is seen during July-October (Mondal & Chakrabarti, 1981).

Distribution: INDIA: West Bengal.
328. Aculus indicus ChannaBasavanna

Diagnosis: Feather claw 4 rayed; shield subtriangular, anterior lobe short, thin, acuminate; shield design of conspicuous carinae; median line on basal 1/3; abdomen with 49 tergites, possess minute crescentic microtubercles set on their margins and appearing as little thickenings of the margins and with about 61 microtuberculate sternites rising high upon the sides of the abdomen; dorsal shield setae much longer than shield length; female genital setae much longer than length of genitalia.

Host: Celtis wightii.

Distribution: INDIA: Karnataka.

Remarks: This mite is a vagrant on the leaf surface. No damage symptoms are produced except that certain brownish spots are produced on the infested leaves (ChannaBasavanna, 1966).

329. Aculus mckenziei (Keifer)

Diagnosis: Feather claw 7 rayed, abdomen eriophyriform with sternites about as numerous as tergites; second ventral seta on abdomen longer than or as long as third ventral; dorsal shield setae as long as shield; punctations present on rear midshield.

Host: Arundo donax.

Distribution: INDIA: Karnataka.

Remarks: No economic importance of this species is known.

330. Aculus menoni ChannaBasavanna

Diagnosis: Feather claw 7 rayed; abdomen eriophyriform with sternites about as numerous as tergites; second ventral seta shorter than third ventral; dorsal setae shorter than length of shield; punctations on rear midshield absent.

Hosts: Moringa oleifera, Moringa pterygosperma.
Nature of damage: These mites are vagrants on both the surfaces of leaves causing no apparent damage symptoms to its host.

Distribution: INDIA: Karnataka, Tamil Nadu.

331. *Aculus moringeae* ChannaBasavanna

Diagnosis: Feather claw 7 rayed; abdomen phyllocoptiform with well differentiated tergites and sternites.

Host: *Moringa oleifera*.

Distribution: INDIA: Karnataka.

Remarks: These mites are vagrants on leaf and stem showing no injury to its host.

332. *Aculus kolengii* Mohansundaram

Diagnosis: Shield area fairly clear except for the presence in the rear half of a faint median line and fainter admedians converging and joining the median at about the middle of the shield. Dorsal tubercles at shield margin. Feather claw 4 rayed. Abdomen with about 28 broad smooth tergites and 75 microtuberculate sternites. Female genital coverflap with 10 longitudinal lines.

Host: Undet. creeper.

Distribution: INDIA: Tamil Nadu.

333. *Aculus yelagiriensis* Mohansundaram

Diagnosis: Shield with distinct pattern of lines. Median line absent, admedian lines wavy and joined at the posterior shield margin; submedian represents at the sides of the shield as curved lines; sides of shield with fine lines and granules. Feather claw 6 rayed. Abdomen with about 24 broad smooth tergites and 67 narrow microtuberculate sternites.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.
Genus Anthocoptes Nalepa

(Figs. 308-310)

Key to the Species of Anthocoptes

1. Feather claw 6 rayed
 — Feather claw 4 rayed
 2. Genital cover flap with 10-12 lines
 — Genital cover flap with 8-10 lines
 3. Shield with a clear pattern of lines, admedian
 wavy, complete, forked posteriorly and
 joining with submedians forming cells
 — Shield with median and admedian lines faintly
 represented at the rear shield margin and
 sometimes as short line on cell side
 4. Abdomen with 20 or less tergites
 — Abdomen with more than 30 tergites
 5. Shield design obsolete
 — Shield design with a number of longitudinal
 lines
 6. Abdomen with 35 broad tergites and 60-70
 narrow sternites; tergites with faint elongated
 widely placed microtuberculation
 — Abdomen with 32-35 tergites and 62-65
 sternites; tergites smooth

334. **Anthocoptes adhatodae** ChannaBasavanna

Diagnosis: Pale brown fusiform, slightly curved mite, shield strongly arched, anterior lobe over rostrum quite thick, shield design obsolete. Coxae almost smooth but for faint longitudinal lines; abdomen with 18-19 smooth tergites pointing like broad rounded teeth dorsally and with about 70 sternites, microtuberculate, microtubercles bead like.

Host: *Adhatoda vasica*.

Distribution: INDIA: Delhi, Tamil Nadu.
335. Anthocoptes ayyanari Mohansundaram

Diagnosis: Shield with short faintly represented admedians and submedians. Feather claw 6 rayed. Abdomen with 16-18 broad smooth tergites, 65 microtuberculate sternites. Female genital coverflap smooth without any lines.

Host: Undet. plant.

Distribution: India: Tamil Nadu.

336. Anthocoptes glycosmis Mondal & Chakrabarti

Diagnosis: Shield subtriangular with a short anterior lobe; shield design with a number of longitudinal lines; median line present on anterior 1/3 only. Admedians sinuate and complete, submedian lines almost absent, lateral shield with a number of indistinct cells. Dorsal tubercles on rear shield margin. Feather claw 5 rayed. Abdomen with 19-20 usually wide tergites and 56-60 sternites, tergites with microtubercles in the form of longitudinal striations; sternites with bead-like microtubercles. Genital coverflap with 10-12 longitudinal scorings.

Host: *Glycosmis pentaphylla*.

Distribution: India: West Bengal.

337. Anthocoptes pavoniae Mohansundaram

Diagnosis: Shield triangular, median and admedian lines faintly represented at rear shield margin and submedian as short line on either side, sides of shield with few oblique lines. Feather claw 4 rayed. Abdomen broad, 25-28 faint microtuberculate tergites and 57-60 finely microtuberculate sternites. Genital coverflap with 10-12 lines.

Host: *Pavonia* sp.

Distribution: India: Tamil Nadu.

338. Anthocoptes tectonae Mohansundaram

Diagnosis: Shield triangular, median line straight; admedians straight, slightly converging anteriorly, first submedian straight,
parallel to admedians, second submedian slightly curved with an abrupt bend near the rear shield margin. Dorsal tubercles at shield margin. Feather claw 4 rayed. Abdomen with 35 broad distinct tergites, 60-70 narrow sternites. Genital cover flap with 8-10 lines.

Host: *Tectona grandis*.

Distribution: India: Tamil Nadu.

339. *Anthocoptes vitexae* Mohansundaram

Diagnosis: Shield with a clear pattern of lines. Median line represented at the basal 1/3, forked anteriorly joins the admedians; admedians wavy, complete, first submedian wavy, forked posteriorly.
forming cells with admedians; second submedian forms the border of the shield. Feather claw 4 rayed. Abdomen with 22-25 tergites and 60 sternites, the former without microtuberculations, latter with fine dot like microstriation at the posterior 1/3 of each ring dots. Genital coverflap with 10-12 lines.

Host: *Vitex negundo*.

Distribution: INDIA: Tamil Nadu.

340. *Anthocoptes walayarensis* Mohansundaram

Diagnosis: Shield triangular without any markins, dorsally dorsal setae pointed caudad. Feather claw 4 rayed. Abdomen with 32-35 tergites and 62-65 sternites, the former broad, smooth; the latter uniformly microtuberculate. Female genital coverflap with 8-10 lines.

Host: Undet. plant.

Distribution: INDIA: Tamil Nadu.

Genus *Bakeriella* Chakrabarti & Mondal

(Figs. 311-313)

341. *Bakeriella ocimis* Chakrabarti & Mondal

Diagnosis: Shield semicircular with a short and blunt anterior lobe, shield design obscure, median line absent; admedian lines sinuate, originate laterally from anterior shield margin, only one submedian line meeting obliquely at posterior end of admedians. Patella with patellar seta. Feather claw 4 rayed. Abdomen with 26-28 smooth tergites and 50-53 microtuberculate sternites. Female genital coverflap with 8-10 longitudinal lines.

Host: *Ocimum basilicum*.

Distribution: INDIA: West Bengal.

Genus *Ditrymacus* Keifer

(Fig. 314)

Key to the Species of Ditrymacus

1. Dorsal pit on either side of shield near shield margin opening at base of dorsal tubercle keiferi
 - Dorsal pit near base of dorsal tubercle on either side of admedian line integrifoliae

342. Ditrymacus keiferi Mohansundaram

Diagnosis: Shield triangular, anterior lobe over rostrum prominent. Dorsal pits on either side of the shield near shield margin opening up at base of dorsal tubercles. Feather claw 4 rayed. Abdomen with 30 broad tergites and 70 sternites. Female genital cover flap with two ranks of scorings.

Host: Undet. shrub.

Distribution: INDIA: Tamil Nadu.

343. Ditrymacus integrifoliae Mohansundaram

Diagnosis: Dorsal tubercle at shield margin. Dorsal pits near base of dorsal tubercle on either side of admedian line which is represented at basal 2/3 length. Abdomen with 24 broad smooth tergites and 48 finely microtuberculate sternites. Female genital cover flap with 16 lines.

Host: Artocarpus integrifolia.

Distribution: INDIA: Tamil Nadu.

Genus *Indotegolophus* Chakrabarti & Mondal

(Figs. 315-316)

344. Indotegolophus darjeelingensis Mondal & Chakrabarti

Diagnosis: Shield subtriangular, with or without very short anterior lobe; shield design represents some longitudinal lines; median line complete; admedian line complete. Dorsal tubercles distinct
nearly on rear shield margin. Feather claw 6 rayed. Abdomen with 37-40 tergites and 80 sternites.

Host: *Symplocos* sp. (Chakrabarti & Mondal, 1980).

Distribution: **INDIA:** West Bengal.

Genus *Keiferana* Channa Basavanna

(Figs. 317-318)

345. **Keiferana neolitseae** (Channa Basavanna)

Keiferana neolitseae, Jeppson et al., 1975, *Mites injurious to economic plants*, p. 582.

Diagnosis: Large phyllocoptine mite, having a large downcurved and recurved rostrum. Abdominal rings broad with slight differentiation into tergites and sternites. The triangular female genitalia with coverflap showing no particular design and the axillary stylets arising well above the base of the intermediate rostral segment; feather claw 5 rayed.

Host: *Neolitsea zeylanica*.

Distribution: **INDIA:** Karnataka.

Genus *Metaculus* Keifer

(Figs. 319-320)

Key to the Species of Metaculus

1. Feather claw 4 rayed 2
 — Feather claw 5 rayed 3
2. Median line present on the rear 1/2 of shield *mangiferae*
 — Median line absent *londaensis*
3. Admedians and submedians complete; genital coverflap without lines *foveolatae*
 — Admedians and submedians represented as broken lines; genital coverflap with 10-12 lines *sapindiphagus*
346. Metaculus londaensis Mohansundaram

Diagnosis: Shield with central area having fine striations. Dorsal tubercles at rear shield margin. Abdomen with 35 smooth tergites; 50 finely microtuberculate sternites. Female genital cover flap smooth.

Host: Undet. tree.

Distribution: INDIA; Maharashtra.

347. Metaculus foveolatae Mohansundaram

Diagnosis: Shield with a prominent lobe overhanging rostral base. Median line absent, admedian complete; submedian complete. Feather claw 5 rayed. Abdomen with about 34 smooth tergites; 46 microtuberculate sternites. Female genital cover flap without lines.

Host: Ficus foveolata.

Distribution: INDIA: Kerala.

348. Metaculus mangiferae (Attiah)

Diagnosis: Shield design is characteristic comprising network of cells. Feather claw 4 rayed.

Host: Mango.

Nature of damage: This mite causes russetting of terminal leaves, buds and inflorescence. It also causes crowding of short shootlets to give the appearance of bunchy top. Damage to inflorescence by the rust mite results in the compact mass of malformed flowers. Vegetative malformation may appear on seedling mango.

Distribution: INDIA: Karnataka, Tamil Nadu.

349. Metaculus sapindiphagus Mohansundaram

Diagnosis: Shield with a prominent blunt lobe over rostrum base. Median absent, admedian and submedian represented as broken lines. Feather claw 5 rayed. Abdomen with 22 broad smooth tergites
Figs. 317-318: *Keiferana* sp.
Figs. 319-320: *Metaculus* sp.
Figs. 321-322: *Monotrimacus* sp.
Figs. 323-324: *Neocalcarus* sp.
and 60 finely microtuberculate sternites. Female genital coverflap with 10-12 lines.

Host: *Sapindus saponaria*.

Distribution: INDIA: Tamil Nadu.

Genus *Monotrimacus* Mohansundaram

(Figs. 321-322)

350. **Monotrimacus quadrangularis** Mohansundaram

Host: *Cissus quadrangularis*.

Distribution: INDIA: Tamil Nadu.

Genus *Neocalacarus* ChannaBasavanna

(Figs. 323-324)

351. **Neocalacarus mangiferae** ChannaBasavanna

Diagnosis: Thick flattened, almost wedge shaped, pinkish mite with a pattern of wax on shield and with 5 longitudinal wax bearing ridges on abdomen. Shield triangular, shield design a network of wax bearing lines, median line absent; admedian lines arising near apex of anterior lobe, sinuate, slightly diverging and stopping a little short of rear shield margin. Abdomen with 28 tergites and 56 microtuberculate sternites; microtubercles like tiny beads set on rear margins excepting last 15 sternites on which they are microstriate.
Host: Mango.

Distribution: INDIA: Delhi, Karnataka, Tamil Nadu.

Genus Neomesalox Mohansundaram
(Fig. 325)

352. Neomesalox kallarensis Mohansundaram

Diagnosis: Shield broadly triangular with a thick lobe, overhanging rostral base. Shield with median line represented at posterior half; admedians complete, submedians complete running obliquely. Dorsal
tubercles cylindrical. Feather claw 4 rayed. Abdomen with 30-32 tergites and equal number of broad sternites. Abdomen dorsum with trough flanked by ridges on either side. Female genital coverflap without lines.

Host: Undet. bush.

Distribution: INDIA: Tamil Nadu.

Genus **Neometaculus** Mohansundaram

(Figs. 326-327)

353. **Neometaculus bauhiniae** Mohansundaram

Diagnosis: Shield with a broad spiny lobe over rostral base. Shield with admedians alone represented, admedians joined at the rear end of shield. Dorsal tubercle about 1/3 distance away from rear shield margin. Feather claw 6 rayed. Abdomen with 25 broad smooth tergites and 65-70 microtuberculate sternites. Female genital coverflap with 10 thin lines.

Host: Bauhinia sp.

Distribution: INDIA: Karnataka.

Genus **Neotegonotus** Newkirk & Keifer

(Figs. 328-330)

Key to the Species of Neotegonotus

1. Feather claw 5 rayed
 — Feather claw 4 rayed

 354. **Neotegonotus fastigatus** (Nalepa)

 Diagnosis: Feather claw 4 rayed. Shield clear except for faint representation of submedians. Dorsal seta rough. First abdominal tergite enlarged and project above others and closely merged with the rear shield.
margin. Coxal area smooth. Female genital coverflap with 6 longitudinal lines.

Host: *Ficus bengalensis.*

Distribution: INDIA: Tamil Nadu; outside India: U.S.A.

355. **Neotegonotus indicus** Mondal & Chakrabarti

Diagnosis: Shield semicircular in anterior outline. Shield design not clearly discernible but with a number of faint longitudinal lines; median line absent, admedian lines prominent on posterior 0.33 part and meet in a common point through two diagonal lines near the centre at rear margin; submedian lines at least two. Feather claw 5 rayed. Abdomen with 32 tergites and 68-72 sternites. Female genital coverflap with 10 longitudinal scorings.

Host: *Ficus bengalensis.*

Distribution: INDIA: West Bengal.

Genus **Paratetra** ChannaBasavanna

(Figs. 331-332)

Key to the Species of Paratetra

1. Feather claw 4 rayed
 - Feather claw more than 4 rayed
 2.
 3.
2. Female genital coverflap with 8 faint lines and basal granulations
 - Female genital coverflap with 12-14 longitudinal scorings
 3.
 - Female genital coverflap with 12-14 longitudinal scorings
 4.
 - Feather claw 7 rayed
 5.
 6.
4. Shield without lines but with a median longitudinal fold, flanked on either side by furrows and with faint marking of cells
 - Shield design with a pattern of ridges of carinae; a ‘V’ shaped ridge between dorsal tubercles, median present, admedians arched
 7.
 - Shield design with a pattern of ridges of carinae; a ‘V’ shaped ridge between dorsal tubercles, median present, admedians arched
 8.

3. Feather claw 5 rayed
 - Feather claw 7 rayed
 4.
 5.
4. Shield without lines but with a median longitudinal fold, flanked on either side by furrows and with faint marking of cells
 - Shield design with a pattern of ridges of carinae; a ‘V’ shaped ridge between dorsal tubercles, median present, admedians arched
 5.
 - Shield design with a pattern of ridges of carinae; a ‘V’ shaped ridge between dorsal tubercles, median present, admedians arched
 6.

2. shield design with a pattern of ridges of carinae; a ‘v’ shaped ridge between dorsal tubercles, median present, admedians arched
 - Shield design with a pattern of ridges of carinae; a ‘V’ shaped ridge between dorsal tubercles, median present, admedians arched
 3.
356. **Paratetra albizziae** Mohansundaram

Diagnosis: Median line on shield represented as a short posteriorly forking line in the anterior portion of shield; admedians curved, sides of shield granular. Feather claw 7 rayed. Abdomen with about 35 tergites with elongate microtubercles on the lateral sides and 65 sternites with dot like microtubercles. Genital coverflap with 8 lines.

Host: *Albizia lebbeck*.

Distribution: INDIA: Tamil Nadu.

357. **Paratetra elephantae** Mohansundaram

Diagnosis: Shield area without lines but with median longitudinal fold in the central region flanked on either side by furrows and with faint marking of cells. Dorsal tubercles at shield margin. Feather claw 5 rayed. Abdomen with 26-28 smooth tergites except for first tergite which possesses longitudinal scorings, sternites 50, faintly microtuberculate. Female genital coverflap with about 12 longitudinal lines.

Host: *Feronia elephantum*.

Distribution: INDIA: Tamil Nadu.

358. **Paratetra integrifoliavagrans** Mohansundaram

Diagnosis: Shield with a blunt lobe over rostral base, sides of shield granular; dorsal tubercles at shield margin. Feather claw 4 rayed. Abdomen with about 38 smooth tergites and 65 microtuberculate sternites. Female genital coverflap with 8 faint lines and basal granulations.

Host: *Holoptelia integrifolia*.

Distribution: INDIA: Tamil Nadu.

359. **Paratetra himalayana** Chakrabarti & Roy

Diagnosis: Shield subtriangular with prominent anterior lobe, shield bears some dotted lines on anterior lateral margin; median line absent; admedian lines arising from tip of anterior lobe; diverge
backward unto 1/3 of shield and then converge and meet in transverse line connecting the two submedian lines in front of the dorsal tubercles. Feather claw 4 rayed. Abdomen with 17-19 broad, smooth tergites and about 67 microtuberculate sternites.

Host: *Potentilla* sp.

Distribution: INDIA: West Bengal.

360. *Paratetra murrayae* ChannaBasavanna

Diagnosis: Yellowish white fusiform mite, shield subtriangular, anterior lobe thick, prominent obliquely, curved down over base of rostrum with a thin short spiny projection from the lower margin in side view, rear margin of shield obscure. Feather claw 5 rayed.

Host: *Murraya koenigii*.

Distribution: INDIA: Karnataka, Uttar Pradesh.

Genus *Proneotegonotus* Mohansundaram

(Figs. 333-334)

361. *Proneotegonotus antiquorae* Mohansundaram

Diagnosis: Body fusiform, dorsoventrally flattened. Shield with a pattern of faint longitudinal lines; the admedians and the first submedians clear. Dorsal tubercles away from shield margin. Feather claw 5 rayed. Abdomen with 25 tergites and 45 sternites. Female genital coverflap with two rows of scorings.

Host: Not mentioned, probably on a xerophyte.

Distribution: INDIA: Tamil Nadu.

Genus *Tegolophus* Keifer

(Figs. 335-336)

Key to the Species of Tegolophus

1. Feather claw 4 rayed 2
 — Feather claw more than 4 rayed 7

2. Abdomen with broad smooth tergites and narrow microtuberculate sternites 3
 — Abdomen with narrow microtuberculate tergites and sternites *calotropi*

3. Lateral shield partly or completely with granules or dotted lines 4
 — Lateral shield without any granules or dotted lines 6

4. Dorsal tubercle conspicuous extend over tergites, dorsal seta very long (15-33 microns) 5
 — Dorsal tubercle short not extending over tergites; dorsal seta small (4-6 microns) *ficus*

5. Median line faint, submedian lines three, claw knobbed 8
 — Median line prominent on posterior 0.33 portion of shield; submedian line single, semicircular arched line divide the shield into outer and inner portions *vibiscus*

6. Shield with lateral and central disc, scorings on genital cover flap arranged in two ranks; first ventral seta small (5-10 microns) 9
 — Shield without any disc, scorings on genital cover flap arranged in one rank; shield design with longitudinal lines forming network, median line faint, first ventral seta long (50-57 microns) *spondiallus*

7. Feather claw 5 rayed 10
 — Feather claw more than 5 rayed 11

8. Shield design simple 12
 — Shield design represents a complicated system of cells *kalyanii*

9. Feather claw 6 rayed 13
 — Feather claw more than 6 rayed 14

10. Admedian line arises from apex to anterior lobe *bambusae*
 — Admedian line arises from lateral to apical lobe *cordis*

11. Female genital cover flap with 8-10 lines *gmelinae*
 — Female genital cover flap with 14-16 lines *gmelinus*
362. **Tegolophus bambusae** Channa Basavanna

Diagnosis: Fusiform, pale yellow mite, middorsal ridge on abdomen broad and faint; shield subtriangular; shield design with a pattern of longitudinal lines; median line straight, almost complete except for a short distance at rear margin; admedian lines starting from the apex of anterior lobe, gradually diverging and dividing into two near the rear margin. Abdomen with 54 tergites and with same number of sternites.

Host: *Bambusa vulgaris.*

Distribution: **INDIA:** Karnataka.

363. **Tegolophus calotropi** Chakrabarti & Mondal

Diagnosis: Shield with moderately developed anterior lobe. Anterior lobe provided with 2 spine like structures ventrally; admedian line upto 0.33 portion form anterior lobe and then move outwardly; median line present throughout shield length. Feather claw 5 rayed. Abdomen with 58-63 tergites and 65-68 sternites. Female genital coverflap with about 14 longitudinal lines.

Host: *Calotropis procera.*

Distribution: **INDIA:** West Bengal.

364. **Tegolophus cordis** Das & Chakrabarti

Diagnosis: Shield with apical lobe prominent, shield design a complex set of cells, median line present on posterior 0.45 part of the shield; admedians arise lateral to apical lobe margin. Feather claw 6 rayed. Abdomen with 25-29 tergites and 55-60 sternites.

Host: *Cordia myxa.*

Distribution: **INDIA:** Bihar.

365. **Tegolophus gelonis** Mondal & Chakrabarti

Diagnosis: Shield subtriangular with prominent anterior lobe. Shield design represents a complicated system of cells consisting of
longitudinal and transverse lines; median line almost complete but not touches the rear margin of shield, little sinuate at middle: admedian and submedian lines present. Dorsal tubercles placed on rear shield margin, setae directed caudad. Feather claw 5 rayed. Patella and tibia without setae. Abdomen with 25-26 tergites and 57-60 sternites, tergites with conspicuous margin and 3 distinct ridges, sternites with less conspicuous margins and with minute beads at margins. Female genital coverflap with 12-14 longitudinal stripes.

Host: Gelonium multiflorum.

Distribution: INDIA: West Bengal.

Remarks: The heavy infestation causes wrinkling of leaves.

Figs. 333-334: Proneotegonotus sp.
Figs. 335-336: Tegolophus sp.
Figs. 337-338: Tetra sp.
Figs. 339-340: Thammacus sp.
366. **Tegolophus gmelinae** Mohansundaram

Diagnosis: Shield overhanging the rostral base. Dorsal tubercles towards the side. Shield surface smooth without any pattern. Feather claw 7 rayed. Abdomen with about 60 smooth tergites, 70 finely microtuberculate sternites. Female genital cover flap with 8-10 lines.

Host: *Gmelina asiatica*.

Distribution: INDIA: Karnataka.

367. **Tegolophus gmelinus** Das & Chakrabarti

Diagnosis: Anterior lobe of shield distinct, median line absent, admedian lines complete and sinuate, submedians three. Abdomen with 100-120 tergites and with more or less same number of sternites which are faintly microtuberculate. Female genital cover flap with 14-16 scorings on upper half.

Host: *Gmelina arborea*.

Distribution: INDIA: Bihar.

368. **Tegolophus ficusi** Mondal & Chakrabarti

Diagnosis: Body pale yellow, fusiform, rostrum projecting down, shield design with a pattern of longitudinal lines; median line complete but faint on apical portion of shield just below the anterior lobe; admedians sinuate originating from the sides of the median line; submedian lines 6 in number, of those, the first and second are distinct. Dorsal tubercles present on rear shield margin. Feather claw 4 rayed. Abdomen with 28 tergites and 60 sternites; tergites with more conspicuous margins. Female genital cover flap with 16-17 longitudinal stripes.

Host: *Ficus infectoria*.

Distribution: INDIA: West Bengal.

369. **Tegolophus indica** Chakrabarti & Mondal

Diagnosis: Shield with dorsal tubercle and seta, anterior lobe
distinct; shield partly obscure, particularly on anterior half and laterally; median and admedian lines absent; submedian lines two pairs. Feather claw simple, 4 rayed. Abdomen with 21-23 tergites, 53 sternites; tergites without microtubercles, sternites heavily microtuberculate. Female genital cover flap with about 14-15 longitudinal lines.

Host: *Artocarpus heterophyllus*.

Distribution: INDIA: West Bengal.

370. *Tegolophus kalyanii* Chakrabarti, Ghosh & Mandal

Diagnosis: Body fusiform, greyish. Shield subtriangular with prominent anterior lobe; shield design very simple only with two admedian lines. Dorsal tubercles situated on rear shield margin. Feather claw simple, 5 rayed. Abdomen with 24-25 tergites, 58 sternites, tergites with more conspicuous margins, three ridges, one middorsal and two lateral present; microtubercles absent on tergites but present on rear ring margin of sternites as bead-like structures. Female genital cover flap with 12 longitudinal scorings.

Host: *Trema orientalis*.

Distribution: INDIA: West Bengal.

371. *Tegolophus nerii* Mondal & Chakrabarti

Diagnosis: Body fusiform, younger one pinkish, mature one yellowish pink. Shield subtriangular with longitudinal lines, median line straight, incomplete; submedians three. Dorsal tubercles placed on rear shield margin; dorsal seta thick, directed caudad. Feather claw 4 rayed. Coxae broadly contiguous with a distinct sternal suture. Abdomen with 32-34 tergites and 58 sternites. Female genital cover flap with 10 longitudinal scorings.

Host: *Nerium odorum*.

Distribution: INDIA: West Bengal.

372. *Tegolophus spondiallus* Mondal & Chakrabarti

Diagnosis: Shield subtriangular, smooth with well developed
anterior lobe, shield design with a pattern of longitudinal and oblique lines forming a network laterally; median line faint, admedian lines originate from posterior lateral margin of the apical cell. Feather claw 4 rayed. Abdomen with 27-29 tergites and 75-78 sternites. Female genital coverflap with 14-16 longitudinal stripes.

Host: Spondias mangifera.

Distribution: India: West Bengal.

373. Tegolophus vitexis Mondal & Chakrabarti

Diagnosis: Shield subtriangular with prominent and blunt anterior lobe; shield design with a pattern of longitudinal lines; median line straight, present only on posterior 0.33 portion of shield and connected with the admedian of either side; submedian line single arises from lateral 0.25 part of shield. Feather claw simple and 4 rayed. Abdomen with smooth tergites and microtuberculate sternites. Female genital coverflap with 13-15 longitudinal stripes.

Host: Vitex negundo.

Distribution: India: West Bengal.

Genus Tetra Keifer

(Figs. 337-338)

Key to the Species of Tetra

1. Feather claw 7 rayed

 — Feather claw 5 rayed

2. Median line arising from about ‘V’ shaped line between the admedian lines; abdomen with 52 tergites and 65 sternites

 — Median line obscure; abdomen with about 36 broad smooth tergites and 60 narrow microtuberculate sternites

374. Tetra bauhinae ChannaBasavanna

Diagnosis: Elongate wedge shaped pinkish mite. Shield subtriangular, anterior lobe like a thin shelf in lateral view, acute, with tip
slightly curved down. Median line arising from about a ‘V’ shaped line between the admedian lines, stopping a little short of rear shield margin; admedian lines almost complete arising from lateral margins of anterior lobe. Abdomen with 52 tergites and 65 sternites.

Host: Bauhinia purpurea.

Distribution: INDIA: Karnataka.

375. Tetra lanneansis Chakrabarti, Ghosh & Mondal

Diagnosis: Body dorsoventrally flattened, fusiform, light brown in colour, shield subtriangular, shield design with a number of sinuate longitudinal lines, median line absent, admedian lines sinuate arising from the apical tip of anterior lobe; submedian lines two. Feather claw 5 rayed. Abdomen with 28 tergites and 61 sternites; microtubercles present on sternites and round in structures. Female genital coverflap with 11 longitudinal scorings.

Host: Lannea coromandelia.

Distribution: INDIA: West Bengal.

376. Tetra tephrosiae Mohansundaram

Diagnosis: Shield flattened dorsoventrally. Median line obscure; admedians complete, wavy; submedian diagonal arising at rear corner of shield and joining with admedians in the anterior 1/3. Feather claw 7 rayed. Abdomen with about 36 broad tergites and 60 narrow microtuberculate sternites. Female genital coverflap with 10-12 lines.

Host: Tephrosia purpuria.

Distribution: INDIA: Karnataka.

Genus Thamnacus Keifer

(Figs. 339-340)

377. Thamnacus euphorbiae ChannaBasavanna

Diagnosis: Fusiform pale yellow mite, shield subtriangular, anterior lobe prominent, rather broad and blunt with 2 short blunt projections
at the anterior end in dorsal view. Shield design of complicated lines; median line on rear half, arising from the apex of the acute ‘V’ between admedian lines and ending in an acute dart at rear shield margin; admedian lines complete arising on projections on anterior lobe, diverging and meeting anterior ends of ‘V’ at about middle so as to form a diamond shaped mark. Abdomen with 42 smooth tergites and 70 microtuberculate sternites.

Host: *Breynia rhamnoides*.

Distribution: INDIA; Karnataka.

Subfamily Aberoptinae Keifer

Genus Cisaberoptus Keifer

378. **Cisaberoptus kenyae** Keifer

Diagnosis: Feather claw 17 rayed, broad. Shield broad in front, no design. Lateral lobe somewhat projecting. Short bilobed projection over chelicera base. Coxal area smooth. Genital coverflap wider than long with 14-16 ribs; genital seta 4 long.

Host: Mango.

Distribution: INDIA: Tamil Nadu; outside India: Kenya.

Remarks: This mite mines below the epidermis of mango leaf on the dorsal side giving a silvery appearance.

Family Rhyncaphytoptidae Keifer

Key to the Subfamilies of Rhyncaphytoptidae

1. Feather claw simple, i.e. undivided **Rhyncaphytoptinae**
 - Feather claw divided, usually deeply so **Diptilomiopinae**

Subfamily Rhyncaphytoptinae Roivainen

Key to the Genera of Rhyncaphytoptinae

1. Mites produce a clear liquid globule while feeding on plants
 — Not like above

 Hyboderus

379. Hyboderus globulus Mohansundaram

 Diagnosis: Body spindle shaped. Shield semicircular with faint representation of admedians in middle, sides of shield granular. Dorsal tubercles away from shield margin. Feather claw 7 rayed, appearing to be divided in ventral view. Abdomen with about 55-58 tergites and 85 finely microtuberculate sternites. Female genital coverflap smooth, lobed laterally.

 Host: Undet. plant.

 Distribution: INDIA: Tamil Nadu.

 Remarks: It secreted a clear liquid on its body while feeding on plants which forms a shining globule covering the whole body.

Genus Rhyncaphytoptus Keifer

(Figs. 342-343)

Key to the Species of Rhyncaphytoptus

1. Feather claw 5 rayed
 — Feather claw 6 rayed

 shoreacola

380. Rhyncaphytoptus ficifoliae Keifer

 Diagnosis: Adults pinkish or brownish with white waxy coverings, fusiform. Feather claw 6 rayed. Body curved. Shield without design. Admedians indicated only as opposing areas towards rear. Thanosomal tergites much wider than sternites. Tergal microtubercles present only as fine lateral points on the margins. Narrow sternites have bead like microtubercle or ring granules. Female genital coverflap unarmed (Jeppson et al., 1975).
Host: *Ficus carica*.

Distribution: INDIA: Delhi.

381. *Rhyncaphytoptus shoreacola* Mondal, Ghosh & Chakrabarti

Fig. 341: *Hyboderus* sp.

Figs. 342-343: *Rhyncaphytoptus* sp.

Figs. 344-347: *Diptilomiopus* sp.
Diagnosis: Shield subtriangular, shield design with longitudinal and cross lines forming a network; median line complete, admedian lines sinuate meet the median line by an oblique line on about 0.5 and by a cross line just ahead of rear shield margin; submedian lines originate from anterior 0.12 of admedian, extend backward and meet with the admedians convergently just ahead of rear shield margin. Feather claw simple, 5 rayed. Abdomen with 33-35 smooth tergites and about 68-70 microtuberculate sternites. Female genital cover flap with a few discontinuous lines.

Host: Shorea robusta.

Distribution: India: West Bengal.

Subfamily Diptilomiopinae Newkirk & Keifer

Key to the Genera of Diptilomiopinae

1. Dorsal seta present
 — Dorsal seta absent
2. Patella absent
 — Patella present
3. Dorsal tubercle missing
 — Dorsal tubercle away from rear shield margin
4. First ventral seta absent
 — First ventral seta present

 Neorhynacus
 2
 Diptilomiopus
 3
 Neodiptilomiopus
 4
 Diptilorrhynacus
 Neodialox

Sub family Diptilomiopinae Newkirk & Keifer

Genus Diptilomiopus Nalepa
(Figs. 344-347)

Key to the Species of Diptilomiopus

1. Divided feather claw 5 rayed
 — Divided feather claw more than 5 rayed
2. Shield with lines forming network of cells with 4 broad cells radiating from a central broader area
 — Not as above

 2
 3
 Knorri
 3
3. Median line absent
 — Median line present at base or rear

4. Median line present at base
 — Median line present at rear.

5. Divided feather claw 6 rayed
 — Divided feather claw 7 rayed

6. Female genital coverflap smooth
 — Female genital coverflap with distinct or indistinct lines

7. Female genital coverflap with short longitudinal lines at basal area
 — Female genital coverflap without or indistinct longitudinal lines

8. Genital coverflap without lines, basal line with dot like granulations
 — Genital coverflap with few indistinct longitudinal lines

382. *Diptilomiopus alangii* Mohansundaram

Diagnosis: Shield with a clear pattern of lines forming cells. Median and admedians represented at rear half of shield which join to form a central broad cell; anteriorly shield lined with six elongate cells on either side of the midline. Divided feather claw 6 rayed. Abdomen with about 45 smooth tergites and about 65 microtuberculate sternites. Female genital coverflap smooth.

Host: *Alangium* sp.

Distribution: INDIA: Tamil Nadu.

383. *Diptilomiopus artocarpace* Mohansundaram

Diagnosis: Shield broad anteriorly, with a clear pattern of lines. Median absent, admedians complete with characteristic bends; dorsal setae absent. Feather claw divided and 5 rayed; coxae with clear sternal line; first setiferous coxal tubercle absent. Abdomen with about 55 tergites and 68 sternites, tergites smooth and sternites finely microtuberculate. Genital coverflap with basal granulations and distally with faint lines.

Host: *Artocarpus integrifolia*.

Distribution: INDIA: Tamil Nadu.
384. Diptilomiopus assamica Keifer

Diagnosis: Elongate, fusiform mite. Shield design with more network of lines; median line present only at the rear. Rudimentary dorsal tubercle present, but lack setae. Divided feather claw 5 rayed. Abdominal rings narrow, lack dorsal microtubercles. Female genital coverflap lack marks.

Host: *Citrus limonum.*

Distribution: INDIA: Assam.

385. Diptilomiopus bengalensis Chakrabarti & Mondal

Diagnosis: Shield subtriangular, blunt anteriorly, shield design a network of cells; median line present as low course ridge at anterior 0.4 portion of shield but absent in central cell and extends back from posterior middle part of central cell ending at 0.25 portion of shield from rear margin. Divided feather claw 6 rayed. Abdomen abruptly tapering, thanosoma with 50-53 tergites and 73 microtuberculate sternites. Female genital coverflap with few indistinct longitudinal lines.

Host: *Gardenia jasminoides.*

Distribution: INDIA: West Bengal.

386. Diptilomiopus camerae Mohansundaram

Diagnosis: Shield with clear pattern of cells. Median, admedian and submedians forming 3 clear cells one bellow the other on either side and 4 cells on each side along the anterior border. Feather claw divided, 6 rayed in each. Abdomen with 57-60 clear smooth tergites and 75 finely microtuberculate sternites. Genital coverflap without any line, basal portion of coverflap with thick dot like granulations.

Host: *Lantana camera.*

Distribution: INDIA: Tamil Nadu.

387. Diptilomiopus cocculae Mohansundaram

Diagnosis: Body fusiform, light yellow. Shield broadly rounded.
in front with a design of network of raised lines or carinae. No anterior shield lobe. Median line complete, slightly wavy, admedians complete and wavy, submedians complete and arched. Feather claw divided, the two sides of each diverge at a considerable angle, each side with 7 rays. Abdomen with 90-95 rings, tergites with fine microtubercles, sparsely placed; sternites with microtubercles, closely placed. Female genital coverflap without lines.

Host: Cocculus hirsutus.

Distribution: INDIA: Tamil Nadu.

388. Diptilomiopus integrifoliae Mohansundaram

Diagnosis: Fusiform, light yellowish mite. Shield with a network of raised lines, no anterior shield lobe. Median present at the base, branched anteriorly, joins with each other to form hexagonal cells. Dorsal tubercles without setae. Feather claw broadly divided, each with 5 rays. Abdomen with 57 clear anterior tergal segments and 5 indistinct posterior segments and 66 sternites. Tergites with shallow longitudinal furrows extending on either side of middorsum, fading caudally, tergites smooth, without microtubercles; sternites with fine microtubercles. Female genital coverflap with basal granulations.

Host: Holoptelia integrifolia.

Distribution: INDIA: Tamil Nadu.

389. Diptilomiopus jevremovici Keifer

Diagnosis: Shield shallow, subtriangular, shield design shows network, median line complete, admedian lines well separated and all are cross connected. Dorsal tubercles present as rudiments. Deeply divided feather claw each 6 rayed. Abdomen with 45 tergites and 70 sternites. Female genital coverflap with short longitudinal lines at basal area.

Hosts: Ficus hispida, Streblus asper, Tectona grandis, Asystacia coramandallana.

Distribution: INDIA: Tamil Nadu.
390. **Diptilomiopus knorri** Keifer

Diagnosis: Divided feather claw each with 5 rays. Shield with lines forming a network of cells, with 4 broad cells radiating from a central smaller cell; sides with smaller cells. Forecoxae somewhat separated with few scorings, hind coxae smooth. Genital coverflap with granulations and fine scorings basally and smooth distally.

Host: Rubiaceae.

Distribution: INDIA: Tamil Nadu; outside India: Thailand.

Genus Diptilorhynacus Mondal, Ghosh & Chakrabarti

(Figs. 348-350)

391. **Diptilorhynacus sinusetus** Mondal, Ghosh & Chakrabarti

Diagnosis: Shield more or less tetrangular; shield design complicated with distinct median and admedian lines and with a number of cells; median line complete; admedian arises from the level of median line and meet the median line posteriorly on 0.5 and 0.25 part of shield by two transverse lines; lateral sides with rows of cells. Feather claw bifurcated and each 7 rayed. Abdomen with 75-81 tergites and 88-91 microtuberculate sternites. Female genital coverflap with 11-15 longitudinal scorings.

Host: Litsea sp.

Distribution: INDIA: West Bengal.

Genus Neodiptilomiopus Mohansundaram

(Figs. 351-352)

392. **Neodiptilomiopus vishakantai** Mohansundaram

Diagnosis: Shield with a clear pattern of lines forming cells; sides of shield granular; dorsal tubercles at middle of shield. Feather
claw divided, each with 5 rays. Abdomen with about 80 tergites with elongated microtubercles and about 85 sternites with dot like microtubercles. Female genital coverflap smooth.

Host: Undet. tree.

Distribution: INDIA: Karnataka.

Genus Neorhynacus Mohansundaram

(Figs. 353-354)

Figs. 348-350: Diptilorhynacus sp.
Figs. 351-352: Neodiptilomiopus sp.
Figs. 353-354: Neorhynacus sp.
Figs. 355-356: Neodialox sp.
Key to the Species of Neorhynacus

1. Feather claw 5 rayed
 — Feather claw 7 rayed

393. Neorhynacus rajendrani Mohansundaram

Diagnosis: Shield with a clear pattern of lines. Median line represented in posterior two thirds, admedians and submedians forming a net work of cells. Dorsal tubercles away from shield margin. Divided feather claw each with 5 rays. Abdomen with about 52 tergites and 74 sternites. Female genital coverflap without lines, but basally granular with short dots and strokes.

Host: Not mentioned.

Distribution: INDIA: Kerala.

394. Neorhynacus combretis Ghosh & Chakrabarti

Diagnosis: Shield subtriangular, anterior shield lobe absent. Median line absent, admedian line present upto 0.75 of shield and bifurcated posteriorly to form two cell structures just above the rear margin; first submedian arises from anterior shield margin and runs straight upto 0.5 of shield posteriorly where it bifurcates. Divided feather claw each 7 rayed. Abdomen with about 45-48 tergites and 72-75 sternites; microtubercles distinctly present on sternites. Female genital coverflap smooth.

Host: *Combretum decundrum*.

Distribution: INDIA: West Bengal.

Genus Neodialox Mohansundaram

(Figs. 355-356)

395. Neodialox palmyrae Mohansundaram

Diagnosis: Shield with median, admedians joined at the rear end...
and the submedian forming an inverted bell-shaped anterior border. Dorsal tubercles and setae absent. Divided feather claw each 10 rayed. Abdomen with about 60 tergites and about 100-110 sternites. Tergites with 5 longitudinal rows of wax bearing areas where the segment is broadened; sternites narrow. Female genital coverflap smooth.

Host: *Borassus flabellifer.*

Distribution: INDIA; Tamil Nadu.

Genus Cheiracus

396. *Cheiracus sulcatus* Keifer

Diagnosis: Feather claw with about 16 rays around margin with many interval branching rays giving the appearance of a brush. Shield with median short, represented at the rear end, admedians broken, other lines absent; sides of shield slightly granulated. Coxae granular, seta I nearer to seta II in the posterior half of forecoxae. Genital coverflap with fine short lines in the basal half, distally smooth.

Host: Paddy.

Distribution: INDIA: Tamil Nadu; outside India: Thailand.

Family Tarsonemidae Kramer

History: Since the erection of this family by Kramer (1877) with type genus *Tarsoneus* Canestrini & Fanzago, 1876, some good taxonomic contributions have come out of those mention may be made of Ewing (1939), Beer (1954), Smiley (1964, 67, 69) and Beer & Nucifora (1965).

Diagnosis: Body rounded, gnathosoma with minute palpi lying closely appressed laterally. Chelae tiny and stylet like. Stigma of female opens behind gnathosoma; male without stigma. Empodium without membraneous flap like organ attached to claw. Leg IV in female ending in terminal and subterminal whip like setae.

These are tiny glossy mites found on undersurface of leaves as well as in association of fungus. Males often carry female deutonymphys. Some of these mites are important crop pests.
Morphological Characters of Taxonomic Importance

Body divided into capitulum (carrying mouth parts), idiosoma consisting of propodosoma and hysterosoma.

Capitulum: It consists of a paired palpi which are of indistinct segmentation and a pair of styliform and slender chelicerae.

Idiosoma: Propodosoma bears 4 pairs of setae. Females possess a specialised sense organ called pseudostigmatic organ between coxae I and II, its size varies (Figs. 362-364). Hysterosoma bears 4 pairs of setae.

Venter: The tarsonemids are characterised by pronounced development of apodemes (I-IV) (Fig. 358 P). Males possess genital papilla situated terminally on opisthosoma which contains within it the paired styliform aedeagi as well as other genital organs and appendages. Anal plate is also present.

Legs: Four pairs of legs are present in adult. Leg IV of males are regarded as accessory copulatory organs. It is 4 segmentend but tibia and tarsus in some cases fused (Figs. 365-367). Terminal claws of legs vary considerably from the conditions of prominence to nearly degenerations. Modifications of femur are quite evident in some species groups, ranging from a thin membrane like inner flanges to a spur like projection of the inner margin. Leg IV (Figs. 359-361) of female ends in terminal and subterminal whip like setae. Chaetotaxy of tibiotarsal segment of leg IV in male is of taxonomic importance. Males have a structure called genital papilla situated terminally on the opisthosoma well visible in living specimens. Another structure, the anal plate, is often quite conspicuous, present subterminally on ventral opisthosoma just anterior to the ventral margin on the genital papilla. Females are characterised by the presence of specialised organ located dorsolaterally between coxae I and II. It has specialised sensory organ having no relationship with tracheal system.

