RECORDS OF THE ZOOLOGICAL SURVEY OF INDIA

A taxonomic revision of the fishes of the genus *Mystus* Scopoli (Family: BAGRIDAЕ)

K. C. JAYARAM
ANURADHA SANYAL

ZOOLOGICAL SURVEY OF INDIA
A taxonomic revision of the fishes of the genus Mystus Scopoli (Family Bagridae)

K. C. JAYARAM
“Padmaja” New No. 2 (Old No. 22), III Main Road
Officers Colony, Adambakkam, Chennai 600 088

and

(MRS.) ANURADHA SANYAL
Department of Science, La Martinere School for Girls
Rawdon Street, Kolkata 700 016

Edited by the Director, Zoological Survey of India, Kolkata
Records of the Zoological Survey of India Occasional Paper

No. 207 2003 1-141

CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. MATERIAL AND METHODS</td>
<td>2</td>
</tr>
<tr>
<td>III. ABBREVIATIONS AND CONDENSATIONS</td>
<td>3</td>
</tr>
<tr>
<td>IV. ACKNOWLEDGEMENTS</td>
<td>4</td>
</tr>
<tr>
<td>V. HISTORICAL REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>VI. EVALUATION OF TAXONOMIC CHARACTERS</td>
<td>9</td>
</tr>
<tr>
<td>VII. DEFINITION OF GENERIC LIMITS</td>
<td>18</td>
</tr>
<tr>
<td>VIII. SYSTEMATIC ACCOUNT</td>
<td>22</td>
</tr>
<tr>
<td>Genus Mystus Scopoli</td>
<td>22</td>
</tr>
<tr>
<td>1. Mystus albolineatus Roberts</td>
<td>32</td>
</tr>
<tr>
<td>2. Mystus amemiyae (Kimura)</td>
<td>32</td>
</tr>
<tr>
<td>3. Mystus argentivittatus (Regan)</td>
<td>34</td>
</tr>
<tr>
<td>4. Mystus armatus (Day)</td>
<td>36</td>
</tr>
<tr>
<td>5. Mystus atrifasciatus Fowler</td>
<td>39</td>
</tr>
<tr>
<td>6. Mystus baramensis (Regan)</td>
<td>39</td>
</tr>
<tr>
<td>7. Mystus bimaculatus (Volz)</td>
<td>41</td>
</tr>
<tr>
<td>8. Mystus bleekeri (Day)</td>
<td>41</td>
</tr>
<tr>
<td>9. Mystus bocourti (Bleeker)</td>
<td>45</td>
</tr>
<tr>
<td>10. Mystus cavasius (Hamilton-Buchanan)</td>
<td>46</td>
</tr>
<tr>
<td>11. Mystus chinensis (Steindachner)</td>
<td>53</td>
</tr>
<tr>
<td>12. Mystus elongatus (Gunther)</td>
<td>55</td>
</tr>
<tr>
<td>13. Mystus gulio (Hamilton-Buchanan)</td>
<td>57</td>
</tr>
<tr>
<td>14. Mystus horai Jayaram</td>
<td>61</td>
</tr>
<tr>
<td>15. Mystus keletius (Valenciennes)</td>
<td>63</td>
</tr>
<tr>
<td>16. Mystus krishnensis Ramakrishniah</td>
<td>66</td>
</tr>
<tr>
<td>17. Mystus leucophasis (Blyth)</td>
<td>67</td>
</tr>
<tr>
<td>18. Mystus macropterus (Bleeker)</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Common Name</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>19.</td>
<td>Mystus malabaricus (Jerdon)</td>
</tr>
<tr>
<td>20.</td>
<td>Mystus maydelli Rossel</td>
</tr>
<tr>
<td>21.</td>
<td>Mystus menoda (Hamilton-Buchanan)</td>
</tr>
<tr>
<td>22.</td>
<td>Mystus micracanthus (Bleeker)</td>
</tr>
<tr>
<td>23.</td>
<td>Mystus microphthalmus (Day)</td>
</tr>
<tr>
<td>24.</td>
<td>Mystus montanus (Jerdon)</td>
</tr>
<tr>
<td>25.</td>
<td>Mystus multiradiatus Roberts</td>
</tr>
<tr>
<td>26.</td>
<td>Mystus mysticetus Roberts</td>
</tr>
<tr>
<td>27.</td>
<td>Mystus nemurus (Valenciennes)</td>
</tr>
<tr>
<td>28.</td>
<td>Mystus nigriceps (Valenciennes)</td>
</tr>
<tr>
<td>29.</td>
<td>Mystus oculatus (Valenciennes)</td>
</tr>
<tr>
<td>30.</td>
<td>Mystus olyroides Roberts</td>
</tr>
<tr>
<td>31.</td>
<td>Mystus peguensis (Boulenger)</td>
</tr>
<tr>
<td>32.</td>
<td>Mystus pelusius (Solander)</td>
</tr>
<tr>
<td>33.</td>
<td>Mystus planiceps (Valenciennes)</td>
</tr>
<tr>
<td>34.</td>
<td>Mystus pluriradiatus (Vaillant)</td>
</tr>
<tr>
<td>35.</td>
<td>Mystus pulcher (Chaudhuri)</td>
</tr>
<tr>
<td>36.</td>
<td>Mystus punctatus (Jerdon)</td>
</tr>
<tr>
<td>37.</td>
<td>Mystus rhegma Fowler</td>
</tr>
<tr>
<td>38.</td>
<td>Mystus rufescens (Vinciguerra)</td>
</tr>
<tr>
<td>39.</td>
<td>Mystus sabanus Inger & Chin</td>
</tr>
<tr>
<td>40.</td>
<td>Mystus singaringan (Bleeker)</td>
</tr>
<tr>
<td>41.</td>
<td>Mystus tengara (Hamilton-Buchanan)</td>
</tr>
<tr>
<td>42.</td>
<td>Mystus vittatus (Bloch)</td>
</tr>
<tr>
<td>43.</td>
<td>Mystus wolffi (Bleeker)</td>
</tr>
<tr>
<td>44.</td>
<td>Mystus wyckii (Bleeker)</td>
</tr>
</tbody>
</table>

IX. ZOOGEOGRAPHY 119
X. PATTERN OF DISTRIBUTION AND INTER RELATIONSHIPS .. 123
XI. PHYLOGENY 125
XII. ADDENDA .. 128
XIII. REFERENCES 129
XIV. PLATES I-V 137-141
INTRODUCTION

Catfishes constitute a large group of chiefly freshwater fishes distributed around the World. Africa, India and South America are especially rich in quantity and species diversity of catfishes. The entire order Siluriformes comprises about 30 families and 2000 species. Of these, family Bagridae is the Old World counterpart of the Pimelodid catfishes and are economically valuable in India and eastern parts of its range. It is distributed from Africa through Middle Asia, Pakistan, India, Bangladesh through Myanmar, Thailand, Malaysia and East Indies up to China. The density of the species concentration decreases from west to east and is minimal in China. Of about the two dozen valid genera known so far of the family, *Mystus* is the most common in India and adjacent countries. The fishes of this genus though not growing to a large size, excepting a few, provide by numbers the required protein to the masses. Being easily available in almost all types of freshwaters, they are caught by diverse gears and tackles and are fresh or dried. Two species *Mystus julio* and *M. vittatus* enter the sea also though not to a great distance. Some as *M. krishnensis* grow to giant size (90 cm) a few as *M. punctatus, M. montanus* attain a length of about 60 cm. The entire genus comprises of 44 species and no consolidated revision on a worldwide basis has been done so far. The nomenclature of the genus, the fixation of the type species, a part revision of the Indian and Thailand species and osteological comparisons of selected species were the only contributions made of this genus.

The inter-specific affinities and the generic composition of this genus as a whole needed an investigation. Whether the species formed any natural groupings and if so, as to what measurable extent their integration existed was also worth a study.

This paper aims to look into these aspects and present a World-wide revision for the first time. This work formed a part of the Thesis for the Doctor of Philosophy (Ph. D.) of the Calcutta University for the second author. The work was done between the years 1983 to 1987, the thesis submitted in 1988 and degree awarded in 1993. The delay between the submission of the thesis and award of the degree was due to the procedural formalities of the University. In the meantime both the authors were preoccupied with other commitments and could not make the thesis ready for publication. In the intervening period much work and descriptions of new taxa, redefinition of the genus and concepts were published notably by Drs. Tyson Roberts and H. H. Ng. The first author undertook the task of updating the entire work and made it fit for publication.
II. MATERIAL AND METHODS

This study is based on an examination of the named and unnamed material of the genus in the National collections of the Zoological Survey of India at Calcutta, Calicut, Chennai, Shillong and also from freshly collected specimens. In this context the entire Wayanad and Malabar range of hills of the Western Ghats was extensively surveyed. Specimens of some species poorly represented in the ZSI, such as *Mystus oculatus* (Valenciennes); *M. malabaricus* (Jerdon) and *M. armatus* (Day) were collected from their respective type localities. Besides, the types of all species present in the ZSI were also examined. Material of extra Indian species was obtained on loan basis from foreign museums where they are present. A list of such institutions is given separately. Where no specimens were available we have drawn their descriptions and data from published literature. Locality names in synonymy; specimens studied have not been corrected. Color mentioned of each species is mostly of formalin preserved specimens; where live specimens were collected their natural colour is indicated.

METHODS

Measurements and counts used in this work are as per Jayaram (1981, 1999). All measurements were taken with the help of Dial Calipers to the nearest half of a millimeter for the size range up to 150 mm and using measuring steel scale and dividers above this size. Measurements of all characters, both morphometric and meristic were taken. The radiographs were taken with the help of two types X-ray machines on two types of X-ray films. The details are as below:

Equipments used

1. (A) Ray Max X rays machine
 Manufactured by M/s Radon House, Calcutta. Target Copper.

 Voltage 30 KVP
 Current 10 mA
 Distance between the window and the film 100 to 120 cm approximately
 Contact radiographs.

2. (B) Diagnostic X ray machine Unit Stallion 50
 Manufactured by International General Electric (India) Ltd, Calcutta. Target Tungsten
 Voltage 40 to 85 KVP
 Current 10 to 50 mA
 Distance between X ray machine and film 90 cm approximately.
 Contact radiographs.

2. (A) Medical X ray films
2. (B) Industrex X ray films

3. Film cassette with intensifying screens

Procedure

1. Fishes of nearly equal sizes were selected for radiographs.

2. They were taken out of the preservative and wiped dry with cotton dusters/napkin.

3. The cassettes were loaded in the dark room with X-ray films of the required sizes.

4. About 5 to 6 smaller fishes were placed over the tube side of the X ray film cassette.

5. The fishes were held straight in proper position by tying their proximal and distal ends with the help of needle and thread to a pair of metallic stands placed on either side of the cassette.

6. Proper KVp and mAs were selected depending upon the type of fish and exposure was made.

7. In the case of larger fishes, only one or two specimens could be placed over each cassette for a single exposure.

8. Radiolucent packing material (cotton wool) was used to maintain the proper position of the larger fishes at the time of exposure.

9. The exposed films were taken out of the cassettes in the dark room laboratory and processed accordingly.

10. The finished products were then washed in running tap water, dried and viewed in view box for necessary readings.

11. Proper tabulations were made to identify the fishes that were being serially exposed for skiagraphy.

III. ABBREVIATIONS AND CONDENSATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMNH</td>
<td>American Museum of Natural History, New York, USA</td>
</tr>
<tr>
<td>BMNH</td>
<td>Natural History Museum, London, England</td>
</tr>
<tr>
<td>CAS</td>
<td>California Academy of Sciences, San Francisco, USA</td>
</tr>
<tr>
<td>MNHM</td>
<td>Museum National d'Histoire Naturelle, Paris, France</td>
</tr>
<tr>
<td>ROM</td>
<td>Royal Ontario Museum, Ontario, Canada</td>
</tr>
<tr>
<td>USNM</td>
<td>United Stated National Museum, Smithsonian Institution, Washington DC, USA</td>
</tr>
</tbody>
</table>
IV. ACKNOWLEDGEMENTS

We express our thanks to the Director, Zoological Survey of India for extending all laboratory facilities. Many individuals have helped us by their constructive suggestions and loan of specimens for this study. In cases where specimens could not be sent on loan, information and other relevant data were furnished freely. To each and everyone cited below we are indebted and trust that no one has been overlooked.

Mme M. L. Bauchot (Paris); Dr. Tyson Roberts (San Francisco); Dr. Brian Coad (Ottawa); Dr. B. B. Collette (Washington DC); Dr. Godon Howes (London); Dr. Volker Mahnert (Geneva); Dr. H. Wilkens (Hamburg); Dr. Maurice Kottelat (Comol, switzerland); Dr. Barbara Herzig (Wien); Dr. Munir K. Bunni (Baghdad); Mr. Nuri Mahdi (Baghdad); Prof. H. Tombi Singh, Dr. Vishwanath Singh (Imphal); Dr. P. K. Talwar (N. Delhi); Dr. R. Natarajan (Porto Novo); Dr. M. Ramakrishnaiah (Eluru); Dr. G. M. Natarajan (Coimbatore).

Special thanks are due to Dr. Debabrata Sanyal, husband of the second author for patiently taking the X-ray photographs. She is grateful to her late father Amulya Chakraborti and her mother Smt. Ruby Chakraborti who provided constant source of inspiration and encouragement.

Our thanks are due to Sri A. K. Mondal, Sri M. K. Sen, artist and photographer and all the staff members of the fish division of ZSI for their support. The thesis was patiently typed by Sri A. K. Chaudhury to whom also our thanks are due.

V. HISTORICAL REVIEW

Gronovius in 1763 in his famous work “Zoophylacii Gronoviana” described certain fishes using polynomial phrases. The International commission of Zoological Nomenclature (Opinion 89) invalidate Gronow’s work. In 1777 Scopoli adopted the genera of Gronovius and gave binomial names to some of the them. Thus Scopoli’s genera have been accepted by the International Commission as valid. Later, Meuschen (1781) named one of the species of Gronovius (No. 388) as Mystus anguillaris. Solander in 1794 reporting on the fishes collected by Russell from the river Aleppo, Syria described Silurus pelusius which incidentally
happens to the type-species of this genus as elucidated by Jayaram in 1962 and described later in detail by Anuradha & Jayaram in 1985. Bloch in 1797 described from Tranquebar certain catfishes of which *Silurus vittatus* is a species of *Mystus*. Hamilton-Buchanan in 1822 in his invaluable account of the "Fishes of the Ganges" described 35 species under the name *Pimelodus*. Of these, four are referable to *Mystus*. A great advantage of Hamilton-Buchanan’s work is that he was able to illustrate most of the fishes described by him from live specimens collected during his sojourn. It is a historical fact that Hamilton-Buchanan was not allowed to take all the drawings which he got executed while he was in India, but fortunately some of these unpublished drawings preserved in the India Office Library, London have been published by Hora (1929). It is worthy of attention that some of the illustrations published by Hamilton-Buchanan (1822) do not tally with the description of species given by him in the text. For instance the figures of *Mystus cavasius* (pl. 9, fig. 67), *Mystus gulio* (pl. 23, fig. 66) differ significantly from their respective published accounts on pages 203 and 201 respectively. This may be due to the fact that Hamilton-Buchanan may have had two different sets of specimens at the time of illustration and description. Despite such confusions the above-cited species are validly referable to *Mystus*. The genus *Pimelodus* as envisaged by Hamilton-Buchanan is a composite one and comprises of 15 to 17 genera of Indian fishes. Hora in 1948 analysed the species composition of Siluroids in particular and indicated that 49 species previously referred to under *Pimelodus* are siluroid fishes.