Key to the genera of Tarsonemidae

1. Males with body laterally compressed; tibia and tarsus or tibiotarsus IV slender, elongate, more than three times as long as basal width of tibia or tibiotarsus
 — Males with body dorsoventrally depressed; tibia and tarsus or tibiotarsus IV at most $\frac{3}{4}$ times as long as basal width of tibia or tibiotarsus

 ... Polyphagotarsonemus

 ...
2. Males with large, flange-like expansion on inner margin of femur IV or if absent then 4th dorsal propodosomal seta in linear arrangement with setae of three preceding pairs or capitulum broader than long Steneotarsonemus

— Males with inner flange on femur IV absent, or gently reduced in size; 4th dorsal propodosomal seta always lateral from 3rd seta or capitulum longer than broad 3

3. Leg IV of male has distinct tibia and tarsus, their combined length being less than \(\frac{1}{3} \) of femur and less than 3 times the basal width of the femur IV Tarsonemus

— Leg IV of male has tibia and tarsus fused to form tibiotalarsal segment Leptotarsonemus

Genus Polyphagotarsonemus Beer & Nucifora

(Figs. 357-358)

397. Polyphagotarsonemus latus (Banks)

Hemitarsonemus latus, Dutt, 1958, Indian Farm., 8 : 10-12.

Diagnosis: Body oval, tiny, glossy or whitish. Hysterosoma of female with 1 pair of ventral setae situated between coxae IV. Tibiotarsus I without empodium. Terminal claw of leg IV of male reduced to small tubercle.

Hosts: Jute, cotton, Zinia, marigold, dalhia, Datura, Amaranthus, chilli, potato, tomato, brinjal, cucurbits, tea, cowpea, cluster-bean, sword-bean, lablab, dew-gram, horse-gram, green-gram, hollyhock, kidney-bean, sesamum, thorn-apple.

Nature of damage: The symptom caused by the infestation of this mite on chilli was named as ‘Murda disease’ of chilli (Kulkarni, 1922) and the same on potato was called ‘Tambera disease’ (Mann et al., 1920). Oily looking blackish spots appear on the undersurface of the leaves specially on the young foliage. Later those spots turn reddish and extend to the entire leaf surface. All those leaves turn bronzy and edges of leaves become crinkled. Gradually the entire leaf withers leaving the main stalk green. It spreads rapidly in the entire field. The damage symptoms on brinjal are also of similar nature (Sandhu et al., 1974). The damage caused by this mite on jute is very serious. All
the infested leaves get curled, twisted and become copperish brown and the internodes also get shortened. Such leaves dry up and fall off (Das & Raychaudhuri, 1978). Among the different jute varieties, JRC 201 and JRC 212 were least susceptible. Its infestation on cotton and some ornamental plants also cause the appearance of similar damage symptoms.

Fig. 357: Dorsal aspect of a tarsonemid mite (*Polyphagotarsonemus* sp.)

Fig. 358: Ventral aspect of a tarsonemid mite (*Polyphagotarsonemus* sp.)

P-Apodeme

Figs. 359-361: Hind leg (Male) in different genera of Tarsonemidae.

359: *Steneotarsonemus*, 360: *Tarsonemus* 361: *Polyphagotarsonemus*

Bionomics: This mite remains in the field throughout the year on one or the other crop. The population dwindles considerably during rainy season. Its seasonal occurrence has been studied by Dhooria & Bindra (1977).

Control: Application of dicofol (0.025%) (Sandhu et al., 1974)
and Galecron (Gupta & Dhooria, 1973; Saradamma et al., 1979) were found to be quite promising. The effectiveness of amidithion, dimethoate and malathion were less effective.

Distribution: India: Bihar, Karnataka, Maharashtra, Punjab, U.P., West Bengal.

Genus Steneotarsonemus Beer
(Figs. 368-369)

Figs. 362-364: Pseudostigmatid organs in Tarsonemidae.
398. Steneotarsonemus bancrofti (Michael)

Diagnosis: Femur IV with inner margin produced to form a flange like expansion. Propodosoma with 4 pairs of dorsal setae; first dorsal propodosomal seta longer than other three pairs of setae. Capitulum and leg IV very small compared to large size of idiosoma.

Host: Sugarcane.

Nature of damage: This mite is known to cause rusty patches on sugarcane.

Figs. 368-369: Dorsal and ventral aspects of *Steneotarsonemus*

Figs. 370-371: Dorsal and ventral aspects of *Tarsonemus*.

Fig. 372: *Lupotarsonemus* (leg IV)
sugarcane leaves. Usually scabby and corroded patches appear at the internodes.

Distribution: **India**: Punjab.

Genus Lupotarsonemus Beer & Nucifora

(Fig. 372)

399. Lupotarsonemus randsi (Ewing)

Diagnosis: Femur IV not angulate at base. Tactile seta of tibia IV never as long as leg IV, usually shorter than femur IV; femur IV without inner flange. Third propodosomal seta very long, much longer than setae of other 3 pairs. Femur IV in male broadest near base, width at midsegment much less than half length of segment; tactile seta of tibia IV exceeded in length by at least one other seta on leg; femur IV more than twice as long as broad at base; tactile seta of tibia IV about 2/3 as long as femur IV.

Distribution: **India**: Bihar; outside **India**: U.S.A.

Remarks: No significant damage symptom is produced by this mite.

Genus Tarsonemus Canestrini & Fanzago

(Figs. 370-371)

400. Tarsonemus krichneri (Kramer)

Host: Ipomoea sp.

Distribution: **India**: Tamil Nadu.

Remarks: No economic importance of this mite is known.
HANDBOOK: Plant mites of India

PREDATORY MITES
Order PROSTIGMATATA
Family CHEYLETIDAE Leach

History: The family Cheyletidae was erected by Leach (1815). Baker (1949) brought out the first taxonomic review of the family. Later, Dubinin (1957), Lawrence (1954), Volgin (1960, 61, 69) and Summers & Price (1970) made important taxonomic contributions in this family.

Diagnosis: Palp with thumb claw complex. Peritreme segmented. Cheliceral bases fused with the gnathosoma to form a rigid gnathosomal unit. Palptarsus mostly bears comb-like and sickle-like setae; palp tibia with a strong claw. Dorsum with none, one or more plates.

These mites are free living predators while a few are parasitic on birds and mammals. Nearly 160 species in 50 genera are known from the world, of those, only 3 species are represented from India known to be associated with plants.

Morphological Characters of Taxonomic Importance

Body distinguishable into gnathosoma and idiosoma.

Gnathosoma: It is distinguishable into rostrum, protegmen and tegmen. Rostrum is the ventral conical projection of basis capitulum. Protegmen is the part of the stylophore occurring in front of the peritremes. The extent and the configuration of the protegmen are highly variable and all these serve as important taxonomic characters (Summers & Price, 1970). The tegmen is the portion just posterior to it. The cheliceral stylets articulate with the protegmen by means of basal sclerites. Palp (Fig. 373) well developed, pincer-like, femur is the longest segment, genu and tibia stubby and arranged to direct the prominent tibial claw mesad. Palptarsus mostly with comb-like and sickle-like setae. The structure of the setae and their relationship with each other are important taxonomic characters.

Idiosoma: Dorsum may be without dorsal shield or may be with one or two dorsal shields (Fig. 374). Setae on dorsum varies in number and shape (may be stag horn-like, cloud-like, fan-like, rod-like, lanceolate, etc.) and all these play important role in cheyletid taxonomy. Lens like eyes may or may not be present.

Legs: Adults have 4 pairs of legs. Presence and absence of claws
Fig. 373: Gnathosoma (Female) of a cheyletid mite.
Fig. 374: Dorsum of a cheyletid mite.
Fig. 375: Tarsus I: A. Guard seta, B. Solenidion.

on tarsus I, presence and absence of basal outgrowths on claws of II-IV, length of leg in relation to body, etc. are used for separating genera, while chaetotaxy of leg segments and presence and absence of guard seta (Fig. 375) are characters used for separation of species.
Key to the Genera of Cheyletidae

1. Palptarsus with 2 sickle and 2 comb-like setae ... 2
 — Palptarsus with 2 sickle and 1 comb-like setae ... Chelacaropsis
2. Leg I normal with 2 claws Cheyletus
 — Leg I a sensory organ without claw Cheletogenes

Genus Chelacaropsis Baker
(Figs. 378-379)

Figs. 380-381: Cheyletus sp.: 380. Dorsal surface, 381. Tibia and tarsus I (Female).

401. Chelacaropsis moorei Baker

Diagnosis: Small mite with narrow body and rostrum, dorsal seta of palpus simple, serrate, other palp setae simple, palpal claw long,
narrow with 3 basal teeth; palp tibia with 1 comb-like seta and 2 sickle-like setae. Dorsal shield absent, striations on anterior portion of propodosoma and hysterosoma longitudinal and that on posterior portion transverse. A pair of lateral eyes present. Dorsal setae broadly squamiform, serrate, 6 pairs on propodosoma and 8 pairs on hysterosoma. Sensory seta on tarsus I almost half as long as tarsus.

Habitat: Paddy.

Distribution: INDIA: Andaman Isls.; outside India: U.S.A.

Remarks: No economic importance of this species is known.

Genus Cheletogenes Oudemans
(Figs. 376-377)

402. Cheletogenes ornatus (Canestrini & Fanzago)

Diagnosis: Small round mite with short rostrum. Femur of palpus strongly swollen on outer margin. Femoral and genual setae squamiform, serrate. Palp claw with many teeth; 2 comb-like setae both with many teeth. Peritreme composed of sausage like segments. Single pair of eyes. Four pairs of squamiform serrate marginal setae and 3 pairs of similar dorsal submedian setae present; single pair of shoulder setae also present. Hysterosomal shield not touching anterior shield, small, covering 1/2 of anterior hysterosoma. Anal and genital setae simple.

Habitat: Mango, fig.

Remarks: This mite has been reported to be associated with fig mite and mango bud mite. Probably it feeds on these species. It has also been recorded to be associated with scale insects in Italy, China, Hawaii and other places, on which it might be feeding.

Genus Cheyletus Latreille
(Figs. 380-381)

Cheyletus Latreille, 1796, Précis des Caractères génériques des insectes. An., p. 179.
403. Cheyletus fortis Oudemans

Diagnosis: Large mite with strong palpi; palpal femur as wide as long; dorsal femoral and genual setae pilose; inner palpal comb with about 27 teeth; outer palpal comb with 20 teeth. Anterior dorsal shield not covering entire propodosoma, with 4 pairs of lanceolate serrate marginal setae. Hysterosomal shield squarish with 3 pairs of narrow, lanceolate setae. Palpal claw with 1 tooth.

Habitat: Tree trunk.

Distribution: INDIA: West Bengal; outside India: New guinea, Formosa, Burma, Japan, Australia, Philippines.

Remarks: No economic importance of this species is known.

Family Stigmaeidae Oudemans

History: Stigmaeidae was erected by Oudemans (1931) with *Stigmaeus* Koch, 1836 as its type genus. Summers (1962) revised the genus *Stigmaeus*. Gonzalez (1965) presented a comprehensive key to the genera under this family and recognised 13 genera. Summers (1966) provided key for 14 genera giving diagnosis of each genus. Besides, several workers, viz. Wood (1964, 67, 71, 73), Gonzalez (1967) and Meyer (1969) made excellent contributions to advance our knowledge in this family.

Diagnosis: Palptibia with a prominent claw which is sometimes with a small accessory claw. Palptarsus with a short appendage. Most of the setae have 3 tined fork at the top of palptarsus. Tracheal system originated in the middle between basal pieces of chelicerae, having no stigma or peritreme. Genital and anal vestibules closed externally by single pair of anogenital covers (Chaudhri *et al.*, 1974).

These mites are light to deep yellowish in colour, normally very active and efficient predators.

Morphological Characters of Taxonomic Importance

Body is differentiated into gnathosoma and idiosoma.

Gnathosoma (Fig. 382): This consists of a pair of chelicerae and
Figs. 382-384: Stigmaeid mite showing parts of taxonomic importance (after Gonzalez, 1965).

382. Ventral aspect of basis capitulum: P. Accessory claw, Q. Subcapitular seta, R. Subcapitular seta.

a pair of pedipalpi. The chelicera is a fine needle like structure (Fig. 387) often may be joined and sometimes the peritreme may be associated with chelicerae. Pedipalp with a thumb-claw complex. Palp tibia may be with a claw of various shape and palptarsus may be with process.

Idiosoma (Fig. 383): It consists of propodosoma and hysterosoma and each covered with plate or plates. Their number, shape, etc. help in separating the genera. Both propodosoma and hysterosoma bear setae of varying number and nature, which also serve as taxonomic characters at generic and specific levels. The setae are termed as, vertical, pre-ocular, post-ocular, humeral, dorsocentral, dorsolateral, intercalaries, central suranal and lateral suranals.

Venter: Each genus possesses a definite number of setae in subcapitular region (1 or 2 pairs) and in opisthosomal region (4 pairs on each of anogenital covers of females (Fig. 384); besides, there are paragenital setae borne on independent genital plates.

Legs: The leg chaetotaxy in Stigmaeidae is fairly constant (Fig. 388)

Key to the Genera of Stigmaeidae

1. Dorsum covered with a single shield Indostigmaeus
 — Dorsum covered with 2 shields Agistemus, ...
2. One pair of paragenital setae fleschneri
 — Two pairs of paragenital setae industani

Genus Agistemus Summers
(Figs. 385-386)

404. Agistemus industani Gonzalez-Rodriguez

Diagnosis: Two pairs of paragenital setae. Dorsal plate smooth (not reticulated or ornamented). Seta le shorter than e; ratio e/le = 1.4 or greater; g₁ not long, projects slightly beyond base of g₂; postocular body often enlarged; setae a equal to or longer than distance from a-b; paragenital setae subequal; dorsal setae relatively stout; obviously brabed on most of shaft, set on tubercles, be not appreciably longer than other dorsals; a/a-a = 1.1 or greater; diameter
of postocular body more than 1/2 length of ce; this seta equals distance be-ce; dorsalmost and mesal setae on genu I subequal; ratio ae/ae-ae=2.6; la nearly equal to distance la to lm; dorsal-most seta on genu I not more than 1.3 times longer than lateral one; dorsal setae blunt tipped.

Habitat: Cyperus rotundus.

Distribution: INDIA: Tamil Nadu.

Remarks: No economic importance of this species is known.

405. Agistemus fleschneri Summers

Fig. 387: Chelicera.
Fig. 388: Tarsus I (Male): C. Solenidion.
Figs. 389-392: Indostigmaeus sp.
Diagnosis: Dorsal shield extensively ornamented with coarse polygonal reticulation; one pair of paragenital setae; reticulum on median plate with 12 cells in median longitudinal row; a/a = 1.0 ae/ae = 2.6; median plate roughly octagonal in outline, covers 2/3 of dorsal hysterosoma; dorsal setae of median size set on tubercles and barbed; postocular body incompletely outlined, its diameter not greater than twice that of eyes.

Habitat: Orange.

Distribution: INDIA: Punjab; outside India: U.S.A., Mexico, Chile.

Remarks: This mite has been reported to be efficient predator of some tetranychid mites.

Genus Indostigmaeus Gupta & Ghosh

(Figs. 389-392)

406. Indostigmaeus rangatensis Gupta & Ghosh

Diagnosis: Body almost rounded, dorsum characteristically reticulate except towards margins, cells polygonal, larger centrally while smaller towards anterior and posterior parts. Dorsal setae on tubercles with somewhat corrugated margin. Dorsocentral dorsal setae fairly large and almost of equal length; dorsolateral dorsal setae small; all setae being shorter than the longitudinal intervals between successive bases. Ventral striations longitudinal except centrally where it is transverse. One pair of setae present between coxae I, another pair slightly above coxae III.

Habitat: Citrus medica.

Distribution: INDIA: Andaman Isls.

Remarks: No economic importance of this species is known.

Family Tydeidae Kramer

Diagnosis: Small active mites. Body weakly sclerotized or smooth. Pedipalp 4 segmented with setae of diverse numbers; palptarsus may be with solenidion. Chelicera needle like, unopposed. Propodosoma
with 3 pairs of dorsal setae, in addition, one pair of sensory setae also present. Hysterosoma with setae of different length and nature. Hysterosoma may be strongly lobed dorsally and laterally. Ventral body setae 3 pairs.

These mites occur on plants, mosses, lichens, trees, soils and stored food. Some are plant feeders, a few are predators and food habits of many are not known with certainty.

Morphological Characters of Taxonomic Importance

Gnathosoma: Pedipalp 4 segmented, setal count vary in genera. Palptarsus with 5 setae; solenidion may also be present ventrally and proximally on this segment. Tibia, femur, genu may also possess 1 or 2 setae, femur with 1 or 2 setae; trochanter without seta. Chelicera needle like and unopposed.

Idiosoma (Fig. 394): Propodosoma with 4 pairs of setae including a pair of sensory setae set in large pseudostigmata. Hysterosoma consists of 5 transverse rows of 4 setae each or in some 4½ rows, the post lateral pair lacking. The setae are labelled as dorsal row (D1-D5) and lateral row (L1-L5 or L4). Dorsal body setae may be nude, simple, pilose, serrate, lanceolate, club-like, etc. Ventrally (Fig. 395), there are 3 pairs of setae in addition to genital, paragenital and anal setae and their number may vary according to genera and species. Dorsal striation of body is important both generically and specifically. In *Tydeus*, the striation pattern is longitudinal on propodosoma and transverse on hysterosoma. In *Pronematus*, the striae are longitudinal on the dorsal anterior region of hysterosoma. In *Lorryia*, the striae form a reticulate pattern. Hysterosoma also may be strongly lobed dorsally and laterally. Eyes as pigmented area may be present on propodosoma.

Legs (Figs. 393, 396-397): Chaetotactic pattern of leg segments, relative length of tibia and tarsus I, etc. serve as important species characters.

Sexes are similar except males are smaller with smaller genital opening.

Key to the Genera of Tydeidae

1. Hysterosomal seta L2 in normal lateral position... ...
 - Hysterosomal seta L2 in dorsal position... ...
2. Femur III and IV each with forked seta... ...
 - Femur III and IV without forked seta... ...

<table>
<thead>
<tr>
<th>Key to the Genera of Tydeidae</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hysterosomal seta L2 in normal lateral position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Femur III and IV each with forked seta</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lorryia 2
Parapronematus
Pronematus
Genus *Pronematus* Canestrini

(*Figs. 398-401*)

Fig. 396: Leg II (Female) in *Parapronematus*.

Fig. 397: Leg III in *Parapronematus*.
Key to the Species of Pronematus

1. Distal setae of tarsus I serrate along entire length
 - Distal setae of tarsus I not serrate along entire length

2. Solenidion on tarsus I distal
 - Solenidion on tarsus I medial

407. Pronematus elongatus Baker

Diagnosis: Dorsal body setae very small; seta partly serrate. Propodosoma with fine longitudinal striae; lobes taller than broad and sharp. Sensory seta finely serrate, whip-like, about 3 times as long as other setae, which are short, slightly lanceolate and serrate. Seta P₁ far posterior of sensory setae. Solenidion on tarsus I short and rounded.

Habitat: Grape vines.

Distribution: INDIA: Punjab, Himachal Pradesh; outside India: Africa.

Remarks: No economic importance of this species is known.

408. Pronematus fleschneri Baker

Diagnosis: Distal segment of palpus 2 times as long as penultimate segment. Propodosomal striae longitudinal, fine and with minute lobes. P₁ to P₈ subequal in length. Hysterosomal striae fine with minute lobes and longitudinal only to the area between setae D₁ to D. Solenidion on tarsus I long, distally placed and surpassing the end of the segment.

Habitat: Citrus.

Distribution: INDIA: Punjab, Bihar, Delhi; outside India: Belgian Congo.

Remarks: Putatunda et al. (1975) reported this mite feeding upon Eutetranychus orientalis.

409. Pronematus sextoni Baker

Diagnosis: Rostrum not much longer than broad at base. Propodosoma with many fine longitudinal striae with minute lobes, setae $P_1 - P_8$ long, serrate, strong and subequal, P_1 slightly shorter. Hysterosomal striae similar like that on propodosoma. Tarsus I longer than tibia I, distal setae serrate along entire length, solenidion on tarsus I strong and bent.

Habitat: Citrus.

Distribution: INDIA: Delhi; outside India: Belgian Congo.

Remarks: Dhooria (1982) reported this mite as predator on *Eutetranychus orientalis*.

Genus Parapronematus Baker

(Figs. 402-403)

Diagnosis: Seta P_2 of propodosoma lacking; P_1 shifted posteriorly and lie between the sensory setae. The forked seta of femur IV at least twice as long as the width of the segment. Hysterosoma with longitudinal striae reaching to D_5 setae, first and second row of hysterosomal setae similar to those of propodosoma; third and fourth row much longer; D_5 shorter and slender.

Habitat: Bamboo.

Distribution: INDIA: Nicobar Isl.; outside India: Belgian Congo.

Remarks: No economic importance of this species is known.

Genus Lorryia Oudemans

(Figs. 404-405)

Lorryia africana Baker

Diagnosis: Body elongate, bilobed posteriorly, strong reticulations dorsally; dorsocentral area of hysterosoma set off by striae. Sensory
setae on propodosoma simple, long and whip-like. Dorsal body setae strong, lanceolate and nude, subequal in length. Solenidion on tarsus I long and slender.

Figs. 398-401: *Pronematus* sp.: 398. Dorsum, 399. Leg III (Female), 400. Leg IV (Female), 401. Palp (Male).
Figs. 402-403: *Parapronematus* sp.: 402. Dorsum, 403. Leg IV (Female).
Figs. 404-405: *Lorryia* sp.: 404. Dorsum, 405. Tibia and tarsus I (Female).
Habitat: Cashew nut.

Distribution: INDIA: Andaman Isls.; outside India: Belgian Congo.

Remarks: No economic importance of this species is known.

Family BDELLIDAE Dugés

History: Dugés (1834) erected this family. Grandjean (1938), Womersley (1933), Baker & Balock (1944) and Thor (1931) made some valuable taxonomic contributions in this family. Later, Atyeo (1960), Atyeo & Tuxen (1962) and Atyeo (1963) contributed further in this family.

Diagnosis: Medium to large sized mites, elongated pear shaped, with sharp rostrum which gives them the name 'Snout Mite'. A suture present between propodosoma and hysterosoma. Dorsal integument striated. Pedipalp elbowed, palp tarsus without claws. Propodosoma with 4 pseudostigmata and sensory setae; 2 pairs of eyes placed on lateral margins. Chelicera elongate with one or more dorsal setae. Three pairs of genital suckers present.

These mites are normally predatory in nature.

MORPHOLOGICAL CHARACTERS OF TAXONOMIC IMPORTANCE

Gnathosoma: It consists of pedipalp and chelicera. Chelicera (Fig. 406) elongated with 1 or 2 dorsal setae and weak shears. Pedipalp 5 segmented (Fig. 407), genu and tibia being very short, femur very long or short, leg-like; normally genu and tibia bent giving the palpi an elbowed appearance. Palptarsus terminates into 2 long whip-like setae. Setation of hypostome (Fig. 408) is of taxonomic importance.

Idiosoma (Figs. 409-410): Body well distinguished into propodosoma and hysterosoma. Body with straight to gently sinuous and parallel striae which form regular pattern. Propodosoma with 2 pairs of sensory setae. Hysterosoma with 9 pairs of setae.

Legs: Leg chaetotaxy is most important character in taxonomy of this family; tarsi, tibia and genu have tactile setae and long ensory setae in deep sockets (trichoboths) or hollow chemosensory setae (solenidia). Genua I-IV with decreasing number of attenuate sensory setae. Tibia II may or may not have a trichoboth. Trichoboth also present on tibia I and IV and tarsus III and IV. Tarsus I normally exhibits 2 attenuate and 2 noticably long, bluntly rounded sensory setae and 1 small peg. Tarsus II has 1 attenuate and 2 bluntly rounded
sensory setae and 1 peg. Tarsus III and IV each have a trichoboth inserted at the base.

Genus *Bdellodes* Oudemans

Bdellodes Oudemans, 1937, *Kritisch Hist. Overzicht der Acarologie*, 3(C): 1217,

412. *Bdellodes (Hoploscirus) affinis* Atyeo
 (Fig. 409)

Diagnosis: Chelicera with a single seta; palp tibiotarsus with 10-14 setae; palpus with genu and telofemur approximately equal in length. Dorsal propodosoma with weak subcuticular thickeneds on oblique lines anterolateral to anterior to posterior sensilla; hysterosomal setae minutely branched. Ventral idiosomal striae as on dorsum.

Habitat: *Areca catechu*.

Distribution: *India*: Andaman Isls.; *outside India*: Australia.

Remarks: No economic importance of this mite is known.

Family *Cunaxidae* Thor

History: Since the erection of this family by Thor in 1902, the important taxonomic contributions made in this family are Thor & Willmann (1941), Baker & Hoffman (1948), Muma (1960), Meyer & Ryke (1959) and Smiley (1975).

Diagnosis: Soft or strongly sclerotized body, with or without dorsal and ventral plates. Chelicera separate and hinged at base. Gnathosoma cone-shaped, palpi 3-5 segmented with strong spines, spurs or apophyses terminating in strong claws. Propodosoma with 2 pairs of sensory setae. Eyes present or absent. Male or female genitalia with 2-3 pairs of discs; tibia IV with trichobothrium.

These are reddish, free living mites and are known to be good predators.

Morphological Characters of Taxonomic Importance

The body is distinguished into gnathosoma and idiosoma.

Gnathosoma (Figs. 412, 413): It consists of a pair of chelicerae and a pair of pedipalpi. Pedipalp 3-5 segmented, bent inwards, each segment with varying number of setae. Chelicera with fixed digit vestigial and movable digit sickle-shaped. The number of pedipalpal segment is used as character for generic separation. Ventrally hypostome conical with setae.
Idiosoma (Fig. 411): It is distinguished into propodosoma and hysterosoma, often these two regions are separated by suture. Propodosoma with 2 pairs of sensory setae, in addition another two pairs of setae may be present. Propodosoma and hysterosoma may be covered with plate or plate may be absent on hysterosoma. Normally 5 pairs of dorsal and 1 pair of lateral setae present on idiosoma. Ventrally idiosoma may be striated.

Legs: Leg chaetotaxy and specially that of tarsus I are important taxonomic characters.

Key to the Genera of Cunaxidae

1. Gnathosoma enormously developed, palpal tibia and tarsus modified for clasping organ
 - Gnathosoma normal, not enormously developed, palpal tibia and tarsus do not form clasping organ
 Indocunaxa

2. Palpus 3 segmented
 - Palpus 5 segmented
 Cunaxa

3. Dorsum without conspicuous shield or shields
 - Dorsum with conspicuous shield
 Cunaxoides
 Neocunaxoides

Genus Cunaxa von Heyden
(Figs. 414-415)

Key to the Species of Cunaxa

1. Palp trochanter with spine on inner anterolateral margin
 - Palp trochanter without such spine
 setirostris
 2

2. Chelicera longer than tibiotarsus
 - Chelicera shorter than tibiotarsus
 bambusae
 3

3. Chelicera barely reaches the base of genu
 - Chelicera reaches to tip of tibiotarsus
 myabunderensis
 cynodonae

413. *Cunaxa bambusae* Gupta & Ghosh

Diagnosis: Palpal basifemur with 1 medioventral seta, telofemur with 1 outerlateral and 1 anteromiddorsal seta, genu with 2 innerlateral, 1 outerlateral and 1 anteromiddorsal seta; tibiotarsus with a strong spine on inner lateral surface, anterior to it one small seta and 2 setae on outerlateral surface, anterior one longer and stronger. Propodosomal shield indistinct with 2 finely branched sensory setae and 2 fairly long simple setae, D_4 and D_5 setae of hysterosoma fairly long.

Habitat: *Bambusa arundinacea*.

Distribution: **INDIA**: Andaman Isl.

Remarks: Nothing about its economic importance is known.
414. **Cunaxa cynodonae** Gupta & Ghosh

Diagnosis: Palp 5 segmented; palpal basifemur with one outer-lateral seta, telofemur with 1 outerlateral and 1 anterodorsal seta; genu with 1 outerlateral, 1 innerlateral and 1 anterodorsal seta, all being simple; tibiotarsus with 2 unequel simple setae on innerlateral surface, proximal one small, distal one longer; 4 setae present on anterior tip. Propodosoma with a shield, hysterosoma without shield, with striation.

Habitat: *Cynodon* sp.

Distribution: INDIA: Car Nicobar Isl.

Remarks: Economic importance of this species is unknown.

415. **Cunaxa myabunderensis** Gupta & Ghosh

Diagnosis: Palp 5 segmented; palpal telofemur with 1 weak spine-like seta on the inner surface and 1 outerlateral simple seta; genu with a sharp spine like seta at the innersurface and one small seta anterolaterally with one anteromedian seta; tibiotarsus with one small sharp seta on the inner surface. Propodosomal shield indistinct, hysterosomal region with striations and 6 pairs of short setae; 5 pairs of setae on the ventral surface between coxae II and posterior tip of the body.

Habitat: *Aegle marmelos*.

Distribution: INDIA: Andaman Isl.

416. **Cunaxa setirostris** (Hermann)

Diagnosis: Palp 5 segmented, exceeding length of hypostome; palpal telofemur with a strong spine on the inner anterolateral margin; propodosoma with a reticulate subrectangular shield with 2 pairs of finely branched sensory setae; hysterosoma without shield, with fine striations, with 8 pairs of short and simple setae; 5 pairs of simple setae (excluding those of anal and genital regions) present ventrally; genital plate with 4 pairs of simple setae, distal outer pair longer than other.

Habitat: *Tabernaemontana coronaria*.

Remarks: The economic importance of this species is unknown.

Distribution: INDIA: U. P., Andaman Isl.; outside India: Cosmo-politan.
Genus *Cunaxoides* Baker & Hoffman (Figs. 416-417)

417. *Cunaxoides nicobarensis* Gupta & Ghosh

Diagnosis: Body spindle shaped with a distinct furrow. Dorsum finely striated and tuberculated. Propodosoma hemispherical with 2 pairs of long sensory setae and 2 pairs of short simple setae; venter

![Image of mites illustrations](image-url)

Figs. 421-422: *Neocunaxoides* sp; 421. Dorsum, 422. Palp.
with 6 pairs of short setae. Palp 3 segmented, 1st segment with 4 setae, second with 3 setae and 3rd with five setae.

Habitat: Undet. plant.

Distribution: INDIA: Car Nicobar Isl.

Remarks: Economic importance of this mite is unknown.

Genus Indocunaxa Gupta & Ghosh
(Figs. 418-420)

418. **Indocunaxa smileyi** Gupta & Ghosh

Diagnosis: Propodosomal shield weakly granulated; palp 4 segmented, 1st segment with 1 small seta mediodorsally, one strong seta distally and 1 strong claw on the inner surface and another strong claw close by on the ventral surface; second segment with 1 long fine seta basally facing inward, one spine like seta at the distal end and another stout and pointed seta on the outer surface; 3rd and 4th segments being clasping organs, fixed digit with a long pointed seta and the movable digit with a strong spine medially and another more strongly developed at the tip. Hysterosoma with fine striae and 8 pairs of setae, all being simple and small.

Habitat: *Calamus tenuis*.

Distribution: INDIA: Andaman Isls.

Remarks: This mite is not known to have any economic importance.

Genus Neocunaxoides Smiley
(Figs. 421-422)

419. **Neocunaxoides pradhani** Gupta & Ghosh

Diagnosis: Palp 3 segmented, almost as long as hypostome; palp-tarsus with 2 outerlateral setae, 1 mediodorsal seta, 3 simple setae distally and a short strong claw. Dorsally propodosoma and hysterosoma covered with one single shield, 2 pairs of sensory setae and 2 pairs of thick rod-like setae (slightly expanded distally) are present in propodosomal region. Ventrally with 2 distinct plates with coxae I and II divided
medially; coxae III and IV coalesced forming 2 elongate strong lateral plates. Idiosoma anterior ventral plates each with 6 pairs of simple setae, 5 pairs of simple setae on lateral ventral plates.

Habitat: *Artocarpus integrifolia.*

Distribution: INDIA: Andaman Nicobar Isls.

Remarks: This mite is not known to have any economic importance.

Fig. 423. Dorsal aspect of a larval erythraeid mite (after Southcott, 1961):

Fig. 424: Ventral aspect of a larval erythraeid mite (after Southcott, 1961):
Family: ERYTHRAEIDAE Robineau-Desvoidy

History: This family was established by Oudemans in 1902. The Indian fauna is not well worked out. The important contributions made in this family in the world are Meyer (1959), Southcott (1961, 1965), etc.

Diagnosis (Figs. 423-424): Reddish mite, larvae are heteromorphic, lack urstigma and are parasitic on arthropods. A shallow furrow separates the propodosoma from hysterosoma. The propodosoma has a median longitudinal 'Crista Metopica', which may reach posteriorly to middle of dorsum. There are 2 sensillary areas on Crista Metopica; the anterior one is placed forward while the posterior one at the posterior end of crista. Sensillary areas each have a pair of sensory setae. One or two pairs of eyes are present. Coxae I & II and III & IV are in two groups. Palp tibia with strong claw. Chelicera unsegmented, stylet-like and toothed distally. Genital suckers are absent.

Adults of these mites are free living, normally predators and found on plants or in litter. The larvae are parasitic on insects.

Key to the Subfamilies of ERYTHRAEIDAE

1. Two eyes on each side _Erythraeinae_
 — One eye on each side 2
2. Eyes anterior to Crista _Leptinae_
 — Eyes behind middle of Crista _Callidosomatinae_

Subfamily CALLIDOSOMATINAe Southcott

Key to the Genera of Callidosomatinae

1. Palptarsus greatly enlarged globular or pyriform, and extending beyond palpal tibial claw _Sphaerolophus_
 — Palptarsus not greatly enlarged or normal or nearly normal structure, not overreaching palp tibial claw or only slightly overreaching palptibial claw _Abrolophus_

Genus _Sphaerolophus_ Berlese

(Figs. 429-430)

Rhyncolophus Berlese, 1885, _A. M. S._, 18 : 7
Sphaerolophus Berlese, 1910, _Redia_, 6 : 349.
Key to the Species of *Sphaerolophus*

1. Palptarsus pyriform
 - Palptarsus spherical

gigas
delhiensis

Figs. 425-426: *Erythraeus* sp.
Figs. 427-428: *Paraerythraeus* sp.
420. *Sphaerolophus gigas* Khot

Diagnosis: Bright red mite, dorsum with numerous small setae giving spur like appearance to the body, each seta with long median pointed stem and spiny ciliations up to the mid length. Crista with anterior sensillary area situated on anterior dorsal margin; anterior sensillary area triangular in shape with nonsensillary setose setae situated along its anterior margin and 2 pairs on either side of sensillary setae. Posterior sensillary area situated on middle of dorsum having a posterior extension of crista and a pair of sensillary setae. Palpi comparatively small.

Habitat: Sugarcane.

Distribution: INDIA: Delhi.

Remarks: Economic importance of this species is not known.

421. *Sphaerolophus delhiensis* Khot

Diagnosis: Bright red mite, body wide oval. Dorsum covered with dense spurs of minute, 0.091 mm long small, curved and pointed, lightly ciliated setae. Crista 0.942 mm long, with anterior sensillary area little below the anterior margin of dorsum and extending posteriorly beyond posterior sensillary area; anterior sensillary area rectangular with a pair of smooth, pointed sensillary setae. Palptarsus spherical.

Habitat: Cotton.

Distribution: INDIA: Delhi.

Remarks: Economic importance of this species is not known.

Genus *Abrolophus* Berlese

(Figs. 431-432)

Abrolophus Berlese, 1891, *A. M. S.,/59(1)

Key to the Species of *Abrolophus*

1. First tarsus 3-3½ times as long as wide ...
 - First tarsus 2-2½ times as long as wide ...

 ripicola

 delhiensis

422. *Abrolophus delhiensis* Khot

Diagnosis: Colour bright red. Body elliptical, crista with anterior
sensillary area with rounded tip forms a nasus with cristal plate. Sensillary area with sensillary setae. Crista extends posteriorly into an irregular projection. Dorsal setae setose. Palp with bent tibial claw and bullet shaped palp tarsus.

Habitat: Sugarcane.

Distribution: India: Delhi.

Remarks: No economic importance of this species is known.

Figs. 429-430: Sphaerolophus sp. 431-432: Abrolophus sp. 433-434: Leptus sp.
423. Abrolophus ripicola Womersley

Distribution: Dorsum with dense spur of small, lightly setose setae. Crista extending posteriorly, dorsally up to II coxae. Anteriorly, cristal plate forms a nasus, anterior sensillary area triangular with light transverse lines separating the area into 4 parts. Sensory setae smooth, pointed. Posterior sensillary area with irregular posterior margin. Tarsus I \(3\frac{1}{8}\) times longer than wide.

Habitat: Orchard.

Distribution: INDIA: Delhi.

Remarks: No economic importance of this species is known.

Subfamily Leptinae Southcott

Genus *Leptus* Latreille

(Figs. 433-434)

Key to the Species of Leptus

1. Crista short, extending only up to the level of Coxa II; eyes situated little above the midpoint of either sides of cristal

 poonaensis

 Crista long, extending posteriorly only up to the middle of dorsum; eyes placed far anteriorly just behind the anterior sensillary area

 giganticus

424. Leptus poonaensis Khot

Diagnosis: Orange coloured, wide oval mite. Dorsal setae setose and pointed. Crista 0.222 mm long and stout. Anterior sensillary area long and pyriform having a pair of finely setose sensory setae and 4 stout densely setose nonsensillary setae. Posterior sensillary area with a pair of finely setose sensillary setae. Dorsal setae setose. Tarsus I \(3\frac{1}{8}\) times longer than wide.

Habitat: Fig.
Distribution: INDIA: Maharashtra.

Remarks: No economic importance of this species is known.

425. **Leptus giganticus** Khot

Diagnosis: Large mite blackish red in colour. Body oval broader anteriorly. Dorsal setae small, roundish, heavily pigmented showing 2 lid like halves. Crista stout, extending beyond anterior sensillary area. Tarsus I 3\(\frac{1}{2}\) times longer than wide.

Habitat: Citrus.

Distribution: INDIA: U. P.

Remarks: This mite is not known to have any economic importance.

Subfamily ERYTHRAEINAE Southcott

Key to the Genera of Erythraeinae

1. Legs with highly modified serrate setae *Paraerythraeus*
 — Legs without serrate setae *Erythraeus*

Genus *Erythraeus* Latreille
(Figs. 425-426)

426. **Erythraeus plumosus** Khot

Diagnosis: Yellowish red mite, oval. Crista linear, extending dorsally up to the middle of coxae II and III; anterior sensillary area with a pair of long, tapering, sensillary smooth setae, situated on the middle of the area, besides the 7 nonsensillary setose stout setae situated around sensillary setae. Posterior sensillary area having a pair of sensillary setae. Ventral setae lightly setose, Palpi with 5 conical spines along the ventral flexor edge of palp tibia distally with 3 conical spines on palp genu. Fourth leg longest, I and II equal.

Habitat: Grass.
Distribution: India: Delhi.

Remarks: No economic importance of this species is known.

Genus Paraerythraeus Southcott
(Figs. 427-428)

427. Paraerythraeus serratociliatus Khot

Diagnosis: Roundish body with deep orange colour, dorsal setae clavate and pigmented. Crista 0.871 mm long and stout with anterior sensillary area situated on anterior edge of dorsum; anterior sensillary area with a pair of fine long sensillary setae and 3 nonsensillary setae, stout pointed, lightly setose, middle one situated on anterior margin and 2 little posterior to it. Posterior sensillary area pear shaped with fine, slender sensillary setae. Leg I little longer than body. Palpi with strong tibial claw.

Habitat: Grass.

Distribution: India: Delhi.

Remarks: No economic importance of this species is known.

Order Mesostigmata
Family Ameroseiidae Evans

History: Evans (1963) published a good account in this group.

Diagnosis: Tritosternum present. Chaetotaxy of trochanter, femur and genu are 2, 5, 6, respectively. Both digits of chelicera conspicuous. Tibia I of adult with 3 ventral setae; tibia and genu of leg I with 2 anterolateral setae. Tibia I of adult with 4-5 dorsal setae; corniculi often may be divided distally into 2 or three processes. Dorsum of idiosoma of adult with holodorsal or schizodorsal shield; ventroanal or holoventral shield of male not fused with holodorsal or schizodorsal shield posteriorly. Leg I normally with ambulacrum; genu I with 3 ventral setae; palp apotele 2-3 tined. Tarsus II in both sexes without spurs; femur II of male without spurs. Third pair of sternal setae on unsclerotized cuticle or on discrete shields. Opisthomonotal region without Js and R setae.
Genus Neocypholaelaps Vitzthum
(Figs. 435-438)

Neocypholaelaps Vitzthum, 1941, Bronn's Tierreich, 5: 763.

Key to the Species of Neocypholaelaps

1. Dorsal shield of male without lateral projection; setae simple

 pradhani

 — Dorsal shield of male with lateral projection, setae leaf like

 stridulans

428. Neocypholaelaps pradhani Gupta
 (Figs. 435-436)

Diagnosis: Dorsal shield weakly sclerotized with 29 pairs of simple setae, all short. Sternal shield with 2 pairs of setae, 3rd pair of sternal setae on small platelets and 4th pair lie on interscutal membrane. Anal shield with a pair of paraanal setae and a postanal setae. Male with dorsal setae J2 closely set, long and stout.

Habitat: Pyrus malus.

Distribution: INDIA: Tamil Nadu.

Remarks: It is of no known economic importance.

429. Neocypholaelaps stridulans (Evans)
 (Figs. 437-438)

Diagnosis: Female dorsal shield weakly sclerotized having punctate lines forming polygonal network with 29 pairs of leaf like setae. Sternal shield longer than wide, with 2 pairs of setae, sternal setae III lying on platelets; metasternal setae situated on striated integument. Anal shield with a pair of para and postanal setae. Both digits of chelicera edentate; movable digit with a membraneous process. Male dorsal shield with lateral projection and numerous tubercles lying behind it. Setae J2 long and closely set.

Habitat: Coconut.
Distribution: INDIA: Kerala, W. Bengal; outside India: Java, Philippines, Malaya.

Remarks: It is of no known economic importance.

Figs. 441-442. Lasioseius sp.: 441. Dorsum, 442. Ventral aspect.
Family **Ascidae Voigts & Oudemans**

History: This family is adequately worked out in other parts of the world (Bernhard, 1963; Evans, 1958; Evans & Hyatt, 1960; Chant, 1963; Evans & Till, 1979 and Lindquist and Evans, 1960).

Diagnosis: Tritosternum present. Chaetotaxy of trochanter, femur and genu 2-5-6. Chelicera of female conspicuous, chelate-dentate; chelicera of male with spermatophoral process; tibia I of adult with 3 ventral setae; tibia and genu of leg I with 2 anterolateral setae, the former with 6 dorsal setae. Anal, ventro-anal, holo gastric or holoventral shields in the adults not fused with dorsal shield; posterior coxae without setigerous spurs in both sexes; dorsum of idiosoma with a holodorsal or schizodorsal shield, coniculi horn-like, strongly or weakly sclerotized. Hypostome grooved in both sexes with 5-7 transverse rows of denticles. Adult with distinct podonotal and opisth onotal shields.

Apparently these mites are often confused with phytophagous mites but normally these mites are more strongly sclerotized and possess more number of setae on dorsal shield; besides there are other characters too to distinguish the two families. These mites are commonly found on foliage twigs and litter, stored food and are often known to predate upon other phytophagous mites.

Key to the Genera of Ascidae

1. Corniculi long and convergent distally, lying close to one another, ventral denticles on gnathosoma often reduced, fixed digit of chelicera with a membranous lobe in place of *pilus dentilis*. *Melichares*
 — Corniculi short, parallel or divergent; ventral denticles on gnathosoma well developed with 5 or more transverse rows; fixed digit of chelicera with a setiform *pilus dentilis*. *Lasioseius*

Genus Melichares Hering

(Figs. 439-440)

430. **Melichares (Melichares) fici** Narayanan & Ghai

Diagnosis: Dorsal shield 401 long, 242 wide, with 28 pairs of simple setae, almost of same size (16), Z_5 being longest (35); anterior dorsal shield with 14 pairs of setae of same size. Fourteen pairs of setae present on interscutal membrane surrounding dorsal shield, of those, 7 pairs lie on anterior dorsal shield. Sternal shield with lateral extension between coxae I and II, metasternal plate absent. Anal shield slightly roundish in shape, longer than broad, with 3 setae, leg IV without macrosetae.

Habitat: Fig.

Distribution: INDIA: Delhi.

Remarks: This species was found associated with hymenopterous insects inside the fruits of *Ficus infectoria* (Narayanan & Ghai, 1964a).

Genus Lasioseius Berlese

(Figs. 441-442)

Key to the Species of Lasioseius

1. Dorsal shield with 31 pairs of setae, 15 of those on posterior dorsal shield *quadrisetosus*

 ← Dorsal shield with 22 pairs of setae, 10 of those on posterior dorsal shield *terres.tris*

431. **Lasioseius quadrisetosus** Chant

Diagnosis: Dorsal shield faintly sculptured with 31 pairs of setae on lateral interscutal membrane. Sternal, metasternal and genital shields normal; ventrianal shield large, as wide as long (115), triangular, with 4 pairs of small preanal setae; 2 pairs of broad metapodal plates. Leg IV with 2 macrosetae, one each on tarsus and basitarsus.

Habitat: Citrus.

Distribution: INDIA: Assam.

Remarks: The economic importance of the species is not known.
Lasioseius terrestris Menon & Ghai

Lasioseius terrestris Menon & Ghai, 1968a, Indian J. Ent., 30: 77-79.

Diagnosis: Dorsal shield slightly reticulate, with 22 pairs of simple setae, 10 of those are on posterior region, marginal setae not on interscutal membrane. Sternal, metasternal and genital shields normal; ventrianal shield 170 wide, 135 long, reticulate, with 6 pairs of preanal setae. Metapodal plates 2 paired.

Habitat: Wheat.

Distribution: INDIA; Delhi.

Remarks: Menon & Ghai (1968) found this mite associated with *Petrobia latens* infesting wheat crop.

Family PHYTOSEIIDAE Berlese

Phytoseiini Berlese, 1913, Acaroth. Ital., p. 11.

Diagnosis: Female can be diagnosed as: dorsal shield entire or transversely divided with less than 19 pairs of dorsal setae (except in Gnoriminae) arranged in three longitudinal rows as dorsal, median and lateral; sublateral setae 1-3 pairs. Peritreme opens through stigmata, situated between coxae III and IV and extends anteriorly. Palpal apotele 2-tined. Chelicera chelate with variable number of teeth on both the digits. Ventrally, sternal shield with 2-3 pairs of setae. Genital shield truncated posteriorly with a pair of setae. Ventrianal shield of diverse shape, 1-4 pairs of preanal setae, in addition to para and postanals, ventrolateral setae 1-4 pairs. A pair of spermatheca present opening between coxae III and IV. Legs provided with pretarsi and ambulacra. Males with spermatophoral process on movable digit of chelicera.
These mites are small whitish or creamish white, active and efficient predators of phytophagous mites. These are found on the undersurface of leaves, but may also occur on twigs, under barks, in axils of buds, within galls (made by other mites or insects), in soil litter, etc.

MORPHOLOGICAL CHARACTERS OF TAXONOMIC IMPORTANCE

Gnathosoma: It bears chelicerae and pedipalpi, mouth is surrounded within these appendages. Dorsally a part of gnathosoma is covered with tectum.

Chelicera: It is paired, each consists of two digits (Fig. 443) of those one is fixed and the other one is movable. Male chelicera with a process on the movable digit (Fig. 444) which is called spermatophoral process.

Pedipalpi: It is paired; coxae of palpi fused to form *basis capituli*. Pedipalp consists of 6 segments, coxa, trochanter, femur, genu, tibia and tarsus; tarsus apotele long.

Idiosoma (Fig. 445): It is covered with dorsal shield which may be entire or divided. There are always 19 or less pairs of setae except in Gnoriminae, arranged in several rows as vertical (1 pair), clunal (1 pair), dorsocentral (3-6) pairs, dorsolateral (8-10) pairs, median (2-3) pairs and sublateral (1-3 pairs). The nature of setae, number of setae, relative length and position of setae, serve as important taxonomic characters in separation of genera and species.

Venter (Fig. 446): There are 3 major plates, viz. sternal, genital and ventrianal. In addition, metasternal and metapodal plates are also often present. Sternal shield variously shaped with 2-3 pairs of setae, 4th pair of setae lie on metasternal plates. Genital shield truncated posteriorly with a pair of genital setae. Ventrianal shield variously shaped with 1-4 pairs of preanal setae, besides a pair of anal and a postanal seta also present. Often small platelets present between genital and ventrianal shields as well as around ventrianal shield on interscutal membrane. Ventrocaudal setae 3-4 pairs. A pair of metapodal plates present laterally between genital and ventrianal shields. The shape of ventrianal plate and number of setae on it serve as important taxonomic characters. A pair of spermatheca (Fig. 447) present each of which opens between coxae III and IV. Its structure is important for separation of species. Peritreme extends anteriorly from lateral
stigmata which is enclosed in stigmal shield and is followed by peritreme-
tral shield. Length of peritreme is variable. In male, a sternitigenital
shield (Fig. 448) with 4 pairs of setae and a ventrianal shield
(Fig. 449) with 3 pairs of preanal setae present.

Legs: Adults have 4 pairs of legs; often genu, tibia and basitarsus
of leg IV and in some cases genu II, III and tibia III possess macrosetae
whose number, relative length and shape vary extremely in different
species.

Key to the Subfamilies of Phytoseiidae

1. Dorsal shield with four pairs of prolateral
 setae

 — Dorsal shield with five to six pairs of
 prolateral setae.

 Amblyseiinae

 Phytoseiinae

Subfamily Amblyseiinae Muma

Key to the Genera of Amblyseiinae

1. Ventrianal shield absent or indistinctly
demarcated; only preanal setae distinctly
 present.

 — Ventrianal shield distinctly present.

 Indoseiulus

 2

2. Sublateral seta II (R1) absent.

 — Sublateral seta II (R1) present.

 Platysetella

 3

3. Lateral integument sclerotized so that R1
 and R1 though present on usual lateral
 position appear to be on lateroventral
 extension of dorsal shield.

 — Lateral integument not sclerotized as above.

 Iphiseius

 4

4. Metapodal plates large, single paired,
 triangular, genital shield very broad and
 punctate, ventrianal shield massive, genu III
 with 6 setae.

 — Metapodal plates 2 paired, slender, elongate
 and ventrianal shield usually narrow, genu
 III with 7 setae.

 Paraamblyselus

 Amblyseius

Genus Amblyseius Berlese

(Figs. 450-488)

Amblyseius Berlese, 1914, Redia, 10 : 143.
Key to the Subgenera of *Amblyseius*

1. Dorsal shield with 5 pairs of postlateral setae.
 - Dorsal shield with less than 5 pairs of postlateral setae.
 2
2. Seta Z₁ present.
 - Seta Z₁ absent.
 3
3. Seta S₂ present
 - Seta S₂ absent

- *Proprioseius*
- *Asperoseius*
- *Paraphytoseius*

Figs. 443-449: Phytoseiidae showing parts of taxonomic importance.
4. Ventrianal shield massive covering major portion of postventral surface. ... 5
 — Ventrianal shield not like above ... 6
5. Seta Jₜ present ... Proprioseiopsis
 — Seta Jₜ absent
6. Seta Z₄ and S₆ and or Z₄ long and whip like, longer than distance between their bases; leg IV with macrosetae on genu and erect seta on tarsus I. ...
 — Seta Z₄ shorter, at most as long as distance between their bases; leg I with no macroseta or only one on genu, no erect seta on tarsus I. ...
7. Sternal shield distinct and straight or concave posteriorly, ventrianal shield approximately shield shaped or pentagonal. ...
 — Sternal shield indistinct, may be trilobate posteriorly, ventrianal shield elongate vase shaped or concave laterally. ...
8. Z₄ and Z₆ distinctly serrate, sternal shield as wide as or wider than long, macrosetae may be present on genu I and present on genu II and III. ...
 — Z₄ and Z₆ indistinctly serrate, sternal shield longer than wide; genu I, II and III without macrosetae. ...
9. Peritreme extends anteriorly upto jₜ, anterior pair of preanal setae adjacent to anterior margin of ventrianal shield. ...
 — Peritreme not extends anteriorly upto jₜ, anterior pair of preanal setae removed from anterior margin of ventrianal shield. ...

Subgenus Amblyseius Berlese
(Figs. 450-453)

Amblyseius Berlese, 1914, Redia, 10: 143.

Key to the Species of subgenus Amblyseius

1. Ventrianal shield vase shaped with lateral margins concave. ...
 — Ventrianal shield triangular, pentagonal or squarish. ...
2. Spermatheca with cervix straight or of uniform length. ...
 — Spermatheca fundibuliform. ...

deleoni
3. Seta s₄ and Z₄ of similar length. largoensis
 — Seta s₄ shorter than Z₄. adhatodae

4. Seta Z₄ very long, more than 1/2 length of dorsal shield. 7
 — Seta Z₄ not so long 5

5. Cervix of spermatheca elongated and slender. mcmurtryi
 — Cervix of spermatheca funnel like or otherwise shaped, 6

6. Seta s₄ shorter than Z₄ neorykei
 — Seta s₄ equal to Z₄ shoreae

7. Seta s₄ only slightly shorter than Z₄. 8
 — Seta s₄ noticeably shorter than Z₄ 9

8. Spermatheca with cervix long, broad, dorsal shield faintly reticulate. channabasavanni
 — Spermatheca with cervix narrow, tubular, dorsal shield smooth. kulini

9. Cervix of spermatheca looped. paraaerialis
 — Cervix of spermatheca straight. 10

10. Sternal shield broader than long, or as broad as long. 11
 — Sternal shield longer than broad. ipomoeae

11. Seta z₄ longer than z₄. aerialis
 — Seta z₄ equal to z₄. 12

12. Cervix long, tubular orientalis
 — Cervix short, wider internally rhambdus

433. **Amblyseius (Amblyseius) adhatodae** Muma

Diagnosis: Dorsal shield smooth with 17 pairs of setae, j₃, s₄, Z₅ and Z₄ being long, other setae minute; Z₄ longer than s₄ and 1/2 as long as Z₅; cervix of spermatheca long and elongated; fixed digit of chelicera multidentate; movable digit with 1 tooth.

Habitat: *Ipomoea* sp., *Adhatoda vasica*.
Distribution: INDIA: Maharashtra.

Remarks: No economic importance of this species is known.

434. **Amblyseius (Amblyseius) aerialis** (Muma)

Diagnosis: Dorsal shield with 17 pairs of setae; j₃, s₄, Z₅, Z₄...
being long and measuring respectively, 55, 120, 288, 144. Ventrianal shield rectangular, 115 long, 75 wide, with 3 pairs of preanal setae and a pair of elliptical preanal pores. Spermathecal cervix tubular; macrosetae on leg IV: genu-132, tibia-100, basitarsus-76.

Habitat: *Citrus* sp.; ornamental plant.

Distribution: India: Karnataka, Bihar; outside India: Mexico, U. S. A., Bermuda, Galapagos Isl., Jamaica, Puerto Rico, Brazil.

Remarks: Rao & Rao (1964) reported this mite to be an important predator of tetranychid species (*Panonychus citri*).

435. *Amblyseius* (Amblyseius) channabasavanni Gupta & Daniel

Diagnosis: Dorsal shield smooth with 17 pairs of setae, Z_{6} longer (212); measurements of other setae: s_{4}-72, Z_{4}-72, j_{5}-40, j_{1}-28; other setae minute. Sternal shield weakly sclerotized with 3 pairs of sternal setae; metasternnal plates present. Ventrianal shield pentagonal, much longer (108) than broad (80), with 3 pairs of preanal setae; 2 pairs of metapodal plates present. Fixed digit of chelicera multidentate; 4 teeth on movable digit. Spermaheca with tubular cervix. Leg IV with macrosetae on genu-80, tibia-60, basitarsus-52.

Habitat: *Chrysanthemum* sp., *Dahlia* sp.

Distribution: India: Kerala, Tamil Nadu.

Remarks: Its biology has been studied in the laboratory by Daniel (1979). According to her, the incubation period is 32.3 hrs in females and 30.2 hrs. in males. The duration of larval, protonymphal and deutonymphal periods in males are: 17.2 hrs., 22.2 hrs. and 23.8 hrs., respectively, while those in case of females are 20.4 hrs., 21.9 hrs, 23.4 hrs., respectively. The total developmental period feeding on eggs of *Raoiella indica* is 85-107 hrs. in case of males and 84-113 hrs. in case of females consuming 15-38 eggs by a female and 14-19 eggs by a male. The females lay in average 23.7 eggs in the life time during average oviposition period of 15.7 days. All the stages are attacked by all the feeding stages of the predator. Alternative food included *Tetranychus fijiensis*, eggs and crawlers of scale insects and mealy bugs. The population of predator was maximum during May-June coinciding with the peak population of the prey.
436. Amblyseius (Amblyseius) deleoni Muma & Denmark

Diagnosis: Dorsal shield smooth with 17 pairs of setae, \(j_1 \)-35, \(j_6 \)-4-5 each, \(j_8 \)-33, \(z_2 \)-9, \(z_4 \)-107, \(Z_1 \)-9, \(S_9 \)-13, \(S_3 \)-9, \(S_5 \)-13, \(Z_5 \)-205, \(z_5 \)-6, \(Z_4 \)-125, \(r_3 \)-11, \(R_1 \)-7. Ventrianal shield 116 long, 67 wide, with 3 pairs of preanal setae. Fixed digit of chelicera with 5 strong teeth and a *pilus dentilis*; movable digit with 3 minute teeth. Macrosetae on leg IV: genu-129, tibia-90, basitarsus-76.

Habitat: Aegle marmelos, tea; outside India: Amaranthus tricolor, Citrus sp., Podocarpus sp., Quercus sp., Rubus sp., Sabal palmetto, Trillandria usnoideis.

Distribution: India: Uttar Pradesh, Tripura, Tamil Nadu; outside India: U. S. A., Portugal, South America, Mexico, Philippines, British West Indies, Taiwan, Thailand, Madagascar, Brazil, Japan.

Remarks: This mite has been recorded to feed upon tea mites, Acaphylla theae and Calacarus carinatus (Muraleedharan & Chandrasekharan, 1981).

437. Amblyseius (Amblyseius) ipomoeae Ghai & Menon

Diagnosis: Dorsal shield sclerotized with 17 pairs of setae; \(j_1 \), \(j_8 \), \(s_4 \), \(Z_5 \) and \(Z_4 \) long, other setae minute. Sternal shield longer than broad; ventrianal shield pentagonal, longer than broad, lateral margins parallel, with 3 pairs of preanal setae and a pair of elliptical preanal pores; metapodal plates 2 paired; leg IV with 3 long macrosetae on genu, tibia and basitarsus, all being long.

Habitat: Ipomoea sp.

Distribution: India: Maharashtra.

Remarks: It has no known economic importance. This species appears to be same as *A. (A.) adhatodae* Muma.

438. Amblyseius (Amblyseius) kulini Gupta

Diagnosis: Dorsal shield 300 long, 220 wide, with 17 pairs of
Amblyseius (Amblyseius) largoensis (Muma)

Diagnosis: Dorsal shield smooth, with 17 pairs of setae, all being minute except \(j_1 \), \(j_9 \), \(s_4 \), \(Z_5 \) and \(Z_4 \) which measure respectively, 34, 48, 93, 270 and 95. Sternal, metasternal and genital shields normal. Ventrianal shield widest at the anal region, with 3 pairs of preanal setae and a pair of preanal pores. Metapodal plates present. Macrosetae on leg IV : genu-115, tibia-90 and basitarsus-62.

Habitat: China rose, Nerium indicum, Ficus sp., Calophyllum inophyllum, Citrus, Eucalyptus, bamboo, Tabernaemontana coronaria, arecanut, mango, Syzygium sp., Tectona sp. fig, coconut, guava, pepper, cashewnut, banana, litchi, plum, Manglietia insignis, chilli, pomegranate, Shorea sp., Bauhinia acuminata, papaya, Musa sp., poppy, castor, banyan, Dalbergia sp., Cassia fistula, Mussandra corymbosa.

Distribution: INDIA: Himachal Pradesh, Orissa, Gujarat, West Bengal, Andaman Nicobar Isls., Karnataka, Manipur, Assam, Meghalaya, Nagaland, Tripura, Tamil Nadu, Pondicherry, Kerala, Bihar ; outside India : Angola, Brazil, Costa Rica, Guatemala, Hawaii, Hong Kong, Honduras, Israel, Japan, Mexico, New Zealand, Philippines, Puerto Rico, S. Africa, U. S. A.

Remarks: The importance of this species as an efficient predator was first observed in India when Rao & Rao (1964) found this mite feeding upon Panonychus citri. Subsequently, Gupta et al. (1971) and Gupta (1977) also reported it feeding upon Tetranychus sp., Eutetranychus sp., respectively, infesting different crops. It is believed that proper utilisation of this mite can bring efficient biological control of tetranychid mites.
440. **Amblyseius (Amblyseius) mcmurtryi** Muma

Amblyseius mcmurtryi Muma, 1967, _Fla. Ent.,_ 50 (4) : 270.

Diagnosis: Dorsal shield 360 long, 208 wide, with 17 pairs of setae, all setae minute (6-8 long) except _j_1, _j_3, _s_4, _Z_6 and _Z_4 which measure respectively, 25, 36, 58, 140 and 60. Sternal, metasternal and genital shields normal. Ventrianal shield 108 long, 80 wide, with 3 pairs of preanal setae and a pair of preanal pores. Macrosetae on leg IV : genu, 72, tibia-44 and basitarsus-56. Spermatheca with tubular cervix.

Habitat: _Citrus_ sp., guava.

Distribution: _India:_ Assam, Meghalaya.

Remarks: So far no economic importance of this species has been reported.

441. **Amblyseius (Amblyseius) neorykei** Gupta

Diagnosis: Dorsal shield 235 long, 203 wide, with 17 pairs of setae and 6 pairs of pores. Measurements of setae: _j_1-27, _j_3-49, _Z_5-135, _Z_4-85. Sternal shield with 3 pairs of sternal setae and posterior lateral projections; metasternal plates present. Ventrianal shield 100 long, 81 wide, with 3 pairs of preanal setae and a pair of preanal pores. Macrosetae on leg IV : genu-70, tibia-50, basitarsus-72.

Habitat: _Chrysanthemum_ sp.

Distribution: _India:_ West Bengal.

Remarks: No economic importance of this species is known.

442. **Amblyseius (Amblyseius) orientalis** Ehara

Amblyseius orientalis Ehara, 1959, _Acarologia,_ 1 : 291.

Habitat: Undet. plant.

Distribution: India : Assam ; outside India : Japan.

Remarks: No economic importance of this species is known.

443. *Amblyseius (Amblyseius) paraaerialis* Muma

Diagnosis: Dorsal shield 320 long, 210 wide, with 17 pairs of setae. Measurements of setae: j_1-32, i_4-j_8, J_2-J_5 4-5 each, j_3-28, s_4-68, Z_1-9, S_2-12, S_4-16, S_5-8, Z_5-192, z_5-6, Z_4-84. Sternal, metasternal and genital shields normal. Ventrianal shield 104 long, 84 wide, with 3 pairs of preanal setae. Macrosetae on leg IV: genu: 84, tibia-68, basitarsus-80.

Habitat: Citrus.

Distribution: INDIA: Assam, Kerala, Meghalaya; outside India: Thailand.

Remarks: No economic importance of this species is known.

444. *Amblyseius (Amblyseius) rhabdus* Denmark

Diagnosis: Dorsal shield 403 long, 253 wide, with 17 pairs of setae. Setae j_1, j_3, s_4, Z_5, Z_4 long measuring respectively, 27, 47, 103, 319, 156, other setae small (5-6 long). Sternal, metasternal and genital shields normal. Ventrianal shield pentagonal, reticulate, with 3 pairs of preanal setae and a pair of preanal pores. Fixed digit of chelicera multidentate, movable digit with 2 teeth.

Habitat: Tea.

Distribution: INDIA: Tamil Nadu.

Remarks: This mite has been reported to be a predator of tea mites, *Acaphylla theae* and *Calacarus carinatus* (Muraleedharan & Chandrasekharan, 1981). This species was tentatively identified as *rhabdus* but that identification appears to be incorrect and it may turn out to be a new species.

445. *Amblyseius (Amblyseius) shoreae* Gupta

Diagnosis: Dorsal shield 335 long, 205 wide, with 17 pairs of setae, j_1-27, j_3-50, s_4-60, Z_5-98, Z_4-60, other setae minute. Sternal shield nearly as broad as long, with posterior lateral projection. Ventrianal shield 100 long, 84 wide, with 3 pairs of preanal setae;

Habitat: Shorea robusta.

Distribution: INDIA: West Bengal.

Remarks: No economic importance of this species is known.

Subgenus *Asperoseius* Chant

(Figs. 454-457)

446. *Amblyseius* (Asperoseius) *nucifera* (Gupta)

Diagnosis: Body elongated oval. Dorsal shield 305 long, 165 wide, notched at the level of s_4^5. Measurements of setae: j_1-28, j_4-j_8-4 each, j_3-68, z_2-16, z_4-32, s_4-80, Z_3-4, S_2-40, Z_5-76, Z_4-68, z_5-5, r_5-56, R_1-28. Sternal shield with 3 pairs of setae; ventrianal shield 80 long, 60 wide, with 3 pairs of preanal setae; 3 pairs of setae around ventrianal shield. Fixed digit of chelicera multidentate. Macrosetae on leg IV: genu-44, tibia-38, basitarsus-64.

Habitat: Cocos nucifera.

Distribution: INDIA: Kerala.

Subgenus *Euseius* Wainstein

(Figs. 458-461)

Key to the Species of Euseius

1. All the setae on dorsal shield minute except Z_4 and j_1 2
 — Besides j_1 and Z_4, some other setae also long 4
2. S_4 longer than S_4 3
 — S_4 and S_4 of same length *ovalis*
3. Spermatheca long and tubular *rhododendrons*
 — Spermatheca fundibuliform *sacchari*
4. Dorsal shield smooth 5
 — Dorsal shield reticulate 7
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Status</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>j₁ longer than j₂</td>
<td>...</td>
<td>neococcineae</td>
</tr>
<tr>
<td></td>
<td>j₂ shorter than j₁</td>
<td>...</td>
<td>6</td>
</tr>
<tr>
<td>6.</td>
<td>S₃ longer than Z₁</td>
<td>...</td>
<td>alstoniae</td>
</tr>
<tr>
<td></td>
<td>S₄ and Z₁ almost of same length</td>
<td>...</td>
<td>delhiensis</td>
</tr>
<tr>
<td>7.</td>
<td>Z₅ serrate</td>
<td>...</td>
<td>pruni</td>
</tr>
<tr>
<td></td>
<td>Z₆ smooth</td>
<td>...</td>
<td>8</td>
</tr>
<tr>
<td>8.</td>
<td>z₂ and z₃ almost of same length</td>
<td>...</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>z₄ noticeably longer than z₅</td>
<td>...</td>
<td>12</td>
</tr>
<tr>
<td>9.</td>
<td>Spermatheca saccular</td>
<td>...</td>
<td>finlandicus</td>
</tr>
<tr>
<td></td>
<td>Spermatheca not saccular</td>
<td>...</td>
<td>10</td>
</tr>
<tr>
<td>10.</td>
<td>Macrosetae on leg IV acuminate</td>
<td>...</td>
<td>eucalypti</td>
</tr>
<tr>
<td></td>
<td>Macrosetae on leg IV with broadened tip</td>
<td>...</td>
<td>11</td>
</tr>
<tr>
<td>11.</td>
<td>s₄ and S₄ almost of same length</td>
<td>...</td>
<td>coccosocius</td>
</tr>
<tr>
<td></td>
<td>s₄ slightly longer than S₄</td>
<td>...</td>
<td>bambusae</td>
</tr>
<tr>
<td>12.</td>
<td>Spermatheca elongated tubular</td>
<td>...</td>
<td>kodaikanalensis</td>
</tr>
<tr>
<td></td>
<td>Spermatheca saccular</td>
<td>...</td>
<td>coccineae</td>
</tr>
</tbody>
</table>

447. **Amblyseius (Euseius) alstoniae** Gupta

Habitat: *Alstonia scholaris, Shorea robusta,* brinjal, Sapota, chilli, cotton, date palm, *Acacia* sp., oleander, cucurbits, pomegranate, *Tabernaemontana coronaria,* palm, pear, maize, sugarcane, *Dalbergia sissoo, Zinia* sp., *Malvaceae.*

Distribution: **India:** Bihar, West Bengal, Orissa, Meghalaya, Assam, Tripura, Tamil Nadu, Rajasthan, Punjab, Delhi.

Remarks: The importance of this species in biological control was stressed by Gupta (1977) when he observed this mite feeding upon eggs and protonymphs of *Eutetranychus orientalis.* Recently, this has been seen to feed on all the stages of *E. orientalis* but it had preference for larvae and protonymphs. A single adult takes in an average 110.00, 124.37, 205.00, 221.80 and 460.20 seconds to consume an egg, a larva, a protonymph, a deutonymph and one adult, respectively (Dhooria, 1980).
448. Amblyseius (Euseius) bambusae Ghai & Menon

Diagnosis: Dorsal shield reticulate, with 17 pairs of setae, measurements of setae: j_1-32, j_4-j_6-4-6 each, j_8, j_2-11 each J_5-4 j_9-24, z_2-20, z_4-20, s_4-s_8-28, Z_1-12, S_2-16, S_6-20, S_5-17, Z_6-50, Z_4-12. Sternal, metasternal and genital shields normal. Ventrianal shield vase-shaped, with 3 pairs of preanal setae and a pair of pores. Fixed digit of chelicera with 4 teeth, movable digit with 1 tooth. Spermatheca with elongated cervix. Macrosetae on leg IV: genu-52, tibia-45, basitarsus-62, all with pointed tip.

Habitat: Bamboo, pear, *Butea monosperma*, *Dalbergia* sp., *Ficus religiosa*, coffee, pine.

Distribution: *INDIA*: Karnataka, Tamil Nadu, Kerala, Andhra Pradesh.

Remarks: Nothing about its economic importance is known.

449. Amblyseius (Euseius) coccineae Gupta

Diagnosis: Dorsal shield reticulate, with 17 pairs of setae. Measurements of setae: j_1-25, j_4-j_6, z_8, 10-12 each, J_5-6, j_1-27, z_2, z-19-20 each, s_4-s_8-s_6-21 each, Z_5-58, Z_4-13. Ventrianal shield vase-shaped with 3 pairs of preanal setae. Chelicera with 2 teeth on fixed digit and none on movable digit. Macrosetae on leg IV: genu-47, tibia-37, basitarsus-55; all with capitate tip.

Distribution: *INDIA*: West Bengal, Meghalaya, Orissa, Pondicherry, Tamil Nadu, Andhra Pradesh.

Remarks: Gupta (1977) reported that this mite attacked the eggs of *Oligonychus mangiferus* and sucked the egg contents.

450. Amblyseius (Euseius) coccosocius Ghai & Menon

Diagnosis: Dorsal shield reticulate, with 17 pairs of setae. Measurements of setae: j_1-28, j_4-j_6, j_8, J_9-10-12 each, j_8-21, z_9-z_4-15 each, s_4-s_6-s_8-s_6-26, Z_1-9, S_2-16, S_4-25, S_5-29, Z_6-57, z_5-8, Z_4-14. Sternal...
shield as long as broad. Ventrianal shield vase-shaped, slightly broader at preanal region with 3 pairs of preanal setae and a pair of crescent shaped preanal pores. Leg I with macrosetae on genu-36, tibia-32, basitarsus-45.

Habitat: *Alstonia scholaris, Clerodendron macrosiphon, guava, papaya, mango.*

Distribution: INDIA: Karnataka, Punjab, West Bengal, Pondicherry, Tamil Nadu, Kerala, Andhra Pradesh.

Remarks: This mite was collected in association with scale insects Ghai & Menon (1967). Gupta (1977) found this mite in association with *Brevipalpus phoenicis.*

451. **Amblyseius (Euseius) delhiensis** (Narayanan & Kaur)

Diagnosis: Dorsal shield smooth, with 17 pairs of setae. Setae \(Z_5 = s_4 \); \(j_6, J_2, Z_1, S_4, S_5, Z_4 \) almost of equal length, \(Z_5 \) slightly serrate, \(z_4 \) greater than \(z_2 \). \(Z_1 = S_2 \). Ventrianal shield vase shaped, 1 \(\frac{1}{2} \) times as long as broad, with 3 pairs of preanal setae. Leg IV with macrosetae on genu, tibia and basitarsus; that on tibia being smallest.

Distribution: INDIA: Punjab, Delhi, West Bengal, Orissa.

Remarks: A number of reports are available in favour of its predatory nature, of those, mention may be made of Gupta _et al._ (1971), Gupta (1976) reporting its feeding on all stages of *E. orientalis*; Gupta _et al._ (1971) on *O. indicus*; Gupta & Dhooria (1972) on *Brevipalpus phoenicis*; Gupta, Dhooria & Sidhu (1976) on *T. cinnabarinus* and Sandhu _et al._ (1973) on phytophagous mites infesting maize. Besides mites, it is also known to feed on eggs of cotton jassid (Somchoudhury, 1979). According to them, the population of this mite increases from September onwards and attains peak in November. Extreme temperature affects the mite population.

452. **Amblyseius (Euseius) eucalypti** Ghai & Menon

Diagnosis: Dorsal shield faintly reticulate, with 17 pairs of setae; \(s_4 \) greater than \(j_1 = j_8 = z_2 = z_4 \); \(j_6, J_5, z_5, Z_4 \) short; \(J_2, j_8, Z_5 \)
long. Ventrianal shield longer than broad, with 3 pairs of preanal setae; metapodal plate single paired. Leg IV with 3 acuminate macrosetae one each on genu, tibia and basitarsus.

Habitat: *Eucalyptus* sp.

Distribution: INDIA: Karnataka.

Remarks: It is of no known economic importance.

453. Amblyseius (Euseius) finlandicus (Oudemans)

Diagnosis: Dorsal shield reticulate, with 17 pairs of setae. Measurements of setae: \(j_1-28, j_4-j_6, j_8-j_{12}-12 \) each, \(j_6-6, j_1-24, z_2, z_4-16 \) each, \(s_4-28, Z_4-12, S_2-S_4-20 \) each, \(S_6-24, Z_6-56, z_6-10, Z_4-16 \). Ventrianal shield vase shaped with 3 pairs of preanal setae. Leg IV: macrosetae on genu-40, tibia-24, basitarsus-48. Fixed digit of chelicera with 2 teeth, movable digit toothless.

Habitat: Guava, maize, pear, sugarcane, hedge plant.

Distribution: INDIA: Karnataka, Punjab, West Bengal, Orissa, outside India: Algeria, Canada, Europe, Georgia, Indonesia, Japan, Mexico, South America, U.S.A.

Remarks: The reports which are available regarding predatory habit of this mite are Gupta *et al.* (1971) on *E. orientalis*, Gupta *et al.* (1976) on *T. cinnabarinus* infesting castor and Sandhu *et al.* (1973) feeding upon phytophagous mites infesting maize.

454. Amblyseius (Euseius) kodaikanalensis (Gupta)

Diagnosis: Dorsal shield 350 long, 220 wide, with 17 pairs of setae all being smooth and pointed. Measurements of setae: \(j_1-32, j_4-j_6, j_8-13 \) each, \(j_6-5, j_2-24, z_2-16, z_4-20, s_4-23, Z_4-12, S_2-16, S_4-20, S_6-17, Z_6-48 \). Sternal and metasternal shields normal. Ventrianal shield vase shaped with 3 pairs of preanal setae and a pair of elliptical preanal pores. Metapodal plates 2 paired. Spermatheca with a filamentous cervix. Macrosetae on leg IV: genu-44, tibia-32, basitarsus-56.

Habitat: Pear.

Distribution: INDIA: Tamil Nadu.
Remarks: Nothing about its economic importance is known. This species appears to be same as *A.(E.) rhododendronis* Gupta.

455. *Amblyseius* (Euseius) *neococcineae* Gupta

Diagnosis: Dorsal shield 265 long, 145 wide, with 17 pairs of setae. Measurements of setae: i_1-26, i_4-j_5-8 each, i_0, j_2-12 each, J_5-5, j_9, z_2-12 each, z_4-16, s -24, Z_1-12, S_2-16, S -16, S_b-18, Z_b-45, z_b-12, Z_s-16. Sternal and genital shields normal, metasternal plates absent. Ventrianal shield with lateral margins convex at preanal region with 3 pairs of preanal setae and a pair of crescent shaped preanal pores. Leg IV with macrosetae on genu-20, tibia-24, basitarsus-32, all being smooth with flattened tip. Spermatheca with bell shaped cervix.

Habitat: *Datura metel.*

Distribution: INDIA: Tamil Nadu.

Remarks: Nothing about its economic importance is known.

456. *Amblyseius* (Euseius) *ovalis* (Evans)

Diagnosis: Dorsal shield 345 long, 244 wide, with 17 pairs of setae, all the setae small except j_3-31 and Z_5-55, the length of others vary between 6-10. Ventrianal shield oval, 102 long, 81 wide, with 3 pairs of preanal setae and a pair of crescent shaped preanal pores; metapodal plates 2 paired. Spermatheca bowl shaped. Macrosetae on leg IV: genu-40, tibia-36, basitarsus-52.

Distribution: INDIA: Karnataka, Maharashtra, West Bengal, Andaman Nicobar Isls., Manipur, Meghalaya, Tripura, Gujarat, Tamil Nadu, Pondicherry, Kerala, Andhra Pradesh, Bihar; outside India: Hawaii, Hong Kong, Indonesia, Japan, Malaya, Mauritius, Mexico, New Zealand.
Remarks: In India, this mite was first collected in association with tetranychid mites (Narayanan et al., 1960). Subsequently, the voraceous feeding of *T. cinnabarinus* by this mite was reported by Gupta (1977) and Rao et al (1970).

457. Amblyseius (Euseius) pruni Gupta

Diagnosis: Dorsal shield 315 long, 230 wide, with 17 pairs of setae and 4 pairs of pores; shield reticulate. Measurements of setae: j_1-31, i_6, j_8-8 each, i_8, j_9-13-14 each, j_9-5, j_9-27, z_2, z_4 19 each, s_6-33, Z_1-13, S_2-18, S_4-18, S_6-22, Z_6-58 (weakly serrate), z_6-12, Z_4-13. Sternal, metasternal and genital shields normal. Ventrianal shield vase shaped, slightly longer than wide with 3 pairs of preanal setae and a pair of pores. Macrosetae on leg IV: genu-40, tibia-36, basitarsus-58.

Habitat: *Prunus persica, Bauhinia acuminata.*

Distribution: INDIA: West Bengal, Assam, Meghalaya, Tripura.

Remarks: No economic importance of this mite is known.

458. Amblyseius (Euseius) rhododendronis Gupta

Diagnosis: Dorsal shield 315 long, 220 wide, with 17 pairs of setae and 5 pairs of pores. Measurements of setae: j_1-27, j_6-8 each, j_9-4, j_9-16, z_2-10-11 each s_6-20, Z_1-8, S_2-11, S_4-17, S_6-9, Z_6-54, z_6-5, Z_4-9. Sternal, metasternal and genital shields normal. Ventrianal shield elongated, 94 long, 72 wide, with 3 pairs of preanal setae and a pair of preanal pores. Spermatheca filamentous. Macrosetae on leg IV: genu-31, tibia-22, basitarsus-42, all with broadened tip.

Habitat: *Rhododendron* sp.

Distribution: INDIA: West Bengal.

Remarks: No economic importance of this species is known.

459. Amblyseius (Euseius) sacchari Ghai & Menon

Diagnosis: Dorsal shield 337 long, 211 wide, with 17 pairs of setae and a few pairs of pores. Measurements of setae: j_1-27, j_4-j6, j_9-12, z_2-14, Z_1, S_2-S_6-6-10 each, s_6-17, Z_6-42 (serrate),

Habitat: Sugarcane.

Distribution: INDIA: Karnataka, Gujarat, Tamil Nadu, West Bengal.

Remarks: This species was collected in association with eriophyid mites (Ghai & Menon, 1967).

Subgenus Neoseiulus Hughes
(Figs. 462-465b)

Key to the Species of Neoseiulus*

1. All the setae on dorsal shield very small except Z₅
 — Setae on dorsal shield of diverse length
 2. Setae on dorsal shield of same length or uniformly long, none greatly longer than others
 — Some setae on dorsal shield appreciably longer, others being small or very small
 3. All setae very long except S₅ which is minute
 — All setae of uniform length
 4. Dorsal shield narrow, much longer than wide
 5. Only setae Z₅ and Z₄ long, other setae almost of same length
 — Besides Z₅ and Z₄ there are also other long setae on dorsal shield
 6. Setae j₁, s₄, Z₅ longer than other dorsal setae
 — Only setae s₄, Z₅ and Z₄ longer than other dorsal setae
 7. Ventrianal shield pentagonal
 — Ventrianal shield triangular

*assamensis

longispinosus

fallacis

indicus

fraterculus

eynodonae

rangatensis
8. Sternal shield with postlateral angulation ... \(\ldots \) \(\ldots \) paspalivorus

 - Sternal shield without postlateral angulation ... \(\ldots \) \(\ldots \) dhooriai

9. Spermatophoral process as in fig. 465 b ... \(\ldots \) \(\ldots \) aceriae

 - Spermatophoral process as in fig. 465 a ... \(\ldots \) \(\ldots \)

* A. (N.) cucumeris (Oud.) is a doubtful record from India.

460. Amblyseius (Neoseiulus) aceriae Gupta

 Diagnosis: Dorsal shield reticulate, with 17 pairs of setae, all being small (8-10 long) except \(Z_8 \) which is 49 long, thick and serrate. Sternal shield much longer than wide; metasternal plate with seta present. Ventrianal shield quadrangular, much longer than broad, metasternal plate with seta present. Metapodal plates large. Spermatheca with bell shaped cervix. Macroseta present only on basitarsus IV (18 long).

 Habitat: Mango, Chrysanthemum sp.

 Distribution: INDIA: West Bengal, Gujarat.

 Remarks: This mite was collected in association with mango bud mite but it is not known with certainty whether it fed on it. This mite was also associated with black aphid (Macrosiphoniella sanborni) (Gupta, 1977).

461. Amblyseius (Neoseiulus) assamensis (Chant)

 Diagnosis: Dorsal shield smooth, with 17 pairs of setae, all being small except \(s_4 \) (12 long), \(Z_5 \) (40, thick). Ventrianal shield pentagonal. Fixed digit of chelicera multidentate, movable digit with no tooth. Macrosetae on leg IV: genu-12, tibia-20, basitarsus-32.

 Habitat: Citrus.

 Distribution: INDIA: Assam.

 Remarks: No economic importance of this species is known.

462. Amblyseius (Neoseiulus) cynodonae Gupta

 Diagnosis: Dorsal shield smooth, \(Z_5 \), \(Z_4 \) and \(s_4 \) being long, other
setae short, pointed. Measurements of setae: \(j_1-17, j_4-j_5, j_8-5 \) each, \(j_6-J_2-10 \) each, \(j_3-12, z_2, z_4-9 \) each, \(s_4-25, Z_1-10, S_2-16, S_4-12, S_5-10, Z_6-60, z_5-5, Z_4-36 \). Ventrianal shield pentagonal, as long as wide. Macrosetae on leg IV: genu-40, tibia-18, basitarsus-55.

Habitat: *Cynodon dactylon.*

Distribution: INDIA: Andaman Isl.

Remarks: So far no economic importance of this mite is known.

463. *Amblyseius (Neoseiulus) dhooriai* Gupta

Diagnosis: Dorsal shield with 17 pairs of setae. Measurements of setae: \(j_1-12, j_4-j_5, J_2-12-14 \) each, \(j_3-15, z_2-12, z_4-14, s_4-16, Z_1-12, S_2-12, S_4-29, S_5-29, Z_6-75 \) (serrate), \(z_5-12, Z_4-21 \). Ventrianal shield, triangular, slightly longer than wide with 3 pairs of preanal setae and a pair of pores. Macrosetae on basitarsus IV: 48.

Habitat: Sugarcane.

Distribution: INDIA: Punjab.

Remarks: Nothing about its economic importance is known.

464. *Amblyseius (Neoseiulus) fallacis* (Garman)

Diagnosis: Dorsal shield smooth, with 17 pairs of setae. Measurements of setae: \(j_1-23, j_4-20, j_5-23, j_6-37, J_2-45, J_5-11, j_3-36, z_2-31, z_4-32, s_4-40, Z_1-40, S_2-41, S_4-48, S_5-48, Z_6-68, z_5-28, Z_4-59 \). Sternal and genital shields normal. Ventrianal shield triangular, as long as broad or slightly longer than broad, with 3 pairs of preanal setae, 2 pairs of metapodal plates present. Macrosetae on leg IV: genu-17, tibia-32, basitarsus-50.

Habitat: Paddy, Sowank, arum, *Musa* sp., carrot, grass.

Distribution: INDIA: Haryana, Punjab, West Bengal, Andaman Isl., Assam, Meghalaya, Tripura, Tamil Nadu; outside India: Algeria, Austria, U. S. A., Canada.

Remarks: Gupta et al (1971) observed the predatory habit of this mite as they recorded it feeding upon *Oligonychus* sp. at Ludhiana, in

Punjab. It was also found to prey upon paddy mite, Schizotetranychus andropogoni (Gupta, 1975a, 1977).

465. **Amblyseius (Neoseiulus) fraterculus** Berlese

Diagnosis: Dorsal shield with 17 pairs of setae, s_4, Z_5, Z_4 long, z_2, z_4, Z_1 and S_2 equal to one another, minute. Ventrianal shield triangular, lateral margins convex, with 3 pairs of preanal setae; 1 pair of metapodal plates present. Leg IV with macrosetae on genu, tibia and basitarsus.

Habitat: Red gram.

Distribution: INDIA: Tamil Nadu; outside India: Argentina.

Remarks: Economic importance of this species is unknown.

466. **Amblyseius (Neoseiulus) indicus** (Narayanan & Kaur)

Diagnosis: Dorsal shield reticulate, with 17 pairs of setae. Measurements of setae: i_1-12, j_4-j_6, J_2-J_5-9 each, j_3-12, z_2, z_4-12-13 each, s_4-16, Z_1-10, S_2-S_5-18 each, Z_5-56, z_5-9, Z_4-23. Sternal shield as long as broad. Ventrianal shield pentagonal, metapodal plates 2 paired. Spermatheca with long, narrow cervix. Leg IV with macroseta only on basitarsus-45 long.

Habitat: Maize, potato, paddy, wheat.

Distribution: INDIA: Punjab, Delhi, West Bengal.

Remarks: This mite was described on the basis of material collected from Gnorimoschema operculella infested potatoes and feeding upon Tyrophagus putrescentiae (Narayanan & Kaur, 1960). Gupta (1977) observed it feeding upon eggs of Petrobia latens infesting wheat. *A. (N.) bindrai* Gupta appears to be a synonym for this species.

467. **Amblyseius (Neoseiulus) longispinosus** (Evans)

Diagnosis: Dorsal shield 325 long, 190 wide, smooth, well sclerotized,
with 17 pairs of setae, mostly long excepting \(j_1, J_5 \) and \(S_5 \) which are shorter. Measurements of setae: \(j_1-20, j_4-54, j_5-67, j_6-72, J_2-72, J_5-7, j_3-49, z_2-69, z_4-76, s_4-82, Z_1-76, S_2-76, S_4-59, S_5-18, Z_6-78, z_5-31, Z_4-69 \). Sternal, metasternal and genital shields normal. Ventrianal shield triangular, reticulate, longer than wide, with 3 pairs of preanal setae and a pair of preanal pores. Spermatheca with funnel shaped cervix. Macroseta only on basitarsus IV-58 long.

Distribution: *India*: West Bengal, Tamil Nadu, Andaman Isl., Bihar, Orissa, Pondicherry; outside *India*: Hawaii, Jamaica, South America, Japan, Philippines, New Zealand.

Remarks: It is known to be an important predator of *Tetranychus ludeni* (Mallick, 1974). While studying the interactions between this mite and *T. ludeni*, at 1:4 ratio, it was found that the peak of the predator population was attained on the 6th day and none of the predators was found on the 11th day showing the rise of the predator population coinciding with the rise of the population of the prey. In those cases, where the predator was not released, the population of prey was very high even during 6th week. This is also a predator of *S. andropogoni*, infesting paddy.

468. Amblyseius (Neoseiulus) paspalivorus DeLeon

Diagnosis: Dorsal shield 365 long, 195 wide, with 17 pairs of setae. Measurements of setae: \(j_1-10, j_4-J_5-7 \) each, \(j_8-J_2-11 \) each, \(j_3-20, z_2-10, z_4-13, s_4-20, Z_1-8, S_2-19, S_4-32, S_5-29, Z_6-80, Z_4-24 \). Ventrianal shield longer than wide, reticulate, with 3 pairs of preanal setae. Metapodal plates 2 paired. Macrosetae on basitarsus IV-45.

Habitat: *Salix elegans*.

Distribution: *India*: West Bengal; outside *India*: Florida, Jamaica, Philippines.

Remarks: This species was earlier identified as *A. lula* but that appears to be a misidentification and the correct identity is *paspalivorus*.
469. *Amblyseius* (Neoseiulus) rangatensis Gupta

Diagnosis: Dorsal shield 316 long, 200 wide, smooth, with 17 pairs of setae, all being short (6-10 long) except j_1, j_3, s_4, Z_5, Z_4 which measure 16, 20, 32, 60 (weakly serrate) and 40 (smooth) respectively. Sternal, metasternal and genital shields normal. Ventrianal shield triangular with 3 pairs of preanal setae and a pair of pores. Macrosetae on leg IV: genu-40, tibia-nil, basitarsus-56.

Habitat: Brinjal.

Distribution: INDIA: Andaman Isl.

Remarks: It has no known economic importance.

Subgenus *Paraphytoseius* Swirski & Shechter

(Figs. 466-469)

Key to the Species of Paraphytoseius

1. z_1 and z_4 serrate
 ← z_1 and z_4 smooth
 ...
 ...
 scleroticus

 ...
 ...
 multidentatus

470. *Amblyseius* (Paraphytoseius) multidentatus (Swirski & Shechert)

Diagnosis: Dorsal shield elongate, notched at the level of s_4, with 14 pairs of setae. Setae j_1, j_3, s_4, Z_4 and Z_5 being long, thick and serrate measuring respectively, 30, 88, 120, 70 and 130. Ventrianal shield 90 long, 55 wide, with 3 pairs of preanal setae. Fixed digit of chelicera multidentate, movable digit 3-dentate.

Distribution: INDIA: West Bengal, Arunachal Pradesh, Tripura, Assam, Meghalaya, Bihar, Orissa, Maharashtra, Punjab, Andhra Pradesh, Jammu & Kashmir, Uttar Pradesh, Andaman Isl.,
Tamil Nadu, Karnataka; outside India: Hong Kong, Thailand, Malagassy, Nigeria, Madagascar.

Remarks: This mite is of significant economic importance as very often it was seen in the field to feed voraceously on various species.

Figs. 466-469: *Amblyseius (Paraphyloseius)* sp.: 466—Dorsum, 467—Ventral surface, 468—Spermatheca, 469—Genu, tibia and basitarsus of leg IV.

of *Tetranychus*. *A.(P.) bhadrakaliensis* Gupta, *A.(P.) narayanani* Ebara & Ghai and *A.(P.) nicobarensis* Gupta, are synonyms for *multidentatus*.