Valenciennes (1839) described 58 species under the genus *Bagrus*, which included some of Hamilton-Buchanan’s species described under *Pimelodus* also. Valenciennes too realised the composite nature of Hamilton-Buchanan’s *Pimelodus* and opined that it could be subdivided even on the character of the number of barbels. Jayaram (1959) analysed the systematic position of the species included under *Bagrus* and showed that 21 species can be assigned to Bagridae of which 17 are referable to *Mystus*.

Sykes (1841) reporting on some fishes from “Dukhun” (=Deccan) described *Pimelodus seenghala* and *Pimelodus seengtee* with beautiful coloured illustrations. These two are now referable to *Aorichthys seenghala* and *Mystus cavasius* respectively. However, Sykes while describing *Platystoma seenghala* stated “this fish is remarkable for having the first ray of the ventral fins as well as that of the pectoral serrated posteriorly and the first dorsal spine not serrated” (page 372). The illustration of this species on plate 45, fig. 2 also shows this character of the ventral fins (pelvic fins) having the first ray serrated posteriorly. No species of Indian Bagridae has such a feature where the pelvic fin first ray is serrated posteriorly.

Jerdon (1849) reporting on a collection of freshwater fishes from Southern India described under *Bagrus* 16 species of which 8 are referable to *Mystus*. It is worthy of note that Jerdon’s descriptions were brief and without any illustrations. Most of the species were described not from many examples and the provenance of species uncertain. However, we have been able to collect first hand (February, 1985) a large number of topotypes of many species described by Jerdon in the Waynaad and north Kerala areas comprising 35 examples of *M. montanus*, seven of *M. malabaricus* and four of *M. oculatus*.
Dumeril (1856) erected the genus *Macrones* to accommodate *Bagrus lamarri* Valenciennes (=*Aorichthys seenghala* (Sykes)) and defined the genus. Dumeril did not describe any species in detail. In spite of this, Dumeril’s work is considered as the first one initiating a taxonomic study of this genus. Unfortunately, the name *Macrones* (=broad mouthed fishes) is nomenclaturally invalid since it is preoccupied in Coleoptera (Insecta) and has been subsequently replaced by *Aoria* Jordan (1919) which again is preoccupied in the same group of insects and has to be substituted by the name *Mystus* Scopoli (1777). The different usages of the name *Mystus* has been dealt with by us in another publication (Jayaram & Anuradha. 1984). The nomenclatural status of the names *Mystus, Macrones, Aoria* has also been clarified by Jayaram (1959). Bleeker in 1846 gave an analysis of the siluroid species and utilised the characters of relative lengths of adipose and anal fins and number of branchiostegal rays and barbels for separating them. In this work he described 13 species under the genus *Bagrus* which he later (1858) reduced to nine. In 1859 while enumerating the list of species of the Indo-Australian Archipelago he recognised the occurrence of *B. aor* (=*Aorichthys aor*), *B. cavasius* (=*Mystus cavasius*), *B. keletius* (=*Mystus bleekeri*), *B. tengara* (=*Mystus tengara* in India but made no comments regarding their taxonomic status. In 1962 in his Atlas Ichthyologique, he amended the generic limits of *Bagrus* and placed it under “Phalanx 4 Bagrie” He gave coloured illustrations of some species of *Hemibagrus* (*nemurus, planiceps and wyckii*), *Hypselobagrus* (*nigriceps, wolffi and micracanthus*) and *Aspidobagrus* (*gulio*). It is of interest to note here that Bleeker recognised for the first time Dumeril’s genus *Macrones* in his work and emended its limits in a more elaborate way. Like Dumeril, Bleeker also did not include the other species of *Mystus* described under *Bagrus* Valenciennes except *Bagrus lamaari* (=*Aorichthys seenghala*). Reporting upon Siluroid fishes he could procure, Edward Blyth in 1858 recorded from the Calcutta bazaar five species. Gunther (1864) in his Catalogue of the fishes in the British Museum included the genus *Macrones* as the 31st genus in the Family Siluridae under the 4th sub-family Siluridae Proteropterae group F. Bagrina. He based his classification of the different genera on the nature of dentition on the palate, the number of soft rays in the dorsal fin and the total number of mandibular barbels. He merged under the genus *Macrones* all the genera of Bleeker such as *Hypselobagrus, Hemibagrus* and *Aspidobagrus*. Nineteen species were described under *Macrones* of which *Mystus elongatus* from Thailand was new. Gunther’s conception of *Macrones* was composite in the sense that he included under this genus species like *M. batasio affinis, M. tengana* which now belong to the genus *Batasio* Blyth, and *M. itchkea* is now assigned to the genus *Gagata* Bleeker. In fact almost all the earlier authors considered *Macrones* as a catch-all for all catfishes which had four pairs of barbels. The fine differences such as the presence of sensory pores, position of barbels and eyes were not looked into by them. Subsequent to Gunther, Day in 1865 in his *Fishies of Malabar* described *Mystus malabaricus* under the genus *Hara* Blyth. He recognised in this work all the genera of Bleeker such as *Pseudobagrus, Hemibagrus, Hypselobagrus* and *Aspidobagrus*. However, in his monumental work on the *Fishies of India* (1876-1878) he merged all these under *Macrones*. It is interesting to mention here that Day included Jerdon’s (1849) *Bagrus malabaricus* (=*Mystus malabaricus*) from Malabar but failed to notice that his *Hara malabarica* is the same as that of Jerdon’s species. Some of these species described earlier under
Macrones were placed under different Bleekerian genera in his work on the *Fishes of Malabar* (1865a) but in his *Fishes of India* he reversed his treatment of recognising the different genera of Bleeker and placed them all under *Macrones*. One of the reasons for his synonymising all these under *Macrones* may be that he found these divisions to be arbitrary and unsuitable as they were based on the total number of anal fin rays which he considered as a variable character. However, it is worthy of note that Day utilised the very same character of the count of anal fin rays to separate the different species of *Macrones = Mystus* in his *Fishes of India* as well as in the Fauna of India volumes (1889). In the former work Day described 18 species of which *Mystus microphthalmus* from Myanmar was new. The main utility of Day’s *Fishes of India* as constant source of reference even today, lies in the fact that Day gave illustrations of a majority of the species described in his work. In respect of *Mystus*, Day illustrated all the species with the exception of *M. blythii (=Batasio tengana* Hamilton-Buchanan) and *M. aor (=Aorichthys aor* Hamilton-Buchanan). *M. keletius*, which is illustrated in plate 98, fig. 5, by misprint appears in the text as fig. 3. *M. vittatus* is delineated twice to show the different colour patterns. All the species described in the *Fishes of India* are included in the *Fauna of India* volume also.

Gunther (1873) described erroneously *Macrones (Pseudobagrus) tenuis* and *Macrones (Liocassis) taeniatus* from Shanghai collected by Mr. Swinhoe and placed them under the genus *Mystus* but in reality referable to *Liocassis* Bleeker. Vinciguerra (1890) gave a synopsis of 10 Burmese species with a good historical resume. He described *M. dayi* as a new species, which belongs to the genus *Batasio*. He also described another species *Mystus rufescens* which is valid. Roberts (1994) has recently recorded it and has given a good diagnosis.

In (1901) Steindachner divided these fishes into two groups: “Gruppe Bagrina” and “Gruppe Ariina” The first group included *Hypselobagrus micracanthus* Bleeker (=*Mystus micracanthus*) and was correctly placed, whereas under the second group *Macrones (Hemibagrus) nemurus (=Mystus nemurus)* was included which is an error. Volz (1904) recorded five species of this genus from Sumatra.

Regan (1911) published in two parts a classification of teleostean fishes based on osteological characters. This excellent work paved the way for classification of these fishes for a number of years. Regan raised the sub-family Bagrinae to the rank of a family Bagridae, a position which has remained unchanged for many years.

Weber and de Beaufort (1923), in their treatise on the *Fishes of the Indo-Australian Archipelago* described eight species under *Macrones* and gave a key for their identification.

Jordan (1919) in *his Genera of Fishes* proposed a substitute name *Aoria* for *Macrones*, because of the latter’s preoccupation in Coleoptera (Insecta) as already mentioned. It is unfortunate, Jordan did not know that the name *Aoria* itself was preoccupied in the same order of Insects. Jordan and Evermann (1917) identified *Bagrus halepensis* Valenciennes as equivalent to *Mystus cirris octo capito longioribus* Gronow and designated this species as
the type-species of *Mystus*. Hora (1921) erected a new sub-genus *Macronoides* for some species of *Mystus* which later in (1941) Hora & Law correctly placed it under the genus *Batasio* Blyth. Fowler (1928) was the first author to use the name *Mystus* after Scopoli. Prashad and Mukerji (1929) reporting on the fishes from Indawgyi Lake, Myanmar included six species of which four are referable to *Mystus*, they used the name *Aoria*. Subsequent Ichthyologists like Hora and Mukerji (1934), Herre and Myers (1937) and Smith (1945) 'adopted' the name *Mystus*. Holly (1939) proposed a new name *Sperata* for this group of fishes, designating *Silurus vittatus* (Bloch) = *Mystus vittatus* as the type species. Wu (1939) reporting on fishes of Li-Kiang, proposed *Aorichthys* as a substitute for Jordan's *Aoria*. White and Moy Thomas (1940) proposed a new name *Macronoichthys* for *Macrones* Dumeril (1856). Nichols (1943) described *Mystus* species from China and used the name *Aoria*.

Ahmed (1943) gave diagnostic characters of the genus *Mystus* and gave a key to the species. Smith (1945) listed nine species from Thailand of which *M. havmoller* is a synonym of *Batasio tengana* (Hamilton-Buchanan).

Jayaram (1954) revised the Indian species of the genus *Mystus* and separated *Mystus aor, seenghala and leucophasis* under a new sub-genus *Osteobagrus*. He gave a key to the 11 species of *Mystus* and three species of *Osteobagrus*. He gave also a list of extra Indian species besides a brief discussion on the zoogeographical aspects. In 1959 the same author designated the correct type species of this genus and clarified the nomenclatural status. Bhuiyan (1964) gave a key to *Mystus* species from Dacca, Bangladesh and also elaborated the diagnostic characters of the genus. Jayaram (1966) discussed the inter-relationships of this genus with allied genera and also discussed (1978) the systematic status of species known from China. Islam and Siddiqi (1971) gave a key to the species, their brief description regarding colour and synonymy from river Jhelum, Punjab. Rahman (1974) gave a checklist, key to species and local names of this genus from Bangladesh. He included six species. Ganguly and Datta (1975) gave a diagnosis of this genus based on osteological characters and discussed its taxonomic status also. Desouteer (1975) gave a description and key to species from Kampuchea which are *M. aubentoni, M. cavasius, M. micrancanthyus, M. nemurus, M. planiceps, M. wyckii* and *M. wyckioides*. Jayaram (1977a) discussed the commercial importance of the species of this genus. In another contribution in the series "Aid to the identification of siluroid fishes" he (1977) gave an illustrated key for identification of species of this genus. Dutt and Sharma (1979) gave a key to *M. bleekeri, M. cavasius, M. gulio and M. vittatus* known from the central coastal areas of Andhra Pradesh. Jayaram (1981) in his Handbook on the Freshwater Fishes of India, gave a list of 18 species, their distribution, a key for their identification besides a generic diagnosis.

Dutt, Sharma and De Souteer (1982) gave a synonymic list of this genus. In 1984 Sharma and Dutt gave a taxonomic account of four species of this genus known from Guntur besides a key for their identification. They treated *M. nigriceps* as junior synonym of *M. cavasius, M. tengara* and *M. carcio* were relegated to the synonymy of *M. vittatus*. Mirza and Omer (1984) gave a key for identification of *Mystus cavasius* and *M. gulio* known from Baluchistan. Roberts (1989, 1992 and 1994) revised some Thailand species of the
genus and advocated a new definition. This is discussed elsewhere (Jayaram 1999) where 19 species from the Indian region have been listed. Talwar & Jhingran (1991) gave a descriptive account of the Indian species. More recently Ferraris (1999) advocates the use of *Sperata* in place of *Aorichthys*.

VI. EVALUATION OF TAXONOMIC CHARACTERS

Catfishes of the genus *Mystus* Scopoli are of common occurrence in Indian waters. There is hardly any body of water where these fishes are not found. As many as 21 species are known from India, Bangladesh, Myanmar, Nepal, Pakistan and Sri Lanka, whilst a total of 44 species are known from its entire range of distribution. Although they are common in fishery operations and are sold extensively in fresh and dried condition, many species are so much generalised that quite often the same local name is applied to one or more species. For instance, the popular name ‘tengra’ is uniformly used for all catfishes, although strictly speaking it should be applicable to only *Mystus tengara*. Even in taxonomic literature, confusion in identity of species has risen. Previous workers have relied on highly variable characters, which has added only to the prevalent chaos. In order to provide an easy identification manual and also to place the taxonomy of this group on a firm footing it was considered necessary to evaluate the different characters which have been so far used for their merits and demerits. It was also thought prudent to test the utility of some unconventional characters, which have not been so far tested.

1. **Barbels**: Jayaram and Anuradha (1984) discussed the various usage of the name *Mystus* and have shown that invariably the name ‘*Mystus*’ has been used to denote all fishes with barbels irrespective of their number. This seems to have prompted earlier ichthyologists as Belon (1553), Gronovius (1763), Scopoli (1777) and Meuschen (1781) to adopt the same as a basic character for classification. Even veteran ichthyologists as Hamilton-Buchanan (1822), Bleeker (1862), Gunther (1864), Day (1878) utilised the number, the relative lengths of the barbels as a taxonomic tool. Unfortunately the relative lengths of the barbels have been found to vary within individuals of the same species and as such can be used only in a limited manner. Some authors as Babu Rao and Chattopadhyay (1969) have also used the relative length of the nasal barbels and mandibular pair.

2. **Position of eyes**: Most siluroids have a pair of moderate sized eyes situated on the upper part of the head. *Mystus* species in particular have more or less a uniform size of eyes with a free eyelid. No species has so far been found which has inferiorly placed eyes as in the case of *Chandramara* or *Horabagrus* for which character Jayaram (1955, 1973) gave generic importance. As such the size and position of the eyes are of no value in classification of *Mystus* species.