471. *Amblyseius (Paraphytoseius) scleroticus* Gupta & Ray

Habitat: Undet. plant.

Distribution: INDIA: Uttar Pradesh.

Remarks: No economic importance of this species is known.

Subgenus *Phytoscutella* Muma

(Figs. 470-473)

472. *Amblyseius (Phytoscutella) salebrosus* (Chant)

Habitat: Citrus.

Distribution: INDIA: Assam; outside India: Taiwan.

Remarks: No economic importance of this species is known.

Subgenus *Proprioseius* Chant

(Figs. 474-476)

473. Amblyseius (Proprioseius) kumaonensis (Gupta)

Diagnosis: Dorsal shield 312 long, 252 wide, highly rugose, well sclerotized, with 14 pairs of setae. Measurements of setae: \(j_1 \)-36, \(j_4 \)-5, \(j_5 \)-5, \(j_6 \)-7, \(j_8 \)-5, \(j_9 \)-53, \(z_2 \)-15, \(z_4 \)-27, \(s_4 \)-86, \(S_2 \)-17, \(S_6 \)-12, \(Z_8 \)-72, \(z_9 \)-5, \(Z_4 \)-50, \(r_8 \)-20. Ventrianal shield 96 long, 60 wide, lateral margins concave with 3 pairs of preanal setae, metapodal plates one paired. Macrosetae present on genu, tibia and basitarsus of leg IV, all being spatulate.

Habitat: Undet. plant.

Distribution: INDIA : Uttar Pradesh.

Remarks: The economic importance of this species is unknown.

Subgenus Proprioseiopsis Muma

(Figs. 477-480)

474. Amblyseius (Proprioseiopsis) peltatus Van der Merwe

Diagnosis: Dorsal shield 315 long, 212 wide, lateral margins highly sclerotized and appear to be fused with dorsal shield. Measurements of setae: \(j_1 \)-27, \(j_4 \)-\(j_6 \)-4 each, \(j_9 \)-54, \(z_2 \)-31, \(z_4 \)-22, \(s_4 \)-93, \(Z_2 \)-18, \(S_2 \)-22, \(S_4 \)-10, \(S_8 \)-8, \(Z_8 \)-80, \(z_9 \)-4, \(Z_4 \)-93. Sternal shield reticulate with 3 pairs of sternal setae, ventrianial shield robust, triangular, reticulate, 90 long, 108 wide, with 3 pairs of preanal setae and 3 pairs of preanal pores. Spermaphecsa with funnel shaped cervix. Macrosetae on leg IV : genu-63, tibia- 37, basitarsus-76.

Habitat: Punica granatum.

Distribution: INDIA : West Bengal ; outside India : S. Africa, Madagascar, Thailand.

Remarks: No economic importance of this species is known.

Subgenus Typhlodromalus Muma

(Figs. 481-484)

Key to the Species of Typhlodromalus

1. Ventrianal shield vase shaped
 - Ventrianal shield squarish or pentagonal
2. j_8 only slightly longer than z_a
 - j_8 more than 2 times as long as z_a
3. z_a reaches almost up to base of z_s
 - z_a much shorter than distance between its base and that of z_s
4. z_a and z_s weakly serrate; spermatheca funnel shaped
 - z_a and z_s smooth; spermatheca tubular
5. j_8 and z_s almost equal or j_8 only slightly longer
6. z_s 2 times as long as z_a
7. z_s reaches beyond base of z_s

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ventrianal shield vase shaped</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- Ventrianal shield squarish or pentagonal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- z_a only slightly longer than z_s</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>- z_a much shorter than distance between its</td>
<td></td>
</tr>
<tr>
<td></td>
<td>base and that of z_s</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>- z_a and z_s weakly serrate; spermatheca</td>
<td></td>
</tr>
<tr>
<td></td>
<td>funnel shaped</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>- z_a and z_s smooth; spermatheca tubular</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>- z_s reaches beyond base of z_s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- z_s much shorter than distance between its</td>
<td></td>
</tr>
<tr>
<td></td>
<td>base and that of z_s</td>
<td></td>
</tr>
</tbody>
</table>

475. **Amblyseius (Typhlodromalus) eucalypticus** (Gupta)

Diagnosis: Dorsal shield with anterior lateral margins imbricate, with 17 pairs of setae. Measurements of setae: j_8-24, j_8-20, s_4-28, Z_8-64, Z_4-24.; other setae 5-6 long. Ventrianal shield longer than broad with 3 pairs of preanal setae; spermatheca with elongated flask shaped cervix, bulbous atrium and long duct. Macrosetae on leg IV: genu-48, basitarsus-60.

Habitat: *Eucalyptus* sp.

Distribution: **INDIA**: Karnataka.

Remarks: No economic importance of this species is known.

476. **Amblyseius (Typhlodromalus) havu** Pritchard & Baker

Diagnosis: Dorsal shield smooth, with 17 pairs of setae. Ventrianal shield broadest anteriorly, sides concave. Metapodal plate single.
paired. Spermatheca with long cervix. Macrosetae on leg IV present on genu, tibia and basitarsus, all subcapitate.

Habitat: Clerodendron serratus.

Distribution: INDIA: Maharashtra; outside India: Africa.

Remarks: Though this has been reported from India, but its identity needs re-checking.

477. *Amblyseius (Typhlodromalus) jarooa* Gupta

Diagnosis: Dorsal shield 320 long 180 wide, with 17 pairs of setae and a pair of pores above the level of Z4. Dorsal setae mostly small, thin and smooth except j1, j3, s4, Z5 and Z4 which are long and measure 24, 20, 40, 88 (serrate) and 48, respectively. Sternal and genital shields normal, metasternal plates absent. Spermatheca funnel shaped. Macrosetae on leg IV: genu-53, tibia-38 and basitarsis-53.

Habitat: Undet. plant.

Distribution: INDIA: Andaman Isl.

Remarks: No economic importance of this species is known.

478. *Amblyseius (Typhlodromalus) kalimpongensis* Gupta

Diagnosis: Dorsal shield smooth with 17 pairs of setae and 5 pairs of pores. Measurements of setae: j1-j8, J2-18-19 each J5-6, j3-27, z2-26, z4-27, s4-31, Z1-17, S2-20, S4-18, S5-26, Z5-40, z5-16, Z4-18. Sternal and genital shields normal, metasternal plates absent, only seta present. Ventrianal shield vase shaped, strongly concave laterally, with 3 pairs of preanal setae and a pair of pores. Metapodal plates single paired. Spermatheca club shaped. Leg IV with macroseta only on basitarsus IV: 31 long.

Habitat: Citrus reticulata, Jasminum multiflorum, Shorea sp., cashew nut, Malvaceae, weed, guava, banana, brinjal.

Distribution: INDIA: West Bengal, Assam, Bihar, Orissa, Gujarat, Tamil Nadu, Karnataka, Andhra Pradesh.

Remarks: This species was reported in association with a Brevipalpus mite (Gupta, 1970a) and Tetranychus sp. (Gupta, 1977), but in no case it was found to feed upon them.
Amblyseius (Typhlodromalus) lablabi Ghai & Menon

Diagnosis: Dorsal shield reticulate, with 17 pairs of setae, j₈ longer.

Figs. 481-484: Amblyseius (Typhlodromalus) sp.: 481—Dorsum, 482—Ventral surface, 483—Genu, tibia and basitarsus of leg IV, 484—Spermatheca.

than \(j_1 = z_2; z_4 \) and \(s_4 \) progressively longer; \(j_4, j_5 \) and \(z_5 \) shorter than the rest of dorsal setae. Posterior margin of sternal shield lobed; ventrianal shield reticulate, pentagonal, longer than broad, anterior margin rounded, lateral margins concave with 3 pairs of preanal setae and a pair of pores. Leg IV with macrosetae on genu, tibia and basitarsus, all pointed.

Habitat: Dolichos lablab.

Distribution: INDIA: Karnataka.

Remarks: This mite was collected in association with tetranychids (Ghai & Menon, 1967).

480. **Amblyseius (Typhlodromalus) manipurensis** Gupta

Diagnosis: Dorsal shield smooth with 17 pairs of setae. Measurements of setae: \(j_1 = 22 \), \(j_4-j_6 = 7 \) each, \(J_2 = 12 \), \(J_5 = 8 \), \(j_9 = 12 \), \(z_2 = 8 \), \(z_4 = 24 \), \(s_4 = 40 \), \(Z_1 = 12 \), \(S_2 = 16 \), \(S_4 = 8 \), \(S_5 = 8 \) each, \(Z_6 = 69 \) (faintly serrate), \(z_5 = 8 \), \(Z_4 = 48 \) (smooth). Sternal, metasternal and genital shields normal. Ventrianal shield 92 long, 64 wide, with 3 pairs of preanal setae and a pair of pores. Spermatheca with tubular cervix. Macrosetae on leg IV: genu-28, tibia-28, basitarsus-64.

Habitat: Abelmoschus esculentus.

Distribution: INDIA: Manipur.

Remarks: No economic importance of this species is known.

481. **Amblyseius (Typhlodromalus) sorghumae** Gupta

Diagnosis: Dorsal shield 330 long, 225 wide, smooth, with 17 pairs of setae. Measurements of setae: \(j_1 = 18 \), \(j_4-j_6 \), \(J_2 = 6-8 \) each, \(j_9 = 11 \), \(z_2 \), \(z_4 = 9 \) each, \(s_4 = 16 \), \(Z_1 = 16 \), \(S_2 = 9 \) each, \(Z_6 = 72 \), \(z_5 = 5 \), \(Z_4 = 17 \). Sternal, metasternal and genital shields normal. Ventrianal shield 92 long, 64 wide, lateral margins concave at preanal region, metapodal plates 2 paired. Spermatheca with filamentous cervix. Macrosetae on leg IV: genu-48, tibia-40, basitarsus-36.

Habitat: Maize.

Distribution: INDIA: Nicobar Isl.

Remarks: No economic importance of this mite is known.
482. Amblyseius (Typhlodromalus) swaga Pritchard & Baker

Diagnosis: Dorsal shield with 17 pairs of setae. Measurements of setae: \(j_1-28, j_9-25, s_4-48, Z_5-88 \) (weakly serrate), \(Z_5-45 \) (weakly serrate); other setae between 8-12 long. Ventrianal shield 90 long, 65 wide. Macrosetae on leg IV: genu-48, tibia-44, basitarsus-60.

Habitat: *Tectona grandis*.

Distribution: *India*: Assam; outside *India*: Africa.

Remarks: No economic importance of this mite is known. The identification of this species appears to be doubtful.

Subgenus Typhlodromips DeLeon

(Figs. 485-488f)

Key to the Species of Typhlodromips

1. Besides setae \(Z_5 \) and \(Z_4 \) other setae being subequal
 - Besides \(Z_5 \) and \(Z_4 \) there are other long setae

2. \(Z_4 \) quite long at least 3 times the length of \(S_4 \)
 - \(Z_4 \) not so long

3. \(Z_4 \) distinctly serrate or weakly serrate
 - \(Z_4 \) smooth

4. Cervix of spermatheca saucer shaped
 - Cervix of spermatheca elongated flask shaped

5. Spermatheca and spermatophoral process as in fig. 488 a
 - Spermatheca and spermatophoral process as in fig. 488 b

6. Ventrianal shield as long as wide
 - Ventrianal shield longer than wide

7. Spermatheca as in fig. 488 f
 - Spermatheca as in fig. 488 d

...
8. Setae Z₂ and Z₄ unequal
- Setae Z₂ and Z₄ equal

9. S₃ more than 4 times as long as Z₁
- S₃ only slightly longer than Z₁

10. Macroseta on genu IV and tibia IV almost equal
- Macrosetae on genu IV longer than that on tibia IV

11. Z₄ reaches almost unto the base of Z₅
- Z₄ much shorter than the distance between its base and that of Z₅

12. Lateral margins of ventrianal shield concave
- Lateral margins of ventrianal shield straight

13. Spermatheca as in fig. 488 c
- Spermatheca as in fig 488 e

483. Amblyseius (Typhlodromips) arecae Gupta
(Fig. 488a)

Diagnosis: Dorsal shield well sclerotized, with 17 pairs of setae, mostly small except Z₅ and Z₄ which are longer measuring 90 and 26 respectively. Sternal and metasternal shields normal. Ventrianal shield squarish but concave at preanal region, with 3 pairs of preanal setae. Spermatheca with elongated cervix and knobbed atrium. Macrosetae on leg IV : genu-44, tibia-32, basitarsus-49.

Habitat: Areca catechu.

Remarks: No economic importance of this species is known.

484. Amblyseius (Typhlodromips) crotalariae Gupta

Diagnosis: Dorsal shield smooth with 17 pairs of setae and 5 pairs of pores ; excepting setae j₁, j₃, s₅, Z₅ and Z₄ which are long and measure 18, 22, 36, 63 (serrate) and 45, respectively, the others are small. Sternal shield slightly reticulate, almost as long as broad ; metasternal plates distinct. Ventrianal shield elongate, lateral sides constricted with 3 pairs of preanal setae. Macrosetae on leg IV : genu-46, tibia-36, basitarsus-55.

Habitat: Crotalaria sp., fern, Nyctanthes arboristis.
Handbook: Plant mites of India

Distribution: INDIA: West Bengal, Assam, Meghalaya, Tripura.

Remarks: No economic importance of this species is known.

485. **Amblyseius (Typhlodromips) eujeniae** Gupta

(Fig. 488e)

Diagnosis: Dorsal shield smooth. Measurements of setae: \(j_1-20, j_6-5\) each, \(j_2-10, j_3-5, j_5-35, z_2-8, z_4-8, s_4-52, Z_3-8, S_2-S_4-8\) each, \(Z_5-80, z_6-9, Z_6-56\). Ventrianal shield squarish with 3 pairs of preanal setae, 2 pairs of metapodal plates present. Macrosetae on leg IV: genu-52, tibia-28, basitarsus-64.

Habitat: *Syzygium cumini*, banana.

Distribution: INDIA: Andaman Isl.

Remarks: No economic importance of this species is known.

486. **Amblyseius (Typhlodromips) guajavae** Gupta

(Fig. 488c)

Diagnosis: Dorsal shield with 17 pairs of setae. Measurements of setae \(j_1-32, j_3-36, s_4-64, Z_5-80, Z_6-60\); other setae measure 6-8 microns. Sternal, metasternal and genital shields present as usual. Ventrianal shield roughly pentagonal, much longer than broad, with 3 pairs of preanal setae. Spermatheca with tubular cervix. Leg IV with macrosetae on genu-40, tibia-30, basitarsus-76.

Habitat: Guava.

Distribution: INDIA: Meghalaya.

Remarks: No economic importance of this species is known.

487. **Amblyseius (Typhlodromips) mangiferae** Ghai & Menon

Diagnosis: Dorsal shield smooth with 17 pairs of setae; \(Z_5\) being longest and thickest, \(j_1, j_3, z_2, z_4, s_4, j_0, j_2\) quite long; rest being small; \(j_5-z_4\) being shorter than the distance between their bases. Ventrianal shield longer than wide with 3 pairs of preanal setae and a pair of circular pores. Leg IV with macrosetae on genu, tibia and basitarsus.

Habitat: Mango.

Remarks: This mite was reported to be associated with mango samples infested with eriophyid mites (Ghai & Menon, 1967).
488. **Amblyseius (Typhlodromips) meghalayensis** Gupta
(Fig. 488b)

Diagnosis: Dorsal shield 300 long, 162 wide, reticulate, with 17 pairs of setae. Measurements of setae: j_1-20, j_4-j_6-8 each,

Figs. 488a-488f: Spermatheca and spermatophoral process in some species of *Amblyseius (Typhlodromips)*: 488a—Spermatheca and spermatophoral process of *arecae*, 488b—Spermatheca and spermatophoral process of *meghalayensis*, 488c—spermatheca of *guajavae*, 488d—*polyantheae*, 488e—*eujeniae*, 488f—*officinaria.*
j_6-J_8-10 each, J_8-6, J_9, z_8-10 each, z_4-16, s_4-24, Z_1-12, S_5-17, S_5-16, S_6-16, Z_5-64, z_8-8, Z_6-41; all setae being small and pointed. Sternal shield longer than wide. Ventrianal shield 88 long, 70 wide, with 3 pairs of preanal setae and a pair of preanal pores; metapodal plates 2 paired. Spermatheca with tubular cervix. Macrosetae on leg IV: genu-24, tibia-20, basitarsus-48.

Habitat: Guava.

Distribution: INDIA: Meghalaya.

Remarks: This mite is not known to have any economic importance.

489. **Amblyseius (Typhlodromips) neocrotalariae** (Gupta)

Diagnosis: Dorsal shield 324 long, 212 wide, reticulate, with 17 pairs of setae, all being smooth. Measurements of setae: j_1-20, j_4-j_6-8 each, j_6-J_8-12 each, J_8-8, j_8-28, z_8-z_4-9 each, s_4-30, Z_1-S_5-12 each, S_4-S_5-8 each, Z_6-68 (weakly serrate), z_8-8, Z_6-40. Sternal, metasternal and genital shields normal. Ventrianal shield 108 long, 80 wide, with 2 pairs of metapodal plates. Spermatheca roughly poculiform. Macrosetae on leg IV: genu-52, tibia-40, basitarsus-60.

Habitat: Datura metel.

Distribution: INDIA: Tamil Nadu.

Remarks: No economic importance of this species is known.

490. **Amblyseius (Typhlodromips) officinaria** Gupta

(*Fig. 488f*)

Diagnosis: Dorsal shield with margins slightly imbricate and 17 pairs of setae. Measurements of setae: j_1-18, j_4-j_6-6 each, j_8-10, J_8-12, J_8-7, j_9, z_8-z_4-18 each, s_4-18, Z_1-9, S_5-12, S_4-11, S_4-10, Z_6-82, z_8-8, Z_4-30. Sternal, metasternal and genital shields normal. Ventrianal shield 104 long, 72 wide, with 5 pairs of pores present around ventrianal shield. Spermatheca with cup shaped cervix. Macrosetae on leg IV: genu—23, tibia-37, basitarsus-46.

Habitat: Saccharum officinarum.

Distribution: INDIA: West Bengal.

Remarks: No economic importance of this species is known.
491. **Amblyseius (Typhlodromips) polyantheae** Gupta

(Fig. 488d)

Diagnosis: Dorsal shield 325 long, 250 wide, with 17 pairs of setae. Measurements of setae: j_1-18, j_4-j_8, J_2-J_5-6-8 each, j_3-14, z_2-12, z_4-8, s_4-27, Z_1-18, S_2-14, S_4-14, S_9-9, Z_5-57, z_5-6, Z_4-27. Ventrianal shield longer than broad with 3 pairs of preanal setae. Macrosetae on leg IV: genu-27, tibia-31, basitarsus-36.

Habitat: *Polyanthea tuberosa*.

Distribution: India: West Bengal.

492. **Amblyseius (Typhlodromips) sapienticola** Gupta

Diagnosis: Dorsal shield reticulate, with 17 pairs of setae. Measurements of setae: j_1-16, j_4-j_8, J_2-J_5-8 each, j_3-12, z_2, z_4-8 each, s_4-16, Z_1-8, S_4-S_9-8 each, S_2-12, Z_5-64, z_8-8, Z_4-18. Sternal, metasternal and genital shields normal. Ventrianal shield 100 long, 108 wide, lateral margins notched, with 3 pairs of preanal setae, 2 pairs of metapodal plates present. Macrosetae on leg IV: genu-48, tibia-33, basitarsus-48.

Habitat: Banana.

Distribution: India; Andaman Isl.

Remarks: Economic importance of this species is unknown.

493. **Amblyseius (Typhlodromips) suknaensis** Gupta

Diagnosis: Dorsal shield with 17 pairs of setae and 3 pairs of pores. Measurements of setae: j_1-18, j_4-j_8, J_2-J_5-6-8 each, j_3-13, z_2-9, z_4-11, s_4-13, Z_1, S_2-S_9-9 each, Z_5-67, z_8-6, Z_4-47. Sternal, metasternal and genital shields normal. Ventrianal shield pentagonal, 90 long, 85 wide, with 3 pairs of preanal setae and a pair of pores; 2 pairs of metapodal plates present. Macrosetae on leg IV: genu-27, tibia-18, basitarsus-48.

Habitat: Colocasia sp., Tectona grandis, Shorea robusta.

Distribution: India: Andaman Isl., Assam, Meghalaya, Tripura, Orissa, Kerala.
Remarks: Often this mite has been seen attacking tetranychid mites. *A. (T.) daturae* Gupta appears to be same as *A. (T.) suknaensis*.

494. Amblyseius (Typhlodromips) syzygii Gupta

Diagnosis: Dorsal shield reticulate with 17 pairs of setae. Measurements of setae: \(j_1-15\), \(j_4-j_6\), \(j_2-J_6-7-10\) each, \(j_3-16\), \(z_2-z_4-9\) each \(s_4-20\), \(Z_1\), \(S_2-S_5-10\) each, \(Z_5-67\) (serrate), \(z_5-9\), \(Z_4-31\) (serrate). Sternal, metasternal and genital shields normal. Ventrianal shield 110 long, 85 wide, with 3 pairs of preanal setae and a pair of pores. Macrosetae on leg IV: genu-45, tibia-31, basitarsus-49.

Habitat: *Syzygium cumini*.

Distribution: India: West Bengal, Tripura, Orissa; outside India: Thailand.

495. Amblyseius (Typhlodromips) tetranychivoros (Gupta)

Diagnosis: Dorsal shield with imbrications on antero-lateral margins with 17 pairs of setae. Measurements of setae: \(j_1-28\), \(j_4-j_6\), \(J_2-J_6-8-10\) each, \(j_5-44\), \(z_2-17\), \(z_4-36\), \(s_4-76\), \(Z_1-8\), \(S_4-36\), \(S_5-8\), \(S_6-8\), \(Z_5-80\), \(z_5-8\), \(Z_4-66\). Sternal shield with posterior lateral angulation. Ventrianal shield longer (100) than broad, anterior margin rounded, lateral margins straight, with 3 pairs of preanal setae. Macrosetae on leg IV: genu-48, tibia-40, basitarsus-68. Spermatheca with cup shaped cervix.

Habitat: Brinjal and also on an undet. plant.

Distribution: India: Tamil Nadu, Kerala, Karnataka, Bihar.

Remarks: This species was first reported in association with *Tetranychus cinnabarinus* (Gupta, 1978a) but its actual importance as predator was first brought into light by Puttaswamy (1978), who after studying its biology and interactions with different levels of prey density, found it to be a potential predator of *T ludeni* Zacher and could suppress the prey population. However, its rate of prey consumption decreased with the increase of the amount of pollen (Puttaswamy & ChannaBasavanna, 1979). The average incubation period, larval, protonymphal and deutonymphal periods of females and males when studied on *Raoiella indica* as prey were respectively, 1.92, 1.06, 1.06, 0.98, and 1.92, 1.14, and 1.14 days (Jagadish & Nagesha Chandra, 1979). The total developmental period at \(27 \pm 1^\circ C\) and \(95 \pm 3\%\) R. H. was
47.95 ± 3.60 hrs. while the same at 24 ± 1°C and 65 ± 3% R. H. was 142.28 hrs. At temperature of 27 ± 1°C and 30 ± 1°C with the humidity range of 85 ± 3 to 95 ± 3% R. H. the total developmental period decreased, whereas at 24 ± 1°C and 32 ± 1°C, this period decreased and increased alternatively (ChannaBasavanna, 1981). The application of pesticides as dicofol (0.02-0.01%) and sulphur (0.05-0.015%) could conserve the predator in the field (ChannaBasavanna, 1981). Short term feeding of castor pollen by this mite resulted in higher density of predator as against those feeding on T. ludeni alone (Nangia & ChannaBasavanna, 1982). The females and males completed their development in 140.19 ± 7.51 and 136.21 ± 6.00 hrs., respectively at 14-27°C and 62-80% R.H. (Puttaswamy & ChannaBasavanna, 1979a). An ovipositing female fed on 3-5 adult females, 1.45 nymphs, 0.60 larva and 3.98 eggs of T. ludeni on an average each day. The preoviposition period of 3.11 ±0.87 was seen. Female laid in average 45.33 ± 7.16 eggs during its average oviposition period of 28.89 ± 4.01 days (Puttaswamy & ChannaBasavanna, 1979a). The life cycle took shorter time on red palm mite than on spider mite (Jagadish and Nagesha Chandra, 1982).

496. Amblyseius (Typhlodromips) potentillae (Garman)

Diagnosis : Dorsal shield 300 long, 172 wide, with 17 pairs of setae and 3 pairs of pores. Setae j1, j9, s4, Z4 and Z5 being long measuring respectively, 20, 44, 72, 60 and 84. Ventrianal shield 100 long, 84 wide, with 3 pairs of preanal setae and a pair of preanal pores ; 2 pairs of metapodal plates present. Fixed digit of chelicera multidentate, movable digit tridentate. Spermatheca with bell shaped cervix. Macrosetae on leg IV : genu-40, tibia-40 and basitarsus-60.

Habitat : Calophyllum inophyllum and also on an undet. plant.

Distribution : INDIA : Jammu & Kashmir, West Bengal; outside India : Holland, New Jersey, Greece, Italy, Netherlands.

Remarks : *A. charui* Gupta, on re-examination of the type, appears to be same as *A. (T.) potentillae*. Further, the record of *A. rykei* Pritchard & Baker (Gupta, 1970 ; Prasad, 1974 ; Gupta, 1975) also refers to potentillae.
Genus *Indoseiulus* Ehara

(Figs. 489-491)

497. *Indoseiulus ricini* (Ghai & Menon)

Diagnosis: Dorsal shield oval, do not cover the whole of dorsum,
reticulate, with 16 pairs of setae. Measurements of setae: j_1-21, j_4-8, j_5-10, j_6-12, j_8-12, j_9-5, j_{10}-10, z_2-10, z_4-16, s_4-16, Z_1-16, S_2-16, S_5-14, Z_6-25, z_5-12, Z_4-12. Sternal, metasternal and genital shields normal. Ventrianal shield absent, only preanal setae present; metapodal plates 2 paired. Macrosetae on leg IV: genu-32, tibia-40, basitarsus-36.

Habitat: Castor.

Distribution: INDIA: Tamil Nadu, Gujarat, W. Bengal.

Remarks: This mite appears to be an efficient predator of tetranychid mites. Very often these mites were seen in the field in fully engorged condition after consuming tetranychid mites.

Genus *Iphiseius* Berlese

(Figs. 492-495)

Figs. 492-495: *Iphiseius* sp.: 492—Dorsum, 493—Ventral surface, 494—Genu, tibia and basitarsus of leg IV, 495—Spermatheca

Key to the Species of Iphiseius

1. All setae but Z_5 short
 - Setae Z_5, Z_4, s_4 very long
 - *andamanicus*
 - *bakeri*
498. **Iphiseius andamanicus** Gupta

Diagnosis: Dorsal shield oval, smooth, with 17 pairs of setae, all being short (5-8) except *Z₅* which is 27 long. Sternal shield twice as long as broad, metasternal plates and genital shield normal. Ventrianal shield pentagonal, 99 long, 68 wide, constricted at the anal region with 3 pairs of preanal setae; small platelets present between genital and ventrianal shields. Macrosetae on leg IV; genu-11, tibia-14, basitarsus-50.

Habitat: Dolichos lablab.

Distribution: INDIA: Andaman Isl.

Remarks: No economic importance of this species is known.

499. **Iphiseius bakeri** Gupta

Diagnosis (Known by male only): Dorsal shield highly sclerotized, reticulate, with 15 pairs of setae (*j₅* and *j₂* lacking). All the setae small (5-10) excepting *s₄*, *Z₅*, *Z₄* which measure 117, 189 and 135, respectively, *S₂*-23. Ventrianal shield reticulate with 3 pairs of preanal setae and a pair of preanal pores. Macrosetae on leg IV; genu-54, tibia-45, basitarsus-36.

Habitat: Areca nut.

Distribution: INDIA: Andaman Islands.

Remarks: Economic importance of this species is not known.

Genus Paraamblyseius Muma

(Tables 496-499)

Key to the Species of Paraamblyseius

1. *j₂* subequal to *Z₄*... 2
 — *j₂* much shorter than *Z₄*... *formosanus*

2. Metasternal plate round, *j₂* longer than *Z₁*... *mumai*
 — Metasternal plate kidney shaped, *j₂* subequal to *Z₁*... *fragariae*
500. **Paraamblyseius formosanus** (Ehara)

Diagnosis: Dorsal shield 300 long, 220 wide, punctate, with 17 pairs of setae. Measurements of setae: \(j_1\)-16, \(j_4\)-\(j_6\)-12 each, \(j_8\)-24, \(J_2\)-29, \(J_6\)-9, \(j_3\)-12, \(z_2\)-16, \(z_4\)-20, \(s_4\)-29, \(Z_4\)-32, \(S_2\)-32, \(S_4\)-16, \(S_8\)-20, \(Z_8\)-36,

Figs. 496-499: *Paraamblyseius* sp.: 496—Dorsum, 497—Ventral surface, 498—Genu, tibia and basitarsus of leg IV, 499—Spermatheca.
z₈-8, Z₄-45. Sternal shield wider (100) than long (44), reticulate, with 3 pairs of setae. Ventrianal shield massive, reticulate, 105 long, 172 wide, with 3 pairs of preanal setae. Metapodial plates single paired. No macroseta on leg IV.

Habitat: Undet. plant.

Distribution: INDIA: Manipur; outside India: Taiwan.

Remarks: No economic importance of this species is known. This identification is doubtful and may turn out to be same as *fragariae*.

501. **Paraamblyseius fragariae** Gupta

Diagnosis: Dorsal shield highly rugose, reticulate; measurements of setae: j₁-12, j₆-14, j₅-16, j₆-33, J₂-40, j₈-12, j₅-18, z₂-22, z₄-22, s₄-33, Z₁-38, S₂-36, S₄-29, S₅-27, Z₅-38, Z₄-45, Z₅-weakly serrate. Sternal shield reticulate, wider than long; genital shield reticulate. Ventrianal shield massive, sculptured, with 3 pairs of preanal setae and a pair of pores. Macrosetae absent on leg IV.

Habitat: Fragaria nilgerrensis.

Distribution: INDIA: West Bengal.

Remarks: No economic importance of this species is known.

502. **Paraamblyseius mumai** Gupta

Diagnosis: Dorsal shield heavily sclerotized, punctate with 17 pairs of setae. Measurements of setae: j₁-36, j₆-16, j₈-40, J₂-48, J₅-14, j₃, z₂-16 each, z₄-20, s₄-24, Z₁-38, S₂-28, S₄-20, S₅-17, Z₅-32, z₅-36, Z₄-40. Sternal shield much wider than long, reticulate; genital shield reticulate. Ventrianal shield 110 long, 168 wide, with 3 pairs of preanal setae and a pair of pores; metapodal plates triangular. Macrosetae absent on leg IV.

Habitat: Undet. plant.

Distribution: INDIA: Meghalaya.

Remarks: No economic importance of this species is known.

Genus Platyseiella Muma

(Figs. 500-502)

503. **Platyseiella mumai** Ray & Gupta

Diagnosis: Dorsal shield rugose with 14 pairs of setae. Besides setae j_5, j_4, j_6 and z_5 which are small and simple, the others are long, thick and serrate. Sternal shield with 3 pairs of setae, metasternal plate absent. Ventrianal shield longer than broad, lateral margins concave with 3 pairs of setae. Macrosetae present on genu, tibia and basitarsus, that on genu being longest, all spatulate.

Habitat: Undet. plant.

Distribution: INDIA : Tripura.

Subfamily Phytoseiinae Berlese

Key to the Genera of Phytoseiinae

1. r_s and R_1 on dorsal shield
 - r_s may or may not be on dorsal shield, R_1.
 - if present, always on lateral integument
 2. r_s on dorsal shield, genu I with 7 setae,
 genu III with 6 setae
 - r_s on lateral integument, genu II with
 7 or 8 setae; genu III with 6 or 7 setae

Genus Indodromus Ghai & Menon

Diagnosis: Dorsal shield reticulate with 18 pairs of setae; setae being progressively longer posteriorly; S_2, S_4, Z_5 and Z_6 being serrate; S_5, J_5 being tiny; r_s and R_1 on dorsal shield. Sternal shield with 2 pairs of sternal setae, 3rd pair on interscutal membrane, 4th pair on metasternal plates. Ventrianal shield longer (92) than wide (57), margins irregular. Leg IV with macroseta.

Habitat: Mango.

Distribution: INDIA: Uttar Pradesh.

Remarks: It is of no known economic importance.

Genus Phytoseius Ribaga

Key to the Subgenera of Phytoseius

1. R_1 present
 - R_1 absent

Subgenus Pennaseius Pritchard & Baker

Key to the Species of Pennaseius

1. Dorsal shield notched at the level of r_s
 - Dorsal shield not notched at the level of r_s
505. **Phytoseius (Pennaseius) kapuri** Gupta

Diagnosis: Dorsal shield notched at the level of r₃ with 16 pairs of setae and 4 pairs of pores, of those, the pair associated with z₅ being

Figs. 503-506: *Indodromus* sp.: 503—Dorsum, 504—Ventral surface, 505—Genu, tibia and basitarsus of leg IV, 506—Spermatheca.

largest. Measurements of setae: \(i_1-26, j_4-j_6-4-5 \) each, \(J_2-9, J_5-4, j_8-65, z_2-12, z_3-40, z_4-6, s_4-14, s_6-81, Z_5-76, Z_4-76, r_3-45 \). Sternal, metasternal and genital shields normal. Ventrianal shield 73 long, 47 wide, lateral sides concave, with 3 pairs of preanal setae. Spermatheca with funnel shaped cervix. Macrosetae on leg IV: genu-27, tibia-30, basitarsus-24, distitarsus-24.

Habitat: Adantheria pavoniana, Syzygium javanica, brinjal, sugarcane, kendu, Shorea robusta.

Distribution: India: Andaman Isl., Gujarat, Punjab, Assam, West Bengal, Meghalaya, Orissa.

Remarks: This mite is known to feed upon Tetranychus neocaldodonicus and T. cinnabarinus (Gupta, 1977a)

506. **Phytoseius** (Pennaseius) minutus Narayanan, Kaur & Ghai

Diagnosis: Dorsal shield smooth with 16 pairs of setae and 8 pairs of small pores, the pair associated with \(z_6 \) being the largest. Setae \(i_4, j_5, j_6, J_2, J_5, z_2, z_4, z_6 \) being small, others are long and serrate. Measurements of setae: \(j_1-30, j_3-71, z_3-17, z_5-52, s_4, s_6-86 \) each, \(Z_5-83, Z_4-79, r_3-49 \). Ventrianal shield longer than wide, with 3 pairs of preanal setae. Macrosetae on leg IV: genu-30, tibia-28, basitarsus-27.

Habitat: Abelmoschus esculentus.

Distribution: India: Delhi, West Bengal.

Remarks: This mite was found associated with tetranychid species.

Subgenus Phytoseius Ribaga

(Figs. 511-514)

Phytoseius Ribaga, 1904, Riv. Pat. Veg., 10: 175.

Key to the Species of Phytoseius

1. No macroseta on leg IV
 - Macroseta present on leg IV
 - \(s_4 \) and \(Z_4 \) large, flat and divided
 - \(s_4 \) and \(Z_4 \) not flat and divided
 - Genu IV without macroseta
 - Genu IV with macroseta

2. \(s_4 \) and \(Z_4 \) large, flat and divided
 - \(s_4 \) and \(Z_4 \) not flat and divided
 - Genu IV without macroseta
 - Genu IV with macroseta

3. Intermedius

4. crinitus

5. Intermedius

6. crinitus

7. Intermedius

8. crinitus
4. Macrosetae on basitarsus IV subequal to that of tibia IV macrosetosus
 — Macrosetae on basitarsus IV always smaller than that of tibia IV 5
5. Macroseta on genu IV as long as the segment 6
 — Macroseta on genu IV shorter than that of the segment 7
6. \(z_4\) and \(z_4\) shorter and smooth roseus
 — \(z_4\) and \(z_4\) longer and serrate mixtus
7. Cervix of spermatheca elongated more than 2 times as long as wide neocorniger
 — Cervix of spermatheca as long as or only slightly longer than wide jujuba
8. \(s_4\) longer than \(s_8\) 13
 — \(s_4\) as long as or shorter than \(s_8\) 9
9. \(j_4\) only slightly longer than \(z_2\); \(s_4\) shorter than \(s_8\) meyerae
 — \(j_4\) much longer than \(z_2\); \(z_4\) longer than \(s_8\) 10
10. \(Z_4\) longer than \(Z_4\) 11
 — \(Z_4\) subequal or shorter than \(Z_4\) 12
11. Macroseta on genu IV and basitarsus IV equal neglecta
 — Macroseta on genu IV shorter than that of basitarsus IV swirskii
12. Spermatheca narrowed towards atrium punjabensis
 — Spermatheca broad towards atrium jaunpurensis
13. \(s_6\), \(Z_5\) and \(Z_4\) almost equal or subequal 14
 — \(s_6\), \(Z_5\) and \(Z_4\) unequal 16
14. Macroseta on genu IV and basitarsus IV almost equal bandipurensis
 — Macrosetae on genu IV and basitarsus IV unequal 15
15. Cervix broad with clear knobbled atrium macropilis
 — Cervix narrow, atrium scarcely visible woodburyi
16. Macroseta on leg IV spatulate rachaelae
 — Macroseta on leg IV not spatulate 17
17. \(z_4\) \(\frac{1}{2}\) times as long as \(z_4\) wainsteini
 — \(z_4\) and \(z_4\) almost equal corniger

507. Phytoseius (Phytoseius) bandipurensis Gupta

Diagnosis: Dorsal shield heavily sculptured with 15 pairs of setae.
Measurements of setae: i_1-24, i_3-28, z_6-8 each, z_8-28, s_4-88, s_6-56, Z_6-63, Z_4-72, r_9-36. Ventrianal shield short, lateral margins deeply concave, with 3 pairs of preanal setae. Spermatheca with long duct and Y-shaped cervix. Fixed digit of chelicera with 2 teeth, none on movable digit. Macrosetae on leg IV: genu-18, tibia-40, basitarsus-16, distitarsus-20, all spatulate.

Habitat: Undet. plant.

Distribution: INDIA: Karnataka.

Remarks: No economic importance of this species is known.

508. *Phytoseius (Phytoseius) corniger* Wainstein

Diagnosis: Dorsal shield rugose, with 15 pairs of setae. Measurements of setae: i_1-28, i_3-48, z_6-32, z_8-12 each, s_4-128, s_6-72, Z_6-64, Z_4-84. Ventrianal shield elongate, narrow, lateral margins deeply concave with 3 pairs of preanal setae. Fixed digit of chelicera with 3 teeth, movable digit with one tooth. Spermatheca with elongated cervix and a fairly long and broad duct. Macrosetae on leg IV: tibia-34, basitarsus-25.

Habitat: Guava; outside India: *Malus pumila*.

Distribution: INDIA: Jammu & Kashmir; outside India: U. S. S. R., Pakistan.

Remarks: No economic importance of this species is known.

509. *Phytoseius (Phytoseius) crinitus* Swirski & Shechter

Diagnosis: Dorsal shield with 15 pairs of setae. Measurements of setae: i_1-29, i_3-40, z_6-18, z_8-31, z_4-11, s_4-101, s_6-67, Z_6-65, Z_4-83, r_9-38. Setae s_4 and Z_4 large, flat and divided. Ventrianal shield longer (90) than wide (56), with 3 pairs of preanal setae. Chelicera with 3 teeth on fixed digit and one on movable digit. Macrosetae on leg IV: genu-31, tibia-50, basitarsus-27, distitarsus-22, all spatulate.
Habitat: Undet. plant; outside India: Homalium conchinchinense, Psidium guajava, Ficus hirta, Celtis chinensis, Rhodomyrtus tomentosus.

Distribution: INDIA: Assam; outside India: Hong Kong.

Remarks: This has no economic importance.

Figs. 511-514: Phytoseius (Phytoseius) sp.: 511—Dorsum, 512—Ventral surface, 513—Genu, tibia and basitarsus of leg IV, 514—Spermatheca.

510. Phytoseius (Phytoseius) intermedius Evans & Macfarlane

Diagnosis: Dorsal shield with 15 pairs of setae. Measurements of setae: j_1-22, j_2-22, z_2-18, z_3-31, z_4-13, s_4-54, s_6-72, Z_6-54, Z_8-76; other setae small. Ventrianal shield 76 long, 45 wide, with 3 pairs of preanal setae. Macroseta absent on leg IV.

Habitat: Undet. plant.

Distribution: INDIA: West Bengal; outside India: Pakistan, Central Africa, South Rhodesia, Belgian Congo, Madagascar, Japan.

Remarks: The economic importance of this species is not known.

511. Phytoseius (Phytoseius) jaunpurensis Gupta

Diagnosis: Dorsal shield with 15 pairs of setae. Measurements of setae: j_1-25, j_3-60, z_2-12, z_3-36, z_4-12, s_4-100, s_8-100, Z_6-66, Z_8-70. Ventrianal shield 72 long, 48 wide, lateral margins deeply concave, with 3 pairs of preanal setae. Macrosetae on leg IV: genu-16, tibia-36, basitarsus-22.

Habitat: Undet. plant.

Distribution: INDIA: Uttar Pradesh.

Remarks: It is of no known economic importance. This species is likely to be the same as *P. (P.) punjabensis* Gupta.

512. Phytoseius (Phytoseius) jujuba Gupta

Diagnosis: Dorsal shield with 15 pairs of setae, all being minute except j_3, z_3, s_4, Z_5, Z_4, r_3, which measure: 36, 33, 66, 69, 72, and 40, respectively. Ventrianal shield longer (68) than wide. Spermaphyca with flask shaped cervix and elongate duct. Macrosetae on leg IV: genu-nil, tibia-36, basitarsus-20.

Habitat: Zizyphus jujuba.

Distribution: INDIA: Gujarat.

Remarks: It is of no known economic importance.
513. **Phytoseius (Phytoseius) macropilis** (Banks)

Diagnosis: Dorsal shield with 15 pairs of setae. Measurements of setae: \(j_1-25 \), \(j_2-36 \), \(z_2-5 \), \(z_3-25 \), \(s_4-100 \), \(s_5-76 \), \(Z_6-70 \), \(r_8-44 \). Ventrianal shield elongated, vase shaped, lateral margins concave, 80 long, 52 wide, with 3 pairs of preanal setae. Macrosetae on leg IV: genu-22, tibia-48, basitarsus-32.

Habitat: *Ficus* sp., *Lantana camara*, *Morus alba*, *Shorea robusta*.

Distribution: INDIA: Delhi, Orissa; outside India: Georgian SSR., Kazakh SSR., Tadjik SSR., Europe, England, Canary Isl, Canada, U. S. A., Mexico, Panama, British West Indies, Hawaii, Australia.

Remarks: No economic importance of this species is known.

514. **Phytoseius (Phytoseius) macrosetosus** Gupta

Diagnosis: Dorsal shield with 15 pairs of setae. Measurements of setae: \(j_1-20 \), \(j_2-36 \), \(z_2-16 \), \(z_3-32 \), \(z_4-24 \), \(s_4-62 \), \(s_5-64 \), \(Z_6-50 \), \(Z_4-52 \). Ventrianal shield 56 long, 40 wide, with 3 pairs of preanal setae, lateral sides concave. Macrosetae on leg IV: genu-nil, tibia-16, basitarsus-20, all with spatulate tip.

Habitat: Rose, Kendu.

Distribution: INDIA: Madhya Pradesh.

Remarks: No economic importance of this species is known.

515. **Phytoseius (Phytoseius) meyeriae** Gupta

Diagnosis: Dorsal shield with 15 pairs of setae. Measurements of setae: \(j_1-20 \), \(j_2-20 \), \(z_2-12 \), \(z_3-20 \), \(z_4-20 \), \(s_4-44 \), \(s_5-60 \), \(Z_6-37 \), \(r_8-28 \), \(Z_4-33 \). Ventrianal shield 72 long, 50 wide, with 3 pairs of preanal setae. Fixed digit of chelicera with 3 teeth, movable digit with 1 tooth. Macrosetae on leg IV: genu-7, tibia-36, basitarsus-20.

Habitat: Undet. plant, banana.

Distribution: INDIA: Assam, Meghalaya.

Remarks: No economic importance of this species is known.
516. **Phytoseius (Phytoseius) mixtus** Chaudhri

Diagnosis: Dorsal shield rugose, with 15 pairs of setae and a few pairs of pores. Measurements of setae: \(j_1-29, j_3-56, z_2-16, z_3-36, z_3-20, s_4-130, s_6-78, Z_5-72, Z_4-95\); other setae small. Macrosetae on leg IV: tibia-56, basitarsus-31, distitarsus-31.

Habitat: Grass; outside India: *Morus alba*.

Distribution: INDIA: Uttar Pradesh; outside India: Pakistan.

Remarks: No economic importance of this species is known.

517. **Phytoseius (Phytoseius) neglecta** Gupta

Diagnosis: Dorsal shield 299 long, 145 wide, with 15 pairs of setae. Measurements of setae: \(j_1-27, j_3-27, z_3-29, s_4-72, s_6-72, Z_6-50, Z_4-65, r_2-36\); other setae small. Ventrianal shield twice as long as broad, with 3 pairs of preanal setae. Spermatheca with cup-shaped cervix. Macrosetae on leg IV: genu-18, tibia-40, basitarsus-18.

Habitat: Saraca indica.

Distribution: INDIA: West Bengal.

Remarks: No economic importance of this species is known. This species appears to be same as *P. (P.) indicus* Bhattacharyya (1969).