3. **Median longitudinal groove**: It is known that the median longitudinal groove running mid-dorsally on the head of *Mystus* species represents the cranial fontanel covered by skin, rough or smooth and most often with a thick coating of mucous. As it represents
an osteological formation it is highly dependable and is of value in classifying species. Depending upon the extent of fusion of the bones, the fontanel may be single (M. gulio) or double (M. punctatus). Many workers have used this character as a primary aid for separating groups of species. The posterior end of the posterior fontanel may or may not run up to the base of the supra-occipital process. This feature of the extent of the posterior fontanel reaching or not reaching the base of the occipital process is also an important character. This feature though very dependent, often times difficulties arise in determining the reach of the bone. The termination of the posterior end of this fontanel is often obliterated by the thick skin of mucous. On such occasions useful results have been achieved by clearing the specimen of mucous or dissecting the skin if necessary to expose the posterior end or even by insertion of a dissecting needle into the fontanel and dragging it to the end of the fontanel.

4. Occipital process: Mystus species have an extension of the supra-occipital bone in the form of an elongated bone called the supra-occipital process. This bone extends towards the basal bone of the dorsal fin and thereby gives support to the fin. Jayaram (1971, 1971a) erected the genus Osteobagrus in which a distinct interneural shield in between the basal bone of the dorsal fin and the occipital process is present. In Mystus there are two groups of species: in one the occipital process is long and meets the basal bone of the dorsal fin and in the other the occipital process is short and does not meet the basal bone of the dorsal fin. In most species the occipital process invariably meets the basal bone of the dorsal fin as in M. armatus, M. bleekeri, M. cavasius, M. gulio, M. oculatus and M. tengara. In species like M. elongatus, M. keletius, M. malabaricus, M. menoda, M. mircophthalimus, M. punctatus, M. vittatus the occipital process does not reach the basal bone of the dorsal fin. Many workers like Gunther (1864), Day (1889), Smith (1945), Babu Rao and Chattopadhyaya (1969), Jayaram (1971) have extensively used this character. In this character also as in the case of the median longitudinal groove, the termination or the meeting point of the occipital process is often ambiguous. Here again a little dissection of the covering skin and exposure of the bone will help considerably the final determination of the extent of the posterior end of the occipital process.

5. Cubito-humeral process: This is a small bone above the pectoral fin, being the posterior prolongation of the post-temporal bone and of the pectoral girdle. The bone is exposed, rugose and often times may be longer than usual as in Rita. No attempts have so far been made to use this character as in aid for classification. However, in Mystus species there is not much variation and it is of uniform length and width and as such is of no use for classification.

6. Gill openings: Catfishes are mostly bottom feeders and as such unlike hill stream fishes, the gill openings are extensive and open nearly up to the lateral line on the dorso-lateral side. The gill membranes are free and are fused with the ishthmus. No specialisations are seen in the attachment of the membranes. However, the number of branchiostegal rays is significant.
7. **Snout**: The shape and structure of the snout has been of use in taxonomic studies. Jayaram (1968) utilised the shape of the snout in classifying *Pelteobagrus*, *Pseudobagrus* and *Leiocassis*. He demonstrated that depending upon the length and shape of the snout invariably the position of the mouth also shifts from the terminal to sub-terminal or even inferior position. The snout may be pointed, rounded, obtuse or spatulate. In species of *Mystus*, it is generally seen that the snout is obtuse. However *seenghala* and *aor* have a spatulate snout. It may be indicated here that these two species are now segregated under a separate genus *Aorichthys*. Some species as *M. leucophasis*, have somewhat a less rounded snout. Species as *M. micracanthus*, *M. nemurus*, *M. bleekeri*, *M. cavasius*, *M. keletius* have a more rounded snout.

8. **Barbels**: These are sensitive organs or feelers in almost all catfishes. Unlike that of carps, these barbels have a cartilaginous core and with their help the fishes are able to decide the quality of food and also the width or depth of the aperture and crevices into which they are perforce obliged to move. Jayaram (1978) discussed the responses of catfishes barbels in detail. In *Mystus* species there are four pairs of barbels. The maxillary is invariably longer than the head. The position of the barbels, particularly the maxillary and nasal are of no taxonomic importance, except of course that of the mandibular pairs which is of value in separating some species. This character of the position of insertion of the mandibular barbels has been used in segregating species of the genera *Gagata* and *Nangra* (Family Sisoridae). Day (1876-78), Hora and Law (1941), Jayaram (1979) and many others used the lengths of the maxillary barbels as a differentiating character. It has been found that this character is not reliable as it varies with age and growth. For instance in *M. cavasius* the maxillary barbels are reported to extend beyond the base of the caudal fin, but it is often seen that in many instances they fall short of the anal. As such this character has its own limitations.

9. **Dentition**: The pattern of teeth formation has been of much use and disuse in siluroid fishes. Hora (1936) discussed this variable pattern of dentition in siluroid species and demonstrated its utility as a taxonomic tool. In Bagridae, excepting the genus *Rita* Bleeker, where the dentition pattern is entirely different, in respect of almost all the species of the family, the teeth are villiform and are in bands; *Mystus* is no exception. In *Mystus* species the teeth bands are in the form of a semi-lunar uninterrupted band on the palate and on the upper jaw; in the lower jaw a deeply curved interrupted band is present. However in *Mystus horai* the palate band is mesially interrupted which is an exception. As such the dentition character is of no value in respect of this genus.

10. **Mouth**: The position of the mouth is an important character in siluroids as it relates to the habitat of the fish. In general it is known that an upturned mouth as in Clupeids enable them to browse at the surface whereas an inferior mouth renders the fish to feed at the bottom. Often the mouth is provided with suckers. However in *Mystus* species no such modification or change of position are seen since most of them are bottom feeders and browsers. The mouth is subterminal. The width of gape of mouth is also of little value in separating species.
11. Lips: In most species of Mystus lips are simple without and labial fold or sensory papillae or pores. The extent of the lips is also not wide and considering that these fishes are mostly bottom feeders, the lips are not in any way specially modified for picking up detritus from the bottom.

12. Position of nostrils: All fishes have a pair of nostrils situated on the anterior part of the snout. The position of the nostrils is a major character of family value. For instance the Sisorids and Ariids have a pair of closely placed nostrils whereas in Bagridae the nostrils are widely separated. However, within the family itself for differentiation of genera and species the position of the nostrils is of little use since they are placed in a uniform position.

13. Gill raker count: The gill raker counts on the lower and upper limb of the first gill arch are of taxonomic value. Generally the count on the lower limb is alone taken into consideration. It is found that in Mystus species the count is more or less constant and non-variable. So this character is helpful in differentiating species and groups of species only to a limited extent. The data obtained by us are presented in Table I.

Table I: Gill raker counts in certain species of Mystus

<table>
<thead>
<tr>
<th>Species</th>
<th>Standard length (in mm)</th>
<th>first gill arch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Upper limb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower limb</td>
</tr>
<tr>
<td>argentiwitta</td>
<td>40.3-40.7</td>
<td>5</td>
</tr>
<tr>
<td>argus</td>
<td>56.0-159.2</td>
<td>3-4</td>
</tr>
<tr>
<td>aubentoni</td>
<td>185.2-297.5</td>
<td>131.8</td>
</tr>
<tr>
<td>baral1lensis</td>
<td>40.9-123.8</td>
<td>3-4</td>
</tr>
<tr>
<td>bleekeri</td>
<td>63.4-200.7</td>
<td>269.4-398.0</td>
</tr>
<tr>
<td>cavaisius</td>
<td>40.9-123.8</td>
<td>60.3</td>
</tr>
<tr>
<td>chinensis</td>
<td>63.4-200.7</td>
<td>164.5-236.0</td>
</tr>
<tr>
<td>dibrugarensis</td>
<td>40.9-123.8</td>
<td>53.2-141.1</td>
</tr>
<tr>
<td>elongatus</td>
<td>63.4-200.7</td>
<td>39.8-70.2</td>
</tr>
<tr>
<td>gulo</td>
<td>322.1-419.0</td>
<td>32.1-419.0</td>
</tr>
<tr>
<td>keletius</td>
<td>44.5-210.3</td>
<td>44.5-210.3</td>
</tr>
<tr>
<td>krishnensis</td>
<td>66.6-107.1</td>
<td>66.6-107.1</td>
</tr>
<tr>
<td>leucophasis</td>
<td>150.1-287.1</td>
<td>30.3-60.3</td>
</tr>
<tr>
<td>malabaricus</td>
<td>76.3-151.5</td>
<td>76.3-151.5</td>
</tr>
<tr>
<td>menoda</td>
<td>139.6-247.1</td>
<td>139.6-247.1</td>
</tr>
<tr>
<td>micracanthus</td>
<td>59.4-79.8</td>
<td>59.4-79.8</td>
</tr>
<tr>
<td>microphthalmus</td>
<td>129.5-176.1</td>
<td>129.5-176.1</td>
</tr>
<tr>
<td>montanus</td>
<td>78.0-86.8</td>
<td>78.0-86.8</td>
</tr>
<tr>
<td>nemurus</td>
<td>76.3-151.5</td>
<td>76.3-151.5</td>
</tr>
<tr>
<td>oculatus</td>
<td>142.8-171.2</td>
<td>142.8-171.2</td>
</tr>
<tr>
<td>peguensis</td>
<td>85.1-114.1</td>
<td>85.1-114.1</td>
</tr>
<tr>
<td>pelusius</td>
<td>48.2-56.5</td>
<td>48.2-56.5</td>
</tr>
<tr>
<td>planiceps</td>
<td>120.8-196.8</td>
<td>120.8-196.8</td>
</tr>
<tr>
<td>pulcher</td>
<td>77.8</td>
<td>77.8</td>
</tr>
<tr>
<td>punctatus</td>
<td>36.8-67.9</td>
<td>36.8-67.9</td>
</tr>
<tr>
<td>sabanus</td>
<td>87.7</td>
<td>87.7</td>
</tr>
<tr>
<td>tengara</td>
<td>35.5-88.5</td>
<td>35.5-88.5</td>
</tr>
<tr>
<td>trachacanthus</td>
<td>100.6-398.5</td>
<td>100.6-398.5</td>
</tr>
<tr>
<td>vittatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wyckii</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14. Pharyngeal teeth: The innermost gill raker is modified in the form of a bone and bears strong bony teeth. This character has also been used by many workers and is of some taxonomic value as that of gill raker count. As stated elsewhere museum specimens, solitary examples, type specimens cannot be mutilated; hence this character is of restricted importance only.

15. Fin-ray counts: One of the most important meristic characters of classificatory value in all groups of fishes is the fin ray count. The paired and the unpaired fins exhibit a remarkable constancy in respect of these counts of simple and branched rays. The frequency distribution data of the fin ray counts have been variously analysed by several workers and significant results have been obtained. Jayaram (1966) separated the genus *Rita* into a separate sub-family Ritinae solely on the basis of its members having seven or eight pelvic fin rays versus a constant six in all other members of the family. In a similar manner Singh and Jayaram (1981) found that the number of branched rays in the upper and lower lobe of the caudal fin is more or less constant as 7+8. The dorsal fin rays are almost always constant and is of family significance. Jayaram (1952, 1955) on the basis of the characters of the anal fin having more than 17 rays unlike other species of *Mystus* with only 10 to 14 rays separated *Mystus chryseus* as a separate genus *Horabagrus*. In the case of *Mystus* species the dorsal fin has one spine and 5 to 7 branched rays. Since this number is more or less constant, this character is of no use in separating the species. However, in some species as *M. dibrugarellsis* a prolongation of the dorsal fin in the form of a filament is seen which Chaudhuri (1913) used as a taxonomic character. The length of the dorsal fin rays has been thought of some use in differentiating species but this is associated with sexual dimorphism and as such cannot be relied upon. The width of the base of the dorsal fin invariably depends upon the number of fin rays the species possesses as such the last two cited characters are of no use.

16. Adipose dorsal fin: Siluroids as Chacidae, Clariidae, Heteropneustidae, Plotosidae, Siluridae have no adipose dorsal fin. All other families (Akysidae, Amblycipitidae, Bagridae, Olyridae, Pangasiidae, Schilbeidae, Sisoridae) bear a second dorsal fin which is smooth and without any rays or spine. This adipose dorsal fin is of varying length and has been of some taxonomic value. In the case of *Mystus* species the adipose dorsal fin is always free from the caudal fin and not confluent with it, but is placed at varying distance from the rayed dorsal fin; for instance in the case of *M. bleekeri, M. cavasius*, the interspace between the dorsal and adipose dorsal fin is almost negligible, whereas in the case of species as *M. gulio, M. punctatus, M. vittatus* the interspace is considerable. This character is of value and earlier authors as Gunther (1864), Day (1876-78) have utilised the width of the adipose dorsal fin as opposed to the width of the anal fin as at taxonomic aid. One of the handicaps in utilising this character is in the case of old preserved specimens or badly preserved examples, where the origin of the adipose dorsal fin becomes obliterated because of shrinkage and as such the extent of the fin cannot be accurately derived. Hence this character is also of limited value.
17. **Pectoral fins**: The count of the pectoral fin rays has not received as much attention as it deserved. One of the reasons may be that the inner pectoral fin rays are generally thin and are hard to discern for counting purposes. The data obtained by us for certain *Mystus* species is presented in Table 2. It is seen that there is always only a single simple ray but the number of branched rays varies which is of some significance. The pectoral spine is always serrated on the inner edge with antrorse teeth and the outer edge is smooth. In genera as *Conta, Erithistes* (Sisoridae) the serrations of the spine are different and they are of much value.

Table 2: Pectoral fin ray counts in certain species of *Mystus*.

<table>
<thead>
<tr>
<th>Species</th>
<th>Standard length (in mm)</th>
<th>Pectoral fin rays count</th>
<th>Simple</th>
<th>Branched</th>
</tr>
</thead>
<tbody>
<tr>
<td>argentivittatus</td>
<td>40.3</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>armatus</td>
<td>56.0-159.2</td>
<td>1</td>
<td>7-8</td>
<td></td>
</tr>
<tr>
<td>baramensis</td>
<td>131.8</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>bleekeri</td>
<td>40.9-123.8</td>
<td>1</td>
<td>9-10</td>
<td></td>
</tr>
<tr>
<td>cavasius</td>
<td>63.4-200.7</td>
<td>1</td>
<td>8-10</td>
<td></td>
</tr>
<tr>
<td>chinensis</td>
<td>269.4-398.0</td>
<td>1</td>
<td>9-10</td>
<td></td>
</tr>
<tr>
<td>elongatus</td>
<td>164.5-236.0</td>
<td>1</td>
<td>8-10</td>
<td></td>
</tr>
<tr>
<td>gulo</td>
<td>53.3-141.1</td>
<td>1</td>
<td>8-9</td>
<td></td>
</tr>
<tr>
<td>keletius</td>
<td>39.8-70.2</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>krishnensis</td>
<td>322.1-419.9</td>
<td>1</td>
<td>8-9</td>
<td></td>
</tr>
<tr>
<td>leucophasis</td>
<td>44.5-210.3</td>
<td>1</td>
<td>8-10</td>
<td></td>
</tr>
<tr>
<td>malabaricus</td>
<td>68.6-107.1</td>
<td>1</td>
<td>7-8</td>
<td></td>
</tr>
<tr>
<td>menoda</td>
<td>150.1-287.1</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>micracanthus</td>
<td>79.3-151.5</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>microphthalmus</td>
<td>139.6-247.1</td>
<td>1</td>
<td>8-9</td>
<td></td>
</tr>
<tr>
<td>montanus</td>
<td>59.4-79.8</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>nemurus</td>
<td>129.5-176.1</td>
<td>1</td>
<td>7-8</td>
<td></td>
</tr>
<tr>
<td>oculatus</td>
<td>78.0-86.8</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>penguinensis</td>
<td>76.4</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>pelusius</td>
<td>142.8-171.2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>planiceps</td>
<td>85.1-114.1</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>pulcher</td>
<td>48.2-56.5</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>punctatus</td>
<td>120.8-196.8</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>sabanus</td>
<td>77.8</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>tengara</td>
<td>36.8-67.9</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>vittatus</td>
<td>35.5-88.5</td>
<td>1</td>
<td>8-9</td>
<td></td>
</tr>
<tr>
<td>wyckii</td>
<td>100.6-398.5</td>
<td>1</td>
<td>9-11</td>
<td></td>
</tr>
</tbody>
</table>

18. **Anal fin**: As stated earlier, length of the anal fin and consequently the number of anal fin rays have been used by Jayaram (1955) for separating *M. chryseus* (Day) as a new
genus *Horabagrus*. In all other species of *Mystus*, the frequency distribution of anal fin rays is as below (Table 3).

Table 3 : Anal fin ray counts in certain species of *Mystus*

<table>
<thead>
<tr>
<th>Species</th>
<th>Standard length (in mm)</th>
<th>Anal fin ray count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Simple</td>
</tr>
<tr>
<td>argentivittatus</td>
<td>40.3</td>
<td>1</td>
</tr>
<tr>
<td>armatus</td>
<td>56.0-159.2</td>
<td>2</td>
</tr>
<tr>
<td>baramensis</td>
<td>131.8</td>
<td>2</td>
</tr>
<tr>
<td>bleekeri</td>
<td>40.9-123.8</td>
<td>3</td>
</tr>
<tr>
<td>cavasius</td>
<td>63.4-200.7</td>
<td>3</td>
</tr>
<tr>
<td>chinensis</td>
<td>269.4-398.0</td>
<td>1-3</td>
</tr>
<tr>
<td>elongatus</td>
<td>164.5-236.0</td>
<td>1-3</td>
</tr>
<tr>
<td>gulio</td>
<td>53.3-141.1</td>
<td>3</td>
</tr>
<tr>
<td>keletius</td>
<td>39.8-70.2</td>
<td>2-3</td>
</tr>
<tr>
<td>krishnensis</td>
<td>322.1-419.9</td>
<td>3</td>
</tr>
<tr>
<td>leucophasis</td>
<td>44.5-210.3</td>
<td>2-3</td>
</tr>
<tr>
<td>malabaricus</td>
<td>68.6-107.1</td>
<td>2-3</td>
</tr>
<tr>
<td>menoda</td>
<td>150.1-287.1</td>
<td>3-5</td>
</tr>
<tr>
<td>micracanthus</td>
<td>78.3-151.5</td>
<td>2-3</td>
</tr>
<tr>
<td>microphthalmus</td>
<td>139.6-247.1</td>
<td>2-3</td>
</tr>
<tr>
<td>montanus</td>
<td>59.4-79.8</td>
<td>3</td>
</tr>
<tr>
<td>nemurus</td>
<td>129.5-176.1</td>
<td>2</td>
</tr>
<tr>
<td>oculatus</td>
<td>78.0-86.8</td>
<td>3</td>
</tr>
<tr>
<td>peguensis</td>
<td>76.4</td>
<td>2</td>
</tr>
<tr>
<td>pelusius</td>
<td>142.8-171.2</td>
<td>2</td>
</tr>
<tr>
<td>planiceps</td>
<td>85.1-114.1</td>
<td>2</td>
</tr>
<tr>
<td>pulcher</td>
<td>48.2-56.5</td>
<td>2</td>
</tr>
<tr>
<td>punctatus</td>
<td>120.8-196.8</td>
<td>2-3</td>
</tr>
<tr>
<td>sabanus</td>
<td>77.8</td>
<td>4</td>
</tr>
<tr>
<td>tengara</td>
<td>36.8-67.9</td>
<td>2-3</td>
</tr>
<tr>
<td>vittatus</td>
<td>35.5-88.5</td>
<td>2-3</td>
</tr>
<tr>
<td>wyckii</td>
<td>100.6-398.5</td>
<td>3</td>
</tr>
</tbody>
</table>

It is seen from the above that the number of branched rays is not of much significance in separating species unlike the simple rays. Earlier workers like Gunther (1864), Day (1876-78) utilised the number of branched rays for separating species but the results were not satisfactory. Further, for a field worker it becomes difficult to determine the number of simple or branched rays without the aid of a hand lens. However it is evident that two groups are apparent: one with 1 or 2 simple rays and the other with 3 or 4 simple rays.
19. Caudal fin: The shape of the caudal fin has been of great diagnostic value in separating bagrid genera (Jayaram 1966). The caudal fin may be furcate, rounded, elongated, emarginate or deeply forked. In the case of *Mystus* species, since all of them have a forked caudal fin, the shape of the fin cannot be taken as a taxonomic aid. The number of branched rays in the upper caudal fin lobe has been computed and the data indicates that the upper lobe always has 7 branched rays and the lower 8. As such the count of the caudal rays or shape is of no value.

Some authors have considered the difference in the lengths of the upper and lower lobes of the caudal fin as a taxonomic tool. For example *M. microphthalmus* has the upper lobe of the caudal fin longer than the lower and has an elongated filament, whereas in *M. penguensis*, the lower lobe of the fin is longer. *M. trachacanthus* the upper lobe has an elongated filament and Chaudhury (1913) made it a separate species. In preserved examples, the caudal fin tends to be broken and hence the value of this character is much limited.

20. Position of fins: The place of insertion of the dorsal and pelvic fins has been considered as useful even in delineating families and orders. For instance genera as *Aspidoparia, Chela, Oxygaster* (Cyprinidae) are known by their posterior position of the dorsal fin.

In siluroids also some genera have a more anteriorly inserted dorsal fin. As such it can be seen that this character is of high significance. Though it is so, in respect of *Mystus* species, however, the dorsal is always inserted more or less above the pelvic fin insertion, slightly anteriorly. Hence this character also is of little value.

21. Shape of caudal peduncle: The caudal peduncle acts as a shaft for propelling the caudal fin in the locomotion of the fishes. As such depending upon the habit of the fish, the caudal peduncle varies from being narrow or whip-like as in *M. cavasius, M. keletius*, or broad and thick as in *M. armatus, M. malabaricus* etc. The least height of the caudal peduncle as opposed to its length has been found to be useful, since not much variation is seen in this. This character is as such of good taxonomic value.

22. Spine serrations: The dorsal and pectoral spines are often times serrated in almost all species. The pectoral spines are invariably serrated with deeply cut teeth along the inner face with the outer surface rough. In the case of dorsal spine there may be a few serrations along the inner edge but this is not always constant. Hora (1951) used the character of pectoral spine serrations in distinguishing some sisorid genera as *Erethistes, Erethistoides* but such clear-cut difference in serration are not seen in *Mystus*. The counts of pectoral and dorsal spine serrations are not constant and are highly varying within the individuals of the same species as seen from data presented in Table 4.
Table 4: Spine serrations in species of *Mystus*

<table>
<thead>
<tr>
<th>Species</th>
<th>Pectoral spine</th>
<th>Dorsal fin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inner edge</td>
<td>Outer edge</td>
</tr>
<tr>
<td>argenivittatus</td>
<td>Damaged on both sides</td>
<td>9 minute</td>
</tr>
<tr>
<td>armatus</td>
<td>10-14</td>
<td>slightly rough</td>
</tr>
<tr>
<td>baramensis</td>
<td>Damaged on both sides</td>
<td>5 small</td>
</tr>
<tr>
<td>bleekeri</td>
<td>10-15</td>
<td>smooth</td>
</tr>
<tr>
<td>cavasius</td>
<td>11-14</td>
<td>smooth</td>
</tr>
<tr>
<td>chinensis</td>
<td>14</td>
<td>finely serrated</td>
</tr>
<tr>
<td>elongatus</td>
<td>12</td>
<td>smooth</td>
</tr>
<tr>
<td>gulo</td>
<td>9-12</td>
<td>smooth</td>
</tr>
<tr>
<td>keletius</td>
<td>10-12</td>
<td>smooth</td>
</tr>
<tr>
<td>kriehnensis</td>
<td>13-22</td>
<td>rough</td>
</tr>
<tr>
<td>leucophasis</td>
<td>11-20</td>
<td>smooth</td>
</tr>
<tr>
<td>malabaricus</td>
<td>8-10</td>
<td>smooth</td>
</tr>
<tr>
<td>menoda</td>
<td>20-23</td>
<td>smooth</td>
</tr>
<tr>
<td>micracanthus</td>
<td>8-14</td>
<td>smooth</td>
</tr>
<tr>
<td>microphthalinus</td>
<td>11-13</td>
<td>smooth</td>
</tr>
<tr>
<td>montanus</td>
<td>14-15</td>
<td>slightly rough</td>
</tr>
<tr>
<td>nemurus</td>
<td>13-14</td>
<td>smooth</td>
</tr>
<tr>
<td>oculatus</td>
<td>8-10</td>
<td>smooth</td>
</tr>
<tr>
<td>penguensis</td>
<td>10</td>
<td>finely serrated</td>
</tr>
<tr>
<td>pelusius</td>
<td>14-18</td>
<td>smooth</td>
</tr>
<tr>
<td>planiceps</td>
<td>Damaged on both sides</td>
<td>Damaged in all exs.</td>
</tr>
<tr>
<td>pulcher</td>
<td>8-11</td>
<td>smooth</td>
</tr>
<tr>
<td>punctatus</td>
<td>12-16</td>
<td>smooth</td>
</tr>
<tr>
<td>sabanus</td>
<td>11</td>
<td>smooth</td>
</tr>
<tr>
<td>tengara</td>
<td>8-10</td>
<td>smooth</td>
</tr>
<tr>
<td>vittatus</td>
<td>15-16</td>
<td>smooth</td>
</tr>
<tr>
<td>wyckii</td>
<td>9-10</td>
<td>smooth</td>
</tr>
</tbody>
</table>

23. Fin shape: The shape of the caudal fin and its utility in distinguishing genera has already been discussed. In the case of *Mystus* the dorsal fin is of a normal shape with the anterior rays being all tall and the posterior rays short. The anal fin and the paired fins also do not exhibit any peculiar shape to be used as a taxonomic aid.

24. Vertebral counts: One of the trends in taxonomy of fishes is to take radiographs of the specimens. It was not until 1930's that x-rays began to receive the serious attention of the taxonomist. For specimens and the type specimens, there is no substitute for a x-ray if knowledge of the internal structure is required for identification. Thus it is helpful to obtain counts of vertebrate in fishes more accurately and without causing any injury to the specimens.
In the case of *Mystus* species radiographs of as many species as possible were taken to ascertain the vertebral counts specifically as it serves as an additional tool for differentiating and determining the taxonomic relationships in closely related species. Moreover for comparative studies, the vertebral counts provide valuable data, as they do not fluctuate physiologically, rhythmically or seasonally throughout the post-embryonic life of the fish. Data obtained is presented in Table 5 below:

<table>
<thead>
<tr>
<th>Species</th>
<th>SL (mm)</th>
<th>Time of exposure</th>
<th>Current mA</th>
<th>Voltage Kvp</th>
<th>Pre-caudal</th>
<th>Caudal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>argentivittatus</td>
<td>40.3</td>
<td>05 min.</td>
<td>10</td>
<td>30</td>
<td>13</td>
<td>19</td>
<td>32</td>
</tr>
<tr>
<td>armatus</td>
<td>159.2</td>
<td>0.7 sec.</td>
<td>15</td>
<td>40</td>
<td>21</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td>baramensis</td>
<td>131.8</td>
<td>12 m. 30 sec.</td>
<td>10</td>
<td>30</td>
<td>22</td>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>bleekeri</td>
<td>82.1</td>
<td>06 min.</td>
<td>10</td>
<td>30</td>
<td>19</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>cavasius</td>
<td>82.4</td>
<td>08 min.</td>
<td>10</td>
<td>30</td>
<td>20</td>
<td>19</td>
<td>39</td>
</tr>
<tr>
<td>chinensis</td>
<td>269.4</td>
<td>0.9 sec.</td>
<td>15</td>
<td>40</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>gulo</td>
<td>63.8</td>
<td>06 min.</td>
<td>10</td>
<td>30</td>
<td>16</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>krishnensis</td>
<td>419.9</td>
<td>0.9 sec.</td>
<td>15</td>
<td>40</td>
<td>26</td>
<td>25</td>
<td>51</td>
</tr>
<tr>
<td>leucophasis</td>
<td>156.8</td>
<td>01 sec.</td>
<td>15</td>
<td>40</td>
<td>19</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>malabaricus</td>
<td>84.3</td>
<td>06 min.</td>
<td>10</td>
<td>30</td>
<td>19</td>
<td>19</td>
<td>38</td>
</tr>
<tr>
<td>menoda</td>
<td>150.1</td>
<td>0.8 sec.</td>
<td>15</td>
<td>40</td>
<td>24</td>
<td>21</td>
<td>45</td>
</tr>
<tr>
<td>micracanthus</td>
<td>151.5</td>
<td>01 sec.</td>
<td>15</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>microphthalmus</td>
<td>139.6</td>
<td>0.8 sec.</td>
<td>15</td>
<td>40</td>
<td>30</td>
<td>23</td>
<td>53</td>
</tr>
<tr>
<td>montanus</td>
<td>79.6</td>
<td>06 min.</td>
<td>10</td>
<td>30</td>
<td>17</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>nemurus</td>
<td>145.1</td>
<td>12 m. 30 sec.</td>
<td>10</td>
<td>30</td>
<td>20</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td>peguensis</td>
<td>76.4</td>
<td>03 min.</td>
<td>10</td>
<td>30</td>
<td>17</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>peliusus</td>
<td>164.3</td>
<td>12 m. 30 sec.</td>
<td>10</td>
<td>30</td>
<td>22</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>punctatus</td>
<td>196.8</td>
<td>15 min.</td>
<td>10</td>
<td>30</td>
<td>23</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>sabanus</td>
<td>77.8</td>
<td>08 min.</td>
<td>10</td>
<td>30</td>
<td>16</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>tengara</td>
<td>36.8</td>
<td>02 min.</td>
<td>10</td>
<td>30</td>
<td>13</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>vittatus</td>
<td>66.5</td>
<td>03 min.</td>
<td>10</td>
<td>30</td>
<td>17</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>wyckii</td>
<td>117.9</td>
<td>0.8 sec.</td>
<td>15</td>
<td>40</td>
<td>25</td>
<td>22</td>
<td>47</td>
</tr>
</tbody>
</table>

It will be seen from the above discussion that the number of taxonomic characters that can be utilised for separating species of *Mystus* are very much limited and the few that are available are also of restricted utility. This is true in the case of all generalised fishes like *Mystus* where taxonomic differentiation is a difficult task.