518. **Phytoseius (Phytoseius) neocorniger** Gupta

Diagnosis: Dorsal shield highly sclerotized with 15 pairs of setae. Measurements of setae: \(j_1-28, j_3-44, z_2-12, z_3-33, z_4-12, s_6-120, s_6-80, Z_5-70, Z_4-75, r_3-40\). Ventrianal shield 60 long, 40 wide, constricted at preanal level, with 3 pairs of preanal setae. Spermatheca with tubular flask shaped cervix. Macrosetae on leg IV: genu-nil, tibia-40, basitarsus-26.

Habitat: Lantana camara.

Distribution: INDIA: Rajasthan.

Remarks: No economic importance of this species is known.
519. **Phytoseius (Phytoseius) punjabensis** Gupta

Diagnosis: Dorsal shield with 15 pairs of setae. Setae \(j_1, j_3, z_3, s_4, s_6, Z_5 \) and \(Z_4 \) being long, thick and serrate; other setae small. Ventrianal shield 76 long, 98 wide, with 3 pairs of preanal setae, Spermatheca with elongated flask shaped cervix. Macrosetae on leg IV: genu-16, tibia-36, basitarsus-24.

Habitat: Fig.

Distribution: INDIA: Punjab.

Remarks: No economic importance of this species is known.

520. **Phytoseius (Phytoseius) rachelae** Swirski & Shechter

Diagnosis: Dorsal shield with 15 pairs of setae; \(j_1 = j_3, s_4 \)-longest; \(s_6 \) greater than \(Z_5 \) and the latter greater than \(Z_4 \). Measurements of setae: \(j_1-28, j_3-28, z_2-8, z_3-20, z_4-14, s_4-100, s_6-80, Z_5-76, Z_4-64 \); \(r_3-40 \); other setae-small. Ventrianal shield 64 long, 44 wide, with 3 pairs of preanal setae. Spermatheca with Y-shaped cervix. Leg IV with macrosetae on genu-12, tibia-48, basitarsus-20, all spatulate.

Habitat: *Hibiscus* sp.

Distribution: INDIA: Karnataka; outside India: Hong Kong.

Remarks: No economic importance of this species is known.

521. **Phytoseius (Phytoseius) roseus** Gupta

Diagnosis: Dorsal shield with 15 pairs of setae, rugose. Measurements of setae: \(j_1-27, j_3-40, z_3-31, s_6-108, s_6-70, Z_5-81 Z_4-81, r_3-45 \). Ventrianal shield 81 long, 50 wide, with 3 pairs of preanal setae. Macrosetae on leg IV: tibia-36, basitarsus-22, distitarsus-27, those of the first two segments being spatulate.

Habitat: Rose, milk weed, *Zizyphus*, fig.

Distribution: INDIA: West Bengal, Gujarat, Punjab.

Remarks: It is of no known economic importance.
522. Phytoseius (Phytoseius) swirskii Gupta

Diagnosis: Dorsal shield rugose, with 15 pairs of setae. Measurements of setae: *j₁-20, j₃-25, z₃-26, s₄-70, s₅-70, Z₅-58, Z₄-47, r₃-32*; all being thick and serrate; other setae being tiny. Ventrianal shield longer (82) than broad (45), with 3 pairs of preanal setae. Metapodal plates one paired. Macrosetae on leg IV: genu-11, tibia-36, basitarsus-21, all being spatulate.

Habitat: *Ficus* sp.

Distribution: INDIA: West Bengal.

Remarks: It has no known economic importance.

523. Phytoseius (Phytoseius) rugosus Denmark

Diagnosis: (Male): Dorsal shield rugose, 200 long, 155 wide, with 15 pairs of setae. Measurements of setae: *j₁-19, j₃-18, z₃-24, s₄-45, s₅-29, Z₅-26, Z₄-26*; other setae small. Macrosetae on leg IV: genu-6 (peg like), tibia-7, basitarsus-20.

Habitat: *Terminalia arjuna*.

Distribution: INDIA: Orissa; outside India: Pakistan.

Remarks: This mite is known by male only. No economic importance of this species is known.

524. Phytoseius (Phytoseius) wainsteini Gupta

Diagnosis: Dorsal shield rugose with 15 pairs of setae: *j₁-30, j₃-56, z₂-16, z₃-32, z₄-28, s₄-124, s₅-68, Z₅-72, Z₄-84, r₃-36; Z₄ thicker than Z₅*. Ventrianal shield elongated, 80 long, 40 wide, with 3 pairs of preanal setae. Macrosetae on leg IV: genu-14, tibia-60, basitarsus-32.

Habitat: Uudet. plant, dahlia.

Distribution: INDIA: Jammu & Kashmir.

Remarks: No economic importance of this species is known.

525. Phytoseius (Phytoseius) woodbury DeLeon

Diagnosis: Dorsal shield with 15 pairs of setae; setae *j₁, j₃, z₅, s₄,*
s₈, Z₈, Z₄ and r₈ being thick, long and serrate measuring, 26, 30, 30, 126, 75, 70, 60 and 59, respectively; others being small. Ventrianal shield 90 long, 49 wide, with 3 pairs of preanal setae. Metapodal plates single paired. Spermatheca with broad cervix and knobbed atrium. Macrosetae on leg IV: genu-12, tibia-45, basitarsus-22.

Habitat: Polygonum molle.

Distribution: India: West Bengal; outside India: Puerto Rico.

Remarks: It is of no known economic importance.

Genus Typhlodromus Scheuten
(Figs. 515-536)

Key to the Subgenera of Typhlodromus

1. Dorsal shield with 11 pairs of setae Typhloctomus
 — Dorsal shield with less than 11 pairs of setae 2
2. Dorsal shield with 10 pairs of setae 3
 — Dorsal shield with less than 10 pairs of setae Brethria
3. 3 pairs of median setae Paraseiulus
 — 2 pairs of median setae 4
4. Most of the lateral setae plumose Clavidromus
 — Most of the lateral setae not plumose, only a few may be serrate 5
5. Z₈ and Z₄ knobbed Amblydromella
 — Z₈ and Z₄ not knobbed 6
6. Some of the lateral setae much longer than others, macrosetae normally present on genu, tibia and basitarsus of leg IV (except T. (O.) channabasavanni) Orientiseius
 — None of the lateral setae greatly longer than others; macrosetae present on basitarsus IV only Typhlodromus s. str.

Subgenus Amblydromella Muma
(Figs. 515-518)

HANDBOOK: Plant mites of India

Key to the Species of Amblydromella

1. Z₅ knobbed
 - Z₅ simple
 2

2. Macrosetae present only on basitarsus IV
 - Macrosetae present on other leg segments besides basitarsus IV
 3

3. s₄ longer than z₄
 - s₄ as long as z₄
 4

4. Z₄ almost as long as Z₅
 - Z₄ longer than Z₅
 5

5. Macroseta on basitarsus IV knobbed
 - Macroseta on basitarsus IV simple
 6

6. Macrosetae present on genu, tibia and basitarsus of leg IV
 - Macrosetae present on genu, and basitarsus of leg IV, absent on tibia IV
 7

7. Ventrianal shield much longer than wide
 - Ventrianal shield only slightly longer than wide
 8

8. Spermatheca corniform
 - Spermatheca sacculiform
 9

9. Setae comparatively long, Z₄ exceeds beyond the base of Z₅
 - Setae comparatively shorter, Z₄ never reaches up to the base of Z₅
 10

10. Spermatheca funnel shaped
 - Spermatheca more or less saccular
 11

11. Macroseta on basitarsus IV knobbed
 - Macroseta on basitarsus IV simple
 12

12. Cervix of spermatheca very narrow and elongate
 - Cervix of spermatheca wide, as much as 1/2 its length
 13

526. Typhlodromus (Amblydromella) bakeri (Garman)

Diagnosis: Dorsal shield heavily sclerotized, with 18 pairs of setae, Z₅ longest-46, j₁-16, z₂-17, z₃-18, z₄-20, s₄-21, s₅-24, S₂-26, S-31,
S₅-32 (serrate), Z₄-29. Sternal shield with 2 pairs of setae, 3rd pairs on interscutal membrane. Ventrianal shield pentagonal, reticulate with 4 pairs of preanal setae and a pair of pores; 2 pairs of metapodal plates present. Spermatheca with elongate cervix. Leg IV with macroseta on basitarsus IV.

Habitat: Grape vines, litchi.

Distribution: INDIA: West Bengal, Delhi; outside India: Europe, Canada, Australia, New Zealand.

Remarks: The record of this species appears to be doubtful.

527. **Typhlodromus (Amblydromella) bambusicolus** Gupta

Diagnosis: Dorsal shield well sclerotized, reticulate, with 18 pairs of setae. Measurements of setae: j₁-12, j₄-j₅-10-11 each, j₆-16, J₂-20, J₅-8, J₃-15, z₂-12, z₄-16, s₄-16, s₆-20, S₂-20, S₄-22, S₅-12, Z₅-49 (serrate), z₅-14, Z₄-24 (serrate). Sternal, metasternal and genital shields normal. Ventrianal shield pentagonal, 76 long, 72 wide, with 3 pairs of preanal setae and a pair of pores. Spermatheca with broad, tubular cervix. Macrosetae on leg IV: genu-8, tibia-12, basitarsus-20, all with bulging tip.

Habitat: Bamboo, citrus.

Distribution: INDIA: Assam.

Remarks: No economic importance of this species is known.

528. **Typhlodromus (Amblydromella) chrysanthemi** Gupta

Diagnosis: Dorsal shield reticulate, 312 long, 200 wide, with 18 pairs of setae. mostly thin and small except Z₄ and Z₅ which are thick and serrate. Measurements of setae: j₁-22, j₄-20, j₅-20, J₂-25, J₅-8, J₃-18, z₂-20, z₄-22, s₄-26, s₆-28, S₂-29, S₄-32, S₅-18, Z₅-48, z₅-20, Z₄-33. Ventrianal shield 108 long, 80 wide, lateral margins concave at preanal region with 4 pairs of preanal setae and a pair of preanal pores. Spermatheca with elongated cervix. Macrosetae on basitarsus IV-28.

Habitat: *Chrysanthemum* sp.

Distribution: INDIA: Gujarat.

Remarks: No economic importance of this species is known.
529. **Typhlodromus (Amblydromella) divergentis**
(Chaudhri, Akbar & Rasool)

Amblydromella divergentis Chaudhri et al., 1974, pp. 217-220.

Diagnosis: Dorsal shield with 18 pairs of setae. Measurements of setae: \(j_1 - 20 \), \(j_2 - 20 \), \(j_3 - 20 \), \(j_6 - 24 \), \(J_2 - 28 \), \(J_5 - 8 \), \(j_3 - 25 \), \(z_2 - 19 \), \(z_5 - 29 \), \(z_4 - 28 \), \(s_4 - 30 \), \(s_6 - 40 \), \(S_2 - 47 \), \(S_4 - 44 \), \(S_6 - 9 \), \(Z_5 - 47 \), \(z_6 - 20 \), \(Z_4 - 48 \). Ventrianal shield longer (92) than broad. Spermatheca funnel shaped. Leg IV with macroseta on basitarsus IV.

Habitat: Undet. plant; outside India: Chaudhri *et al.* (1974) recorded a number of plants wherefrom this species was collected in Pakistan.

Distribution: **INDIA**: Punjab; outside India: Pakistan.

Remarks: No economic importance of this species is known.

530. **Typhlodromus (Amblydromella) eharai Gupta**

Diagnosis: Dorsal shield reticulate, with 18 pairs of setae. Measurements of setae: \(j_1 - 10 \), \(j_4 - j_5 - 11 \) each, \(j_6 - 15 \), \(J_1 - 18 \), \(J_5 - 9 \), \(j_3 - 14 \), \(z_2 - 12 \), \(z_3 - 13 \), \(z_4 - 15 \), \(s_4 - 17 \), \(s_6 - 20 \), \(S_2 - 22 \), \(S_4 - 22 \), \(S_6 - 19 \), \(Z_5 - 40 \) (serrate, knobbed), \(z_6 - 12 \), \(Z_4 - 21 \) (serrate). Ventrianal shield slightly longer than wide, with 4 pairs of preanal setae and a pair of rounded pores. Metapodal plates 2-paired. Macrosetae on leg IV: genu-8, tibia-15, basitarsus-29.

Habitat: Cassia, coffee.

Distribution: **INDIA**: West Bengal, Karnataka, Tamil Nadu.

Remarks: Gupta (1978) reported this mite associated with *O. coffeae* but it did not feed on it.

531. **Typhlodromus (Amblydromella) fleschneri Chant**

Diagnosis: Dorsal shield 338 long, 195 wide, reticulate, with 18 pairs of setae. Measurements of setae: \(j_1 - j_6 - 20 \) each, \(J_2 - 25 \), \(J_5 - 10 \), \(j_3 \), \(z_2 - z_4 \), \(s_4 - s_6 - 32 \) each, \(S_2 - 32 \), \(S_4 - 36 \), \(S_5 - 16 \), \(Z_5 - 44 \); \(Z_5 \) and \(Z_4 \) with bulbous tip. Ventrianal shield longer (94) than broad (68), with 4 pairs of preanal setae. Spermatheca with bell shaped cervix. Macrosetae on leg IV: genu-16, tibia-19, basitarsus-24.
Habitat: Citrus, cotton.

Distribution: INDIA: Assam, Meghalaya, Karnataka, West Bengal.

Remarks: It is of unknown economic importance.

532. Typhlodromus (Amblydromella) gopali Gupta

Diagnosis: Dorsal shield with 18 pairs of setae. Measurements of setae: \(i_1-19\), \(j_4-22\), \(j_6-31\)–34, \(j_2-40\), \(j_5-9\), \(j_3-37\), \(z_2-18\), \(z_3-24\), \(z_4-27\), \(s_4-34\), \(s_6-45\), \(S_8-52\), \(S_9-52\), \(S_6-6\), \(Z_6-56\), \(z_6-22\), \(Z_6-55\). Sternal, metasternal and genital shields normal. Ventrianal shield 100 long, 63 wide, with 4 pairs of preanal setae and a pair of preanal pores; metapodal plates 2 paired. Spermatheca with funnel shaped cervix. Macrosetae on basitarsus IV-27 long.

Habitat: Palm.

Distribution: INDIA: West Bengal.

Remarks: It is of no known economic importance.

533. Typhlodromus (Amblydromella) himalayensis Gupta

Diagnosis: Dorsal shield reticulate with 18 pairs of setae. Measurements of setae: \(j_1-12\), \(j_4-10\), \(j_6-16\), \(j_2-16\), \(j_5-8\), \(j_3-14\), \(z_2-14\), \(z_3-15\), \(z_6-16\), \(s_4-20\), \(s_6-24\), \(S_2-24\), \(S_3-25\), \(S_6-17\), \(Z_6-40\) (serrate, knobbed), \(z_5-16\), \(Z_4-24\). Ventrianal shield 108 long, 68 wide, with 4 pairs of preanal setae. Spermatheca with bell shaped cervix. Macrosetae on leg IV: basitarsus-34 (knobbed).

Habitat: Palm.

Distribution: INDIA: Himachal Pradesh.

Remarks: It is of no known economic importance.

534. Typhlodromus (Amblydromella) homalii Gupta

Diagnosis: Dorsal shield reticulate with 18 pairs of setae, \(Z_4\) and \(Z_6\) serrate and the latter with bulging tip. Measurements of setae: \(j_1\)–\(j_6\)-18-20 each, \(J_2-22\), \(J_5-9\), \(j_3\), \(z_2-z_6\)-18-20 each, \(s_4\), \(s_6\), \(S_2-S_4\)-25-27 each, \(S_6-18\), \(Z_6-45\), \(z_6-18\), \(Z_6-29\). Sternal, metasternal and genital shields normal. Ventrianal shield pentagonal, lateral sides concave, 103 long,

Habitat: Homalium tomentosum, Zizyphus sp., Ficus bengalensis, arum, citrus.

Distribution: India: West Bengal, Punjab, Orissa, Meghalaya, Kerala, Tamil Nadu.

Remarks: Gupta (1978) reported this mite feeding on the eggs of Oligonychus sp. infesting an unknown shrub in Trivendrum.

535. Typhlodromus (Amblydromella) kodaikanalensis Gupta

Diagnosis: Dorsal shield reticulate, with 18 pairs of setae, Z5 thickest and serrate, other setae smooth and simple. Measurements of setae: j1-21, j4-j8-16 each, J2-20, J5-6, j8-20, z2-20, z5-20, z4-20, s4-24, s8-28, S2-28, S4-28, S5-16, Z5-48, z6-16, Z4-28. Sternal, metasternal and genital shields, normal. Ventrianal shield 92 long, 76 wide, with 4 pairs of preanal setae and a pair of pores; metapodal plates 2 paired. Spermatheca with flask shaped cervix. Macrosetae only on basitarsus IV: 40 long.

Habitat: Pear.

Distribution: India: Tamil Nadu.

Remarks: Gupta (1978) reported this mite associated with Tetranychus sp. which infested pear. Adults of this species chased the juvenile forms of the prey but feeding was not observed.

536. Typhlodromus (Amblydromella) mori Gupta

Diagnosis: Dorsal shield reticulate with 18 pairs of setae. Measurements of setae: j1-12, j4-j8-16 each, J2-20, J5-8, j8-24, Z2-16, Z3-20, Z4-20, s4-24, s8-24, S2-24, S4-24, S5-16, Z5-44, Z6-16, Z4-28, R3-44, R4-16. Ventrianal shield longer (100) than broad (80), with 4 pairs of preanal setae; 2 pairs of metapodal plates present. Spermatheca with wide flask shaped cervix. Macrosetae on leg IV: genu-10 (knobbed), basitarsus-36 (knobbed).

Habitat: Mulberry, apple.

Distribution: India: Jammu & Kashmir.

Remarks: No economic importance of this mite is known.
537. Typhlodromus (Amblydromella) rhenanus (Oudemans)

Diagnosis: Dorsal shield imbricate with 18 pairs of setae. Ventrianal shield with 4 pairs of preanal setae and a pair of preanal pores. Macroseta present only on basitarsus IV.

Habitat: Citrus, mango.

Distribution: INDIA: Delhi, Punjab; outside India: Israel, Georgian SSR., Europe, England, Canada, U. S. A.

Remarks: It was first reported in India in association with eriophyid mite on mango malformed twig. Subsequently, reports came about its feeding on *Brevipalpus californicus* (Gupta et al., 1971).

538. Typhlodromus (Amblydromella) rhododendronis Gupta

Diagnosis: Dorsal shield reticulate with 18 pairs of setae. Measurements of setae: i_1-15, i_4-15, i_5-18, i_6-20, j_2-25, j_5-8, i_3-25, z_5-16, z_5-20, z_6-20, s_4-24, s_8-25, s_2-26, s_5-32, s_6-20, z_5-44, z_5-20, z_4-36. Ventrianal shield 84 long, 60 wide, lateral margins concave with 4 pairs of preanal setae. Macroseta on leg IV: basitarsus-25 long.

Habitat: Rhododendron sp.

Distribution: INDIA: Karnataka.

Remarks: No economic importance of this species is known.

Subgenus *Brethria* Tuttle & Muma

(Figs. 519-520)

Key to the Species of Brethria

1. Ventrianal shield very long, almost 2 times as long as wide *roshanlali*
 - Ventrianal shield only slightly longer than wide, lateral margins slightly concave *confusus*

539. Typhlodromus (Brethria) confusus Narayanan, Kaur & Ghai

Diagnosis: Dorsal shield faintly reticulate, with 17 pairs of setae; all setae smooth except Z₅ and Z₄ which are thick and serrate; j₃, z₃, z₄ almost equal, S₂ and S₅ almost equal, z₂ shorter. Ventrianal shield longer than broad. No macroseta on leg IV.

Habitat: Helianthus annuus.

Distribution: INDIA: Delhi.

Remarks: Economic importance of this species is not known.

540. *Typhlodromus* (Brethria) roshanlali Narayanan & Ghai

Diagnosis: Dorsal shield reticulate with 17 pairs of setae, all...
being smooth. Measurements of setae: i_1-24, i_5-20, i_b-32, i_5-44, J_b-8, J_b-16, z_2-23, z_3-31, z_4-35, s_6-45, S_5-50, S_6-42, Z_b-50, z_6-20, Z_4-56. Sternal, metasternal and genital shields normal. Ventrianal shield longer (124) than broad, with 4 pairs of preanal setae and a pair of preanal pores. Macronseta absent on leg IV.

Habitat: Mango.

Distribution: INDIA: Delhi.

Remarks: This mite was collected in association with an eriophyid mite.

Subgenus **Clavidromus** Muma

(Figs. 521-524)

541. **Typhlodromus (Clavidromus) neotransvaalensis** Gupta

Diagnosis: Dorsal shield heavily sculptured, with 18 pairs of setae, all being weakly serrate. Measurements of setae: j_1-j_6, J_2-16-20 each, J_b-12, j_3, z_2-z_4-18 each, s_6-20, S_5-24, S_6-24, S_5-24, Z_b-36, z_6-18, Z_4-28. Sternal, metasternal and genital shields normal. Ventrianal shield 112 long, 92 wide, smooth, with 4 pairs of preanal setae; 2 pairs of metapodal plates present. Macronsetae on leg IV: genu-16, tibia-20, basitarsus-26, all with flattened tip.

Habitat: *Casuarina equisetifolia*.

Distribution: INDIA: Tamil Nadu.

Remarks: No economic importance of this species is known.

Subgenus **Orientiseius** Muma & Denmark

(Figs. 525-528, 528a)

Key to the Species of Orientiseius

1. z_4 only 2 times as long as z_a ... z_a ... z_4 ... 1. z_3 over 3-4 times as long as z_a ... 2. Length of j_4-j_5 vary between 8-10 microns ... 3. Length of j_4-j_5 vary between 26-60 microns ... 3. z_4 and z_5 equal ... 4. z_4 and z_5 unequal ... z_4 only 2 times as long as z_a ... z_4 over 3-4 times as long as z_a ... z_4 only 2 times as long as z_a ... z_5 over 3-4 times as long as z_a ... z_4 only 2 times as long as z_a ... z_4 over 3-4 times as long as z_a ... z_4 only 2 times as long as z_a ... z_4 over 3-4 times as long as z_a...

manipurensis 2

manipurensis 2

manipurensis 2

pruni 4

pruni 4

pruni 4

pruni 4
Figs. 525-528: *Typhlodromus (Orienteius)* sp.: 525—Dorsum, 526—Ventral surface, 527—Genu, tibia and basitarsus of leg IV, 528—Spermatheca of *channabasavannii*, 528a—Spermatheca of *Kashmiricus*.

Figs. 529-530: *Typhlodromus (Parasenius)* sp.: 529—Dorsum, 530—Posterior ventral surface.
4. S_5 less than $1/2$ of S_6, spermatheca as in fig. 528
 $\ldots \ldots \text{channabasavanni}$

- S_5 more than $1/2$ of S_6, spermatheca as in fig. 528a
 $\ldots \ldots \text{kashmiricus}$

5. Ventrianal shield only slightly longer than wide
 $\ldots \ldots \text{oressaensis}$

- Ventrianal shield about $1\frac{1}{2}$ times as long as wide
 $\ldots \ldots \text{rickeri}$

542. Typhlodromus (Orientiseius) channabasavanni Gupta

(Fig. 528)

Diagnosis: Dorsal shield with 18 pairs of setae, all being smooth and pointed. Measurements of setae: j_1-16, j_2-15, j_3-8 each, j_4-j_5-18 each, j_6-6, j_7-36, z_2-8, z_3-36, z_4-8, s_4-45, s_5-48, S_2-48, S_4-32, S_5-12, Z_5-70, z_6-8, Z_4-56. Ventrianal shield much longer (100) than wide (72) with 4 pairs of preanal setae; metapodal plates 2 paired. Spermatheca with funnel shaped cervix and bulbous atrium. Leg IV with macroseta on basitarsus IV-56.

Habitat: Tea.

Distribution: INDIA: Tamil Nadu.

Remarks: It has been reported in association with *Brevipalpus phoenicis*.

543. Typhlodromus kashmiricus Gupta

(Eig. 528a)

Diagnosis: Dorsal shield with 18 pairs of setae, measurements of setae: j_1-22-23, j_4-5-7, j_5-5-8, j_6-10-16, j_7-14-16, J_4-4-5, j_5-36-43, z_2-7-8, z_3-49-53, z_4-18-25, s_4-45-56, s_5-56-61, S_2-43-53, S_4-32-40, S_5-29-35, Z_5-68-74, z_6-5-7, r_8-27-29, r_8-25. Ventrianal shield 100 long, 76 wide, with 4 pairs of preanal setae. Macrosetae on leg IV: genu-24-30, tibia-32-35, basitarsus-40-45.

Habitat: Rose.

Distribution: INDIA: Jammu & Kashmir.

Remarks: On re-examination of the type it appeared that this species may be the same as *T. (O.) hadii* (Chaudhri)

544. Typhlodromus (Orientiseius) manipurensis Gupta

Diagnosis: Dorsal shield with 18 pairs of setae, all being small
and simple, Z_5 longest-52, other setae: j_1-20, j_4-8, j_6-12, j_8-16, J_2-16, J_5-6, j_9-12, z_2-8, z_3-18, z_4-18, s_4-24, s_6-32, S_2-32, S_4-24, S_5-20, z_5-12, Z_4-32. Sternal, metasternal and genital shields normal. Ventrianal shield longer (88) than wide (69), with 4 pairs of preanal setae and a pair of preanal pores. Spermatheca with thick broad cervix. Leg IV with macrosetae on genu-25, tibia-28, basitarsus-56.

Habitat: Undet. plant.

Distribution: INDIA: Manipur.

Remarks: No economic importance of this species is known.

545. *Typhlodromus (Orientiseius) orissaensis* Gupta

Diagnosis: Dorsal shield with 11 pairs of setae, all being smooth and slender. Measurements of setae: j_1-24, j_4-26, j_6-33, j_8-48, J_2-54, J_5-5, j_9-44, z_2-6, z_3-53, z_4-24, s_4-53, s_6-64, S_2-62, S_4-40, S_5-16, Z_5-64, z_5-12, Z_4-56. Sternal and genital shields normal. Ventrianal shield 88 long, 76 wide, with 4 pairs of preanal setae, lateral margins of shield deeply concave; 2 pairs of metapodal plates present. Spermatheca with thick long cervix. Macrosetae on leg IV: genu-10, tibia-14, basitarsus-36.

Habitat: Undet. plant.

Distribution: INDIA: Orissa.

Remarks: No economic importance of this species is known.

546. *Typhlodromus (Orientiseius) pruni* Gupta

Diagnosis: Dorsal shield reticulated, with 18 pairs of setae. Measurements of setae: j_1-27, j_4-4, j_6-5, j_8-7, J_2-9, J_5-4, j_9-36, z_2-5, z_3-45, z_4-6, s_4-45, s_6-48, S_2-27, S_4-14, S_5-9, Z_5-76, z_5-5, Z_4-36. Sternal, metasternal and genital shields normal. Ventrianal shield 100 long, 72 wide, with 4 pairs of preanal setae and a pair of preanal pores. Macrosetae on leg IV: genu-40, tibia-27, basitarsus-46.

Habitat: Pear.

Distribution: INDIA: West Bengal.

Remarks: No economic importance of this species is known.
547. Typhlodromus (Orientiseius) rickeri Chant

Diagnosis: Dorsal shield with 18 pairs of setae. Measurements of setae: \(j_1 \approx 20, j_4 \approx 12, j_5 \approx 24, j_6 \approx 24, J_2 \approx 32, J_5 \approx 6, J_3 \approx 44, z_2 \approx 8, z_3 \approx 52, z_4 \approx 10, s_4 \approx 50, s_6 \approx 66, S_2 \approx 61, S_4 \approx 36, S_5 \approx 16, Z_5 \approx 76, z_5 \approx 8, Z_4 \approx 60 \). Ventrianal shield 92 long, 64 wide, pentagonal with 4 pairs of preanal setae. Spermatheca with funnel shaped cervix. Macrosetae on leg IV: genu-32, tibia-28, basitarsus-48.

Habitat: Citrus, Mahonea leschenaulti, cashew nut, Eucalyptus, sp. Dalbergia latifolia.

Distribution: India: Andhra Pradesh, Karnataka, Nagaland, Kerala, Tamil Nadu, Meghalaya; outside India: U. S. A. (introduced).

Remarks: This mite was seen associated with a tetranychid mite infesting *Dalbergia latifolia* at Ambuli Perai (Tamil Nadu) (Gupta, 1978).

Subgenus *Paraseiulus* Muma

(Figs. 529-530)

548. Typhlodromus (Paraseiulus) neosoleiger Gupta

Diagnosis: Dorsal shield reticulate with 19 pairs of setae. Measurements of setae: \(j_1 \approx 23, j_4 \approx 16, j_5 \approx 16, j_6 \approx 16, J_2 \approx 16, J_5 \approx 6, J_3 \approx 20, z_2 \approx 16, z_3 \approx 18, z_4 \approx 20, s_4 \approx 20, s_6 \approx 20, S_2 \approx 20, S_4 \approx 22, S_5 \approx 20, Z_5 \approx 36, z_5 \approx 16, z_6 \approx 16, Z_4 \approx 24, r_3 \approx 24, R_1 \approx 20 \). Ventrianal shield 116 long, 68 wide, with 4 pairs of preanal setae; a number of platelets present around ventrianal shield. Macrosetae on leg IV: basitarsus-24.

Habitat: Chrysanthemum sp.

Distribution: INDIA: Jammu & Kashmir.

Remarks: No economic importance of this species is known.

Subgenus *Typhloctomus* Muma

(Figs. 531-532)

Key to the Species of Typhloctomus

1. Ventrianal shield with 3 pairs of preanal setae, Z₅ simple nesbitti
 - Ventrianal shield with 4 pairs of preanal setae, Z₅ knobbed transtitans

549. Typhlodromus (Typhloctomus) nesbitti Womersley

Figs. 531-532: *Typhlodromus (Typhloctomus) sp.*: 531—Dorsum, 532—Post-ventral surface.
Diagnosis: Dorsal shield with 19 pairs of setae. Measurements of setae: j₁-28, j₄-17, j₅-17, j₆-17, J₂-20, J₅-11, j₉-20, z₂-20, z₃-22, z₄-22, s₄-25, s₆-25, Z₂-20, S₂-28, S₄-22, S₅-22, Z₅-56, z₆-17, Z₄-36, Ventrianal shield 143 long, 110 wide, with 3 pairs of preanal setae and a pair of preanal pores. Macrosetae present only on basitarsus IV.

Habitat: Mango.

Distribution: INDIA: Delhi; outside India: Australia.

Remarks: This mite was collected from mango malformed tree in association with eriophyid mite (Narayanan & Ghai, 1964).

550. Typhlodromus (Typhloctomus) transitans Gupta

Habitat: Pear, mulberry.

Distribution: INDIA: Jammu & Kashmir.

Remarks: No economic importance of this species is known.

Subgenus Typhlodromus Scheuten
(Figs. 533-536)

Key to the Species of Typhlodromus Gupta

1. Ventrianal shield much longer than broad, Z₄ smaller or subequal to s₄ garhwalicus
 — Ventrianal shield almost as long as broad, Z₄ longer than s₄ 2
2. S₅ very small 1/2 as long as S₄, Z₅ much shorter than distance between its base and that of Z₅ communis
 — S₅ subequal to S₄, Z₅ almost touches base of Z₅ neorhenanus
551. *Typhlodromus* (Typhlodromus) *communis* Gupta

Diagnosis: Dorsal shield reticulate with 18 pairs of setae. Measurements of setae: $i_1=13$, $i_6=13$, $j_8=10$, $j_8=12$, $j_2=14$, $j_5=5$, $j_3=12$, $z_2=6$, $z_3=12$, $z_4=12$, $s_4=13$, $s_6=16$, $S_2=13$, $S_4=21$, $S_5=47$, $Z_5=47$ (smooth), $z_6=12$, $Z_4=30$ (smooth). Ventrianal shield as wide as long, with 3 pairs of preanal setae and a pair of pores; metapodal plates 2 paired. Macroseta only on basitarsus IV-35.

Habitat: Pear, eucalyptus, *Dalbergia* sp.

Distribution: INDIA: West Bengal, Karnataka, Tamil Nadu.

Remarks: No economic importance of this species is known.

552. *Typhlodromus* (Typhlodromus) *garhwalicus* Gupta

Diagnosis: Dorsal shield with 18 pairs of setae, mostly small except Z_6 which is long. Measurements of setae: $j_1=13$, $j_6=8$, $j_8=22$, $z_2=17$, $z_3=17$, $z_4=17$, $s_4=13$, $s_6=22$, $S_2=26$, $S_4=30$, $S_5=37$, $Z_4=26$, $z_5=14$, $r_8=26$. Ventrianal shield 129 long, 69 wide, with 4 pairs of preanal setae; small platelets present around ventrianal shield. Leg IV with macroseta only on basitarsus IV.

Habitat: Casuarina sp.

Distribution: INDIA: Uttar Pradesh.

Remarks: No economic importance of this species is known.

553. *Typhlodromus* (Typhlodromus) *neorhenanus* Gupta

Diagnosis: Dorsal shield with 18 pairs of setae. Measurements of setae: $j_1=16$, $j_4=10$, $j_8=20$, $j_2=24$, $j_5=8$, $j_3=13$, $z_2=8$, $z_3=16$, $z_4=22$, $S_4=25$, $s_6=28$, $S_2=33$, $S_4=36$, $S_5=32$, $Z_5=56$, $z_6=16$, $Z_4=44$. Ventrianal shield broader anteriorly, lateral margins concave, with 4 pairs of preanal setae; 2 pairs of metapodal plates present. Macroseta only on basitarsus-IV-40. Spermatheca with funnel shaped cervix.

Habitat: Fern.

Distribution: INDIA: Meghalaya.

Remarks: No economic importance of this species is known.
SUBFAMILY Gnoriminae Chaudhri

Genus *Garhwalicus* Gupta & Ray

(Figs. 537-539)

554. *Garhwalicus himalayensis* Gupta & Ray

Diagnosis: Dorsal shield with 12 pairs of lateral, 2 pairs of median and 6 pairs of dorsocentral setae of diverse length; 3 pairs of sublateral setae on lateral integument; some of the setae on dorsal shield with widened base. Sterntal shield with 3 pairs of setae; metasternal plate with seta absent. Genital shield granulate on either side. Ventrianal shield robust, reticulate anteriorly, with 7 pairs of preanal setae; 2 pairs of setae present around ventrianal shield. Leg IV with 2 macrosetae on genu and tibia and one on basitarsus, all being spatulate.

Habitat: Undet. plant.

Distribution: INDIA: Uttar Pradesh.
MITES OF UNCERTAIN ECONOMIC IMPORTANCE

Family Acaridae Ewing & Nesbitt

History: The important contributions in this family are: Ewing & Nesbitt (1942), Robertson (1959), Griffiths (1964, 70), Manson (1972) and Hughes (1976).

Diagnosis: The body is distinguished into two regions by a transverse line into propodosoma and hysterosoma. Body stout, white, chelicerae chelate. Five pairs of setae present on propodosoma: a. rostral setae, b. Grandjean's organ, c. cervical setae, d. outer propodosomal setae and e. inner propodosomal setae. A pair of pseudostigmatid organ also present on propodosoma. Male and female genital openings present between coxae III and IV. Two distinct copulatory suckers are located on the sides of the male anus. Epimera I is united with sternum but all others are free. Tarsus I bears characteristic setae. Relative length of setae on tarsus IV is important.

Key to the Genera of Acaridae

1. Opisthosoma with long whip like setae
 — Opisthosoma without such setae

 Tyrophagus
 Rhizoglyphus

Genus Rhizoglyphus Claparéde
(Figs. 540-544)

555. Rhizoglyphus echinopus (Fumouse & Robin)

Diagnosis: Internal scapular setae long. Grandjean's organ with forked tip; penis broad and rounded with short tube-like opening into a transverse sac with a V-shaped projection in each end; anal slit surrounded by six pairs of short setae.

Habitat: Potato.

Distribution: INDIA: Delhi; outside India: Cosmopolitan.

Remarks: Sometimes this mite attacks potato, onion, tulip, dahlia tubers, etc. either in the field or in storage. The damage sometimes may be serious.
Fig. 540: Dorsal surface of *Rhizoglyphus* sp. A—External scapular, B—d₁, C—External humeral, D—Internal humeral, E—d₂, F—Post-lateral, G—Sacral, H—d₃, I—Anterior lateral, J—d₄, K—Internal vertical, L—Scapular.

Fig. 541: Ventral surface of an acarid mite.

Fig. 542: Leg III of an acarid mite: M—Solenidion of tarsus I (Male).

Fig. 543: Postventral surface of male: N—Genital opening, O—Anal slit, P—Anal sucker, Q, R—Postanal setae, S—Lateral postanal, T—Sacral.

Fig. 544: Genital area of an acarid mite (Male).
Genus *Tyrophagus* Oudemans

(*Fig. 545-552*)

556. *Tyrophagus putrescentiae* (Schrank)

Diagnosis: In dorsoventral view of male, arms of penis support towards outwards; pseudostigmatid organs large with long pectinations at its enlarged base. Seta \(l_p \) approximately of same length as remaining posterior setae. Seta \(d_2 \) 2-3 times as long as \(l_a \). Distal half of penis shaft curved. External scapular seta shorter than internal scapular seta. The ratio \(d_2/l_a = 2.03 \); ratio \(x/y \) (distance between 1st and 3rd pairs of postanal setae)\(= 2.75 \). Solenidion \(w_1 \) on first tarsus enlarged at tip. Distance of \(a+b \) (distance from base of 4th tarsus to distal margin of 2nd sucker)\(= 1.70 \) and as long as \(c \) (distance from latter point to tip of the tarsus).

Habitat: *Saraca indica*.

Distribution: INDIA: West Bengal; outside India; Cosmopolitan.

Remarks: It is associated normally with the fungal growth on plant.

Family **Oribatulidae** Thor

Genus *Scheloribates* Berlese

557. *Scheloribates zealandicus* Hammer

Diagnosis: Rostrum rounded, rostral setae barbed, project by half their length beyond the tip of the rostrum; lamellar setae as long as the lamellae; interlamellar setae short, barbed; pseudostigmatid organ with lanceolate head; hysterosoma long with slightly convex margin; pteromorphae project almost as far anteriorly as the anterior border of the hysterosoma; 4 pairs of sacculi; sejugal apodeme longer than apodeme III; 4 pairs of genital setae; all tarsi tridactilate.

Habitat: Paddy.

Nature of damage: Leaves of rice (varieties: Mypali, Sannabayyahunda, Ramasagaralu and Phalguna) cultivated around Anakapalle were found to have brown streaks between veins and tears parallel to veins,

52
giving a gale-torn appearance (Venugopalrao, Sanyal & Rammohan Rao, 1982).

Distribution: India: Andhra Pradesh.

Fig. 545: Dorsal surface of *Tyrophagus* sp. A, B—Vertical setae, C—Scapular seta, D—d₁, E—Internal humeral, F—External humeral, G—Lateral, H—d₂, I—d₄, J—Postanal.

Fig. 546: Basal structure of penis in *Tyrophagus*.

Fig. 547: Male genital opening and anus in *Tyrophagus*.

Fig. 548: Female genital opening in *Tyrophagus*.

Fig. 549: Supracoxal seta in *Tyrophagus*.

Fig. 550: Tarsus I in *Tyrophagus*.

Fig. 551: Tarsus IV in *Tyrophagus* (Male): K—a+b, L—c.

Fig. 552: Penis.
PLANT-MITE CATALOGUE

*recorded outside India

<table>
<thead>
<tr>
<th>Name of plant</th>
<th>Name of mite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies pindrow</td>
<td>Bryobia praetiosa</td>
</tr>
<tr>
<td>Abutilon sp.</td>
<td>Brevipalpus phoenicis</td>
</tr>
<tr>
<td>Abutilon indicum Don.</td>
<td>Porcupinychus abutiloni, Aculops abutiloni</td>
</tr>
<tr>
<td>Acacia sp.</td>
<td>Eriophyes acaciae</td>
</tr>
<tr>
<td>Acacia arabica Willd.</td>
<td>Tenuipalpus acacii, T. caudatus, Schizote-tranychus undulatus, Typhlodromus (Amblydromella) divergentis, Brevipalpus rugulosus</td>
</tr>
<tr>
<td>Acacia farnesiana Wall</td>
<td>Tenuipalpus faresianus, T. indicus, Amblyseius (Euseius) alstoniae</td>
</tr>
<tr>
<td>Acacia ferruginea DC.</td>
<td>Aceria viddhagiriensis</td>
</tr>
<tr>
<td>Acacia modesta Lindl.</td>
<td>Eutetranychus orientalis , T. (A.) divergentis</td>
</tr>
<tr>
<td>Acacia nilotica Delile</td>
<td>E. orientalis</td>
</tr>
<tr>
<td>Acacia pennata (Willd.)</td>
<td>Aceria dichrostachyia</td>
</tr>
<tr>
<td>Acalypha sp.</td>
<td>Tetranychus urticae</td>
</tr>
<tr>
<td>Acalypha hispida Blume.</td>
<td>Brevipalpus phoenicis</td>
</tr>
<tr>
<td>Acalypha wilkesiana Muell.</td>
<td>Brevipalpus rugulosus</td>
</tr>
<tr>
<td>Acanthaceae</td>
<td>Aculops acantheae, Aculus atturensis</td>
</tr>
<tr>
<td>Acer sp.</td>
<td>E. orientalis, B. californicus</td>
</tr>
<tr>
<td>Achrus sapota Linn.</td>
<td>B. californicus, A. (E.) alstoniae, Eutetranychus anneckei, B. phoenicis</td>
</tr>
<tr>
<td>Achyranthus aspera Linn.</td>
<td>Bryobia praetiosa, Aceria justiciae</td>
</tr>
<tr>
<td>Acineta sp.</td>
<td>B. californicus</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Zoological Survey of India</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Adathoda sp.</td>
<td>B. praetiosa*</td>
</tr>
<tr>
<td>Adathoda vasica Nees</td>
<td>Anthocoptes adhatodae, Amblyseius (Amblyseius) adhatodae</td>
</tr>
<tr>
<td>Adenanthera pavoniana Linn.</td>
<td>Phytoseius (Pennaseius) kapuri</td>
</tr>
<tr>
<td>Aegle marmelos Correa</td>
<td>E. orientalis, Cunaxa myabunderensis, A. (A.) deleoni, Polyphagotarsonemus latus</td>
</tr>
<tr>
<td>Ageratum conyzoides Linn.</td>
<td>Tetranychus cinnabarinus</td>
</tr>
<tr>
<td>Ailanthus excelsa Roxb.</td>
<td>E. orientalis*</td>
</tr>
<tr>
<td>Alangium sp.</td>
<td>Diptilomiopus alangii</td>
</tr>
<tr>
<td>Alangium salifolium Wang</td>
<td>Floracarus salifolii, Eriophyes alangii</td>
</tr>
<tr>
<td>Albizia lebbeck Benth & Hook.</td>
<td>Paratetra albizzae</td>
</tr>
<tr>
<td>Albizia procera Benth & Hook.</td>
<td>Phytotipalpus albizziae, E. orientalis</td>
</tr>
<tr>
<td>Alhagi camelorum Fisch.</td>
<td>Porcupinychus abutiloni*</td>
</tr>
<tr>
<td>Allium cepa Linn.</td>
<td>Petrobia (Petrobia) latens, Bakerina orissaensis, T. cinnabarinus</td>
</tr>
<tr>
<td>Allium sativum Linn.</td>
<td>Aceria tulipae</td>
</tr>
<tr>
<td>Alnus sp.</td>
<td>Brevipalpus lewisi*, Vasates dhodabattaensis</td>
</tr>
<tr>
<td>Alnus glutinosa Medic.</td>
<td>Panonychus ulmi</td>
</tr>
<tr>
<td>Alnus nitida End.</td>
<td>B. praetiosa*</td>
</tr>
<tr>
<td>Alpinia sp.</td>
<td>B. phoenicis</td>
</tr>
<tr>
<td>Alstonia scholaris</td>
<td>A. (E.) coccosocius, A. (E.) alstoniae</td>
</tr>
<tr>
<td>R. Br.</td>
<td></td>
</tr>
<tr>
<td>Alternanthera sp.</td>
<td>B. praetiosa*</td>
</tr>
<tr>
<td>Althaea rosea Hohen.</td>
<td>E. orientalis*, P. latens*, T. cinnabarinus, T. neocaledonicus, B. phoenicis, P. latus</td>
</tr>
<tr>
<td>Amaranthus mangostanus Linn.</td>
<td>T. cinnabarinus</td>
</tr>
<tr>
<td>Amaranthus sp.</td>
<td>E. orientalis*</td>
</tr>
<tr>
<td>Amaranthus tricolor Linn.</td>
<td>A. (A.) deleoni</td>
</tr>
<tr>
<td>Amaranthus viridis Linn.</td>
<td>E. orientalis, B. californicus, P. latus, T. neocaledonicus</td>
</tr>
<tr>
<td>Amygdalus communis Linn.</td>
<td>Tenuipalpus amygdalasae</td>
</tr>
</tbody>
</table>
HANDBOOK: Plant mites of India

Annaas sp.
Anemone sp.
Andropogon annulatus F. Muell.
Angulosa sp.
Anisomeles indica O. kza
Anisomeles ovata R. Br.
Anona squamosa Linn.
Antedsma ghesembilla Gaertn.
Anthurium sp.
Anthocephalus cadamba Miq.
Antidesma sp.
Aphelandra sp.
Apium graveolens Linn.
Arachis hypogaea Linn.
Aralia sp.
Areca catechu Linn.