VII. DEFINITION OF GENERIC LIMITS

The genus has undergone several nomenclatural changes besides taxonomic modifications. The history of the usage of the name *Mystus*, since its inception in 1763 by Gronow, the
A taxonomic revision of the fishes of the genus Mystus Scopoli I 9

nomenclatural aspects has already been published (Jayaram & Anuradha, 1984). It will be seen that for a number of years several siluroid genera with some common characters have been placed under the name Mystus. For a number of years the genus has remained as a single unit with 44 species described so far. Jayaram (1968) made an attempt to restrict the genus geographically as well as taxonomically by examining the systematic position of some extra-Indian species. Geographically the genus is concentrated maximum in the Indian peninsula and least in West Asia. Taxonomically the species of West Asia are different from those of the Indian peninsula. Though the genus itself is much generalised, most of the 44 species are well defined, each with a distinct diagnostic feature.

Tilak (1965) studied the osteocranium and Weberian apparatus of M. gulio, M. vittatus and M. cavasius. Jayaram and Bhimachar (1967) compared the osteocranium differences between M. leucophasis and M. gulio, M. vittatus and M. tengara, M. bleekeri and M. cavasius. Tilak (1965) grouped M. cavasius and M. oculatus under one head characterising them as having the central ridge of tripus continuous with the heel-like process; no cartilage between the lateral ethmoids; frontals forming half of the posterior fontanel; sub-temporals absent; foramen for cranial nerve 2 and 3 of both sides united to form a single median ventral foramen. Likewise he grouped M. vittatus and M. gulio under another head, differentiating them as having the ventral ridge of tripus independent of the heel like process; cartilage between the lateral ethmoids present; posterior fontanel completely enclosed by frontal or may be absent; sub-temporal present; foramen for 2-5 cranial nerves separate. Jayaram and Bhimachar (1967) demonstrated that apparently similar species are structurally different and they may be separated generically. Roberts (1989) described five species from western Borneo besides M. olyroides as new. He stated further that division of Mystus into other genera needs a further study. However in 1994 he revised the genus and restricted the generic limits to comprise species with (i) moderately to very long maxillary barbels extending beyond pelvic fins; (ii) very long adipose fin almost equal to or longer than anal fin; (iii) total gill rakers on first gill arch 11-30; (iv) total vertebrae 37 to 46 (about equally divided between abdominal and caudal vertebrae). Mystus pelusius was designated as the type species. Mystus sensu stricto was thus restricted to include the following species besides olyroides and pelusius.

1. M. pelusius - Euphrates basin; Turkey, Syria, Iraq and Iran.
2. M. bleekeri - India, Pakistan and Bangladesh.
5. M. albolineatus new species - Chao Phraya and Bangpakong basins, Thailand, Lower Mekong basin : Cambodia.
6. M. bocourti - Thailand and Cambodia.
7. M. rhegma - Thailand and Cambodia.
8. M. singaringan - Thailand, Cambodia, Malaysia (Peninsular Malaysia and Saravak) and Indonesia (Sumatra, Kalimantan and Java).

If we apply the above four criteria of Roberts, it is seen that besides the species listed above the following also are likely to come under Mystus s. s.:
M. horai; M. malabaricus; M. leucophasis; M. montanus; M. pulcher; M. tengara.

These six species have a long adipose dorsal fin and maxillary barbels extending up to pelvic or beyond anal fin. The total gill raker count is in a wide range which almost covers all the species. The total vertebral count is not very indicative since most of the species fall under the range 37 to 46 excepting krishnensis and microphthalmus. It must be however conceded that our radiological examination and gill raker counts were limited to a few examples only. As such the range of variation is not known.

The character of the length of adipose dorsal fin is not much dependable. The fin shrinks in many old museum preserved specimens and even in fresh examples variations are often seen.

Bleeker (1862) divided Mystus into four groups:

Aspidobagrus type species Bagrus gulio Hamilton-Buchanan

Hypselobagrus type species Bagrus macronema Bleeker = Bagrus nigriceps Valenciennes

Hemibagrus type species Bagrus nemurus Valenciennes.

The position in respect of the remaining 23 species is as below:

Table 6: Generic position of species

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Species</th>
<th>Max. barb extending beyond pelvic fin</th>
<th>Adipose dorsal fin base longer than anal base</th>
<th>Total gill rakers</th>
<th>Total Vertebrae</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>anemiyae</td>
<td>No</td>
<td>Yes</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2.</td>
<td>argentivittatus</td>
<td>No</td>
<td>No</td>
<td>...</td>
<td>32</td>
</tr>
<tr>
<td>3.</td>
<td>armatus</td>
<td>No</td>
<td>No</td>
<td>...</td>
<td>42</td>
</tr>
<tr>
<td>4.</td>
<td>atrifasciatus*</td>
<td>Yes</td>
<td>Yes</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5.</td>
<td>bimaculatus*</td>
<td>Yes</td>
<td>23-24</td>
<td>32-35</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>baramensis*</td>
<td>Yes</td>
<td>No</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>chinensis*</td>
<td>No</td>
<td>Yes</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>elongatus*</td>
<td>No</td>
<td>Yes</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>keletius*</td>
<td>Yes</td>
<td>Yes</td>
<td>33-35</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>macropterus</td>
<td>No</td>
<td>Yes</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>maydelli*</td>
<td>Yes</td>
<td>Yes</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>menoda*</td>
<td>Yes</td>
<td>Yes</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>micracanthus</td>
<td>Yes</td>
<td>Yes</td>
<td>24-27</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>multiradiatus*</td>
<td>Yes</td>
<td>Yes</td>
<td>36-40</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>mysticetus</td>
<td>No</td>
<td>No</td>
<td>36-97</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>oculatus</td>
<td>Yes</td>
<td>No</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>penguensis*</td>
<td>No</td>
<td>No</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>planiceps</td>
<td>No</td>
<td>No</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>punctatus*</td>
<td>No</td>
<td>No</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>pluriradiatus</td>
<td>Yes</td>
<td>Yes</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>sabanus*</td>
<td>Yes</td>
<td>Yes</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>vittatus</td>
<td>No</td>
<td>Yes</td>
<td>19-25</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>wolfii*</td>
<td>Yes</td>
<td>Yes</td>
<td>24-29</td>
<td></td>
</tr>
</tbody>
</table>

Rec. zool. Surv India, Occ. Paper No. 207
It can be seen that out of 23 species as listed above only 14 (asterisk) marked can be further referred to *Mystus sensu stricto*, the position of the remaining is uncertain for want of data. They are best kept under *Mystus sensu lato*.

To sum up the generic break up of the 44 species is as below:

<table>
<thead>
<tr>
<th>Genus Mystus sensu stricto</th>
<th>Genus Mystus sensu lato</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. albo-lineatus</td>
<td>1. amemiya</td>
</tr>
<tr>
<td>2. atrifasciatus</td>
<td>2. argentivittatus</td>
</tr>
<tr>
<td>3. baralnensis</td>
<td>3. armatus</td>
</tr>
<tr>
<td>4. bimaculatus</td>
<td>4. mysticetus</td>
</tr>
<tr>
<td>5. bleekeri</td>
<td>5. oculatus</td>
</tr>
<tr>
<td>7. cavasius</td>
<td>7. vittatus</td>
</tr>
<tr>
<td>8. chinensis</td>
<td>Genus Aspidobagrus</td>
</tr>
<tr>
<td>9. elongatus</td>
<td>1. gulio</td>
</tr>
<tr>
<td>10. horai</td>
<td>Genus Hypselobagrus</td>
</tr>
<tr>
<td>11. keletius</td>
<td>1. nigriceps</td>
</tr>
<tr>
<td>12. krishnensis</td>
<td>2. wolfii</td>
</tr>
<tr>
<td>13. leucophasis</td>
<td>3. macracanthus</td>
</tr>
<tr>
<td>14. macropterus</td>
<td>Genus Hemibagrus</td>
</tr>
<tr>
<td>15. malabaricus</td>
<td>1. nemurus</td>
</tr>
<tr>
<td></td>
<td>2. planiceps</td>
</tr>
<tr>
<td></td>
<td>3. wyckii</td>
</tr>
<tr>
<td>16. maydelli</td>
<td>Genus Hemibagrus</td>
</tr>
<tr>
<td>17. menoda</td>
<td>1. nemurus</td>
</tr>
<tr>
<td>18. microphthalmus</td>
<td>2. planiceps</td>
</tr>
<tr>
<td>19. montanus</td>
<td>3. wyckii</td>
</tr>
<tr>
<td>20. multiradiatus</td>
<td>Genus Hemibagrus</td>
</tr>
<tr>
<td>21. olyroides</td>
<td>1. nemurus</td>
</tr>
<tr>
<td>22. peguensis</td>
<td>2. planiceps</td>
</tr>
<tr>
<td>23. pelusius</td>
<td>3. wyckii</td>
</tr>
<tr>
<td>24. pulcher</td>
<td>Genus Hemibagrus</td>
</tr>
<tr>
<td>25. punctatus</td>
<td>1. nemurus</td>
</tr>
<tr>
<td>26. rhegma</td>
<td>2. planiceps</td>
</tr>
<tr>
<td>27. rufescens</td>
<td>3. wyckii</td>
</tr>
<tr>
<td>28. sabanus</td>
<td>Genus Hemibagrus</td>
</tr>
<tr>
<td>29. singaringan</td>
<td>1. nemurus</td>
</tr>
<tr>
<td>30. tengara</td>
<td>2. planiceps</td>
</tr>
<tr>
<td></td>
<td>3. wyckii</td>
</tr>
</tbody>
</table>
It would appear *sensu stricto* only 30 species could be assigned to *Mystus* as per Robert's classification. We have however treated all the 44 species under *Mystus sensu lato* pending further analysis and detailed study of all the species especially in respect of their vertebral and gill raker counts.

VIII. SYSTEMATIC ACCOUNT

Genus *Mystus* Scopoli, 1777

1763. *Mystus* Gronovius, *Zoophylyacium Gronoviana* 1 (388): 124, pl. 8a, fig. 6 (type species *Mystus anguillaris* Meuschen. Seven siluroid fishes described under *Mystus*. Species divided into three groups based on number of barbels. Latin names of species are not consistently binominal. Gronow's work invalidated by ICZN opinion 261).

1822. *Pimelodus* (in part) Hamilton-Buchanan, *Fish Ganges* : 160 (generic description composite. Out of 33 species described only four referable to *Mystus*).

1849. *Bagrus* (in part), Jerdan, *Madras J. Lit. Sci.* 15(2) : 335 (diagnosis only, 16 species included out of which only seven referable to *Mystus*).

1864. *Macrons*, Gunther, *Cat. Fish. Brit. Mus.* 5 : 74 (brief diagnosis, genus divided into three groups. 19 species included out of which only 12 referable to *Mystus*).

1954. Mystus, Jayaram, Rec. Indian Mus. 51(4) : 527-530 (synonymy, description, key to sub-genera and species, type locality, distribution).

1971. Mystus, Islam and Siddiqi, Biologia 17(1) : 38 (key to species).

1982. Mystus, Dutt, Sharma and Desoutter, Cybium 6(4) : 27 (synonymy).

1983. Mystus, Sharma and Dutt, Rec. zool. Surv. India 81 (1 & 2) : 332 (taxonomic account of four species, key to species from Guntur).

1984. Mystus, Mirza and Omer, Biologia 30(1) : 87 (key to Mystus cavasius and Mystus gulio; Baluchistan).

DESCRIPTION

Body short or moderately elongated. Head compressed or ventrally flattened. Snout obtuse or rounded. Mouth sub-terminal, transverse. Eyes anteriorly situated, not visible from ventral surface of head, moderately large, with free circular margins. Jaws sub-equal, upper jaw slightly longer. Teeth numerous, villiform, in bands on jaws and palate. Two pairs of nostrils, anterior pair tubular, a pair of barbels on the posterior. Upper surface of head smooth or rugose with one or two median longitudinal grooves of varying length. Occipital process long or short, situated superficially or concealed under skin.

Four pairs of barbels: one pair maxillary always longer than head, one pair nasal usually shorter than head, one pair outer mandibular of varying lengths and one pair inner always shorter than head (exception M. argentivittatus where all barbels are shorter than head).

Two dorsal fins: an anterior rayed dorsal with seven rays and a spine; a posterior smooth, low adipose fin or varying lengths. Pectoral fins with 6 to 10 rays and a strong spine serrated along inner edge with antrorse teeth. Pelvic fins with six rays and not reaching anal fin. Anal fin with 9 to 15 rays and not reaching root of caudal fin. Caudal fin forked, bilobed with unequal lobes; lobes may be rounded, pointed or sometimes prolonged into filamentous extensions. Lateral simple, complete.

Osteological characters: In respect of Mystus species not much osteological details are known. The valuable studies of Bhimachar (1934) on the morphology of skulls of certain Indian catfishes are one of the important contributions for understanding the cranial structure of Mystus species. In this work Bhimachar compared the osteocranium of Rita rita (Hamilton-Buchanan) and examined the possibility of these characters as an aid in classifying closely related siluroid species. Sarkar (1962) while investigating the nomenclatural status of Mystus and Osteobagrus Jayaram opined that the interneural shield is present in all species of Mystus and not only in Aorichthys aor and A. seenghala. Raj Tilak (1965) studied in detail, the skeleton of M. cavasius, M. gulio, M. oculatus, M. vittatus, Aorichthys aor and A. seenghala. He prepared a key on the basis of osteological characters for differentiating the species. He confirmed the sub-generic status of Osteobagrus. Jayaram (1971) investigated in detail this problem of presence or absence of the interneural shield in species of Mystus and showed that Sarkar has confused the basal bone of the dorsal fin as that of the inter-neural shield. Excepting the above, there seems to be no other osteological account of Mystus species. In order to know the inter-relationship of the different species, a general account of the osteological make up of the genus is presented here.

The cranium is well ossified and the cephalic shield is absent. The first six anterior vertebrae are modified to form the Weberian apparatus. The skull is platytrabic since the cranial cavity does not extend anteriorly beyond the orbito-ethmoid. The anterior tip of the ethmoid is concave. The nasals are slender which are pressed along their dorso-lateral edge of the ethmoid. The prevomerine band of teeth is simple and is dentigerous. No wing like lateral processes is present. The lacrymal is small and bears a long process anteriorly. There
are two fontanelles enclosed by the frontals, however the posterior one is absent in *M. gulio*, whereas half of the posterior fontanelle is enclosed by the frontals in *M. oculatus* and *M. cavasius*; in *M. vittatus* the posterior fontanelle is almost completely enclosed by the frontals. A supra-temporal bone is present. The post-temporal has only a ligamentous connection with the skull. The descending limb of the post-temporal is developed into a post-temporal plate, which is posteriorly flat with the postero-ventral end grooved. The groove is continuous with a foramen through which the tip of the dorsal process of the cleithrum passes. The sub-temporals are present as a paired bone in *M. vittatus* only. The anterior process of the parasphenoid forms a ridge on the ventral side. The ventro-lateral sides of the cranium have the foramina for the exit of the 2nd to 5th cranial nerves. In *M. gulio* the foramina are separate whereas in *M. vittatus* they come nearer to each other. In *M. cavasius* and *M. oculatus* there is a single mid-ventral foramen enclosed by the pterosphenoid ventral to which lies the anterior process of the parasphenoid. The infrorbital series of bones comprises of five small tubular weak bones. In *M. gulio* a tri-radiate fossa is formed on the lateral side of the cranium. The frontals, the sphenotics and the supraoccipital form this fossa.