Aristida setacea Retz.
Artemisia scoparia Waldst. & Kit.
Artocarpus altilis
Artocarpus integrifolia Linn.
Artocarpus heterophyllus Lamk.
Arundo donax Linn.
Asystacia coromandeliana Nees.
Atylosia sp.
Aucuba sp.
Averrhoa carambola Linn.
Avicennia officinalis Linn.
Avocado

Dolichotetranychus floridanus
Brevipalpus obovatus*
Schizotetranychus andropogoni
B. californicus*
Phyllocopites indicae
B. obovatus*
Oligonychus mangiferus, B. phoenicis
Caleptirmerus antedesmae
B. californicus*
Brevipalpus karachiensis
B. californicus
B. californicus*
T. ludeni, T. cinnabarinus
T. cinnabarinus, T. hypogaeae
B. phoenicis*, Calacarus araliae
Oligonychus biharensis, O. indicus, Raoiella indica, Bdellodes (Hoploscirus) affinis, A. (T.) arecae, A. (A.) largoensis, Iphiseius bakeri, A. (E.) ovalis, Tetranychus fijiensis
Aceria setaceus
B. obovatus*
B. phoenicis
Bakerina orissaensis, Petrobia (Tetranychina) harti, P. ulmi, Tenuipalpus laibaghensis, Neocunaxoides pradhani, P. citri, Diptilomiopus artocarpae, Eutetranychus anneckeii
B. phoenicis, Tegolophus indica
Aceria donacis, Aculus mckenziei, E. orientalis, Aponychus sulcatus
Diptilomiopus jevremovici
B. californicus
B. essigi*
E. orientalis
Keiferophyes avicenniae
Oligonychus punicae
Azadirachta indica A. Juss.
Azima tetracantha Lamk.

Balanites aegyptica Del.
Bambusa aurandinacea Willd.

Bambusa vulgaris Nees
Barleria biternata
Barleria cristata Linn.
Barleria cuspidata Heyne
Bassia sp.
Bauhinia acuminata Linn.
Bauhinia sp.
Bauhinia purpuria Linn.
Bauhinia variegata Linn.
Benincasa cerifera Savi
Beta vulgaris Linn.
Bidens biternata (Lour.)
Bidens pilosa Linn.
Bignonia venusta Ker-Gawl.
Bletia sp.
Blumea sp.
Blumea membranacea DC
Boerhaavia diffusa Linn.

E. orientalis, Schizotetranychus hindustanicus, Calepitimerus azadirachtae
Epitimerus azimae

Aceria balanites

Aceria bambusae, Tegolophus bambusae, Parapronematus acaciae
B. phoenicis
B. phoenicis, Aceria barleriae, B. californicus
B. phoenicis
Tegonotus bassius
A. (A.) largoensis, A. (E.) pruni
Neometaculus bauhiniae
Tetra bauhiniae, A. (N.) longispinonus, A. (E.) ovalis
E. orientalis, B. californicus, B. obovatus, B. karachiensis, Eotetranychus uncatus, E. neoperplexus
T. cinnabarinus, T. macfarlanei, T. neocaledonicus
T. cinnabarinus, T. neocaledonicus
Brevipalpus deleoni
T. neocaledonicus, T. urticae
B. phoenicis
B. californicus*
B. obovatus*
E. orientalis*
E. orientalis*, A. sulcatus, Aculops boerhaavieae
Borassus flabellifer Linn. Notostrix flabelliferarum, Mackiella borasi,
Bougainvillea glabra Choisy Neodialox palmyrae
Bougainvillea spectabilis Willd. B. californicus
Bougainvillea sp. B. californicus, A. (E.) ovalis,
Brassica sp. Eriophyes ladakhensis
Brassica campestris Linn. B. californicus, T. ludeni
Brassica juncea Hook. & Thom. T. cinnabarinus, T. neocalodonicus,
Brassica kaber B. praetiosa, B. californicus
Brassica oleracea var. capitata T. neocalodonicus
Brassica oleracea var. sarsoon T. cinnabarinus
Brayenia sp. Calacarus citrifolii
Breynia patens Rolfe Phytoplus breyniae
Breynia rhamnoides Muell. Thamnacus euphorbiae
Buddleia sp. Brevipalpus essigi*
Buddleia asiatica Lour. Brevipalpus obovatus
Butea monosperma Taub. Brevipalpus pulchur, A. (E.) bambusae

C

Cajanus cajan Druce Petrobia (Petrobia) latens, Schizotetranychus
 cajani, S. fluvialis, T. ludeni, Acerla cajani,
 Eotetranychus broodyki, A. (Neoseiulus) fraterculus
Cajanus indicus Spreng. O. mangiferus
Calamus tenuis Roxb. A. (T.) potentillae, A. (A.) laroensis
B. neocalodonicus Calotropis procera R. Br.
Callislemion lanceolatus Sweet E. orientalis*, B. obovatus, Tegolophus
Callistemon speciosus DC. pernicis, Tegolophus calotropi
Calophyllum inophyllum Linn. T. neocalodonicus
Calotropis procera R. Br. Brevipalpus rugulosus
Campsis grandiflora Canavalia ensiformes DC.
P. latus Canna indica Linn.
Cammelina sp. B. rugulosus
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabis sativa Linn.</td>
<td>E. orientalis, T. cinnabarinus,
Brevipalpus obovatus, B. rugulosus</td>
</tr>
<tr>
<td>Canthium parvisorum Lam.</td>
<td>Phytoptus canthii</td>
</tr>
<tr>
<td>Capsicum annuum Linn.</td>
<td>P. latus, A. (E.) alstoniae, A. (A.) largoensis,
Calacarus citrifolii, calacarus capsica</td>
</tr>
<tr>
<td>Capsicum frutescens Linn.</td>
<td>Calacarus capsica</td>
</tr>
<tr>
<td>Capsicum pseudocapsicum</td>
<td>B. obovatus</td>
</tr>
<tr>
<td>Carica papaya Linn.</td>
<td>A. sulcatus, E. orientalis,
P. citri, T. cinnabarinus,
T. fijensis, T. neocaledonicus,
B. californicus, A. (E.) coccosocius, A. (A.) largoensis,
Tetranychus papayae, Calacarus brionesae</td>
</tr>
<tr>
<td>Carissa sp.</td>
<td>Phytoptus carissae</td>
</tr>
<tr>
<td>Carthamus tinctorius Linn.</td>
<td>T. cinnabarinus</td>
</tr>
<tr>
<td>Casearia tomentosa Roxb.</td>
<td>Eotetranychus sujinamensis</td>
</tr>
<tr>
<td>Cassia auriculata Linn.</td>
<td>Vasates cassiae</td>
</tr>
<tr>
<td>Cassia spectabilis DC</td>
<td>B. phoenicis</td>
</tr>
<tr>
<td>Cassia sp.</td>
<td>Typhlodromus (Amblydromella) eharai</td>
</tr>
<tr>
<td>Cassia fistula Linn.</td>
<td>E. orientalis,
E. orientalis,
B. californicus, A. (A.) largoensis</td>
</tr>
<tr>
<td>Cassia holosericea Fresen</td>
<td>P. abutiloni,
E. orientalis</td>
</tr>
<tr>
<td>Cassia occidentalis Linn.</td>
<td>B. californicus, E. orientalis</td>
</tr>
<tr>
<td>Cassia spectabilis DC</td>
<td>B. deleoni, B. phoenicis</td>
</tr>
<tr>
<td>Cassia sophera Linn.</td>
<td>Aculus cassiae</td>
</tr>
<tr>
<td>Cassia tora Linn.</td>
<td>Aculus cassiae, B. deleoni</td>
</tr>
<tr>
<td>Casuarina equisetifolia Linn.</td>
<td>Phytoptus casuarinae, Typhlodromus
Clavidromus) neotransvaalensis</td>
</tr>
<tr>
<td>Casuarina sp.</td>
<td>Tuckerella indica, Typhlodromus
Typhlodromus) garhwalicus</td>
</tr>
<tr>
<td>Catasetum sp.</td>
<td>B. californicus</td>
</tr>
<tr>
<td>Celosia cristata Linn.</td>
<td>B. rugulosus</td>
</tr>
<tr>
<td>Celtis chinensis</td>
<td>Phytoseius (Phytoseius) crinitus</td>
</tr>
<tr>
<td>Celtis wightii Planch.</td>
<td>Aculus indicus</td>
</tr>
<tr>
<td>Cerbera sp.</td>
<td>T. neocaledonicus</td>
</tr>
<tr>
<td>Cerbera odollam</td>
<td>B. phoenicis</td>
</tr>
<tr>
<td>Cestrum diurnum Domb.</td>
<td>B. phoenicis</td>
</tr>
<tr>
<td>Cestrum nocturnum Lamk.</td>
<td>B. californicus, T. (A.) divergentis</td>
</tr>
</tbody>
</table>
Chaetacme sp. Tenuipalpus micheli*
P. (P.) latens, T. cinnabarinus, T. neocalidonicus, B. californicus

Chenopodium album Linn.

Chenopodium murole Linn.

Chinese fan

Chloris incomplata Roth

Chrysanthemum sp.

Chrysanthemum coronarium

Linn.

Chrysanthemum morifolium Linn. B. eharai*, E. orientalis*, T. cinnabarinus
Ciba pentandra Linn. Vasates cassiae

Cichorium intybus Linn. T. cinnabarinus, B. obovatus, E. orientalis

Cinnamomum sp. Colopodacus cinnamommae

Cinnamomum camphora Nees & Eberm. O. biharenisis

Cissus quadrangularis Linn. Monotrimacus quadrangularis

Cissampelos pareira Linn. Tenuipalpus cissampelosa

Citrullus vulgaris Schrad. T. cinnabarinus, T. ludeni, B. californicus

Citrullus vulgaris var. fistulosus Stroks E. orientalis, T. cinnabarinus, T. urticae, B. californicus

Citrus aurantifolia Swingle

E. orientalis

Citrus aurantium Linn.

E. orientalis, E. africanus, Schizotetranychus balazari, T. cinnabarinus, T. fijensis, Agistemus fleschneri, B. californicus, B. phoenicis

Citrus decumana Murr.

B. phoenicis, B. californicus

Citrus jambhiri Lush

B. californicus, E. orientalis,
P. oleivora

Citrus karna Raf.

E. orientalis

Citrus limattioides Janaka

B. californicus

Citrus limonum Osb.

P. oleivora, Diptilomiopus assamica,
E. africanus*, E. orientalis, T. neocaledonicus, B. californicus, B. rugulosus

Citrus maxima Merr.

E. orientalis

Citrus medica Linn.

E. africanus, E. orientalis,
B. phoenicus, Indostigmaeus rangatensis

Citrus paradisi Macfad.

E. orientalis, B. deleont, B. californicus

Citrus reticulata Blanco

A. (T.) kalimpongensis, T. cinnabarinus,
B. californicus, E. orientalis

Citrus sinensis Osb.

B. californicus, E. orientalis

Citrus tengerina Janaka

B. californicus

Citrus trifoliata Linn.

E. orientalis

Citrus unshiu More

B. californicus

Clausena viscosa Linn.

T. cinnabarinus

Cleome viscosa Linn.

T. cinnabarinus

Clerodendron sp.

B. californicus*, B. phoenicis

Aceria clerodendronis, A. (E.) finlandicus

Clerodendron inerme Gaertn.

Aceria clerodendronis

Clerodendron macrosiphon Hook

A. (E.) coccosocius

Clerodendron serratum Spreng

A. (Typhlodromalus) havu

Calacarus keiferi, Epicecidophyes clerodendronis, E. indica, Aceria clerodendronis

Coccinea indica Wight & Arn.

T. ludeni, A. (E.) coccineae

Cocculus hirsutus (Linn.)

Diptilomiopus cocculae

Cocos sp.

B. californicus*
Cocos nucifera Linn. T. fijiensis, B. phoenicis,
R. indica, A. (A.) lagoensis,
A. (E.) ovalis, A. (Asperoseius) nucifera,
Neocypholaelaps stridulans, Scolocenus spiniferus

Coffea arabica Linn. O. coffeae, B. phoenicis, A. (E.) bambusae,
A. (E.) ovalis, T. (A.) eharai

Coleus amboinicus Lour. Aculus colei

Colocasia sp. A. (Typhlodromips) suknaensis,
B. californicus

Colocasia antiquorum Schott. A. (E.) coccineae, A. (N.) fallacis,
T. (A.) homalii, B. eharai

Combretum decandrum Roxb. Colopodacus combretus, Neorhynacus combratis, Indonotalox sudarsani

Commelina jacobi Fischer Aceria commelinae

Convolvulus sp. Typhlodromus (Amblydromella) divergentis*

Corchorus olitorius Linn. T. cinnabarinus, T. neocaledonicus

Cordia sp. B. praetiosa*

Cordia dichotoma Forst. T. ludenii, B. phoenicis, B. rugulosus

Cordia myxa Linn. T. neocaledonicus

Cordia obliqua Willd. B. californicus*

Coriandrum sativum Linn. T. cinnabarinus, T. neocaledonicus

Cornus sp. B. praetiosa*

Cosmos sp. T. lundenii, B. phoenicis, B. rugulosus

Cragrostis sp. T. neocaledonicus

Crataegus monogyna Jacq. B. praetiosa*

Crescentia sp. B. californicus*

Crescentia cujete Linn. B. phoenicis

Crossandra undulifolia T. neocaledonicus, Calacarus citrifollii

Salisb.

Crotalaria sp. A. (Typhlodromips) crotalariae

Crotalaria anagyroides P. (T.) harti, O. coffeae*, T. cinnabarinus

H. B. & K.

Crotalaria biflora Linn. Aceria crotalariae

Crotalaria juncea Linn. T. cinnabarinus, T. neocaledonicus, Aceria crotalariae, E. orientalis

Crotalaria retusa Linn. Aceria crotalariae

Crotalaria triflora Linn. Aceria crotalariae
Crotalaria verrucosa Linn. Aceria crotalariae
Croton sp. E. orientalis, T. neocaledonicus, B. californicus, B. euphorbiae
Crotonaster sp. O. biharensis
Crotonaster bacillaris B. praetiosa*
Cryptocarya sp. E. neoperplexus*
Cucumis melo Linn. T. neocaledonicus, T. cinnabarinus
Cucumis sativus Linn. T. neocaledonicus, T. macfarlanei, T. cinnabarinus, B. californicus,
Cucurbita sp. Polyphagotarsonemus latus, A. (E.) alstoniae, B. phoenicis
Cucurbita maxima Duchesne T. cinnabarinus, T. macfarlanei, T. ludeni,
Cucurbita moschata Duchesne B. californicus, B. cucurbitae, Eutetranychus maxirrae, Tetranychus angloensis
Cucurbita pepo Linn. T. cinnabarinus
Cupressus sp. Aegyptobia mumulus
Cupressus sempervirens Linn. B. obovatus*, B. praetiosa*, P. abutiloni*,
Cyamposis tetragonaloba E. orientalis*, Aegyptobia mumulus*, T. (A.) divergentis
Cymbopogon martini T. ludeni, P. latus
Cynodon dactylon Pers. Eriophyes cymbopogonis
Cynoglossum sp. P. (P.) latens, O. indicus, O. oryzae,
Cyperus sp. Cunaxa cynodonae, A. (N.) cynodonae,
Cyperus pangorei Roxb. Aegyptobia mumulus*, T. (A.) divergentis
Cyperus rotundus Linn. Eriophyes cymbopogonis
Cyamposis tetragonaloba Phytoptus cyperi
Dahlia sp. Agistemus industani, Phytoptus cyperi,
Dahlia pinnata Cav. Anchiphytoptus giganticus
Dalbergia sp. T. cinnabarinus, T. ludeni, B. deleoni, B. phoenicis, P. latus, A. (A.) channabasavani,
Dalbergia sp. P. (P.) wainsteini
Dahlia pinnata Cav. E. orientalis*
Dalbergia sp. A. (E.) bambusae, A. (A.) largoensis, A.
(D.) multidentatus, T. (T.) communis
Dalbergia latifolia Roxb. T. (O.) rickeri
Dalbergia sissoo (Roxb.) B. californicus, Aceria dalbergiae, E. orientalis, A. (E.) alstoniae
Daphne papyracea Wall. B. praeitiosa*
Datura alba F. Muell. B. rugulosus
Daucus carota Linn. A. (N.) fallacis
Debergeesis leucophylla P. citri
Debergeesis hypoleucce B. praeitiosa*, P. citri*
Dendrobium sp. B. californicus*
Desmodium triflorum DC. Aceria crotalariae
Dew gram P. latus
Dianthus sp. B. praeitiosa*
Dianthus caryophyllus Linn. T. cinnabarinus
Diaspyros maritima O. biharensis*
Diaspyros melanoxylan Roxb. P. (P.) kapuri, P. (P.) macrosetosus
Dicanthium annulatum S. andropogoni, O. indicus
Dichrostachys cinerea Aceria dichrostachyia
W. & A.
Diciiptera acanthaceae B. obovatus
Dieffenbachia sp. T. fijiensis
Dodonaea sp. B. californicus*
Dodonaea viscosa Jacq. T. neocaledonicus, Aegyptobia mumulus
Dolichos sp. B. californicus*
Dolichos biflorus Linn. T. ludeni, T. neocaledonicus
Dolichos lanceolatus R. Grah. T. neocaledonicus
Dryopteris sp. B. obovatus*

E

Echinops echinatus Roxb. B. obovatus*
Elettaria cardamomum Maton B. deleoni, D. floridanus, T. neocaledonicus, Phytoptus eletariae
Elm plant

Eleusine aegyptica Desf.

Eleusine indica Gaertn.

Epidendrum sp.

Eragrostis tenella Nees

Eranthemum sp.

Erigeron linifolius Willd.

Eriobotrya japonica Lindl.

Eruca sativa Lamk.

Erythrina indica Lamk.

Erythrina sublobata Roxb.

Erythrina variegata Linn.

Eucalyptus sp.

Eugenia sp.

Eugenia jambolana Lamk.

Eupatorium odoratum Linn.

Euphorbia sp.

Euphorbia geniculata Orteg

Euphorbia hirta Linn.

Euphorbia japonica Siebold

Euphorbia longana

Excoecaria agallocha Linn.

Fern

A. (T.) crotalariae, A. (T.) suknaensis, A (P.) multidentatus, T. (T.) neorhenanus, B. obovatus*
<table>
<thead>
<tr>
<th>Plant</th>
<th>Mites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficus asperrima Roxb.</td>
<td>Calepitrimerus asperrimae</td>
</tr>
<tr>
<td>Ficus benghalensis Linn.</td>
<td>A. (A.) largoensis, T. (A.) homalii, Neotegonotus indicus, Colopodacus bengalensis, Aceria infectoriae, Neotegonotus fastigatus</td>
</tr>
<tr>
<td>Ficus carica Linn.</td>
<td>Eutetranychus caricae, Tenuipalpus fici, Rhyncaphytoptus ficifoliae, O. mangiferus, B obovatus, B. phoenicis, E. orientalis, Eotetranychus irregularis</td>
</tr>
<tr>
<td>Ficus foveolata Wall.</td>
<td>Metaculus foveolatae</td>
</tr>
<tr>
<td>Ficus hirta Vahl.</td>
<td>P. (P.) crinitus</td>
</tr>
<tr>
<td>Ficus hispidia Linn.</td>
<td>Diptilomiopus jevremovic</td>
</tr>
<tr>
<td>Ficus infectoria Roxb.</td>
<td>Aceria infectoriae, Tegolophus fici, Phytoptus ficivorus</td>
</tr>
<tr>
<td>Ficus palmata Forsk.</td>
<td>B. praetiosa, E. orientalis*</td>
</tr>
<tr>
<td>Ficus racemosa Willd.</td>
<td>Eotetranychus hirsti</td>
</tr>
<tr>
<td>Ficus religiosa Linn.</td>
<td>A. (E.). bambusae, E. orientalis</td>
</tr>
<tr>
<td>Flacourtia sp.</td>
<td>B. californicus</td>
</tr>
<tr>
<td>Flaveria sp.</td>
<td>B. californicus</td>
</tr>
<tr>
<td>Fodder grass</td>
<td>P. (P.) latens</td>
</tr>
<tr>
<td>Fragaria sp.</td>
<td>O. punicae,</td>
</tr>
<tr>
<td>Fragaria chiloensis Duchesme</td>
<td>E. orientalis</td>
</tr>
<tr>
<td>Fragaria nilgerrensis Schdl.</td>
<td>B. praetiosa, P. (P.) latens, Paraamblyleius fragariae</td>
</tr>
<tr>
<td>Fragaria vesca Linn.</td>
<td>B. obovatus</td>
</tr>
<tr>
<td>Frangipini</td>
<td>E. orientalis, E. africanus</td>
</tr>
<tr>
<td>Fuchsia sp.</td>
<td>B. essigi</td>
</tr>
</tbody>
</table>
Fumaria indica B. praetiosa
Fungus P. ulmi*

G

Gajri P. (P.) latens
Garcinia sp. B. chilensis, Tenuipalpus crassus
Gardenia jasminoides Ellis Diptilomiopus bengalensis
Gelonium multiflorum A. Juss. Tegolophus gelonis
Geranium sp. T. neocaledonicus, B. phoenicus, B. praetiosa*
Gerbera sp. B. deleoni, B. phoenicus
Gladiolus tristis Linn. P. (P.) latens*, T. neocaledonicus
Gardenia jasminoides Ellis T. cinnabarinus, T. neocaledonicus
Glycine max T. ludeni
Glycosmis pentaphylla Correa Phytoptus glycosmisae, Anthocoptes glycosmis
Glyricidia E. orientalis
Gmelia asiatica Linn. Abacarus asiaticae
Gmelina arborea Roxb. Tegolophus gmelinus
Gmelina asiatica Linn. Tegolophus gmelinae
Golden dew drop Raoiella macfarlanei
Gongor sp. B. californicus*
Gossypium arboreum Linn. Abacarus gossypii
Gossypium hirsutum Linn. T. cinnabarinus, T. neocaledonicus, E. orientalis, T. ludeni*, R. indica, B. praetiosa,
Grass O. iseilemae, Monoceronychus terpoghossiani, S. andropogoni, Paraerythraeus serraticiliatus, A. (N.) fallacis, A. (E.) ovalis, Erythraeus plumosus
Grewia asiatica Linn. T. (A.) divergentis*, E. orientalis
Grewia populifolia Vahl. E. orientalis*
Gynandropsis gynandra Briq. E. orientalis*
Gyrocarpus sp. Eriophyes alangii
H

Hamelia patens Jacq. E. orientalis*

Hedera helix Linn. B. praetiosa*, B. obovatus*

Helianthus annuus Linn. T. cinnabarinus, B. californicus, B. obovatus, B. phoenicis, T. (Brethria) confusus, Bryobia praetiosa*, A. (P.) multidentatus, E. orientalis, T. (A.) divergentis*

Helicteres guazumaefolia Eotetranychus truncatus*

H. B. & K.

Hevea brasiliensis Muell. O. coffeae*

Helicteres isora Linn. B. pulchur

Heliotropium curassavicum Linn. B. praetiosa*

Heliotropium eichwaldi Steud. T. cinnabarinus, B. californicus

Hibiscus sp. P. ulmi, B. californicus*, Obuloides rajamohani, T. macfarlanei*, P. rachelae

Hibiscus abelmoschus Linn. O. coffeae*

Hibiscus esculentus Linn. B. obovatus, T. cinnabarinus

Hibiscus ficulemus Cav. O. coffeae*

Hibiscus micranthus Linn. Calacarus citrifolii

Hibiscus panduraeformis Burn. O. coffeae*

Hibiscus rosa-sinensis Linn. B. californicus, B. phoenicis, A. (E.) delhiensis, A. (A.) largoensis

Hibiscus vitifolius Linn. Acalitus hibisci, Calacarus malvae

Holmskioldia sanguinea Retz. B. californicus

Holoptelia integrifolia Planch. Aceria holopteleae, Diptilomiopus integrifoliae, Paratetra integrifoliavagrans

Homalium conchinchinense P. (P.) crinitus*

Homalium tomentosum Benth. T. (A.) homalii

Hordeum vulgare Linn. B. praetiosa*, P. (P.) latens

Horse gram P. latus

Houlletia sp. B. californicus*
I

Iberis amara Linn. B. praetiosa*
Ichnocarpus frutescens Cosella ichnocarpasia, Neocosella ichnocarpace
R. Br.
Indigofera geradiana B. praetiosa*
R. Grah.
Indigofera heterantha Wall.
Indigofera tinctoria Linn.
Indigofera viscosa Lamk.
Indigofera sp.
Ipomoea sp.
Ipomoea batatas Poir.
Ipomoea palmata Forsk.
Ipomoea sepiaria Koen.
Ipomoea staphylina Roem & Schult.
Iris plant
Iseilema laxum
Ixora parviflora Vahl

J

Jacaranda sp.
Jambosa vulgaris DC.
Jasminum angustifolium Wild.
Jasminum arborescens Roxb.
Jasminum auriculatum Vahl
Jasminum grandiflorum Linn.
Jasminum humile Linn.
Jasminum multiflorum Andr.
Jasminum sambac (Soland)
Juglans sp.
Juglans rejia Linn.
Juniperus sp.

Zoological Survey of India
Justicia betonica Linn. Aceria justiciae, Aculops betonicae
Justicia glabra Koen Aceria justiciae

Kentia sp. B. essigi*
Khandi weed P. (T.) harti
Kickxia ramosissima B. karachiensis*
Kidney bean P. latus
Kochia indica Wight E. orientalis*

Lablab niger var. lignosus Tetranychus ludeni
Lactuca sativa Linn. B. praetiosa
Lagenaria vulgaris Ser. T. cinnabarinus, T. macfarlanei
Lagerstroemia indica Linn. O. mangiferus, B. californicus, B. karachiensis
Lagerstroemia thorelii O. mangiferus
Gangnep

Lamium sp. B. obovatus*
Lannea coromandelia Tetra lanneensis
Lantana camara Linn. E. orientalis*, T. ludeni, T. cinnabarinus,
P. (P.) macropilis, P. (P.) neocorniger,
Phytoptus lantanae, Diptilomiopus camerae,
Calacarus citrifolii

Lathyrus odoratus Linn. E. orientalis*
Leptadenia reticulata Wight Acalitus reticulatae, Calacarus citrifolii
Les esculenta Moench B. praetiosa
Leucas aspera Link Aculus asperus, Calepitrimerus leucadis
Liliaceae B. praetiosa, P. (T.) harti, P. (P.) latens
Limetta T. neocaledonicus
Linum usitatissimum Linn. T. cinnabarinus
Lippia nodiflora Michx. B. obovatus*
Litchi chinensis Sonner B. praetiosa, O. biharen시스, O. punicae,
Aceria litchii, A. (A.) largoensis, T. (A.) bakeri

Litsea sp. Gammaphytoptus litseasis,
Diptilomiopus sinesetus
Litsea wightiana
Benth. & Hook.
Lonicera sp.
Luffa sp.
Luffa acuiangula Roxb.
Luffa aegyptica Mill.
Luffa cylindrica M. Roem.
Lycaste sp.
Lycium europaeum Linn.
Lycopersicum esculentum Mill.
Mahonia leschenaulti
Malax sp.
Mallotus sp.
Mallotus philippinensis Muell.
Malus sp.
Malus pumila Mill.
Malva parviflora Linn.
Malvastrum sp.
Malvastrum tricuspidatum A. Gray
Mangifera indica Linn.
Manglietia insignis Blume
Manihot esculenta Crantz.

Phytopus laurae, Anthopoda wightiana, Aceria litseae
B. praetiosa*
E. orientalis
E. orientalis*, T. ludeni, T. (A.) divergentis*,
E. annekei, B. phoenicus
T. neocaledonicus, T. cinnabarinus, B. californicus, B. rugulosus
T. cinnabarinus
B. californicus*
B. praetiosa*
T. cinnabarinus, T. neocaledonicus, P. ulmi,
Aceria lycopersici, Polyphagotarsonemus latus, T. ludeni
T. (O.) rickeri
B. pulchur*
Neocecidaphyes mallotivagrans
Aceria malloticola, Neophantacrus mallotus
B. californicus*
P. (P.) corniger*
B. praetiosa*
B. obovatus*, P. abutiloni*, T. (A.)
dergentis*
E. orientalis*
O. biharensis*, O. mangiferus, T. neocaledonicus, B. californicus, R. macfarlanei, A.
mangiferae, Metaculus mangiferae, Neocala-
carus mangiferae, Tegonotus mangiferae,
Cisaberoptes kenyae, Cheletogenes ornatus,
A. (N.) aceriae, A. (E.) cocosocius, A. (A.)
largoensis, A. (T.) mangiferae, A. (E.)
ovalis, Indodromus meerutensis, T. (A.)
rhenanus, T. (B.) roshanlali, T. (A.)
dergentis*, T. (T.) nesbitti
A. (A.) largoensis
E. orientalis, T. neocaledonicus
Marsdenia tenuissima Steud.
Medicago sativa Linn.
Melia sp.
Melia azedarach Linn.
Melilotus indica All.
Melilotus parviflora Desf.
Meliosma simplicifolia Walp.
Melothria heterophylla Cogn.
Mentha sp.
Mentha incana Willd.
Mentha piperita Linn.
Michelia champaca Linn.
Milk weed
Miliosma simplicifolia (Roxb.)
Millingtonia hortensis Linn.
Mitragyna tubulosa Hav.
Moghanis macrophylla
Mollugo hirta Thunb.
Momordica charantia Linn.
Morinda tinctoria Roxb.
Moringa oleifera Lamk.
Moringa pterygosperma Gaertn.
Morus sp.
Morus alba Linn.
Moss
Mucum prurita Hook.
Murraya exotica Linn.
Murraya koenigii Spreng.
Murraya paniculata Jack.
Musa sp.
Musa paradisiaca Linn.

B. phoenicis
T. cinnabarinus, A. medicaginis,
B. californicus*
E. orientalis, O. mangiferus, P. citri*, S. hindustanicus, B. obovatus*, T. mustus, T. luidianaensis
T. cinnabarinus
T. neocaledonicus
Acalitus meliosmae, Phyllocoptes simplicipolae
E. orientalis
P. (P.) latens*
E. orientalis*
E. orientalis
P. (P.) roseus
Phyllocoptes simplicipolae
Calacarus millingtoniae
Neocolopodacus mitragynaee
O. coffeae
E. orientalis*
T. cinnabarinus, B. californicus
Phytoptus morindae
Aculus menoni, A. moringae, E. orientalis*
Aculus menoni
B. phoenicis, Eotetranychus rohilaee, Tetranychus kanzawai
P. ulmi*
B. californicus
B. californicus
S. baltazari, Paratetra murrayae
E. orientalis
A. (N.) fallacis, A. (A.) largoensis
T. cinnabarinus, O. mangiferus, T. neocaledonicus, B. phoenicis, E. orientalis
Musa sapientum Linn.
O. sapienticola, O. indicus, A. (T.) eujeniae,
A. (T.) kalimpongensis, A. (A.) largoensis,
A. (E.) ovalis, A. (T.) sapienticola, A. (P.)
multidentatus, P. (P.) meyeriae

Mussandra corymbosa Roxb.
A. (A.) largoensis

N

 Nelumbo nuciferum Gaertn.
O. indicus

Neolitsea zeylanica Nerr.
Calepitrimerus mysorensis, Keiferana neolitsea

Nerium indicum Mill.
B. praetiosa*, E. orientalis, B. obovatus*,
T. punjabensis, Aceria nerii, A. (E.) alstoniae.
A. (A.) largoensis, A. (E.) ovalis, P.
abutiloni*, T. (A.) divergentis*

Nerium odorum (Soland.)
B. californicus, B. phoenicas, A. nerii,
Tegolophus nerii

Nyctanthes arboristis Linn.
B. deleoni, B. phoenicas, A. (T.) crotalariae

O

Ocimum sp.
Neophytoptus ocimae

Ocimum basilicum Linn.
R. indica*, B. obovatus*, B. karachiensis*,
Bakeriella ocimis

Ocimum sanctum Linn.
T. neocaledonicus, B. karachiensis

Odina wodier Roxb.
Phyllocoptruta odayrae, P. odinae

Odontoglossum sp.
B. californicus*

Oenothera rosea (Soland)
B. obovatus*

Oil palm
O. coffeae

Olea europaea Linn.
T. (A.) divergentis*

Olive plant
R. macfarlanei*

Orchid plant
O. sacchari*, B. essigi*

Oroxylon indicum Vent.
B. phoenicas

Oryza sativa Linn.
O. manishi, O. oryzae, O. indicus, S. andropogoni,
S. mansoni, Cheiracus sulcatus,
Chelacarpopsis moorei, A. (N.) fallacis,
A. (N.) indicus, A. (N.) longispinosus, A. (E.),
ovalis, A. (P.) multidentatus

Otostegia limbata Benth.
B. obovatus*

Oxalis corniculata Linn
P. (T.) hartii
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Mite Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panicum antidotale Retz.</td>
<td>Aceria antidotalae</td>
</tr>
<tr>
<td>Panicum distachyum Linn.</td>
<td>O. indicus</td>
</tr>
<tr>
<td>Panicum javanicum Poir.</td>
<td>O. indicus</td>
</tr>
<tr>
<td>Papaver album Mill.</td>
<td>A. (A.) longoensis</td>
</tr>
<tr>
<td>Parthenium hysterophorus Linn.</td>
<td>T. neocaledonicus</td>
</tr>
<tr>
<td>Parthenocissus sp.</td>
<td>B. lewisi</td>
</tr>
<tr>
<td>Paspalum distachyum Poit.</td>
<td>B. obovatus</td>
</tr>
<tr>
<td>Pavetta sp.</td>
<td>Calacarus microrostrus</td>
</tr>
<tr>
<td>Pavonia sp.</td>
<td>Anthocoptes pavoniae</td>
</tr>
<tr>
<td>Pennisetum purpureum Schum.</td>
<td>Mesobryobia jobneri</td>
</tr>
<tr>
<td>Pennisetum typhoidem Rich.</td>
<td>T. neocaledonicus, O. indicus</td>
</tr>
<tr>
<td>Pergularia extensa N. E. Br.</td>
<td>Aculeps extensa</td>
</tr>
<tr>
<td>Periploca aphylla Decne</td>
<td>B. obovatus, B. karachiensis</td>
</tr>
<tr>
<td>Peristeria sp.</td>
<td>B. californicus</td>
</tr>
<tr>
<td>Peristerope sp.</td>
<td>B. praetiosa</td>
</tr>
<tr>
<td>Peristrophe bicalyculata Nees</td>
<td>B. praetiosa</td>
</tr>
<tr>
<td>Persea americana Mill.</td>
<td>O. punicae</td>
</tr>
<tr>
<td>Persea sp.</td>
<td>B. californicus</td>
</tr>
<tr>
<td>Peterea sp.</td>
<td>B. deleoni</td>
</tr>
<tr>
<td>Petunia alba</td>
<td>P. abutiloni</td>
</tr>
<tr>
<td>Petunia hybrida Hort.</td>
<td>T. cinnabarinus</td>
</tr>
<tr>
<td>Phaseolus sp.</td>
<td>Tetranychus afrindicis</td>
</tr>
<tr>
<td>Phaseolus aconotifolius Jacq.</td>
<td>T. cinnabarinus</td>
</tr>
<tr>
<td>Phaseolus aureus Roxb.</td>
<td>T. cinnabarinus, P. latus</td>
</tr>
<tr>
<td>Phaseolus lunatus Linn.</td>
<td>T. cinnabarinus, T. neocaledonicus</td>
</tr>
<tr>
<td>Phaseolus mungo Linn.</td>
<td>T. cinnabarinus</td>
</tr>
<tr>
<td>Phaseolus vulgaris Linn.</td>
<td>T. cinnabarinus, T. ludeni, T. neocaledonicus, B. californicus, B. phoenicus, Eutetranychus phaseoli, Tetranychus zaherti</td>
</tr>
<tr>
<td>Phoenix sp.</td>
<td>R. indica, A. (E.) alstoniae, T. (A.) gopalli, E. bredini, O. coffeae, T. neocaledonicus</td>
</tr>
<tr>
<td>Phoenix dactylifera Linn.</td>
<td>E. bredini, R. indica, E. orientalis</td>
</tr>
<tr>
<td>Phyllanthus acidus Skeels</td>
<td>Calacarus channabasavannae</td>
</tr>
<tr>
<td>Phyllanthus distichus Muell.</td>
<td>P. ulmi</td>
</tr>
<tr>
<td>Physalis minima Linn.</td>
<td>B. obovatus</td>
</tr>
<tr>
<td>Pilea sp.</td>
<td>B. californicus</td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>T. kumaonensis, A. (E.) bambusae</td>
</tr>
<tr>
<td>Pinus wallichiana</td>
<td>B. praetiosa</td>
</tr>
</tbody>
</table>
Piper nigrum Linn.
Pisum sativum Linn.
Pithecolobium dulce Benth.
Pittosporum sp.
Pittosporum floribundum W. & A.
Plantago major Linn.
Plumeria sp.
Plumeria alba Linn.
Plumeria acutifolia Poir.
Plumbago zeylanica Linn.
Podocarpus sp.
Poincirus trifoliata Raf.
Poinsettia pulcherrima R. Garh.
Polyalthia longifolia Benth. & Hook.
Polyanthea tuberosa
Polygala chinensis Linn.
Polygonum aviculare Linn.
Polygonum glabrum Willd.
Polygonum molle D. Don.
Pongamia glabra Vent.
Pongamia pinnata Pierre
Potentilla sp.
Priva leptostachya Juss.
Prosopis spicigera Linn.
Prunus sp.
Prunus amygdalus Slokes.
Prunus armeniaca Linn.
Prunus cerasus Linn.
Prunus communis Huds.
Prunus domestica Linn.
Prunus persica Stokes
Prunus persica var. nucipersici B. praetiosa, E. orientalis Benth. & Hook.
Pscholzia californica
B. praetiosa*

Psidium guajava Linn.
T. cinnabarinus, O. mangiferus, B. californicus, B. deleoni, B. phoenicis, B. obovatus,

Punica sp.
Tenuipalpus granati*

Punica granatum Linn.
O. punicae, O. mangiferus B. obovatus,
B. californicus, B. phoenicis, T. punicae,

Pyrus sp.
B. pulchur*, B. praetiosa*

Pyrus communis Linn.
B. praetiosa, E. orientalis, A. (E.) alstoniae,
A. (E.) bambusae, A. (E.) finlandicus, A. (E.) kodaikanalensis, A. (P.) multidentatus
T. (T.) communis, T. (A.) kodaikanalensis,
T. (O.) pruni, T. (T.) transitans, Tenuipalpus pyruseae

Pyrus malus Linn.
B. praetiosa, P. citri*, P. ulmi, Petrobia hartii, B. obovatus*, B. pulchur, T. dimensus,
T. pyruseae, Neocypholaelaps pradhani,
Typhlodromus (Amblydromella) mori, T. cinnabarinus, E. frosti

Quamoclit vulgaris Choisy
T. neocaledonius

Quercus sp.
Eotetranychus suginamensis*,
A. (A.) deleoni*

Quinx sp.
P. ulmi

Quisqualis indica Linn.
O. mangiferus, T. neocaledonius,
Calacarus quisqualis
Ranunculus sp. Georgiobia sphaeralceae
Ranunculus laetus Salisb. B. praetiosa*
Raphanus sativus Linn. B. praetiosa, T. cinnabarinus, T. neocaledonicus, B. karachiensis, B. obovatus, P. (T.) harti
Rhamnus virgata Roxb. B. praetiosa*
Rhododendron sp. B. lewisi, A. (E.) rhododendronis, T. (A.) rhododendronis
Rhodomyrtus tomentosa Wight P. (P.) crinitus*
Rhynchosia capitata DC. T. cinnabarinus
Rosa sp. Phytoptus rosae
Rubiaceae Diptilomiopus knorri
Rubus sp. A. (P.) multidentatus, E. frosti*, A. (A.) deleoni*
Rubus racemosus Roxb. Phytoptus rubifoliae
Ruellia patula Jacq. Aceria ruelliae
Sabal palmetto Lodd. A. (A.) deleoni*
Saccharum aurindanaceum Retz. O. indicus
Saccharum halepense O. indicus
Saccharum munja Roxb. O. indicus
Saccharum spontaneum Linn.
S. andropogoni, Abacarus delhiensis,
A. (N.) *paspalivorus*

Salix elegans Wall.
An unspecified species of *Aculops niphocladae*

Salix niphocladae
Phyllocopites salmaliae

Salmalia malabarica Schott
E. orientalis
B. *essigi*

Salvadora oleoides Decne.
T. neocaledonicus
Aceria sapindi

Salvia* sp.
_B. praetiosa*

Santalum album Linn.
_Acalitus schefflerae*

Sap indus emarginatus Vahl
T. jijiensis, T. ludeni

Sap indus saponaria Vahl
_B. phoenicis, T. (A.) *divergentis*__

Sarcocca* sp.
_Eriophyes ladakhensis*

Schefflera* sp.
_A. (T.) kalimpongensis, A. (A.) *largoensis*__

Seakerthia* sp.

Senebiera didyma Pers.
_P. abutiloni, B. californicus*, B. *lewisi, B. phoenicis*

Sesamum indicum Linn.
_B. obovatus*
_B. obovatus*
_B. obovatus*

Sesbania sesbans
_A. (T.) *kalimpongensis, A. (A.)* *largoensis*

Sespedeza sericea
_B. phoenicis, T. (A.) *divergentis*__

Sietgus orientalis
_B. obovatus*

Silbum marianum Gaertn.
_B. obovatus*

Solanum* sp.
_B. californicus*

Solanum melongena Linn.
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Zoological Survey of India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanum nigrum Linn.</td>
<td>T. neocaledonicus, B. californicus, B. rugulosus, E. orientalis*</td>
</tr>
<tr>
<td>Solanum tuberosum Linn.</td>
<td>T. neocaledonicus, B. californicus, T. cinnabarinus, P. latus, Rhizoglyphus echi-nopus, A. (N.) indicus</td>
</tr>
<tr>
<td>Solanum xanthocarpum Schard. & Wendle.</td>
<td>B. californicus, Aculops xanthocarpi</td>
</tr>
<tr>
<td>Solidago sp.</td>
<td>B. obovatus*</td>
</tr>
<tr>
<td>Solidago canadensis Linn.</td>
<td>B. rugulosus</td>
</tr>
<tr>
<td>Sonchus arvensis Linn.</td>
<td>T. cinnabarinus</td>
</tr>
<tr>
<td>Sorghum halepense Pers.</td>
<td>O. indicus, S. hindustanicus, T. neocado-tonicus</td>
</tr>
<tr>
<td>Sorghum vulgare Pers.</td>
<td>P. (P.) latens, O. indicus, Aceria sorghii</td>
</tr>
<tr>
<td>Sowank</td>
<td>A. (N.) fallacis</td>
</tr>
<tr>
<td>Sphaeralcea ambiguа</td>
<td>Georgiobia sphaeralceae*</td>
</tr>
<tr>
<td>Spina cia oleracea Linn.</td>
<td>T. cinnabarinus, T. luđeni, B. praetiosa</td>
</tr>
<tr>
<td>Spirea latifolia Borck.</td>
<td>Schizotetranychus spireafolia*</td>
</tr>
<tr>
<td>Spondias mangifera Willd.</td>
<td>Tegolophus spondiallus</td>
</tr>
<tr>
<td>Stanhopeа sp.</td>
<td>B. californicus*</td>
</tr>
<tr>
<td>Streblus asper Lour.</td>
<td>Paracaphylla strebлае, Diptilomiopus jevremovici</td>
</tr>
<tr>
<td>Stroblianthes sp.</td>
<td>Aceria nandiensis</td>
</tr>
<tr>
<td>Strongylodon macrobotrys A. Gray</td>
<td>B. chilensis</td>
</tr>
<tr>
<td>Swietenia mahogani Jacq.</td>
<td>Calacarus swietensis</td>
</tr>
<tr>
<td>Symplocos sp.</td>
<td>Indotegolophus darjeelingensis</td>
</tr>
<tr>
<td>Syzygium javanicum Miq.</td>
<td>A. (E.) delhiensis, P. (P.) kapuri</td>
</tr>
<tr>
<td>Syzygium operculatum Gamble</td>
<td>Acaphyllа syzygii</td>
</tr>
</tbody>
</table>
Tabernaemontana divaricata B. rugulosus
R. Br.
Tagetes erecta Linn. T. mustus, T. neocaledonicus, B. rugulosus
Tagetes patula Linn. T. cinnabarinus, P. latus, A. (E.) coccineae
Tagetes tenuifolia Cav. B. praetiosa*, E. orientalis*, B. karachiensis*
Tamarix aphylla E. orientalis*
Tamarix plumosus Linn. Phyllocoptes imigrans
Taxus baccata Linn. Pentamerismus oregonensis*, B. praetiosa*
Tecoma stans Linn. B. californicus, T. punicae
Tecoma sp. Calepitrimerus massanjoris, Disella tectona
Tectona sp. Disella tectona, A. (A.) lagoensis,
Tectona grandis Linn. A. (T.) suknaensis, A. (T.) swaga, Diptiloniopus jevreomovici, Anthocoptes tectonae,
Tephrosia purpurea Pers. Tenuipalpus tectonae
Terminalia arjuna Wight & Arn. Tetra tephrosiae
Terminalia catappa Linn. Terminalichus delhiensis, T. karachiensis
Terminalia chebula Roxb. Ectomerus chebulae
Terminalia entappa Phytoptus terminaliae
Terminalia tomentosa Tuckerella delhiensis
Wight & Arn. Terminalichus panajiensis
Terminalia sp. Tenuipalpus tetrazygae*
TetrazYgia sp. B. californicus*
Thea sp. O. coffeae, T. cinnabarinus, B. californicus*,
Thea sinensis Linn. B. obovatus, B. phoenicis, Acaphylla indicae,
B. phoenicis, O. biharensis
Thevetia nucifolia Juss. Acaphylla theae, Calacarus carinatus
Thuja orientalis Linn. Acaphylla steinwedeni, Acaphyllisa parindiae
Acaphylla theae Aegyptobia mumulus, T. (A.) divergentis*,
Bakerina aculus
Thunbergia sp.
Thunbergia alata Boj.
Ticome sp.
Tillandsia usneoides Linn.
Trema orientalis Bl.
Trevesia sp.
Trianthema microphilla
Trianthema monogyna Linn.
Trichopila sp.
Trichosanthes anguina Linn.
Triticum aestivum Linn.
Triumfetta neglecta
Wight & Arn.