The sphenotics form 3/4th of the articular facet for the hyomandibular and they do not take part in the formation of the foramen for the cranial nerves. The pterotics bear 1/4th of the articular facet for the hyomandibular.

The epiotic is in the form of a bulge in the occipital region, partly covered over by the supratemporal and the epiotic limb of the post-temporal. The supraoccipital does not take part in the formation of the foramen magnum.

The premaxillaries are thin, of uniform width and are dentigerous. the ectopterygoid is bent, rod shaped, edentate and connected to metapterygoid by a ligament. The endopterygoid is small, flat, articulating posteriorly with the quadrate. It does not have a direct connection with the hyomandibular. The quadrate is drawn into a process anteriorly. The cornomeckelian lies embedded as a small bone into the posterior end of the Meckel’s cartilage on the mesial side of the mandible.

The urohyal has anteriorly a pair of articular facet on the ventral side and concavity on the dorsal side. Posteriorly it has a dorsal median ridge and a pair of lateral processes. The epihyal mostly bears two branchiostegal rays and the certaohyal seven. The preoperculum is completely united with the hyomandibular and quadrate in *M. cavasius* whereas a small foramen is present between preoperculum and the hyomandibular in *M. vittatus* and *M. gulio*.

Distribution: Syria in the west through Iran, Iraq, Afghanistan, Pakistan, India, Nepal, Bangladesh, Myanmar, Sri Lanka, Thailand, Malaya Peninsula, Laos, Vietnam, Sumatra, Java, Borneo and China in the east.

Type species: *Mystus pelusius* Solander.
Remarks: Bagrid fishes of the genus Mystus Scopoli were previously under the name Macrones Dumeril (1857) for a very long time. Since Dumeril's name was preoccupied in Insecta (Coleoptera), several other names as Aoria Jordan (1919), Sperata Holly (1939), Aorichthys Wu (1939) and Macronoichthys White & Moy Thomas (1940) were proposed. Unfortunately none of these names are available for some reason or other and hence Mystus Scopoli 1777, the earliest valid name, was adopted. But, Scopoli had not designated any particular species by name as the type species. Jordan and Evermann (1917) selected Bagrus halepensis Valenciennes (Mystus cirris octo capito longioribus) Gronow. No. 388 as the type species of Mystus Scopoli. Valenciennes (1839) gave the name Bagrus halepensis for this fish included by Russell (1756) in his Natural History of Aleppo. Solander (1794) gave binominal names to fishes cited by Russell in his aforesaid work and Bagrus halepensis Valenciennes was named Silurus pelusius. Since Solander's name and work has precedence over that of Valenciennes (1839), Silurus pelusius = Mystus pelusius becomes the type species of the genus Mystus. However Roberts (1994) opines differently.

Solander's description of M. pelusius in Russell's work (1775) is very brief. Gunther (1864) described a specimen from Russell's collection present in the British Museum, London. This description is also poor in details and is only of a preserved, bleached six inches long example. We obtained three specimens in exchange through the kind courtesy of Dr. Munir K. Bunni, Director, Baghdad Natural History Research Center and the present description of the species is drawn from them.

Key to species from India, Bangladesh, Pakistan, Sri Lanka and Nepal

1. Occipital process reaching basal bone of dorsal fin ... 2
- Occipital process not reaching basal bone of dorsal fin .. 10

2. Adipose dorsal fin commencing almost after rayed dorsal fin. Interspace between the two fins negligible or equal to or shorter than width of rayed dorsal fin 3
- Adipose dorsal fin commencing after an interspace from rayed dorsal fin. Interspace between the two dorsal fins considerable, greater than width of rayed dorsal fin 6

3. Caudal peduncle constricted, its least height about 3 times in its length. Vomerine band of teeth not continuous ... M. horai
- Caudal peduncle not constricted, its least height about 2 times in its length. Vomerine band of teeth uninterrupted ... 4

4. Maxillary barbels reach base of pelvic fins .. M. tengara
- Maxillary barbels reach anal fin or beyond .. 5

5. Maxillary barbels reach anal fin. Interorbital width less than 3.0 (2.0-3.0) in head length. No dark spot at base of dorsal fin. Body with two light longitudinal bands, one each above and below lateral line ... M. bleekeri
Maxillary barbels reach caudal fin base or beyond. Interorbital space width more than 3.0 (3.0-4.0) in head length. A dark spot at base of dorsal fin. No bands on body ...

\[M.\ cavasius\]

6. Median longitudinal groove on head short, as two fontanels, reaching base of occipital process. Adipose dorsal fin base longer than anal fin base \[M.\ oculatus\]

Median longitudinal groove on head short, or long, as one or two fontanels, not reaching base of occipital process. Adipose dorsal fin base shorter than anal fin base 7

7. Body plain, without any colour bands ... 8

- Body with one or two longitudinal colour bands on either side of the lateral line 9

8. Body plain, occipital crest rugose. No blotch at base of caudal fin. Adipose dorsal fin base shorter than or equal to anal fin base. Median longitudinal groove short, extending slightly beyond posterior border of orbit .. \[M.\ gulio\]

- Body plain. Occipital crest smooth. A dark blotch at base of caudal fin. Adipose dorsal fin base longer than anal fin base. Median longitudinal groove extending beyond posterior border of orbit and nearly reaching base of occipital process \[M.\ armatus\]

9. Eye diameter 3.5 to 4.0 in head length. Pectoral fin with six rays. Body with a bluish shoulder spot and a silvery line along the side ending in a dark spot at base of caudal; one or two light bands along sides above lateral line \[M.\ montanus\]

Eye diameter 4.5 to 6.0 in head length. Pectoral fin with nine rays. Body with 3 to 4 longitudinal colour bands above and below lateral line. A dark shoulder spot. No spot at base of caudal fin .. \[M.\ vittatus\]

10. Body without any spot, plain coloured ... 11

- Body with spots ... 12

11. Eye diameter 6 times in head length .. \[M.\ maydelli\]

Eye diameter 9 to 10 times in head length ... \[M.\ krishnensis\]

12. Body with a shoulder spot and with a dark streak along lateral line 13

Entire body with round spots along lateral line; Band along lateral line not continuous ... 14

13. Occipital process long, 5.0 times longer than wide at base. Body depth about 4.4 to 5.7 times in standard length. A light band above and below lateral line. No spot at caudal fin base .. \[M.\ oculatus\]
Occipital process 1.0 to 2.0 times longer than wide at base. Body depth 4.5 to 7.0 times in standard length. A dark band along lateral line only, ending with a dark triangular blotch at caudal base ... M. malabaricus

14. Ten black rounded spots along lateral line. Body depth 6.4 to 8.9 times in standard length .. M. punctatus

- Several clusters of small vertical spots along anterior half of lateral line. Body depth 4.6 to 5.4 times in standard length ... M. menoda

Key to species from Myanmar

1. Maxillary barbels reach middle of pectoral fins M. peguensis
 - Maxillary barbels reach pelvic fin or beyond ... 2

2. Median longitudinal groove on head reaching base of occipital process 3
 - Median longitudinal groove on head not reaching base of occipital process 4

3. Caudal fin with 24 rays. A black spot at base of caudal fin. Adipose dorsal fin long and high ... M. rufescens
 - Caudal fin with less than 20 rays. No black spot at base of caudal fin. Adipose dorsal fin long and high .. M. leucophasis

4. Occipital process reaching basal bone of dorsal fin. Eye diameter 3.0 to 4.0 times in head length. A black shoulder spot and another at base of caudal fin M. pulcher
 - Occipital process not reaching basal bone of dorsal fin. Eye diameter 6.0 to 8.0 times in head length. No spot at base of caudal fin .. M. microphthalmus

Key to species from Thailand, Malaya and East Indies

1. Dorsal fin extraordinarily high, dorsal spine smooth and elongated M. bocourti
 - Dorsal fin short, moderately high .. 2

2. Eyes lateral, rather than dorso-lateral, equally visible from above or below head. Mouth nearly terminal .. M. mysticetus
 - Eyes not lateral, usually cannot be seen from directly below 3

3. Gill rakers on first gill arch 43-65. Basal margin of eye in line with dorsal profile of head ... M. multiradiatus
 - Gill rakers on first gill arch less than 40 .. 4
4. Melanophores absent from skin in immediate proximity of lateral line thus creating a thin median white stripe ... \textit{M. albolineatus}

No such white or pale stripe .. 5

5. Colour uniformly gray without stripes or marks \textit{M. singaringan}

- Colour not uniform. Body with stripes and or marks 6

6. Adipose dorsal fin very long, contiguous with dorsal fin. Maxillary barbels often extending beyond caudal fin ... \textit{M. nigriceps}

- Adipose dorsal fin not contiguous with dorsal fin 7

7. Palate band of teeth interrupted in middle ... \textit{M. olyroides}

- Palate band of teeth continuous in a single band 8

8. Body with distinct colouration. Dorsal and lateral surfaces of head and body and all fins largely black in colour. Head with well defined white markings, on tips of pectoral and dorsal fins, leading edge of adipose and anal fin, upper and lower margins of caudal peduncle and caudal fin (including filamentous) ... \textit{M. wyckii}

Body not coloured as above .. 9

9. Base of outer mandibular barbels inserted slightly behind, rather in front of line vertical to posterior margin of lateral rictus .. \textit{M. rhegma}

Insertion of outer mandibular barbels not as above 10

10. Body chocolate brown over all with a large black humeral spot (round and well defined) and a large black vertical bar on posterior portion of caudal peduncle and base of caudal fin; anterior margin of humeral spot and both margins of caudal bar set off by vertical cream or white bars ... \textit{M. bimaculatus}

- Body colour not as above .. 11

11. A triangular black or dusky mark at base of caudal fin (on caudal peduncle) and body without stripes ... \textit{M. atrifasciatus}

No such triangular black mark on caudal peduncle 12

12. Occipital process reaching basal bone of dorsal fin 13

Occipital process not reaching basal bone of dorsal fin 15

- Gill rakers on first gill arch more than 20 (24-29). Median longitudinal groove not reaching base of occipital process ... 14

... M. microcanthus

- A black spot on shoulder. Maxillary barbels do not reach pelvic fin M. sabanus

15. Median longitudinal groove not reaching basal bone of dorsal fin 16

- Median longitudinal groove reaching basal bone of dorsal fin 17

16. Maxillary barbels do not reach pelvic fin base .. M. pluriradiatus

- Maxillary barbels extend beyond pelvic fin base; up to caudal fin M. baramensis

17. Maxillary barbels reach caudal fin base .. M. wolfii

- Maxillary barbels reach pelvic fin base ... M. planiceps

Key to species from China

1. Body and fins speckled with black dots ... M. chinensis

- Body plain .. 2

2. Occipital process reaching basal bone of dorsal fin ... 3

- Occipital process not reaching basal bone of dorsal fin .. 4

3. Gill rakers on first gill arch less than 20(11). Median longitudinal groove reaching basal bone of dorsal fin ... M. argenteivittatus

- Gill rakers on first gill arch more than 20(22). Median longitudinal groove not reaching basal bone of dorsal fin ... M. macropterus

4. Maxillary barbels extend beyond dorsal fin. Gill rakers on first gill arch not more than 20 .. M. amemiyae

- Maxillary barbels extend just up to dorsal fin or even shorter than that. Gill rakers on first gill arch more than 20(24) ... M. elongatus

Key to species from Syria, Turkey

1. Maxillary barbels reaching not beyond pelvic fins. Adipose dorsal fin commencing immediately after dorsal fin ... M. pelusius
Mystus albolineatus Roberts

Specimen studied: No specimen seen by us.

Description: This species differs from all other Mystus sensu stricto in having melanophores absent from skin in immediate proximity of lateral line, thus creating a thin median white or pale stripe. This stripe is emphasized by dense accumulations of melanophores immediately above and below it. Within Mystus sensu stricto gill raker counts high, 21-24; vertebral counts low 40-42. Some specimens have a pale semiocellated humeral spot as in Mystus cavasius and Mystus bocourti. Some have a small dark triangular mid-peduncular spot (Roberts, 1994).

Distribution: THAILAND: Chao Phraya and Bangpakong basin. CAMBODIA: Lower Mekong basin.

Remarks: Roberts (1994) proposed this species for some of the 23 specimens from Prachinburi market identified as M. nigriceps by Fowler (1937 : 145). Out of this lot he segregated M. singaringan (Bleeker) and this species which is closely related to M. cavasius.

Mystus amemiyae (Kimura)

1934. Aoria amemiyae Kimura, J. Shanghai Sci. Inst. (3)1 : 166-168, pl. 5, fig. 2 (type locality Howchwan, Szechwan province, China).

Specimen studied: No specimen seen by us.

Description: Kimura (1934) gave a good description of this species. The type specimens are deposited in the Museum of the Institute of Hydrobiology, Wu-Han, Hupeh Province, People's Republic of China. The following description is drawn from the original description based on two specimens, 130-205 mm SL.

D.I,7; P.I,9; V.i,5; A.i,10; C.7+8.

Body depth 97.1; head length 23.8; length of adipose dorsal fin 42.9; maxillary barbel length 66.7, all in percent of standard length. Eye 19.0, height of head 37.4, inter-orbital width 25.3, post-orbital width 47.6, width of head 69.9, dorsal spine length 50.0, length of snout 34.4, gape of mouth 59.9, length of dorsal fin base 53.2, length of dorsal fin ray 66.7, length of adipose dorsal fin base 37.7, length of pectoral fin 62.5, length of pelvic fin 50.0,
length of base of anal fin 54.6, length of anal fin ray 47.6, length of caudal fin 62.5, length of outer mandibular barbel 80.0, length of inner mandibular barbel 40.0, length of caudal peduncle 83.3, least depth of caudal peduncle 13.9 all in percent of head length. Adipose dorsal fin base 41.7 in percent of least depth of caudal peduncle. Width of snout 75.2 in percent of length. Eye 57.1 in percent of length and 80.0 in percent of inter-orbital width. Least depth of caudal peduncle 33.3 in percent of its length. Occipital process 66.7 in percent of its length.

Dorsal profile almost straight with very little rise from the tip of snout to the base of occipital process. Head broad, flat and much depressed. Mouth opening terminal, slightly arched. Upper jaw slightly longer than the lower. Snout thin, spatulate with outer margin rounded. eyes oval, anteriorly situated on top. Post-orbital part of head elongate and well depressed. Upper surface of head smooth, covered by skin. Median longitudinal groove on dorsal surface of head extending up to the base of occipital process. Occipital process short and rudimentary, a considerable interspace present between the process and the basal bone of dorsal fin. Teeth villiform, in simple broad bands on both the jaws; a narrow band of teeth runs parallel across vomer and palatines.

Four pairs of barbels, one pair maxillary long, extending beyond the end of base of dorsal fin; one pair nasal extending up to the center of eye, one pair outer mandibular reaching origin of pectoral fins, one pair inner mandibular shorter, reaching posterior border of eye.