B. *californicus*
B. *phoenicis*
B. *californicus*
A. (A.) *deleoni*
Tegolophus kalyanii
B. *californicus*
Tenuipalpus pernicis
E. *orientalis*
B. *californicus*
B. *praetiosa*, P. (P.) *latens*,
P. *ulmi*, A. (N.) *indicus*, Lasioseius terrestris

O. *coffea*

U

Undet. plants
Floracarus pollachiensis, Aculus *atturensis*,
Phytoptus subbaraoi, Indonotalox *sudarsani*,
Calacarus *channabasavannae*, Aculus *yelagiriensis*,
Phytoptus *karnatakaensis*, Neodiptilomiopus *vishakantai*, Neorhynacus *rajendrani*,
Colopodacus *gynalaxtae Colopodacus walayarensis*, Anthopoda *deviarensis*,
Nothopoda *kallarensis Floracarus siruvaniensis*, F. *sivakumarii*, Anthocoptess *ayyanari*,
T. *laminasetae*, T. *ghaii*, E. *ladakhensis*, Procalacarus *aliyarensis*,
Tegonotus *coimbatorensis*, Epitrimerus *chandramohani*, Phylocoptes *aliyamagarenisis*,
Phylocoptes *asperaevagrans*, Abacarus *goaensis*, Aculops *kumari*, Aculus *kolengii*,
Ditrymacus, keiferi, Metaculus *londaensis*, Neomesalox *kallarensis*, Hyboderus *globulus Garhwalicus himalayensis*,
Platyseiella *mumai*, Tenuipalpus *hastaligni A. (A.) orientalis*

O. *coffea*
Valaris solanacea
Verbascum thapsus Linn.
Verbena sp.
Verbena brasiliensis Vell.
Verbena bonariensis Linn.
Verbena officinalis Linn.
Vernonia sp.
Veronica sp.
Viburnum sp.
Vicia sativa Linn.
Vigna catjang Endl.
Vigna cylindrica
Vinga radiata
Vigna unguiculata Walp.
Vitex negundo Linn.
Vitex pubescens Vahl.
Vitis sp.
Vitis vinifera Linn.

V

Valaris solanacea
Verbascum thapsus Linn.
Verbena sp.
Verbena brasiliensis Vell.
Verbena bonariensis Linn.
Verbena officinalis Linn.
Vernonia sp.
Veronica sp.
Viburnum sp.
Vicia sativa Linn.
Vigna catjang Endl.
Vigna cylindrica
Vinga radiata
Vigna unguiculata Walp.
Vitex negundo Linn.
Vitex pubescens Vahl.
Vitis sp.
Vitis vinifera Linn.

Wander beans
Withania somnifera Dun.
Xanthium sp.
Xerophyte

W

Wander beans
Withania somnifera Dun.
Xanthium sp.
Xerophyte

X

Wander beans
Withania somnifera Dun.
Xanthium sp.
Xerophyte
Z

Zea mays Linn.

Zinia sp.
B. phoenicis, P. latus, A. (E.) alstoniae, A. (N.) longispinosus, B. karachiensis, B. rugulosus,

Zizyphus sp.
Eotetranychus rajouriensis, P. (P.) roseus, T. (A.) homalii, B. obovatus, E. bilobatus

Zizyphus jujuba Lamk.
B. praetiosa, E. orientalis, Larvacarus transitans, Eriophyes cernua, P. (P.) jujuba, Eotetranychus fremonti

Zizyphus sativa Gaertn.
E. orientalis
STATEWISE DISTRIBUTION OF PLANT MITES IN INDIA

ASSAM

Fam. Tetranychidae

Fam. Tenuipalpidae
Breviceps californicus, *B. phoenicis*, *Phytoptipalpus albizziae*,

Fam. Eriophyidae
Acaphyilla indiae, *A. theae*, *Calacarus carinatus*, *Diptilomiopus assamica*

Fam. Ascidae
Lasioseius quadrisetosus

Fam. Phytoseiidae

ANDHRA PRADESH

Fam. Tetranychidae
Eotetranychus hirsti, *Oligonychus indicus*,

Fam. Eriophyidae
Aceria saccharini

Fam. Phytoseiidae
ANDAMAN AND NICOBAR ISLANDS

Fam. Tetranychidae
Aponychus corpusae, A. sarjui, Oligonychus iseliemae, Oligonychus biharensis, O. oryzae, O. manishi, Panonychus citri, Schizotetranychus mansoni, Tetranychus fijiensis, T. macfarlanei

Fam. Tenuipalpidae
Brevipalpus essigi, Tenuipalpus hastalini, T. micheli, T. quadrisetosus, T. tetrazygae

Fam. Cheyletidae
Chelacaropsis moorei

Fam. Stigmaeidae
Indostigmaeus rangatensis

Fam. Tydeidae
Parapronematus acaciae, Lorryia africana

Fam. Cunaxidae
Cunaxa bambusae, C. cynodonae, C. myabunderensis, C. setirostris, Cunaxoides nicobarensis, Indocunaxa smileyi, Neocunaxoides pradhani

Fam. Bdellidae
Bdellodes (Hoploscirus) affinis

Fam. Phytoseiidae

BIHAR

Fam. Tetranychidae
Petrobia latens, Aponychus (Stylophoronicus) baghensis, A. (S.) lalii, Eotetranychus hirsti, Oligonychus biharensis. O. indicus, O. mangiferus, Schizotetranychus andropogoni, Tetranychus cinabarinus, T. neocaledonicus

Fam. Tenuipalpidae
Brevipalpus phoenicis, Larvacarus transitans
Fam. Eriophyidae
Disella tectona, Aceria cordiae, *A. litchii*, *A. mangiferae*, *Tegonotus bassius*, *Calepitrimerus massanjoris*, *Abacarus sacchari*, *Tegolophus cordis*, *T. gmelinius*,

Fam. Tarsonemidae
Polyphagotarsonemus latus, Lupotarsonemus randsi

Fam. Tydeidae
Pronematus fleschneri

Fam. Phytoseiidae
Amblyseius (Amblyseius) largoensis, A. (Euseius) alstoniae, A. (Neoseiulus) longispinosus, A. (Paraphytoseius) multidentatus, A. (Typhlodromips) tetranychivorus, A. (E.) ovalis

Fam. Acaridae
Tyrophagus putrescentiae.

DELHI

Fam. Tetranychidae

Fam. Tenuipalpidae

Fam. Eriophyidae
Fam. Tuckerellidae
Tuckerella delhiensis

Fam. Tydeidae
Pronematus fleschneri, P. sextoni

Fam. Erythraeidae
*Sphaerolophus gigas, S. delhiensis, Abrolophus delhiensis, Abrol-
ophus ripicola, Erythraeus plumosus, Paraerythraeus serracociliatus*

Fam. Asidae
Melichares fici, Lasioseius terrestris

Fam. Phytoseiidae
*A. (E.) alsioniae, A. (E.) delhiensis, A. (N.) indicus, A. (Typhlo-
dromips) mangiferae, Phytoseius (Pennaseius) minutus, P. (Phyto-
seiurus) macropilis, Typhlodromus (Amblydromella) bakeri, T: (A.)
rhenanus, T. (Brethria) confusus, T. (B.) roshanlali, T. (Typhlo-
ctomus) nesbitti,*

Fam. Acaridae
Rhizoglyphus echinopus.

GUJARAT

Fam. Tetranychidae
*Eutetranychus orientalis, Eotetranychus frosti, Oligonychus sacchari,
Platytetranychus multidentatus, Tetranychus cinnabarinus, T.
neocaledonicus, T. macfarlanei*

Fam. Eriophyidae
Acalitus gossypii

Fam. Phytoseiidae
*A. (A.) largoensis, A. (E.) ovalis, A. (E.) sacchari, A. (N.) aceriae,
A. (T.) kalimpongensis, Indoseiulus ricini, P. (Pennaseius) kapuri,
P. (P.) jujuba, P. (P.) roseus, Typhlodromus (Amblydromella)
chrysanthemi.*

GOA, DAMAN & DIEU

Fam. Tenuipalpidae
Terminalichus panajiensis

Fam. Eriophyidae
Calacarus polyalthiae, Abacarus goaensis
HARYANA

Fam. Tetranychidae
 Petrobia latens, *Eutetranychus orientalis*, *Oligonychus indicus*,
 O. mangiferus, *Tetranychus cinnabarinus*, *T neocaledonicus*

Fam. Tenuipalpidae
 Tenuipalpus indicus

Fam. Eriophyidae
 Aceria mangiferae

Fam. Phytoseiidae
 Amblyseius (Neoseiulus) fallacis.

HIMACHAL PRADESH

Fam. Tetranychidae
 Bryobia praeitiosa, *Neopetrobia simlaensis*, *Oligonychus mangiferus*,
 Panonychus ulmi

Fam. Tenuipalpidae
 Brevipalpus obovatus, *B. phoenicis*, *Tenuipalpus pruni*

Fam. Eriophyidae
 Aceria ficus, *Eriophyes cheriani*, *Calacarus carinatus*

Fam. Phytoseiidae
 Amblyseius (Amblyseius) largoensis, *Typhlodromus (Amblydromella) himalayensis*

Fam. Tydeidae
 Pronematus elongatus.

JAMMU AND KASHMIR

Fam. Tetranychidae
 Bryobia eharai, *B. praeitiosa*, *Petrobia harti*, *P. latens*, *Eutetranychus orientalis*,
 Eotetranychus frosti, *E. ladakhensis*, *Panonychus citri*, *P. ulmi*

Fam. Eriophyidae
 Eriophyes ladakhensis

Fam. Phytoseiidae
 Amblyseius (Paraphytoseius) multidentatus, *A. (T.) potentillae*,
 P. (P.) corniger, *P. (P.) wainsteini*, *T. (A.) mori*, *T. (O.) kashmiricus*,
 T. (Paraseiulus) neosoleiger, *T. (Typhloctomus) transitans.*
KARNATAKA

Fam. Tetranychidae

Bryobia eharai, *Petrobia harti*, *Eutetranychus africanus*, *Tenuipalponychus citri*, *Eotetranychus hirsti*, *E. mandensis*, *E. sexmaculatus*, *O. biharensis*, *O. indicus*, *O. mangiferus*, *Schizotetranychus baltazari*, *Tetranychus cinnabarinus*, *T. fijiensis*, *T. ludeni*, *T. neocaledonicus*

Fam. Tenuipalpidae

Brevipalpus californicus, *B. chilensis*, *B. phoenicis*, *Dolichotetranychus floridanus*, *Pentamerismus oregonensis*, *Raoiella indica*, *R. macfarlanei*, *Tenuipalpus crassus*, *T. californicus*, *T. micheli*

Fam. Eriophyidae

Fam. Tarsonemidae

Polyphagotarsonemus latus

Fam. Phytoseiidae

KERALA

Fam. Tetranychidae
Oligonychus biharensis, O. mangiferus, Schizotetranychus hindustanicus, Tetranychus cinnabarinus, T. fijiensis, T. neocaledonicus

Fam. Tenuipalpidae
Raoiella macfarlanei

Fam. Eriophyidae
Phytoptus carissae, Metaculus foveolatae, Neorhynacus rajendrani,

Fam. Ameroseiidae
Neocypholaelaps stridulans

Fam. Phytoseiidae

MAHARASHTRA

Fam. Tetranychidae
Bryobia eharai, Eutetranychus orientalis, Tetranychus neocaledonicus,

Fam. Tenuipalpidae
Brevipalpus phoenicis, Tenuipalpus amygdalusae

Fam. Eriophyidae
Aceria cajani, Aceria jasmini, Epitrimerus chandramohani, Metaculus londaensis,

Fam. Tarsonemidae
Polyphagotarsonemus latus

Fam. Erythraeidae
Leptus poonaensis

Fam. Phytoseiidae

MANIPUR

Fam. Phytoseiidae
MEGHALAYA

Fam. Tetranychidae
Bryobia praetiosa, *Aponychus corpuzae*, *Eotetranychus kankitus*, *E. sexmaculatus*, *Panonychus citri*, *Tetranychus cinnabarinus*, *T. neocaledonicus*

Fam. Tenuipalpidae
Brevipalpus phoenicis, *Tenuipalpus punicae*

Fam. Eriophyidae
Cosella fleschneri

Fam. Phytoseiidae

MIZORAM

NIL

MADHYA PRADESH

Fam. Tetranychidae
Petrobia latens, *Eotetranychus syzygii*, *Tetranychus macfarlanei*, *P. (P.) macrosetosus*.

NAGALAND

Fam. Phytoseiidae
Amblyseius (A.) largoensis, *Typhlodromus (Orientiseius) rickeri*.

ORISSA

Fam. Tetranychidae
Eutetranychus orientalis, *Aponychus corpuzae*, *Bakerina orissaensis*, *Eotetranychus broodrykei*, *Oligonychus indicus*, *O. mangiferus*, *O. oryzae*, *Schizotetranychus andropogoni*, *Tetranychus cinnabarinus*, *T. neocaledonicus*

Fam. Tenuipalpidae
Brevipalpus phoenicis
Handbook: Plant mites of India

Fam. Phytoseiidae

Pondicherry

Fam. Phytoseiidae

Punjab

Fam. Tetranychidae

Fam. Tenuipalpidae
Aegyptobia mumulus, Brevipalpus californicus, B. deleoni, B. obovatus, B. karachiensis, B. phoenicis, B. rugulosus, Raoiella indica, Tenuipalpus, aboharensis, T. caudatus, T. ludhianaensis, T. mustus, T. punicae, T. punjabensis

Fam. Eriophyidae
Colomerus vitis, Aceria lycopersici, A. mangiferae, A. nerii, A. Sheldoni, A. saccharini, E. cernuus, E. cheriani, Phytopus terminaliae

Fam. Tarsonemidae
Polyphagotarsonemus latus, Steneotarsonemus bancroftii

Fam. Phytoseiidae

Fam. Tydeidae
Pronematus fleschneri, P. elongatus

57
Fam. Cheyletidae
Cheletogenes ornatus

Fam. Stigmaeidae
Agistemus fleschneri.

RAJASTHAN

Fam. Tetranychidae
Mesobryobia jobneri, Petrobia latens, T. cinnabarinus

Fam. Eriophyidae
Aceria cordiae

Fam. Phytoseiidae
A. (E.) alstoniae, P. (P.) neocorniger.

SIKKIM

Nil

TAMIL NADU

Fam. Tetranychidae
Porcupinychus abutiloni, Eotetranychus hirsti, Oligonychus indicus, O. iseilemae, O. oryzae, O. punicae, Schizotetranychus andropogoni, S. hindustanicus, Tetranychus cinnabarinus, T. fijiensis

Fam. Tenuipalpidae
Brevipalpus cucurbitae, B. euphorbiae, B. phoenicis, Obuloides raja-mohani, Raoiella indica, Tenuipalpus coimbatorensis, T. laminasetae, T. ghail, T. malligai, T. tectonae

Fam. Nalepellidae
Neophantacrus mallotus, Anchiphytoptus giganticus, Mackiella borasis

Fam. Eriophyidae

Fam. Rhyncaphytoptidae

Fam. Tarsonemidae
Tarsonemus krichneri

Fam. Tuckerellidae
Tuckerella indica

Fam. Stigmaeidae
Agistemus industani
Fam. Ameroseiidae

Neocypholaelaps pradhani

Fam. Phytoseiidae

TRIPURA

Fam. Phytoseiidae

UTTAR PRADESH

Fam. Tetranychidae

Bryobia eharai, _Petrobia latens_, _Eutetranychus bredini_, _E. orientalis_, _E. uncatus_, _O. indicus_, _Panonychus ulmi_, _Tetranychus neocaledonicus_, _T. urticae_.

Fam. Tenuipalpidae

Brevipalpus lewisi, _Tenuipalpus ixorae_.

Fam. Eriophyidae

Aculops niphocladae, _Paratetra murrayae_.

Fam. Tarsonemidae

Polyphagotarsonemus latus.

Fam. Tuckerellidae

Tuckerella kumaonensis.

Fam. Erythraeidae

Leptus giganticus.

Zoological Survey of India
HANDBOOK: Plant mites of India

Fam. Phytoseiidae

Fam. Acaridae
Tyrophagus putrescentiae.

WEST BENGAL

Fam. Tetranychidae
Bryobia praetiosa, Petrobia hartii, Eutetranychus orientalis, Eutetranychus hirsti, Oligonychus coffeae, O. indicus, O. mangiferus, O. sacchari, O. sapienticola, Panonychus citri, Schizotetranychus andropogoni, S. cajani, S. spireafolia, Tetranychus hypogaeae, T. urticae

Fam. Tenuipalpidae
Brevipalpus deleoni, B. californicus, B. obovatus

Fam. Eriophyidae

Fam. Rhyncaphytoptidae
Rhyncaphytoptus shoreacola, Diptilomiopus bengalensis, Diptilorhynacus sinusetus, Neorhynacus combretis

Fam. Tarsonemidae
Polyphagotarsonemus latus
Fam. Cheyletidae

Cheyletus fortis

Fam. Ameroseiidae

Neocypholaelaps stridulans

Fam. Phytoseiidae

Fam. Acaridae

Tyrophagus putrescentiae.
REFERENCES

DAS, G. M. 1959a. Occurrence of red spider in relation to cultural practices in North-East India. Two Bud, 6 : 3-10.

DAS, G. M. 1963. Some important pests of tea (Notes on occurrence and control in North Eastern India). Two Bud, 10 : 4-8.

HANDBOOK: Plant mites of India

MOHANSUNDARAM, M. 1982g. Indian eriophyid studies III. *Acarologia*, 23(3): 249-263.

SITHANANTHAM, S. 1979. Distribution of the eriophyid mite Aceria sacchari in sugarcane. First All India Symp. Acarology, Bangalore. p. 22 (Abst.).

Somchoudhury, A. K. 1979. Seasonal fluctuation of population of *Amblyseius delhiensis*, a predator on eggs of cotton jassid. *First All India Symp. Acarology, Bangalore*, p. 50 (Abst.).

GLOSSARY

ACARI-ACTINOCHAETA: Acari with two types of setae: solenidion which lack actinochitin and distributed over distal segments of legs and palps and true seta having a core of actinochitin and hence, birefringent. Pedipalp lacks apotele (eg. Cryptostigmata, Astigmata and Prostigmata).

ACARI-ANACTINOCHAETA: Acari with setae lacking actinochitin and, hence, being optically isotropic. Pedipalp with apotele represented by paired tarsal claws or by one or two setae-like structures present at the inner basal angles of tarsus (eg. Mesostigmata, Metastigmata, Notostigmata and Tetrastigmata).

ACETABULAR CAVITY: It is a socket or cavity of the prosomatic exoskeleton in which the base of an appendage is articulated.

ADMEDIAN LINES: These are longitudinal lines present one on either side of median line on eriophyid cephalothoracic shield.

ADORAL SETA: The seta present on adoral region, ie. near the mouth.

AEDEAGUS: It refers to penis.

ANAL SHIELD: It is a sclerotized shield surrounding the anus and is provided with three setae (two para-anals and a post-anal).

ANISOTROPIC: It pertains to substance representing different physical properties according to directions. Anisotropic substances are birefringent.

APODEME: It is the internal sclerotized projection of the exoskeleton often in the shape of blade or ridge and serves as place for insertions of muscles.

APOPHYSIS: In arachnids, it refers to spine-line structure on the male chelicera or leg and usually has a sexual function.

APOTHELE: This is the terminal eudesmatic segment of the appendages generally possess two tendons and two articulation points. Cheliceral apotele consists of two movable jaws, leg apotele bears unges.

ARRHENOTOKY: This is a type of parthenogenesis which is characterised by productions of males from unfertilized eggs. Males are haploid while females are produced from fertilized eggs only.

ATRIUM: It is a slightly swollen structure at the junction of major and minor ducts in spermatheca of Mesostigmata. It may be varying in size and complexity.
Balooning: In Tetranychidae, this is a process of achieving dispersal. Females lower themselves from host plants with a fine silken thread and then are blown away by wind.

Basifemur: This is the proximal part of the division of arachnid femur and is separated from telofemur by a basifemoral ring.

Basis capituli: It is the sclerotized tube enclosing the chelicerae, its dorsal wall is formed by tectum, and its lateral and ventral walls are formed by pedipalpal coxae.

Camerostome: It is the cavity situated anteroventrally for receiving the gnathosoma. It is common in uropodid mites.

Cephalothorax: It refers to anterior segments of body in case of crustacea and arachnids which fuse to form this compact structure. It is not homologous with chelicerate prosoma.

Capitulum: It is same as gnathosoma.

Cervix: This is a heavily sclerotized part in spermatheca which may be contiguous or slightly removed from artium.

Chaeotaxy: This refers to arrangement, number and disposition of setae on body and appendages.

Chelicera: It is the first pair of appendage and is originally composed of three segments, a trochanter, a principal segment and apotele. In mite, the apotele and distal part of cheliceral segment form a pincer-like organ. It is movably articulated with cheliceral frame by cheliceral sheath. Chelicera, which is normally a prehensile organ, may be modified for performing specialised function.

Chelicera chelate: It refers to chelicera which is modified for prehensile function.

Cheliceral retainer: It refers to a spine-like structure curving centrally over chelicerae (eg. in Eriophyidae).

Cheliceral sheath: It is a membranous sheath covering the cheliceral styles in Eriophyoidea.

Coprophagous: It refers to dung feeding organisms.

Copulatory suckers: In male of many astigmatid mites, a pair of adhesive suckers present on either side of anal slit and a pair of small suckers on the fourth tarsus. They perform special copulatory function.

Corniculi: It is a paired horn-like structure associated with rostrum.
Crista metopica: It refers to a dorsal structure on the median portion of propodosoma with one or two pairs of sensillae on lateral expansion of scutum.

Deformation: It refers to disturbing or disfiguring the normal shape.

Dentate: It is same as toothed.

Deuterogyny: It refers to a species having two different kinds of females.

Deutogyne: It refers to two different structural types of females within a species. Many eriophyid species has this phenomena. It applies only to adults. This is also called the secondary female having no male counterpart. Deutogyne females differ from protogyne females in having reduced microtuberculation.

Deutonymph: It is the third stage in postembryonic developmental cycle of Acarina having 8 legs.

Diapause: It is the dormant stage when development and reproduction are arrested. Diapause may be obligatory or facultative and may be induced endogenously at a definite stage or it may be under the influence of photoperiod, temperature or nutrition.

Distitarsus: It is the distal subdivision of leg tarsus.

Dorsal shield: It is a sclerotized plate covering the dorsum of idiosoma and often bears a various number of setae.

Dorsocentral setae: It refers to one of the four longitudinal rows of setae present on dorsal shield. This row is the innermost row situated on mid-dorsal region.

Dorsum: This pertains to the uppermost surface of body or of an appendage.

Duplex setae: It refers to a pair of intimately associated setae present on dorsum of tarsus of first and second pairs of legs in many tetranychid mites.

Ectostrocarum: This is the outer layer of chitinostrocarum. It stains with acid dyes.

Empodial claw: In Actinedida, the empodium, which is more or less a soft structure, is modified into claw-like structure. It is homologous with central ungues (=curved organ).
Epiostratum: This refers to the superficial layer of cuticle covering the ectostratum. It is thin nonchitinous, colourless and elastic layer completely enveloping the mites.

Eupathidium: It is a modified seta of which the solid axis and root are pierced by canal. It is spine-like but never with pointed tip. It is known in Actinotrichida (eg Acaridida, oribatida).

External Humeral: It refers to the outermost pair of the two pairs of setae present on each side of body on anterior lateral edge of hysterosoma between legs II and III.

External Scapular: The outermost pair of the two pairs of setae across the posterior dorsal region of propodosoma.

Famulus: It is like a small pointed hollow seta and present on dorsal or antiaxial part of tarsus I and sometimes on tarsus II. The central canal sometimes has a continuation inside.

Feather Claw: This is a specialised type of claw present on tarsus of Eriophyoidea. It may be simple with single rachis having a number of rays on either side of it or the rachis may split into two branches each having rays on either side.

Functional Response: This pertains to the ability of the predator in consuming prey.

Genital Coverflap: It is flap-like structure covering the female genital opening in Eriophyoidea.

Genital Papilla: It refers to the endite of opisthosomatic appendage in the shape of an evaginable papilla. In many Actinotrichida, it is present on genital region. The number of genital papilla may vary in different life stages.

Genital Plate: This is a sclerotized shield covering genital opening in female. It may have anterior hyaline extension and the shield may or may not have setae.

Genital Setae: This refers to setae present on genital shield.

Gnathosoma: It refers to a division of body anterior to circumcapi­tular furrow and is attached to idiosoma. It bears two appendages, chelicerae and pedipalpi and constitutes the whole mouthparts.

Guard Seta: It refers to a fine seta associated with solenidion of tarsus I in Cheyletidae.
HALLER’S ORGAN: This is a chemosensory organ present on tarsus I in Metastigmata. It consists of a pit having specialised sensory bristles.

HEINZE’S MEDIUM: It is a mounting medium of polyvinyl alcohol, distilled water, lactic acid, glycerol, phenol and chloral hydrate. Both preserved and life specimens can be mounted in this medium directly.

HETEROMORPHIC: It refers to dissimilar forms.

HETEROMORPHIC LARVA: It refers to larva having dissimilar forms.

HOLODORSAL SHIELD: This is the complete fusion of podonotal (anterior region of idiosoma) and opisthdonotal (fusion of mesonotal and pygidial shields) shields in some Mesostigmata.

HOLOGASTRIC SHIELD: This is a compound shield formed by fusion of opisthogenital and anal shields.

HOLOVENTRAL SHIELD: This is compound shield formed by fusion of sternitigenital shield and ventrianal shields in males of some Mesostigmata.

HOLOMORPHIC LARVA: It refers to larvae of similar forms.

HOYER’S MEDIUM: It is a mounting medium made of chloral hydrate, gun arabic, distilled water and glycerol. Specimens both preserved and live can be mounted in this medium.

HYPOGNATHUM: It is constituted of subcheliceral plate and the pharyngeo-hypostomatic region of the gnathosoma.

HYPOPIAL STAGE: It refers to nonfeeding active or inactive stage between protonymph and tritonymph for withstanding unfavourable condition or for dispersal.

HYPOSTOME: This is a part of gnathosoma separating ventrally the coxae of the pedipalpi.

HYPOSTRACUM: It is the innermost layer (endocuticle). It is made of chitin and takes basic dyes.

HYSTEROSOMA: It refers to division of body posterior to sejugal furrow. It is composed of opisthosoma along with two posterior segments of podosoma.

IDIOSOMA: It refers to the division of body posterior to the circum-capitular furrow. Body minus gnathosoma is idiosoma.
Infracapitulum: It refers to inferior part of gnathosoma having lips and palpi and containing mouth and pharynx. It is comprised of the part of palpal segment and elements of precheliceral origin. The posterior dorsal border of infracapitulum is constituted by the line of attachment of cheliceral frame.

Internal Apodeme: It is same as internal genitalia.

Internal Genitalia: It is a structure present internally where the spermatheca appears to be attached in Eriophyoidea.

Internal Humeral: It refers to the innermost pair of the two pairs of setae present on each side of body anterolaterally of hysterosoma between legs I and II.

Internal Scapular: This is the innermost of the two pairs of setae present across the posterior dorsal region of propodosoma.

Interscutal Membrane: It refers to the smooth, striated or granular cuticle connecting the sclerotized shields.

Isotropic: It pertains to substance presenting same physical properties in all directions.

Kono’s Medium: It is a mounting medium made of chloral hydrate, glycerine, water and concentrated hydrochloric acid.

Labrum: It is lobe-like process representing the anterior extension of the dorsal wall of pharynx. It is of precheliceral origin.

Lateral: It refers to a structure placed posteriorly.

Lateral Integument: It is the sclerotized part present laterally around dorsal shield.

Larva: This is the first postembryonic stage in developmental cycle of Acari and is provided with 6 legs.

Macroseta: It refers to seta which is larger than others and normally present on leg segments (e.g. in Phytoseiidae, macrosetae normally present on genu, tibia and basitarsus of leg IV).

Major Duct: This is the relatively thickened duct in spermatheca through which the spermatheca opens outside and receives spermatophores.

Malformation: This refers to anomalous formation and is characterized by abnormal change in overall shape of body.

Median: It pertains to middle.
MEDIAN LINF: It refers to a single line present on eriophyid cephalothoracic shield and divides the shield into right and left halves.

MESAD: It refers to a structure placed near the middle.

METAPODAL SHIELD: It refers to one or more shields situated posterior to coxae IV. Sometimes they may be fused with peritrematal shield.

METAPODOSOMA: This refers to division of podosoma posterior to sejugal furrow. It is present in Actinotrichida.

METASTERNAL SHIELD: It refers to a pair of shields present posterior to sternal shield in some Mesostigmata. It often bears the fourth pair of sternal setae.

MICROTUBERCULATE STERNITES: This refers to sternites ornamented with minute tubercles. The latter may vary in shape, size and nature of arrangement in different species.

MINOR DUCT: This refers to an exceedingly fine duct in spermatheca through which the spermatophores lead to ovary.

MYCETORHAGOUS: This refers to species feeding on fungus.

NUMERICAL RESPONSE: This pertains to ability of predator in multiplication.

OPISTHONOTAL SHIELD: It is a shield formed by fusion of pygidial and mesonotal shields.

OPISTHOSOMA: This refers to division of body posterior to sejugal furrow. It extends from segment VII and upto or including anus.

OPTICALLY ISOTROPIC: It pertains to substance presenting same optical properties in all directions.

ORAL STYLET: In Eriophyoidea, it refers to curved stylet-like organ arising from upper anterior end of pharyngeal pump. It extends anteriorly upward and recurves downward.

PARAGENITAL setae: It refers to setae present ventrally above the genital orifice (e.g., Stigmacidae).

PARTHENOGENESIS: This is the production of embryo from female gamete without any genetic contribution form male gamet. Three types of parthenogenesis are found in mites: arrhenotoky, thelytoky and deuterotoky.
PATELLA: It refers to knee segment of palp and leg in Chelicerata. It is also termed genu in mites.

PEDIPALP: This is the second pair of preoral appendage. Typically it is sensory in function but may be modified for special type of function like clasping or anchoring. It is normally six-segmented but the number of segment may vary.

PEDIPALP COXAE: It refers to coxae of pedipalp.

PERITREMATAL PLATE: It is a plate supporting the peritreme.

PHARYNGEAL PUMP: In Eriophyoidea, a pump-like structure is present above and ahead of anterior coxae.

PHOTOTROPHIC: It is the response of the organism towards light.

PHYTOPHAGOUS: It refers to organisms feeding on plants.

PILUS DENTILIS: This is a fine seta-like structure on distal part of the fixed digit of chelicera. It may be well developed or may be lacking. It is a chemoreceptor.

PODOCEPHALIC CANAL: This refers to a paired canal generally present in Actinotrichida where several glands emit their secretions. The canal extends from base of leg I to dorsal surface of infracapitulum.

PODOMERES: These are the segments bearing legs.

PODONOTAL SHIELD: This indicates the part of dorsal shield covering anterior part of idiosoma.

PODOSOMA: It refers to anterior part of idiosoma bearing legs.

POLYPHAGOUS: This refers to those organisms feeding on various kinds of food.

POSTANAL-SETA: It is an unpaired seta present at anal region posterior to anus.

POSTOCULAR BODY: This is the imperfectly round structure situated on propodosomal plate in Stigmaeidae.

PRECHELICERAL SEGMENT: This refers to segments originally present anterior to chelicerae.

PRE-ANAL SETAE: These are the paired setae present at the anal region.

PRE-ANAL PORES: These are the pores present on ventrianal shield at preanal region.
PRETARSUS: This refers to adessmatic segment (i.e., segment of an appendage or an articulation between segments of an appendage) and is termed part of tarsus in several groups of mites. It is normally small with less sclerotization than remaining part of tarsus. It forms part of ambulacrum.

PROPODOSOMA: It is the anterior part of Actinotrichid podosoma in front of sejugal furrow.

PROTEGMEN: It is the part of stylophore occurring in front of peritreme.

PROTOGYN: This is considered as the primary type in many eriophyid mites comprising of both males and females. This primary type is capable of feeding and breeding throughout spring and summer and die at the beginning of winter.

PROTONYMPH: It is the second stage in postembryonic developmental cycle of Acarina having 8 legs as in adult.

PSEUDOSTIGMATA: This is a specialised sensory organ arising from a depression in the propodosomal plate or in region of this plate where it is lacking. The depression is known as pseudostigmata which may have sclerotized spiral framework. A maximum of two pairs may occur on propodosoma. In oribatid mites, it may be connected with air sacs for helping in respiration.

PTEROMORPHA: This is the wing-like projection from the antero-lateral edges of hysterosoma, ensheathing the base of hinder part of legs.

PULVILLUS: It is a soft, cushion-like, lobate, hyaline structure situated ventrally of and between the claws forming part of ambulacrum.

PUMP BRACES: These refer to two arms, which hold the pumps in front and rear in Eriophyoidea.

QUIESCENT STAGE: It is the inactive stage between two post embryonic stages. Often during this period the concerned stage remains covered with a waxy covering (e.g., Tetranychidae).

ROSTRUM: It is a beak-like structure of gnathosoma.

RUTELLA: This is the hypertrophid infracapitulum seta inserted laterally at the anterior extremity of the metapophysis.

SCHIZODORSAL SHIELD: This is a compound shield formed by fusion of podonotal and opisthonoatal shields in the median region only. The unfused regions are represented as lateral incisions.
SERRATE: It refers to saw-like structure.

SETA: This is a bristle-like outgrowth from hypodermal layer and is supported by nerve. It may be simple or modified. The root is lodged in a cavity of cuticle. Setae may have tactile or other specialised function.

SOLENIDION: It refers to a hollow phanere (often piliform, baculiform or claviform) which is situated on palps and legs in the way as seta with short or largely open root. They are thin-walled and, in Actinotrichida, they are without actinopilin. They are probably chemoreceptors.

Spermatophoral Process: It is a simple or complicated process arising from proximal half of the movable digit of chelicera in males of many mesostigmatid mites. It helps in transferring spermatophores from male genital opening into female genital opening.

STERNAL SHIELD: This is a shield formed by fusion of coxal shields. It often bears various number of setae.

STERNITIGENITAL SHIELD: It is a compound shield formed by fusion of sternal and genital shields.

STIGMATA: This is the external opening of respiratory system. It may be associated with peritreme. Its position is extremely variable.

STYLOPHORE: It is formed by fusion of the basal segments of chelicerae. It is a large bulbous structure and is movable along dorsal surface of rostrum. It is composed of two segments, a thicker basal segment and narrower distal segment.

SUBLATERAL SETAE: These are the additional longitudinal series of setae on dorsal shield of mesostigmatid mites and is restricted to opisthonotal region.

SUBMEDIAN LINE: It refers to one or more longitudinal lines on erio- phyid cephalothoracic shield on the either side and lateral to median line.

SUPRACOXAL SETAE: These are the setae associated with base of appendages like palp, leg I, leg II and more or less recognised by their place of insertion and shape.
TECTOSTRACUM: This refers to outermost layer of cuticle and probably represents the water proofing wax-cement layer of insects. It is thin and unpigmented.

TECTUM: It is the external prolongation of exoskeleton to form the wall of gnathosoma. It extends anteriorly to roof the rostrum and often its anterior margin may extend to form simple or complicated process.

TEGMENT: This is the part of stylophore in Cheyletidae lying proximal to peritreme.

TELOFEMUR: This refers to distal part of the division of femur in Actinotrichid mites.

TELOSOMAL TERGITE: These are the tergites of telosomal part of abdomen, ie. those present from the last ventral seta to the terminal lobes.

TENENT HAIRS: These are the special type of setae characterised by having knob or hook at the distal end and are present on tarsal appendage (eg. Tetranychidae).

THANOSOME: It is the anterior part of eriophyid abdomen from the rear shield edge to the third or last ventral seta.

THELYTOKY: It pertains to a type of parthenogenesis characterised by production of females (males absent or occurring very rarely). In this, the meosis is avoided and the diploid chromosome number is achieved by some other mechanism. Males, if present, do not mate.

THUMB-CLAW COMPLEX: It is a compound structure formed by tibial claw and tarsus of pedipalp and is adapted for holding. It is common in many families of Prostigmata (eg. Cheyletidae).

TIBIOTARSUS: This is the integration of tibial and tarsal segments into a compound structure.

TRICHOBOTHRIUM: It is a complex type of sensory organ consisting of a cavity (bothridium) and a variously shaped seta (bothridial seta). It is vibro or anemoreceptor organ.

TRITONYMPH: It refers to third nymphal stage, ie. stage after deutonymphal stage.
TRITOSTERNUM: It is the remnant of the sternite of 3rd segment and is present posterior to gnathosoma between or under coxae I. It consists of a rectangular basal part terminating in a pair of pilose laciniae. It functions in conjunction with hypognathal groove in fluid transport system during feeding.

TRUNCATE: It refers to squarish rather than rounded or pointed structure.

TOTAL RESPONSE: It refers to some total of numerical and functional responses.

TUBERCLE: It is a small, fixed, usually rounded structure arising from the body wall.

VENTRIANAL SHIELD: This is a compound shield formed by fusion of ventral and anal shields and is characterised by bearing preanal setae.

VENTROLATERAL SETAE: This refers to setae present on interscutal membrane on either side of ventrianal shield.

VESICLE: This is a thin walled sac-like structure forming a part of spermatheca for storage of spermatophores.

URSTIGMA: This is a variously shaped special organ present on coxae I or II or between them in oribatid mites and also in many Actinida and Acaridida.
INDEX OF SCIENTIFIC NAMES

<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacarus</td>
<td>247</td>
</tr>
<tr>
<td>Aberoptinae</td>
<td>161, 280</td>
</tr>
<tr>
<td>aboharenseis</td>
<td>139, 140</td>
</tr>
<tr>
<td>Abrolophus</td>
<td>320, 322</td>
</tr>
<tr>
<td>abutilona, Aculops</td>
<td>250, 251</td>
</tr>
<tr>
<td>acaciae, Eriophyes</td>
<td>206, 207</td>
</tr>
<tr>
<td>acaciae, Paraprornatus</td>
<td>309</td>
</tr>
<tr>
<td>acacii, Tenuipalpus</td>
<td>140, 141</td>
</tr>
<tr>
<td>Acalitus</td>
<td>177</td>
</tr>
<tr>
<td>acanthea, Aculops</td>
<td>250, 251</td>
</tr>
<tr>
<td>Acaphylla</td>
<td>218, 219, 338, 342</td>
</tr>
<tr>
<td>Acaphyllisa</td>
<td>219</td>
</tr>
<tr>
<td>Acari</td>
<td>32</td>
</tr>
<tr>
<td>Acaridae</td>
<td>407</td>
</tr>
<tr>
<td>Acarina</td>
<td>9</td>
</tr>
<tr>
<td>Acari-Actinochaeta</td>
<td>32</td>
</tr>
<tr>
<td>Acari-Anactinochaeta</td>
<td>32</td>
</tr>
<tr>
<td>Acari-Acariiformes</td>
<td>32, 33</td>
</tr>
<tr>
<td>Acari-Parastichiformes</td>
<td>32, 33</td>
</tr>
<tr>
<td>Acariiformes</td>
<td>32</td>
</tr>
<tr>
<td>Acarus</td>
<td>56, 106</td>
</tr>
<tr>
<td>Aceria</td>
<td>177, 180</td>
</tr>
<tr>
<td>aceriae, Amblyseius</td>
<td>351</td>
</tr>
<tr>
<td>Actinochaeta</td>
<td>11, 13, 14</td>
</tr>
<tr>
<td>Aculops</td>
<td>247, 250</td>
</tr>
<tr>
<td>Aculus</td>
<td>247, 255</td>
</tr>
<tr>
<td>aculus, Bakerina</td>
<td>69</td>
</tr>
<tr>
<td>Adalia</td>
<td>108</td>
</tr>
<tr>
<td>adhatodae, Amblyseius</td>
<td>336, 338</td>
</tr>
<tr>
<td>adhatodae, Anthocoptes</td>
<td>259</td>
</tr>
<tr>
<td>Aegyptobia</td>
<td>121</td>
</tr>
<tr>
<td>Aelothripidae</td>
<td>30</td>
</tr>
<tr>
<td>Aelothrips</td>
<td>31</td>
</tr>
<tr>
<td>aerialis, Amblyseius</td>
<td>336</td>
</tr>
<tr>
<td>aerialis, Amblyseiptosis</td>
<td>336</td>
</tr>
<tr>
<td>aerialis, Typhlodromus</td>
<td>336</td>
</tr>
<tr>
<td>affinis, Bdellodes</td>
<td>313</td>
</tr>
<tr>
<td>africana, Lorryia</td>
<td>309</td>
</tr>
<tr>
<td>africanaus, Lorryia</td>
<td>309</td>
</tr>
<tr>
<td>africanaus, Eutetranychus</td>
<td>62</td>
</tr>
<tr>
<td>afrindicus, Tetranychus</td>
<td>102, 104</td>
</tr>
<tr>
<td>agallochae, Aceria</td>
<td>183, 205</td>
</tr>
<tr>
<td>Agistemus</td>
<td>67, 88, 303</td>
</tr>
<tr>
<td>Akari</td>
<td>2</td>
</tr>
<tr>
<td>alangii, Dipilomiopus</td>
<td>284</td>
</tr>
<tr>
<td>alangii, Eriophyes</td>
<td>207, 212</td>
</tr>
<tr>
<td>alangii, Phytoptus</td>
<td>212</td>
</tr>
<tr>
<td>albizziae, Paratetra</td>
<td>270, 271</td>
</tr>
<tr>
<td>albizziae, Phytoptalpus</td>
<td>135</td>
</tr>
<tr>
<td>aliyamagarenseis, Phyllocoptes</td>
<td>240</td>
</tr>
<tr>
<td>aliyarenseis, Procalacaros</td>
<td>228</td>
</tr>
<tr>
<td>alstoniae, Amblyseius</td>
<td>67, 108, 114, 344</td>
</tr>
<tr>
<td>Amblydromella</td>
<td>390</td>
</tr>
<tr>
<td>Amblyseiinae</td>
<td>333</td>
</tr>
<tr>
<td>Amblyseiptosis</td>
<td>336</td>
</tr>
<tr>
<td>Amblyseius</td>
<td>333</td>
</tr>
<tr>
<td>Amblyseius (Amblyseius)</td>
<td>335</td>
</tr>
<tr>
<td>Ameroseiidae</td>
<td>37, 326</td>
</tr>
<tr>
<td>amygdalaeae, Tenuipalpus</td>
<td>140, 141</td>
</tr>
<tr>
<td>anacardi, Abacarus</td>
<td>247, 248</td>
</tr>
<tr>
<td>Anactinochaeta</td>
<td>11</td>
</tr>
<tr>
<td>Anchiphotoptus</td>
<td>160</td>
</tr>
<tr>
<td>andamanicus, Iphiseius</td>
<td>374, 375</td>
</tr>
<tr>
<td>andropogoni, Schizotetranychus</td>
<td>96, 354, 355</td>
</tr>
<tr>
<td>andropogoni, Tetranychus</td>
<td>96</td>
</tr>
<tr>
<td>angloensis, Tetranychus</td>
<td>102, 103</td>
</tr>
<tr>
<td>angulatus, Blepharidopterus</td>
<td>31</td>
</tr>
<tr>
<td>anneckeii, Eutetranychus</td>
<td>62, 63</td>
</tr>
<tr>
<td>antedesmae, Calepitirlmerus</td>
<td>234</td>
</tr>
<tr>
<td>antidotalae, Aceria</td>
<td>183, 185</td>
</tr>
<tr>
<td>antidotalae, Eriophyes</td>
<td>185</td>
</tr>
<tr>
<td>antiquorae, Proneoteognotonus</td>
<td>272</td>
</tr>
</tbody>
</table>
Anthocoptes 246, 259
Anthocoridae 30, 31
Anthocoris 31, 67
Anthopoda 162, 163
Anychus 62, 66
Aponychus 45, 57
apterus, Nabis 31
Arachnida 30, 32
araliae, Calacarus 223
arecae, Amblyseius 365, 366
Argiopidae 30, 31
arjunalis, Abacarus 248
Arthrocnodax 31
artocarpea, Diptilomiopus 284
Arthropoda 32
Ascidae 28, 329
asiaticae, Abacarus 248
assamensis, Amblyseius 350, 351
assamensis, Typhlodromus 351
assamica, Diptilomiopus 284, 285
asperaevagrans, Phyllocopites 240, 241
Asperoseius 334, 343
asperrimae, Calepitrimerus 233, 234
asperus, Aculus 255, 256
Astigmata 9, 11, 13, 15, 18, 21, 32, 33, 38
atturensis, Aculus 255
australis, Brevipalpus 125
avellanae, Phytoptus 180, 181
avicenniae, Kelifytophylax 210
ayyanari, Anthocoptes 259, 260
azadirachtae, Calepitrimerus 233, 234
azimae, Epitricher 237
Bacillus 32
baghensis, Aponychus 59
bakeri, Iphiseius 374, 375
bakeri, Typhlodromus 391
Bakeriella 246, 262
Bakerina 45, 69
balanites, Aceria 182, 190
balanites, Eriophyes 190
baltazari, Schizotetranychus 22, 96, 97
bambusae, Aceria 182, 190
bambusaes, Cunaxa 315
bambusaes, Tegolophus 273, 274
bambusicolus, Typhlodromus 391, 392
bancroftii, Steneotarsonemus 295
bandipurensis, Phytoseius 382
barlariae, Aceria 185, 191
bassius, Tegonotus 229
bauhiniae, Neometaculus 269
bauhiniae, Tetra 278
Bdellidae 19, 28, 30, 35, 311
Bdelloidea 35
Bdellodes 313
bengalenis, Colopodacous 164, 165
bengalenis, Diptilomiopus 284, 285
bengalenis, Tegonotus 229, 230
betonicae, Aculops 250, 251
bhadarakaliensis, Amblyseius 358
biharenis, Oligonychus 81
biharenis, Paratetanychus 81
bilobatus, Eutetranychus 62, 63
bindrai, Amblyseius 354
biamaculatus, Tetranychus 106
Blattisocidae 28, 37
Blephariidopterus 31
boerhaeviae, Aculops 251, 252
boraginae, Aceria 184, 188
borasis, Mackiella 159
bredini, Eutetranychus 62, 64
Brethria 390, 396
Brevipalpus 121, 123, 346, 362, 396, 400
Zoological Survey of India
HANDBOOK: Plant mites of India

breyniae, Phytoptus 212, 213
brionesae, Calacarus 222, 224
broodryki, Eotetranycus 71
Bryobia 17, 44, 45
Bryobiella 44, 48
Bryobiini 44, 45
Bryobiinae 44, 45

C

cajani, Aceria 27, 182, 191
cajani, Schizotetranycus 96, 98
Calacarus 222, 338
Calepitrimerus 233
californicus, Brevipalpus 27, 123, 125, 396

californicus, Tenuipalpus 125
Caligonus 132
Callidosomatinae 320
calotropi, Tegolophus 273, 274
camerae, Diptilomiopus 284, 285
canthii, Eriophyes 213
canthii, Phytoptus 211, 213
capsica, Calacarus 222, 224
cardiavagrans, Tegonotus 229, 230
caricae, Eutetranycus 62, 64
carinatus, Calacarus 222, 223, 338, 342
carinatus, Phytoptus 213
carissae, Phytoptus 212, 213
carnea, Chrysopa 31
cassiae, Aculus 255, 256
cassiae, Vasates 244, 245
casuarinae, Eriophyes 207, 208, 212
casuarinae, Phytoptus 212, 214
caudatus, Tenuipalpus 139, 145
Cecidomyidae 30, 31
Cecidophyinae 161, 173
Cenopalpus 132
cernua, Eriophyes 208
chandramohani, Epitrimerus 237

channabasavanni, Amblyseius 28, 336, 337
channabasavannae, Calacarus, 222, 225
channabasavanni, Typhlodromus 400
charui, Amblyseius 372
chebulae, Ectomerus 174
Cheiracus 290
Chelaropsis 299
Cheletogenes 28, 299, 300
Chelicera 32
cheriani, Eriophyes 207, 208
Cheyletidae 11, 13, 21, 28, 30, 36, 297
Cheyletoida 36
Cheyletus 67, 200, 299, 300
chilensis, Brevipalpus 125, 126
chrysanthemi, Paraphytoptus 210
chrysanthemi, Typhlodromus 391, 392

Chrysopa 31, 108
Chrysopidae 30, 31

cinnabarinus, Acarus 106
cinnabarinus, Tetranychus 27, 103, 106, 346, 347, 349, 371, 381
cinnamomeae, Colopodacus 164, 166
Cisaberoptus 280
cissampelosa, Tenuipalpus 139, 142
citri, Eutetranycus 62, 64
citri, Panonychus 92, 329, 337, 339
citri, Tenuipalponychus 69
citri, Tetranychus 92
citrifolii, Calacarus 222, 225
Cladosporium 112
Clavidromus 390, 398
clerodendronis, Aceria 185, 192
clerodendris, Epicicidophyes 174
coccineae, Amblyseius 344, 345
Coccinellidae 30, 31
coccusocius. Amblyseius 344, 345
coffeae, *Acarus* 83
coffeae, *Oligonychus* 81, 83, 393
coimbatorensis, *Tegonotus* 229, 231
coimbatorensis, *Tenuipalpus* 139, 149
colei, *Aculus* 255, 256
Colomerus 173, 180
Colopodacus 162, 164
Combretis, *Neorhynacus* 289
Combretus, *Colopodacus* 164, 166
commelinae, *Aceria* 183, 187
communis, *Typhlodromus* 404, 405
confusus, *Typhlodromus* 396
convolvuli, *Oxypleurites* 231
convolvuli, *Tegonotus* 229, 231
Conyopterygidae 30, 31
cordiae, *Aceria* 185, 192
cordiae, *Calepitrimerus* 234, 235
cordis, *Tegolophus* 273, 274
corniger, *Phytoseius* 382, 383
corpusae, *Aponychus* 59
Cosella 163, 167
crassus, *Tenuipalpus* 138, 142
crinits, *Phytoseius* 381, 383
crotolariae, *Aceria* 183, 192
crotalariae, *Amblyseius* 366
Cryptostigmata 13, 15, 17, 18, 21, 32, 34, 38

Cryptothrips 31
cucumeris, *Amblyseius* 67, 38
cucurbitae, *Brevipalpus* 123, 127
cucurbitae, *Tetranychus* 113
Cunaxa 67, 315
Cunaxidae 28, 30, 35, 315
Cunaxoides 315, 317
cyphotogonis, *Eriophyes* 207, 209
cynodonae, *Amblyseius* 350, 351
cynodonae, *Cunaxa* 315, 3161
cyperi, *Phytoptus* 211, 214
cyperi, *Eriophyes* 214

dactylonae, *Aceria* 181, 189
dalbergiae, *Aceria* 185, 193
darjeelingensis, *Indotegolophus* 263
datura, *Amblyseius* 371
decimpunctata, *Adalia* 108
deleoni, *Amblyseius* 335, 338
deleoni, *Brevipalpus* 123, 127
delhiensis, *Abacarus* 248, 249
delhiensis, *Abrolophus* 322
delhiensis, *Aceria* 182, 185
delhiensis, *Amblyseius* 67, 86, 88, 344, 346
delhiensis, *Eriophyes* 185
delhiensis, *Sphaerolophus* 321, 322
delhiensis, *Terminalichus* 152
delhiensis, *Tuckerella* 116, 118
Dendroptus 296
deviarensis, *Anthopoda* 163
dhodabattaensis, *Vasates* 244, 246
dhooriai, *Amblyseius* 351, 352
dichrostachyia, *Aceria* 181, 186
dichrostachyia, *Eriophyes* 186
dichotomae, *Aceria* 182, 188
dimensus, *Tenuipalpus* 140, 142
Diptilomiopinae 280, 283
Diptilomiopus 283
Diptilorrhynacus 283, 287
Disella 163
Dictymacus 247, 262
divergentis, *Amblydromella* 393
divergentis, *Typhlodromus* 67, 391, 393
Dolichotetranychus 121, 133
donacis, *Aceria* 182, 189

echinopus, *Rhizoglyphus* 407
echinopus, *Tyrophagus* 407
Ectomerus 173, 174
eharai, Bryobia 45, 47
eharai, Typhlodromus 200, 391, 393
elephantae, Paratetra 270, 271
eletariae, Phytoptus 212, 214
elongatus, Pronematus 67, 173, 308
Endomychidae 30
Entomophthora 32
Epicecidophyes 173, 174
Epitrimerus 233, 237
equatorius, Tetranychus 113
eragrasae, Aceria 182, 189
Eriophyes 177, 180, 181, 206
Eriophyidae 11, 17, 19, 26, 34, 155, 160
Eriophyinae 161, 177
Eriophyoidea 34
eruditus, Cheyletus 67
Erythraeidae 18, 28, 34, 36, 320
Erythraeoida 36
Erythraeinae 320, 325
Erythraeus 325
erythreneis, Aceria 183, 186
erythrensis, Eriophyes 186
erythrinae, Aceria 183, 193
essigi, Brevipalpus 123, 128
eucalypti, Amblyseius 344, 346
eucalypticus, Amblyseius 361
eucalypticus, Typhlodromalus 361
eugeniae, Colopodacus 164, 166
eugenifoliae, Floracarus 169
euigeniae, Amblyseius 366, 367
euphorbiae, Brevipalpus 125, 127
euphorbiae, Thamnacrus 279
Eutetranychini 44, 57
Euselus 335, 343
Eutetranychus 45, 61, 308, 309, 339, 344, 346, 347
excoecaria, Aculops 251, 252
extensae, Aculops 250, 252
F
fallacis, Amblyseius 28, 350, 352
fallacis, Iphidius 352
faresianus, Tenuipalpus 140, 142
fastigatus, Neotegonotus 269
Fetiella 110
fici, Anthopoda 163
fici, Melichares 330
fici, Tenuipalpus 140, 143
fici, Tetranychus 73
ficifoliae, Rhynchaphytoptus 281
ficivagratis, Phylocoptes 240
ficivoros, Eriophyes 214
ficivoros, Phytoptus 211, 214
ficus, Aceria 27, 183, 193
ficus, Eriophyes 193
ficius, Tegolophus 273, 276
fijiensis, Tetranychus 102, 108, 337
finlandicus, Amblyseius 67, 88, 344, 347
flabelliferae, Notostrix 238
flaviceps, Oligota 31
flaviceps, Parasemidalis 31
fleschneri, Agistemus 303, 304
fleschneri, Cosella 167, 168
fleschneri, Pronematus 308
fleschneri, Typhlodromus 67, 391, 393
Floracarus 162, 169
floridanus, Dolichotetranychus 133
floridanus, Stigmaeus 133
fluvalis, Schizotetranychus 96, 99
formosanus, Iphiseius 376
formosanus, Paraamblyseius 375, 376
fortis, Cheyletus 200, 301
foveolatae, Metaculus 264, 265
fragariae, Paraamblyseius 375, 377
fraterculus, Amblyseius 350, 354
fremonti, Eutetranychus 70, 73
frosti, Eotetranychus 71, 72
frosti, Tetranychus 72

G

Gammaphytoptus 173, 176
garhwalicus, Typhlodromus 400, 405
Garhwalicus 406
gastrotrichus, Aceria 183, 194
gastrotrichus, Eriophyes 194
gelonis, Tegolophus 273, 274
Geocoris 31
Georgiobia 44, 49
ghaii, Tenuipalpus 139, 149
giganticus, Anchiphytoptus 160
giganticus, Leptus 320, 325
gigas, Sphaerolophus 321, 322
gilvifrons, Stethorus 31, 86, 108
globulus, Hyboderus 281
glycosmisae, Phytopus 212, 215
glycosmis, Anthocoptes 259, 260
gmelinae, Tegolophus 273, 276
gmelicus, Tegolophus 273, 276
Gnorimoschema 354
Gnoriminae 406
goaensis, Abacarus 248, 249
gopali, Typhlodromus 391, 394
gossypii, Abacarus 248, 249
gossypii, Acalitus 178
gracilis, Scymnus 28, 67, 86, 88
granati, Aceria 184, 194
granati, Phytopus 194
granati, Tenuipalpus 139, 143
guajavae, Amblyseius 366, 367
gynalaxtae, Colopodacus 164, 167

H

hadii, Typhlodromus 400
harti, Neophylophobius 55
harti, Petrobius 55
hastaligni, Tenuipalpus 139, 144

havu, Amblyseius 361
Hemerobidae 30, 31
Hemerobius 31
Hemitarsonemus 292
herbicola, Amblyseius 221, 224
hibisci, Acalitus 178, 179
himalayensis, Garhwalicus 406
himalayensis, Paratetra 270, 271
himalayensis, Typhlodromus 391, 394
hindustanicus, Schizotetranychus 96, 99
hindustanicus, Tetranychus 99
hirsti, Eotetranychus 71, 73
Hirsutella 32
holopteleae, Aceria 184, 195
homalii, Typhlodromus 391, 394
Hoploscirrus 313
humulinus, Hemerobius 31
Hyboderus 281
hypogeae, Tetranychus 102, 112
Hystrichonychini 44, 49
hystrich, Abacarus 27

I

ichnocarpae, Neocosella 171
ichnocarpasia, Cosella 167, 168
immigrans, Phyllocoptes 240, 241
indiae, Acaphylla 220
indica, Epicecidophyes 174, 175
indica, Raoiella 137, 337, 371
indica, Tegolophus 273, 276
indica, Tuckerella 117
indicae, Phyllocoptes 240, 241
indicus, Acculus 255, 257
indicus, Amblyseius 86, 350, 354
indicus, Neotegeonotus 270
indicus, Oligonychus 81, 84, 346
indicus, Paratetranychus 84
indicus, Phytoseius 387
Handbook: Plant Mites of India

indicus, Scolothrips 67, 86, 112
indicus, Tenuipalpus 140, 144
indicus, Typhlodromus 354
Indocunaxa 315, 318
Indodromus 379
Indonotalox 233, 238
Indoseius 333, 373
Indoseius 327, 373
Indostigmaeus 303, 305
Indotegolophus 247, 263
infectoriae, Aceria 183, 195
insidiosus, Eriophyes 27
insidiosus, Orius 31
integri foliae, Ditrymacus 263
integri foliavagrans, Paratetra 270, 271
integri foliae, Ditrymacus 263
integri foliae, Diptilomiopus 284, 286
intermedius, Phytoseius 381, 385
Iphiseius 333, 374
ipomoeae, Amblyseius 336, 338
irregularis, Eotetranychus 71, 74
iseilemae, Oligonychus 81, 86
iseilemae, Paratetranychus 86
ixorae, Tenuipalpus 140, 144

J
jambolensis, Tegonotus 229, 231
jarooa, Amblyseius 361, 362
jasmini, Aceria 184, 196, 261
jasmini, Calacarus 222, 225
jaunpurensis, Phytoseius 382, 385
Jauravia 137
jevremovici, Diptilomiopus 284, 286
jobneri, Mesobryobia 51
jujuba, Phytoseius 382, 385
justiceae, Aceria 184, 196

K
kalimpongensis, Amblyseius 361, 362
kalyanii, Tegolophus 273, 277
kallarensis, Neomesaloax 268
kallarensis, Nothopoda 172
kankitius, Eotetranychus 71, 75
kanzawai, Tetranychus 103, 104
kapuri, Phytoseius 379, 380
karachiensis, Brevipalpus 123, 131
karachiensis, Terminalichus 151, 152
karnatakaensis, Phytophtus 212, 216
kashmiricus, Typhlodromus 400
Kaiferana 246, 264
Keiferella 264
keiferi, Calacarus 223, 226
keiferi, Ditrymacus 263
Keiferophyes 177, 210
kenyae, Cisaberoptus 280
knorri, Diptilomiopus 283, 287
kodaikanalensis, Amblyseius 344, 347
kodaikanalensis, Typhlodromus 391, 395
kolengii, Aculus 255, 258
krichneri, Tarsonemus 296
kulini, Amblyseius 336, 338
kumaonensis, Amblyseius 360
kumaonensis, Proprioseius 360
kumaonensis, Tuckerella 116, 118
kumari, Aculops 250, 253

L
lablai, Amblyseius 361, 363
ladakhensis, Eotetranychus 71, 78
ladakhensis, Eriophyes 206, 209
lalbaghensis, Tenuipalpus 138, 145
labilatiflorae, Phytophtus 180
lalii, Aponychus 59, 60
laminasetae, Tenuipalpus 139, 149
lanneansis, Tetra 278, 279
lantaneae, Phytopus 211, 216
largoensis, Amblyseiopsis 339
largoensis, Amblyseius 28, 336, 338, 339
Larvacarus 121, 133
Lasioseius 329, 330
latens, Acarus 56
latens, Petrobia 56, 331, 354
latus, Polyphagotarsonemus 292
laurae, Phytopus 212, 216
leguminae, Aculops 250, 253
Leptinae 320, 324
Leptus 324
leucadis, Calepitrimerus 233, 235
lewisi, Brevipalpus 123, 128
Linyphiidae 30, 31
litchii, Aceria 26, 183, 196
litsea, Aceria 184, 186
litzeosis, Gammaphytoptus 176
lombardinii, Tetranychus 103, 109
londaensis, Metaculus 264, 265
longicornis, Scolothrips 31
longispinosus, Amblyseius 28, 350, 354
longispinosus, Typhlodromus 354
Lorryia 306, 309
ludeni, Tetranychus 27, 102, 110, 355, 371, 372
ludhianaensis, Tenuipalpus 140, 145
lula, Amblyseius 355
Lupotarsonemus 292, 296
lycopersici, Aceria 184, 197
lycopersici, Phytopus 197
Lygaeidae 30, 31

M
macfarlanei, Raoiella 137, 138
macfarlanei, Tetranychus 102, 109
Mackiella 159
macropilis, Phytoseius 382, 386
macrostosus, Phytoseius 382, 386
mali, Zetzellia 28
malligai, Phylocoptera 242, 243
malligai, Tenuipalpus 139, 150
malloticola, Aceria 184, 198
malloticola, Eriophyes 198
mallotivagrans, Neoeocyphus 176
mallotus, Neophantacrus 158
malvae, Calacarus 222, 226
mandensis, Eotetranychus 71, 75
mangiferae, Aceria 27, 28, 182, 198
mangiferae, Amblyseius 366, 367
mangiferae, Metaculus 264, 265
mangiferae, Neocalacarus 267
mangiferae, Tegonotus 229, 232
mangiferae, Vasates 265
mangiferus, Oligonychus 22, 81, 87, 345
mangiferus, Paratetranychus 87
manipurensis, Amblyseius 361, 364
manipurensis, Typhlodromus 398, 400
manishi, Oligonychus 81, 91
mansonii, Schizotetranychus 96, 99
massanjoris, Calepitrimerus 234, 235
maximae, Eutetranychus 61, 65
mckenziei, Aculus 255, 257
mckenziei, Vasates 257
mcmurtryi, Amblyseius 336, 340
medicaginis, Aceria 183, 200
medicaginis, Eriophyes 200
Mediolata 88
meerutensis, Indodromus 379
meghalayensis, Amblyseius 365, 368
melaleucus, Aelothrips 31
Melichares 329
meliosmae, Acalitus 178, 179
menoni, Aculus 255, 257
Mesobryobia 44, 51
Mesostigmata 9, 11, 13, 14, 17, 18, 21, 32, 33, 37, 326
Metaculus 246, 264
Metastigmata 18, 32
meyerae, Phytoseius 382, 386
micheli, Tenuipalpus 139, 146
microrostrus, Calacarus 223, 226
millingtoniae, Calacarus 222, 227
minutus, Phytoseius 379, 381
Miridae 30
mitragynae, Neocolopodacus 172
mixtus, Phytoseius 382, 387
Monoceronychus 44, 51
Monotrimacus 247, 267
moorei, Chelacaropsis 299
mori, Aceria 183, 200
mori, Eriophyes 200
mori, Tetranychus 78
mori, Typhlodromus 391, 395
morinda, Phytoseius 212, 216
moringae, Aculus 255, 258
multidentatus, Aculonychus 28, 108, 356
multidentatus, Paraphytoseius 356
multidigituli, Eotetranychus 94
multidigituli, Platytetranychus 94
multidigituli, Tetranychus 94
mumai, Paramblyseius 375, 377
mumai, Platytetranychus 378
mumulus, Aegypia 122
murrayae, Paratetra 270, 272
musculus, Anthocoecus 31
mustus, Tenuipalpus 139, 146
myabunderensis, Cunaxa 315, 316
mysorensis, Caleptirmerus 233, 236

N
Nabidae 30, 31
Nabis 31
nagai, Eutetranychus 62, 65
Nalepallidae 155
Nalepallinae 158
nandiensis, Aceria 184, 200
narayanani, Amblyseius 358
neglecta, Phytoseius 382, 387
Neocalanus 247, 267
neoaedonicus, Tetranychus 102, 113, 381
Neocecidophyes 173, 176
neococcineae, Amblyseius 344, 348
Neocolopodacus 162, 172
neocorniger, Phytoseius 382, 387
neocrotalariae, Amblyseius 366, 369
neocrotalariae, Typhlodromips 369
Neocosella 162, 171
Neocunaxoides 315, 318
Neocypholaelaps 327
Neodialox 283, 289
Neodiptilomiopus 283, 287
neolitsea, Keiferana 264
Neomesalox 246, 268
Neometacus 246, 269
neoperplexus, Eotetranychus 71, 79
Neopetrobia 44, 53
Neophantacrus 158
Neophytopus 177, 211
Neophylllobius 55
neorhenanus, Typhlodromus 404, 405
Neorhynac 283, 288
neorykei, Amblyseius 336, 340
Neoseiulus 335, 350
neosoleiger, Typhlodromus 402
Neotegonotus 247, 269
Neotetraphus 100
neotransvaalensis, Typhlodromus 398
nerii, Aceria 184, 201
nerii, Tegolophus 273, 277
nesbitti, Typhlodromus 403
nicobarensis, Amblyseius 358
nicobarensis, Cunaxoides 317
nigripes, Cryptothrips 31
niphocladae, Aculops 250, 253
Notopoda 162, 172
Notopodinae 161, 162
Notostigmata 32
Notostrix 233, 238
nucifera, Amblyseius 343

O

obovatus, Brevipalpus 124, 129
Obuloides 121, 134
occidentalis, Arthrocnidae 31
ocimae, Neophytoptus 211
ocimis, Bakeriella 262
odayarae, Phyllocoptura 242, 243
odinae, Phyllocoptura 242, 243
officinaru, Amblyseius 365, 369
oleivora, Phyllocoptura 27, 242, 244
oleivorus, Phyllocoptura 242, 244
oleivorus, Typhlodromus 244
Oligonychus 22, 45, 80, 345, 395
Oligota 31, 110
operculella, Gnorimoschema 354
Opilioacariformes 32
Ophionyxus 17
orchidarum, Tenuipalpus 143
ordinae, Phyllocoptura 242, 243
oregonensis, Pentamerismus 135
Oribatulidae 409
orientalis, Amblyseius 336, 340
orientalis, Eutetranychus 62, 66, 308, 309, 344, 346, 347
Orientiseius 390, 398
orissaensis, Bakerina 69, 70
orissaensis, Typhlodromus 400, 401
Orius 31, 86
ornatus, Cheletogenes 300
oryzae, Oligonychus 81, 88
oryzae, Paratetranychus 88

Zoological Survey of India

ovalis, Amblyseius 28, 224, 343, 348
ovalis, Typhlodromus 348
oviformes, Oligopterus 31, 112
oviformes, Somantum 108
Oxyleurites 231

P

calmyrae, Neodialox 289
camelae, Eotetranychus 71, 76
panajiensis, Terminalichus 151, 152
Panonychus 31, 45, 92, 337, 339
papayae, Tetranychus 103, 105
paraerariae, Amblyseius 336, 342
Paraamphibolus 333, 375
Paraerythraeus 325, 326
Paracoccidae 218, 219
Paraphytoptus 177, 210
Phyllocopterae 334, 356
Pararoseius 306, 309
Paraseiulus 390, 402
Paratetranychus 81
parindiae, Acaphyllidae 219
Parasimidalis 31
Parasitiformes 32
Paratetra 246, 270
Paratetranychus 81
parcepunctatus, Stethorus 137
parviflorae, Tegonotus 229, 232
pasupalvus, Amblyseius 351, 355
pauperculus, Stethorus 31, 67, 86,
112
pavoniae, Anthocoptes 259, 260
peltatus, Amblyseius 360
Pennaseius 379
Pentamerismus 121, 135
perla, Chrysopa 31
pernicis, Tenuipalpus 139, 146
perplexus, Tetranychus 79
Petrobia 44, 56, 331
Petrobiini 44, 55
HANDBOOK: Plant mites of India

Phaseoli, Eutetranychus 61, 67
Phlaeothripidae 30
Phoenicis, Brevipalpus 123, 130, 346, 400
Phyllocopes 232, 239
Phyllodictinae 162, 168
Phyllodictinae 158, 160
Phytotriplalus 121, 133, 135
Phytophthoras 153, 177, 180, 181, 211
Phytoscutella 335, 358
Phytoseiidae 21, 22, 27, 28, 30, 37, 331
Phytoseiinae 333, 379
Phytoseini 331
Phytoseius 379
Phytoseius (Phytoseius) 381
Picipes, Stethorus 31
Pittosporae, Aculops 251, 254
Platysieilla 333, 377
Platytenranychus 22, 45, 94
Plumosus, Erythraeus 325
Pulchur, Brevipalpus 123, 132
Pulchur, Caligonus 132
Pulchur, Tenuipalpus 138, 150
Pulchur, Phylloseius 382, 385, 388
Punjabensis, Tenuipalpus 139, 147
Punctum, Stethorus 31
Punicae, Oligonychus 81, 89
Punicae, Paratetranychus 89
Punicae, Tenuipalpus 139, 147
Punicae, Tenuipalpus 89
Punicae, Tenuipalpus 138, 150
Pygmaea, Oligola 31
Pyrusae, Tenuipalpus 140, 148
Quadrangulari, Monotrimacus 267
Quadrirsetosus, Lasioseius 330
Quadrirsetosus, Tenuipalpus 138, 148
Quisqualis, Calacarus 223, 227
Rachaelae, Phytoselus 382, 388
Rajamohani, Oboloides 134
Rajendrani, Neorhynacus 289
Rajouriensis, Eutetranychus 71, 77
Randi, Lupotarsonemus 296
randsi, Tarsonemus 296
rangatensis, Amblyseius 350, 356
rangatensis, Indostigmaeus 305
Raoiella 121, 126, 371
Raphignathidae 36
reticulata, Acalitus 178, 179
rhabdus, Amblyseius 221, 224, 336, 342
rhenanus, Typhlodromus 391, 396
Rhizoglyphus 407
rhododendronis, Amblyseius 343, 349
rhododendronis, Typhlodromus 391, 396
Rhyncaphytoptidae 155, 280
Rhyncaphytoptinae 280, 281
Rhyncaphytoptus 281
Rhyncolophus 320
ribis, Phytoptus 27
ricini, Anychus 66
ricini, Indoseiulus 28, 373
ricini, Indoseius 373
rickeri, Typhlodromus 28, 400, 402
ripicola, Abrolophus 322, 324
rosae, Phytoptus 212, 217
rohila, Eotetranychus 70, 76
roseus, Phytoseius 382, 388
roshanlali, Typhlodromus 396, 397
rubifoliae, Eriophyes 217
rubifoliae, Phytoptus 211, 217
ruelliae, Aceria 185, 202
rugosus, Phytoseius 389
rugulosus, Brevipalpus 123, 132
rykei, Amblyseius 372

S
sacchari, Abacarus 248, 250
sacchari, Aceria 181, 202
sacchari, Amblyseius 343, 349
sacchari, Oligonychus 81, 90
sacchari, Paratetranychus 90
saccharini, Aceria 26, 27, 181, 202
salebrosus, Amblyseius 358
salebrosus, Typhlodromus 358
salmaliae, Phyllocoptes 240, 241
salvifoliae, Floracarus 169, 170
sapienticola, Amblyseius 365, 370
sapienticolus, Oligonychus 81, 90
sapindi, Aceria 182, 203
sapindiphasus, Metaculus 264, 265
sarjui, Aponychus 59, 60
sayedi, Tetranychus 102, 104
schefflerae, Acalitus 178, 180
Scheloribates 409
Schizotetranychus 22, 45, 95, 354
clerorticus, Amblyseius 356, 358
Scolocenus 228
Scirius 316
Scolothrips 31, 67, 86, 88, 90, 108, 112
Scymnus 31, 67, 86, 88
Sejus 386
Seiulus 391
setaceus, Aceria 182, 205
setirostris, Cunaxa 67, 315, 316
setirostris, Scirius 316
sexmaculatus, Eotetranychus 71, 77
sexmaculatus, Scolothrips 31, 90, 108, 112
sextoni, Pronematus 308
sheldon, Aceria 183, 203
sheldon, Eriophyes 203
shoreacola, Rhyncaphytoptus 281, 282
shoreae, Amblyseius 336, 342
Sierraphytoptinae 158, 159
simlaensis, Neopetrobia 53
simplicifoliae, Phyllocoptes 240, 242
Handbook: Plant mites of India

sinusetus, Diptilorhynacus 287
struvaniensis, Floracarus 169, 170
sivakumari, Floracarus 160, 170
smileyi, Indocunaxa 315, 318
Somantum 108
sorghii, Aceria 182, 204
sorghumae, Amblyseius 361, 364
sphaeralceae, Georgiobia 50
Sphaerolophus 320
spiniferus, Scolocenus 229
spinipes, Tarsonemus 295
spireafolia, Schizotetranychus 96, 100
spondiallus, Tegolophus 273, 277
Staphylinidae 30, 31
steinwedeni, Acaphylla 220
Steneotarsonemus 292, 294
Stigmaeidae 13, 28, 30, 36, 301
Stigmaeus 133
streblae, Paracaphylla 219
stridulans, Indoseius 327
stridulans, Neocychopholaelaps 327
Stylophoronicus 59, 60
subbaraoi, Phytoptus 212, 217
sudarsani, Indonotalox 238
suginamensis, Eotetranychus 71, 78
suginamensis. Tetranychus 78
suknaensis, Amblyseius 365, 370
sulcatus, Aponychus 59, 61
sulcatus, Cheiracus 290
swaga, Amblyseius 361, 365
swirski, Phytoseius 382, 389
switensis, Calacarus 223, 227
Syrphidae 30, 31
syzygii, Acaphylla 220
syzygii, Amblyseius 365, 371
syzygii, Eotetranychus 71, 79
syzygii, Tegolophus 247, 272
T
tarsonemidae 18, 22, 29, 35, 290, 291
Tarsonemidae 35
Tarsonemina 9, 13
Tarsonemus 292, 295, 296
tectona, Disella 168
tectonae, Anthocoptes 259, 260
tectonae, Tenuipalpus 139, 150
Tegolophus 247, 272
Tegonotus 228, 229
telarius, Tetranychus 106
Tenuipalpidae 22, 29, 35, 118
Tenuipalpodini 45, 68
Tenuipalponychus 45, 68
Tenuipalpus 121, 138
tephosiae, Schizotetranychus 96, 100
tephosiae, Tetra 278, 279
terminaliae, Eriophyes 217
terminaliae, Phytoptus 212, 217
Terminalichus 121, 151
terpoghossiani, Monoceronychus 51
terpoghossiani, Petrobia 51
terrestris, Lasioseius 330, 331
Tetra 246, 278
tetanych, Stethorus 137
Tetranychidae 19, 21, 22, 29, 37, 39
Tetranychinae 44, 57
Tetranychini 45, 57
tetranychtivors, Amblyseius 28, 112, 137, 366, 371
tetranychtivors, Typhlodromips 371
Tetranychina 55
Tetranychinae 35
Tetrastigmata 32
tetrazygae, Tenuipalpus 138, 148
Thamnacus 247, 279
theae, Acaphylla 220, 221, 338, 342
Theridiidae 30, 31
Thripidae 30, 31
Thysanoptera 31
tiliae, Phytopus 180
transitans, Larvacarus 133
transitans, Phytoptipalpus 135
transitans, Typhlodromus 403, 404
trichocnemum, Aceria 182, 187
trichocnemum, Eriophyes 187
truncatus, Eotetranychus 22, 71,
Typhlodromalus 335, 360
Typhlodromips 335, 365
Typhlodromus 379, 390
Typhlodromus (Typhlodromus) 390,
Typhlodromus 354, 407, 409

Tuckerella 116
Tuckerellidae 37, 115
tulipae, Aceria 27, 182, 204
Tydeidae 28, 30, 35, 119, 305
Tydeoidea 35
Tydeus 224, 306
Typhloctomus 390, 402
Typhlodromalus 335, 360
Typhlodromips 335, 365
Typhlodromus 379, 390
Typhlodromus (Typhlodromus) 390,
Typhlodromus 354, 407, 409

Tyrophagus 354, 407, 409

U
ulmi, Panonychus 24, 31, 92, 93
ulmi, Tetranychus 93
uncatus, Eotetranychus 80
undulatus, Neotetranychus 100
undulatus, Schizotetranychus 100
urticae, Tetranychus 31, 103, 115

V
Vasates 233, 244
viddhagiriensis, Aceria 181, 187
vinsoni, Stethorus 83
vishakantai, Neodiptilomiopus 287
vitexae, Anthocoptes 259, 261
vitexis, Tegolophus 273, 278
vitis, Colomerus 173
vitis, Oligonychus 81, 91
vitis, Phytopus 180
vulgaris, Chrysopa 31

W
wainsteini, Phytoseius 382, 389
walayarensis, Anthocoptes 259, 262
walayarensis, Colopodacus 164, 167
wightianae, Anthopoda 163, 164
woodburyi, Phytoseius 382, 389

X
xanthocarpi, Aculops 250, 254

Y
yelagiriensis, Aculus 255, 258
yousefi, Tenuipalpus 139, 151

Z
zaheri, Tetranychus 103, 105
zealandicus, Scheloribates 409
Zetzellia 28
ERRATA

<table>
<thead>
<tr>
<th>Page</th>
<th>Line from top</th>
<th>Printed as</th>
<th>Read as</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>7th line</td>
<td>Order Acarina</td>
<td>Subclass</td>
</tr>
<tr>
<td></td>
<td>&</td>
<td>Acarina</td>
<td>Acari</td>
</tr>
<tr>
<td>12</td>
<td>3rd line</td>
<td>reproduction</td>
<td>F. Tarsus</td>
</tr>
<tr>
<td>20</td>
<td>4th line</td>
<td>sacchari</td>
<td>saccharini</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sacchari</td>
<td>saccharini</td>
</tr>
<tr>
<td>26</td>
<td>last line</td>
<td>families</td>
<td>families</td>
</tr>
<tr>
<td>27</td>
<td>10th line</td>
<td>oicipes</td>
<td>picipes</td>
</tr>
<tr>
<td>31</td>
<td>7th line</td>
<td>dorsaliy</td>
<td>dorsally</td>
</tr>
<tr>
<td>34</td>
<td>26th line</td>
<td>membraneous</td>
<td>membranous</td>
</tr>
<tr>
<td>35</td>
<td>1st line</td>
<td>with</td>
<td>with</td>
</tr>
<tr>
<td>42</td>
<td>1st line</td>
<td>tetrantchid</td>
<td>tetranychid</td>
</tr>
<tr>
<td>47</td>
<td>last line</td>
<td>Lectica</td>
<td>Lactua</td>
</tr>
<tr>
<td>56</td>
<td>2nd line</td>
<td>angyroides</td>
<td>anagyrdoide</td>
</tr>
<tr>
<td>62</td>
<td>Against couplet 5</td>
<td>bredin</td>
<td>bredini</td>
</tr>
<tr>
<td>71</td>
<td>3rd line</td>
<td>Acarl</td>
<td>Acar</td>
</tr>
<tr>
<td>74</td>
<td>8th line</td>
<td>cunea</td>
<td>cunia</td>
</tr>
<tr>
<td>83</td>
<td>20th line</td>
<td>triumpheta</td>
<td>triumfetta</td>
</tr>
<tr>
<td>83</td>
<td>21st line</td>
<td>panderiformes</td>
<td>panduraeformis</td>
</tr>
<tr>
<td>83</td>
<td>21st line</td>
<td>angyroides</td>
<td>anagyrdoide</td>
</tr>
<tr>
<td>85</td>
<td>14th line</td>
<td>Elusine</td>
<td>Elusine</td>
</tr>
<tr>
<td>87</td>
<td>10th line</td>
<td>Lagestroemia</td>
<td>Lagerstroemia</td>
</tr>
<tr>
<td>87</td>
<td>9th line</td>
<td>paradisica</td>
<td>paradisiaca</td>
</tr>
<tr>
<td>91</td>
<td>11th line</td>
<td>Gupta, 1979</td>
<td>Gupta, 1980</td>
</tr>
<tr>
<td>106</td>
<td>18th line</td>
<td>Canabis</td>
<td>Cannabis</td>
</tr>
<tr>
<td>106</td>
<td>20th line</td>
<td>Coriandurm</td>
<td>Coriandrum</td>
</tr>
<tr>
<td>106</td>
<td>20th line</td>
<td>dahlia</td>
<td>dahlia</td>
</tr>
<tr>
<td>106</td>
<td>22nd line</td>
<td>Cleone</td>
<td>Cleome</td>
</tr>
<tr>
<td>106</td>
<td>10th line</td>
<td>angyroides</td>
<td>anagyrdoide</td>
</tr>
<tr>
<td>106</td>
<td>9th line</td>
<td>paradisica</td>
<td>paradisiaca</td>
</tr>
<tr>
<td>108</td>
<td>19th line</td>
<td>Sirothor us</td>
<td>Scolothrips</td>
</tr>
<tr>
<td></td>
<td>sexmaculatus</td>
<td>sexmaculatus</td>
<td>dahlia</td>
</tr>
<tr>
<td>110</td>
<td>10th line</td>
<td>Lycopersicon</td>
<td>Lycopersicum</td>
</tr>
<tr>
<td>110</td>
<td>6th line</td>
<td>hypogaeae</td>
<td>hypogaeae</td>
</tr>
<tr>
<td>112</td>
<td>6th line</td>
<td>Calosporium</td>
<td>Cladosporium</td>
</tr>
<tr>
<td>112</td>
<td>12th line</td>
<td>deleon</td>
<td>deleoni</td>
</tr>
<tr>
<td>123</td>
<td>Against alternative of couplet 9</td>
<td>deleon</td>
<td>deleoni</td>
</tr>
<tr>
<td>Page</td>
<td>Line from bottom</td>
<td>Printed as</td>
<td>Read as</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>125</td>
<td>21st</td>
<td>noctrum</td>
<td>nocturnum</td>
</tr>
<tr>
<td>125</td>
<td>20th</td>
<td>Lagerstroemia</td>
<td>Lagerstroemia</td>
</tr>
<tr>
<td>125</td>
<td>5th</td>
<td>Trichopila</td>
<td>Trichopila</td>
</tr>
<tr>
<td>128</td>
<td>1st</td>
<td>Dahlia</td>
<td>Dahlia</td>
</tr>
<tr>
<td>128</td>
<td>3rd</td>
<td>Elettaria</td>
<td>Elettaria</td>
</tr>
<tr>
<td>129</td>
<td>18th</td>
<td>helix</td>
<td>helix</td>
</tr>
<tr>
<td>130</td>
<td>20th</td>
<td>cujete</td>
<td>cujete</td>
</tr>
<tr>
<td>130</td>
<td>20th</td>
<td>Dahlia</td>
<td>Dahlia</td>
</tr>
<tr>
<td>130</td>
<td>13th</td>
<td>paradisiaca</td>
<td>paradisiaca</td>
</tr>
<tr>
<td>166</td>
<td>3rd</td>
<td>benghalensis</td>
<td>benghalensis</td>
</tr>
<tr>
<td>166</td>
<td>10th</td>
<td>decandrum</td>
<td>decandrum</td>
</tr>
<tr>
<td>175</td>
<td>5th</td>
<td>1981</td>
<td>1980</td>
</tr>
<tr>
<td>178</td>
<td>A against alternative of couplet 3</td>
<td>meleosmae</td>
<td>meliosmae</td>
</tr>
<tr>
<td>180</td>
<td>2nd</td>
<td>Boczek, 1979</td>
<td>Lindquist, 1977</td>
</tr>
<tr>
<td>182</td>
<td>Against couplet 14</td>
<td>setaceous</td>
<td>setaceous</td>
</tr>
<tr>
<td>182</td>
<td>Against couplet 17</td>
<td>sapindae</td>
<td>sapindi</td>
</tr>
<tr>
<td>182</td>
<td>Against alternative of couplet 18</td>
<td>balanitis</td>
<td>balanites</td>
</tr>
<tr>
<td>184</td>
<td>Against alternative of couplet 35</td>
<td>fastigatus</td>
<td>justiciae</td>
</tr>
<tr>
<td>189</td>
<td>2nd</td>
<td>Eragrostis</td>
<td>Eragrostis</td>
</tr>
<tr>
<td>192</td>
<td>6th</td>
<td>link</td>
<td>like</td>
</tr>
<tr>
<td>192</td>
<td>12th</td>
<td>warthy</td>
<td>warty</td>
</tr>
<tr>
<td>193</td>
<td>1st</td>
<td>Desmodicum</td>
<td>Desmodium</td>
</tr>
<tr>
<td>205</td>
<td>2nd</td>
<td>setaceae</td>
<td>setacea</td>
</tr>
<tr>
<td>214</td>
<td>7th</td>
<td>pangorei</td>
<td>pangorei</td>
</tr>
<tr>
<td>214</td>
<td>14th</td>
<td>Elettaria</td>
<td>Elettaria</td>
</tr>
<tr>
<td>216</td>
<td>11th</td>
<td>camera</td>
<td>camara</td>
</tr>
<tr>
<td>223</td>
<td>8th</td>
<td>Green, 1890</td>
<td>Cherian, 1938</td>
</tr>
<tr>
<td>225</td>
<td>15th</td>
<td>camera</td>
<td>camara</td>
</tr>
<tr>
<td>227</td>
<td>6th</td>
<td>mahogoni</td>
<td>mahogani</td>
</tr>
<tr>
<td>229</td>
<td>Against alternative of couplet 4</td>
<td>convolvulus</td>
<td>convolvuli</td>
</tr>
<tr>
<td>231</td>
<td>15th</td>
<td>batatus</td>
<td>batatas</td>
</tr>
<tr>
<td>233</td>
<td>Against alternative of couplet 2</td>
<td>asperimae</td>
<td>asperimae</td>
</tr>
<tr>
<td>233</td>
<td>Against alternative of couplet 3</td>
<td>lucadis</td>
<td>leucadis</td>
</tr>
<tr>
<td>Page</td>
<td>Line</td>
<td>Printed as</td>
<td>Bead as</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>238</td>
<td>11th line from bottom</td>
<td>decundrum</td>
<td>decandrum</td>
</tr>
<tr>
<td>239</td>
<td>1st line from top</td>
<td>Borasus</td>
<td>Borassus</td>
</tr>
<tr>
<td>252</td>
<td>7th line from bottom</td>
<td>aquallocha</td>
<td>agallocha</td>
</tr>
<tr>
<td>256</td>
<td>5th line from bottom</td>
<td>Casia</td>
<td>Cassia</td>
</tr>
<tr>
<td>256</td>
<td>5th line from bottom</td>
<td>sophora</td>
<td>sophera</td>
</tr>
<tr>
<td>270</td>
<td>3rd and 13th line from top</td>
<td>bengalensis</td>
<td>benghalensis</td>
</tr>
<tr>
<td>278</td>
<td>Against alternative of couplet 2</td>
<td>tephrosae</td>
<td>tephrosiae</td>
</tr>
<tr>
<td></td>
<td>Against alternative of couplet 2</td>
<td>camera</td>
<td>camara</td>
</tr>
<tr>
<td>285</td>
<td>4th line from bottom</td>
<td>coramandaliana</td>
<td>coromandeliana</td>
</tr>
<tr>
<td>286</td>
<td>2nd line from bottom</td>
<td>decundrum</td>
<td>decandrum</td>
</tr>
<tr>
<td>289</td>
<td>5th line from bottom</td>
<td>Leptotarsonemus</td>
<td>Lupotarsonemus</td>
</tr>
<tr>
<td>292</td>
<td>Against alternative of couplet 3</td>
<td>dalhia</td>
<td>dahlia</td>
</tr>
<tr>
<td></td>
<td>Against alternative of couplet 3</td>
<td>which</td>
<td>which</td>
</tr>
<tr>
<td>332</td>
<td>11th line from top</td>
<td>Trillandria</td>
<td>Tillandsia</td>
</tr>
<tr>
<td>338</td>
<td>13th line from top</td>
<td>Amblyseis</td>
<td>Amblyseius</td>
</tr>
<tr>
<td>366</td>
<td>9th line from bottom</td>
<td>Adantheria</td>
<td>Adenanthera</td>
</tr>
<tr>
<td>381</td>
<td>7th line from top</td>
<td>Typhlodromus</td>
<td>Typhlodromus</td>
</tr>
<tr>
<td>400</td>
<td>Species No. 543</td>
<td>kashmiricus</td>
<td>kashmiricus</td>
</tr>
<tr>
<td>402</td>
<td>8th line from top</td>
<td>Mahonea</td>
<td>Mahonia</td>
</tr>
<tr>
<td>409</td>
<td>13th line from bottom</td>
<td>Venugopalrao</td>
<td>Venugopalrao</td>
</tr>
<tr>
<td>441</td>
<td>5th line from top</td>
<td>lombardini</td>
<td>lombardini</td>
</tr>
<tr>
<td>451</td>
<td>12th line from bottom</td>
<td>Cisaberoptes</td>
<td>Cisaberoptus</td>
</tr>
<tr>
<td>459</td>
<td>15th line from top</td>
<td>Eastern</td>
<td>Eastern</td>
</tr>
<tr>
<td>468</td>
<td>21st line from top</td>
<td>355-337</td>
<td>335-337</td>
</tr>
</tbody>
</table>
ADDENDA

Page No. 84: Natural enemies of *Oligonychus coffeae* :-

Page No. 333: Key to the subfamilies of Phytoseiidae:

1. Prolateral setae 4 pairs, in all 6-9 pairs of lateral setae; preanal setae 3 pairs...........Amblyseinae
 — Prolateral setae 5 or more pairs, in all 9-12 pairs of lateral setae; preanal setae 3-7 pairs........2
2. Sublateral setae 3 pairs, lateral setae 12 pairs; preanal setae 6-7 pairs..............Gnoriminae
 — Sublateral setae 1-2 pairs, lateral setae 8-11 pairs; preanal setae 2-4 pairs.............Phytoseiinae