Dorsal fin with a long, stout, slender smooth spine. Adipose dorsal fin very long, low, its base originates almost after the end of base of rayed dorsal fin. Pectoral fins with nine branched rays and a strong spine. Outer surface of pectoral spine serrated, inner surface rough. Pelvic fins inserted just below the level of the end of base of dorsal fin and not reaching anal fin. Anal fin not reaching caudal fin. Caudal fin bifurcated with pointed lobes, upper lobe slightly longer than lower.

Colour : Fresh specimens dark brown on upper surface of body, pale below; belly whitish. Head dark brown yellow, opercle slightly pinkish. Fins dusky place yellow, lower lobe of caudal fin duskier. Body plain without any marks or spots.

Distribution : CHINA : Howchwan, Szechwan province.

Remarks : Bleeker (1870) described *Hemibagrus macropterus* from a specimen 175 mm long from the Yangtze river, China. Nichols (1943) considered this species separately and synonymised *Aoria ameniya* with this species. From the description of both the species, it is seen that *Mystus macropterus* differs from *M. ameniya* in having a deeper body, shorter barbels and a longer anal fin. However, *M. macropterus* has not been subsequently recorded from China. A comparison of the two species drawn from the original descriptions is given below :
Table 7: Comparison of *M. amemiya* with *M. macropterus*.

<table>
<thead>
<tr>
<th>Characters</th>
<th>M. macropterus</th>
<th>M. amemiya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard length</td>
<td>175 mm</td>
<td>149-205 mm</td>
</tr>
<tr>
<td>SL/Body depth</td>
<td>8.0</td>
<td>10.3</td>
</tr>
<tr>
<td>SL/LH</td>
<td>4.8</td>
<td>4.2</td>
</tr>
<tr>
<td>LH/Ht. of Head</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td>LH/Eye</td>
<td>4.7</td>
<td>5.2</td>
</tr>
<tr>
<td>IOW/Eye</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Surface of head</td>
<td>Smooth</td>
<td>Smooth</td>
</tr>
<tr>
<td>Nasal barbel reaching</td>
<td>Posterior border of eye</td>
<td>Centre of eye</td>
</tr>
<tr>
<td>Maxillary barbel reaching</td>
<td>Tip of pectoral spine</td>
<td>End of base of dorsal fin</td>
</tr>
<tr>
<td>Dorsal spine</td>
<td>Posteriorly serrated</td>
<td>Smooth on both edges</td>
</tr>
<tr>
<td>Shape of caudal fin</td>
<td>Deeply forked</td>
<td>Well forked; tip sharply pointed, upper lobe slightly longer</td>
</tr>
<tr>
<td>Adipose fin</td>
<td>4.0 times longer than dorsal fin base</td>
<td>Very long, its origin after mid base of dorsal fin</td>
</tr>
<tr>
<td>Dorsal spine</td>
<td>Weak</td>
<td>Stout and slender</td>
</tr>
<tr>
<td>Dorsal fin shape</td>
<td>Rounded</td>
<td>Elongate</td>
</tr>
</tbody>
</table>

From the above comparison it may be seen that *M. amemiya* is a distinct species, separable from *M. macropterus* by its lesser body depth, longer head, smaller eye, longer barbels and shorter anal fin.

Mystus argentivittatus (Regan)
(Figure 1)

Specimen studied: Lectotype MHNG 577.99, 40.3 mm SL, China, “Cungkun” (=Ching King), Canton, sur la riviere l’East, Miss Kuhne, 9-01-1903.

Description: D.I, 9; P.I. 6; V.i,5; A.i,12; C. damaged.

Fig 1. Lateral view drawing of Mystus argentivittatus (Regan), Specimen MHNG 677.99.

Body depth 32.0, head length 23.8, width of head 19.1, dorsal spine length 21.6, pre-dorsal length 42.1, post-dorsal length 66.7, length of anal fin base 17.6, all in percent of standard length. Eye 27.9, inter-orbital width 39.4, dorsal spine length 83.6, length of snout 32.7, gape of mouth 38.5, maxillary barbel length 82.5, nasal barbel length 60.6, inner mandibular barbel length 30.8, outer mandibular barbel length 92.9, length of dorsal fin base 49.0, length of anal fin base 68.3, length of caudal peduncle 73.1, height of caudal peduncle 41.3, all in percent of head length. Adipose dorsal fin base 73.2, in percent of anal fin base. Snout length 80.5 in percent of inter-orbital width. Least depth of caudal peduncle 58.1 in percent of its length.

Dorsal profile steeply rising from tip of snout to the base of occipital process. Head flat, almost as broad as long. Snout prominent. Mouth opening crescentic. eyes small, anteriorly placed. Median longitudinal groove on dorsal surface of head extending as a long indistinct single fontanel.

Occipital process subcutaneous, extending to pre-dorsal plate. Teeth villiform, numerous, in a semilunar uninterrupted band on palate, in two deeply curved mesially interrupted bands on lower jaw. Four pairs of barbels. One pair maxillary reaching three-fourths of pectoral
spine, one pair nasal reaching posterior end of median fontanel, one pair outer mandibular reaching one-fourth pectoral spine, one pair inner mandibular shorter.

Dorsal fin with seven branched rays and a weak spine. Longest ray of dorsal fin with feeble serrations. Adipose dorsal fin short with a long inter-space between the two fins. Pectoral fins with one simple and six branched rays, pectoral spines damaged. Pelvic fins just reach anal fin. Anal fin short, not reaching caudal fin. Caudal fin damaged but as per original description forked.

Colour: Pale brown along sides and body, lighter beneath. A faint dark stripe along lateral line indistinctly seen.

Distribution: CHINA: Canton.

Remarks: Jayaram (1974) redescribed the species from three examples all of which are original specimens of Regan (1905) and designated a lectotype. This species resembles *M. vittatus* in having a steep dorsal profile, deep body, prominent snout and short adipose dorsal fin, but may be easily separated by colouration; the parallel stripes on body are absent in this species.

Mystus armatus (Day)
(Figure 2)

Fig 2. Lateral view drawing of *Mystus armatus* (Day).

Macrones armatus. Day, Fish India : 450, pl. 101, fig. 3 (synonymy, description; Malabar and the Wayanad range of hills).

Mystus armatus. Jayaram, Rec. Indian Mus. 51(4) : 539, fig. 5 (synonymy, description and distribution).

Mystus armatus, Jayaram, Int. Rev. ges. Hydrobiol 41(3) : 446 (distribution).

Mystus armatus, Babu Rao and Chattopadhyay, J. Bengal nat. Hist. Soc. 35 (2) : 89, pl. 2, fig. 4.

Mystus armatus, Jayaram, Rec. zool. Surv. India, Occ. Paper No. 8 : 25, fig. 23B (synonymy, diagnostic characters, colour, distribution, size, fishery value).

Mystus armatus, Jayaram, Rec. Zool. Surv. India, Occ. Paper No. 36 : 74, fig. 21 (synonymy, local names; Wayanad, Cauvery watershed, South India).

Specimens studied : 17 exs. 56.0 mm - 159.2 mm SL in total as below :

ZSI Unreg. Six exs. 56.0-77.5 mm SL Muppinipotti on Punnanpuzha, Kerala, K. C. Jayaram and Anuradha coll. 18-02-1985. ZSI unreg. 10 exs. 62.2-84.2 mm SL Puzhakkal, 15 km north of Trichur, Kerala, K. C. Jayaram and Anuradha coll. 20-02-1985. ZSI F 11150/a, one ex. 159.2 mm SL Kenchong River in Cinchona Reserve, Mergui district, Lower Burma, K. Biswas coll.

Description : D.I, 7; P. i, 7; V. i, 5; A. ii, 8-9; C. 7+8.

Body depth 20.0 (8.45-23.3), head length 25.5 (23.8-26.7); width of head 18.6 (17.8-19.8), dorsal spine length 12.6 (10.5-14.3), pre-dorsal length 39.8 (38.2-41.4), post-dorsal length 65.5 (54.2-68.1), length of anal fin base 13.9 (12.3-15.4) all in percent of standard length. Eye 26.7 (15.4-37.8), inter-orbital width 28.9 (22.3-38.3), dorsal spine length 50.1 (41.0-57.8), pectoral spine length 71.9 (66.1-79.8), length of snout 35.3 (20.2-39.4), gape of mouth 54.6 (49.7-58.4), length of dorsal fin base 65.8(60.3-73.3), length of anal fin base 57.7 (50.0-61.7), length of caudal peduncle 75.5 (70.4-82.8), height of caudal peduncle 45.0 (41.2-48.9) all in percent of head length. Adipose dorsal fin base 45.3 (37.4-52.7) in percent of anal fin base. Snout length 92.4 (86.0-98.6) in percent of inter-orbital width. Least depth of caudal peduncle 59.1 (53.0-66.7) in percent of its length.

Dorsal profile rising gently from the tip of snout to the base of the occiput. Head depressed, upper surface of head rough. Eyes oval. Snout rounded. Jaws equal. Mouth
opening crescentic, cleft not extending half way to orbit. Width of head nearly equaling height of head at occiput. Median longitudinal groove on dorsal surface of head almost reaching base of occipital process which in turn reaches the basal bone of dorsal fin. Teeth on palate and upper jaw in an uninterrupted, semi-lunar crescentic band and in a mesially interrupted band on lower jaw. Teeth numerous and villiform. Four pairs of barbels : one pair maxillary reaching end of pelvic fin, one pair nasal extending to base of occipital process, one pair outer mandibular reaching middle of pectoral spine and one pair inner mandibular shorter.

Dorsal fin with a weak spine finely serrated on posterior edge. Length of base of adipose dorsal fin greater than of rayed dorsal fin and also the inter-space between the two. Pectoral fins with nine branched rays and strong spine having 10-14 retrorse teeth. Pelvic fins nearly as long as pectoral fins and do not reach anal fin. Anal fin does not reach caudal fin. A small anal papilla present in front of anal fin. Caudal fin forked, upper lobe longer.

Colour : Brownish on top, becoming lighter beneath. A dark spot at base of caudal may be present. In freshly collected specimens a dark band on sides along the lateral line ending in a dark blotch at base of caudal fin and a dark band along anal fin and upper half of dorsal fin also seen.

Distribution : INDIA : Malabar and Wayanad range of hills, Kerala, Manipur. MYANMAR : Cinchona reserve, 10 miles off La-poke-Chong, Mergui district, Lower Myanmar.

Later in 1871 Day synonymised this species under the genus Macrones. In conformity with the then prevalent opinion, Day considered the characters of Hypselobagrus as insufficient for a generic rank. The species is mainly confined to the Western Ghats, India the type locality being Cochin, Kerala. Hora (1931) identified a single large specimen 159.2 mm SL from Kyenchong River in Cinchona reserve, Mergui district in Lower Burma collected by K. Biswas as referable to this species. For a number of years this record from Burma was doubted. Jayaram (1955) also doubted its occurrence in that country. We have examined this specimen and it confirms to the description and data of M. armatus in all aspects. Zoogeographically it is curious that a species, which is endemic in Western Ghats should be found so far in Myanmar also. Recently we had the opportunity to identify five specimens of M. armatus 92.2 to 125.6 mm SL collected from Manipur. Considering that M. microphthalmus, another Burmese species occurring in Manipur and other northern areas, it seems possible that M. armatus is also found in Myanmar. It may be noted that the specimen under reference is the so far largest recorded size for this species.
M. armatus comes closer to M. malabaricus in possessing low dorsal profile, flattened head and a broad caudal peduncle. However, the longer median longitudinal groove and occipital process reaching the basal bone of the dorsal fin differentiates it.

Mystus atrifasciatus Fowler

Specimen studied: No specimen seen by us.

Description: Previously synonymised under *M. vittatus* by Smith (1945), Roberts (1992) has resurrected this species and differentiated it by its colouration, longer barbels and fewer gill rakers. It differs from *M. rhegma* also in having more gill rakers, fewer vertebrae, longer head and shorter adipose dorsal fin. According to Roberts the species is close to *M. micrancanthus* but differs from it also strikingly in colouration.

Distribution: THAILAND: Mekong Chao Phraya and Meklong basins.

Mystus baramensis (Regan)

(Figure 3)

![Fig 3. Photograph of specimen ZSI FF 2268 Mystus baramensis (Regan).](image)

Specimen studied: One ex. ZSI FF 2268, 131.8 mm SL. Kabili river, British north Borneo, 31-01-1937.

Description: D. I. 7; P. I. 9; V. i. 5; A. ii. 9; C. 7+8

Body depth 19.3, head length 27.9, width of head 20.2, dorsal spine length 14.8, predorsal length 42.3, post-dorsal length 61.4 and length of anal fin base 13.5 all in percent of standard length. Eye 17.7, inter-orbital width 34.0, dorsal spine length 53.0, length of snout 35.6, gape of mouth 50.0, length of dorsal fin base 60.6, length of anal fin base 48.4, length of caudal peduncle 71.2, height of caudal peduncle 33.7 all in percent of head length. Adipose dorsal fin base 57.8 in percent of anal fin base. Snout length 95.4 in percent of inter-orbital width. Least depth of caudal peduncle 47.3 in percent of its length.

Dorsal profile rising steadily from tip of snout to the base of occipital process. Head flat, anteriorly depressed, longer than broad. Snout not prominent. Mouth opening crescentic. Eyes not subcutaneous, lateral margin of eyes free. Median longitudinal groove on dorsal surface of head short and does not reach base of occipital process. Occipital process subcutaneous, slender and does not reach the basal bone of dorsal fin. Teeth on palate in a horseshoe shaped continuous band, on lower jaw in two deeply curved mesially interrupted bands, all teeth villiform.

Four pairs of barbels: one pair maxillary reaching end of anal fin base, one pair nasal reaching almost posterior border of eye, one pair outer mandibular reaching middle of pectoral fin length, one pair inner mandibular extending up to isthmus.

Dorsal fin with seven branched rays and a strong spine with five small retrorse teeth. Adipose dorsal fin short with a long interspace between the two dorsal fins. Pectoral fins with nine branched rays and a strong spine. Pelvic fins do not reach anal fin. Anal fin short, not reaching caudal fin. Caudal peduncle slightly constricted in the middle. Caudal fin forked, bilobed.

Colour: Uniformly light brown above and on sides. Fins lighter in shade.

Remarks: Jayaram (1968) erroneously considered this species as belonging to *Leiocassis* Bleeker. We have re-examined the material and have no reason to believe this species as belonging to *Leicassis*. The orbital rims are completely free from the eyes and the barbels are also longer than the head, the two chief characters by which *Leiocassis* is differentiated from *Mystus*. *M. baramensis* closely resembles *M. nemurus* but can be distinguished by the shorter median longitudinal groove, slender, short and subcutaneous occipital process, less prominent snout, colouration, adipose fin shape and gill raker count. Roberts (1989) discussed
the affinities and stated that this species may be a smaller species as compared to *M. nemurus* although this is not reflected by marked decrease in vertebral counts.

Mystus bimaculatus (Volz)

Specimen studied: no specimen seen by us.

Description: Closely related to *M. micracanthus* (Bleeker) but differing in it’s striking colouration, which is overall chocolate brown with a large black humeral spot (round and well defined) and a large black vertical bar on posterior portion of caudal peduncle and base of caudal fin. Anterior margin of humeral spot and both margins of caudal bar set off by a vertical cream or white bar. Gill rakers 23 or 24, vertebrae 33-35.

Distribution: Sumatra.

Remarks: Previously considered a synonym of *M. micracanthus* (Bleeker).

Mystus bleekeri (Day)
(Figure 4)

![Fig 4. Lateral view drawing of Mystus bleekeri (Day).](image_url)

1936. *Mystus bleekeri*, Shaw and Shebbeare, *J. roy. Asiatic Soc. Bengal* 3, Article 1 : 91, text-fig. 89, pl. 3, fig. 6 (brief description; all streams in the Terai and Duars).

Specimens studied: 35 exs. 40.9-123.8 mm SL in total as below:

ZSI F 11495, two exs. 54.7 and 70.1 mm SL no details. ZSI F 12445/1, three exs 71.5-123.6 mm SL no details. ZSI F 17132/2, one ex. 61.5 mm SL Bizarre, M. P. Survey coll. ZSI 2122/2, one ex. 67.1 mm SL Naga Hills, Assam, J. H. Hutton coll. March 1927. ZSI F 2190/1 one ex. 40.9 mm SL no details. ZSI 4236/2, 55.5 and 70.6 mm SL Iril river, Moirang Kambu, 4 miles east of Imphal, A. G. K. Menon and party coll. 25.01.1953. ZSI F 4299/2, one ex. 65.7 mm SL 2 miles down stream of river from Morae bungalow, Morae, A. G. K. Menon and party coll. 13.02.1953. ZSI F 4346/2, one ex. 66.1 mm SL, Lolchand, Moria, Manipur, A. G. K. Menon and party coll. 13.02.1953. ZSI 4420/1, one ex, 117.1 mm SL Gandak river, Saran district, Bihar, M. Mackenzie coll. October, 1909. ZSI unregd. Four exs. 60.9-81.1 mm SL Terai and Duars, north Bengal. ZSI unregd. 10 exs. Narrow stream in Bagram village, West Dinajpur. A. K. Dutta and party coll. 26.10.1984. ZSI 7010 eight exs. 58.7-90.7 mm SL Meghalaya, A. Hussain coll. 28.09.1983.

Description: D. I, 7; P. I, 9-10; V. i. 5; A. iii, 6-7; C. 7+8.

Body depth 21.68 (15.6-25.4), head length 26.2 (23.3-29.8), width of head 38.2 (16.8-
22.6), dorsal spine length 14.3 (12.2-16.7), pre-dorsal length 41.0 (37.6-43.0), post-dorsal length 64.3 (60.9-68.1), length of anal fin base 12.3 (9.2-15.9) all in percent of standard length. Eye 24.1 (17.9-29.6), inter-orbital width 32.1 (26.7-40.8), dorsal spine length 32.4 (48.1-61.2), length of snout 38.3 (33.3-44.6), gape of mouth 40.2 (32.9-48.3), length of dorsal fin base 56.5 (49.7-65.8), length of anal fin base 46.1 (36.5-53.3), length of caudal peduncle 79.5 (58.7-91.2), height of caudal peduncle 39.5 (32.5-52.1) all in percent of head length. Adipose dorsal fin base 29.4 (23.8-44.6) in percent of anal fin base. Snout length 82.1 (67.5-96.3) in percent of inter-orbital width. Least depth of caudal peduncle 51.0 (37.2-70.4) in percent of its length.

Dorsal profile arched with considerable rise from tip of snout to the base of occipital process. Head depressed. Upper surface of head rough. eyes nearly oval, lateral margins of eyes free. Snout obtuse, jaws almost equal. Cleft of mouth not extending to orbit. Median longitudinal groove on upper surface of head shallow, reaching base of occipital process. Occipital process long, reaching basal bone of dorsal fin. Teeth villiform, in an uninterrupted crescentic band across palate, in three rows on upper jaw and a mesially interrupted band on lower jaw.

Four pairs of barbels: one pair maxillary reaching anal fin, one pair nasal reaching posterior border of eye, one pair outer mandibular reaching base of pectoral fin and one pair inner mandibular shorter.

Dorsal fin with a short spine. Outer and inner surface of dorsal spine usually smooth, but may be slightly in some cases. Adipose dorsal fin long, commencing immediately behind the rayed dorsal fin without any inter-space between the two, its breadth almost twice the length of base of anal fin. Pectoral fins small and nearly as long as height of body with 9-10 branched rays and a strong spine. Pectoral spine with 10-15 strong retrorse teeth. Pelvic fins not reaching anal fin. Anal fin not reaching caudal fin. Caudal fin forked, upper lobe longer than the lower.

Colour: Brownish, becoming lighter towards ventral side. Three broad conspicuous dark bands separated by two narrow pale lines on either side of lateral line and parallel to it. A large tympanic, not shoulder, spot present.

Distribution: INDIA: upper waters of Ganga and Yamuna in Uttar Pradesh, Assam, Manipur, Meghalaya, North Bengal, West Dinajpur, Bihar, Orissa. PAKISTAN: Sind, Soan river, Morgah, Daghial, NWFP. BANGLADESH: Dakatia river, Hajiganj, Chandpur. NEPAL: Rapti river and tributaries.

Remarks: Bleeker (1846) described this species under the name Bagrus keletius with specimens from "Bengal". He was perhaps not aware that Valenciennes in 1839 had already used this name keletius for specimens obtained from Pondicherry, south India. Valenciennes's specimens were later described as M. keletius. Gunther (1864) transferred this species to the genus Macrones but continued to call it as keletius. Day (1876) for the first time clarified this confusion and named the species as M. bleekeri. It may be mentioned here that
the reported occurrence of *M. keletius* from Bengal, Calcutta (Bleeker, 1853, 1959) and Yamuna, Ganges and Punjab (Day, 1873) are in fact referable to *M. bleekeri* since *M. keletius* is confined to southern India and Sri Lanka only.

From the distribution pattern of this species it is apparent that *M. bleekeri* is a species of northern India (Ganga, Yamuna systems) and Indus system of Pakistan. It has not been recorded from Thailand or from south India below the Krishna River System. The only record from "coastal" Andhra Pradesh is by Dutt and Sharma (1979) who however reported the freshwater catfishes sold at the fish market at Guntur. It is known that most of these catches come from Krishna River system and it appears that the southern most limit is only this river. It may be mentioned that there are no subsequent records from south India. Jayaram (1995) included this species in his list of Krishna River fishes thus confirming its southernmost limit. Roberts (1994) referred the Myanmar populations to *M. rufescens* thus restricting its distribution.

Mystus bocourti (Bleeker)

Specimens studied: No specimen seen by us.

Description: (After Jayaram, 1968) D. I, 8; P. I, 8; V. i. 5; A. ii, 8; C. 7+8.

Body depth 20.7 (19.7-24.7), head length 25.8 (22.6-29.1), width of head 13.8 (12.0-17.0), pre-dorsal length 38.5 (34.8-41.3), post-dorsal length 66.7 (65.8-68.0) all in percent of standard length. Eye 23.1 (18.8-31.1) in percent of head length. Adipose dorsal fin base longer than anal fin base. Least depth of caudal peduncle 38.0 (36.2-40.0) in percent of its length.

Dorsal profile at about 30° to body axis. Head compressed. Occipital process exposed, 3.0 or 4.0 times longer than wide at base, extending to basal bone of dorsal fin. Premaxillary band of teeth produced laterally, 5.0 or 6.0 times as long as broad, teeth on palate in a horseshoe shaped band, separated in the middle.

Four pairs of barbels: one pair maxillary extending beyond base of caudal fin, one pair nasal reaching anterior margin of orbit, one pair outer mandibular reaching half of pectoral fins and one pair inner mandibular as long as head.

Dorsal fin high, the smooth dorsal spine and first three or four soft rays greatly elongated. Adipose dorsal fin long, commencing immediately after rayed dorsal fin without any inter-
space between the two. Pectoral spine with 17-20 strong antrorse teeth over posterior margin. Pelvic fins not reaching anal fin. Longest anal ray not extending to caudal fin. Caudal fin forked with upper lobe produced into filaments. Lateral line nearly straight.

Colour: In preserved examples dark brown above and on sides, lighter beneath; spines and osseous plates tinged green. According to Roberts (1994 : 247) colouration highly variable. Some are overall intense silver or platinum, a few with head and upper part of body, brilliant bronze with greenish reflections dorsally, lower part of body dull silvery and all fins black.

Distribution: THAILAND: Chao Phrya and Mekong basins. Considered as becoming rare.

Remarks: Closely related to *M. cavasius* in which the soft rays only may be elongated and not the spine, but to a lesser degree.

Mystus cavasius (Hamilton-Buchanan)

(Figure 5)

Fig 5. Lateral view drawing of *Mystus cavasius* (Hamilton-Buchanan).

1822. *Pimelodus cavasius* Hamilton-Buchanan, *Fish Ganges* : 203, 379, pl. 11, fig. 67 (type locality: Gangetic provinces).

1877. *Macrones cavasius*, Day, *Fish India* : 447, pl. 100, fig. 1 (synonymy, local names, description; from Sind throughout India, Assam and Burma).

1927. *Aoria cavasius*, Hora, *J. Asiat. Soc. Bengal* (N.S.), 22(3) : 96, pl. 16 (coloured drawing fish drawings in Mackenzie and Burner collection, No. 12 drawing in the collection referable to this species, vernacular names; Tungabhadra river) : 125 (local names, No. 16 drawing in Mackenzie and Burner collection referable).

Specimens studied : 41 exs. 65.4-158.9 mm SL in total as below:

ZSI F.2563/2, one ex. 76.1 mm SL Tezpur fish market. Derrang, Assam. B. Prashad and S. L. Hora coll. 4.11.1933. ZSI F.4956/2, six exs. 66.4-77.6 mm SL Shakher bazar, Barisha, West Bengal, T. K. Sen coll. 3.6.1964. ZSI F.2870/2, three exs. 66.5-101.2 mm SL Tangla,
Danang, Assam, S. L. Hora coll. 14.11.1939. ZSI 425, one ex. 107.1 mm SL Bassein, Burma, purchased from F. Day. ZSI unreg. five exs. 68.7-125.3 mm SL Darna river near village Sewnsuri. ZSI unreg. six exs. 93.6-158.9 mm SL Manchar lake, Sind, Pakistan. ZSI unreg. eight exs. 71.2-111.8 mm SL Hooghly river at Goalpara, 12 miles from Nawadwip, Hooghly survey party. ZSI unreg. 10 exs 65.4-102.9 mm SL fish market, Sakrigalighat, Santal Parganas. USNM Cat No. 205615, one ex. Paratype of M. mukherjii Ganguli & Datta, 77.2 mm SL Subarnarekha river, Ranchi district, Bihar, Dec. 1967.

Description: D.I, 7; P.I, 8-10; V.i, 5; A.iii, 7-9; C. 7+8.

Body depth 23.0 (18.9-28.0), head length 25.6 (23.0-29.8), width of head 18.2 (15.4-21.6). Dorsal spine length 14.5 (11.2-18.7), pre-dorsal length 41.8 (37.2-46.8), post-dorsal length 63.4 (56.1-67.4), length of anal fin base 12.2 (9.9-15.9) all in percent of standard length. Eye 28.2 (22.2-35.3), inter-orbital width 31.5 (25.8-36.4), dorsal spine length 55.8 (46.1-63.7), length of snout 37.2 (28.7-42.9), gape of mouth 37.6 (32.3-44.9), length of dorsal fin base 58.3 (49.7-62.4), length of anal fin base 47.7 (40.3-55.2), length of caudal peduncle 67.6 (43.3-97.8), height of caudal peduncle 39.1 (33.0-45.4) all in percent of head length. Adipose dorsal fin base 32.7 (23.2-51.6) in percent of anal fin base. Snout length 84.5 (68.6-100.0) in percent of inter-orbital width. Least depth of caudal peduncle 63.7 (33.7-96.2) in percent of its length.

Dorsal profile arched with a steep rise from tip of snout to the base of occipital process. Head compressed upper surface of head slightly rough. Snout almost rounded upper jaw slightly longer than lower. Eyes oval and prominent, lateral margins free. Median longitudinal groove on dorsal surface of head wide and long, reaching base of occipital process. Occipital process long, narrow reaching basal bone of dorsal fin. Teeth villiform in a narrow semi-lunar uninterrupted band across the palate; three to four rows of teeth on upper jaw and an interrupted band of five to six rows on lower jaw.

Four pair of barbels: one pair maxillary extending beyond base of caudal fin; one pair nasal almost as long as head, one pair outer mandibular reaching nearly base of pelvic fins and one pair inner mandibular as long as nasal barbels.

Colour: Pale yellowish brown. Usually a black spot on base of dorsal fin present in fresh specimens.

Remarks: Hamilton-Buchanan (1822) described this species under the genus *Pimelodus*. However, Hamilton-Buchanan used this as a catchall for almost all the catfishes he described from the Gangetic basin. Hora (1949) clarified the systematic position of siluroids in Hamilton-Buchanan’s Gangetic fishes and demonstrated that many of the species described by the author under *Pimelodus* belong to different siluroid genera. Valenciennes (1839) considered *M. cavasius* as belonging to *Bagrus* which opinion seems to have been followed by subsequent workers like Jacquemont (1841), Bleeker (1846, 1847, 1853, 1859), Blyth (1858, 1860) and Jerdon (1849). Gunther (1864) placed this species under *Macrones* for the first time.

Mystus cavasius is a widely distributed species, yet it does not seem to be having much of a geographic variation as can be seen from the synonymy. Only two species (*Pimelodus seengtee* Sykes and *Mystus mukherjii* Ganguli & Datta) have been synonymised under *M. cavasius*. The last cited species was described from eight specimens. The holotype 112 mm in total length, collected from rock pool of the waterfalls in Subarnarekha river at Hudru, Ranchi district, Bihar preserved in Zool. Dept. Fish Lab. Calcutta university; paratypes 7 exs, 2 in USNM No. 205615 and 5 in Calcutta as above. The species was differentiated from *M. cavasius* and *M. oculatus*. The later species is a peninsular one not so far recorded from north India and is mostly confined to the southern Western Ghats, notably Wayanad, Nilgiris, Mysore and adjacent hill areas. Moreover, the species is clearly distinguished from all others by its large eyes which is one diameter from end of snout and also apart. From *M. cavasius* its having a narrower head and a low body depth has separated it. Considering the fact that *M. cavasius* is widely distributed and also after examining the paratype present in USNM we consider *M. mukherjii* as a juvenile of *M. cavasius*. Further, this is evidenced from the published illustration of the species and also its colouration. It is stated that at the base of dorsal spine has a black mark besides the shoulder spot. These are very characters of *M. cavasius* and Roberts (1994) opined that the colour pattern is common to all specimens of *M. cavasius*.
Mystus chinensis (Steindachner)
(Figure 6)

![Lateral view drawing of Mystus chinensis](image)

Fig 6. Lateral view drawing of *Mystus chinensis* (Bleeker).

Specimens studied: Two exs. 269.4 and 398.0 mm SL in total as below:

USNM 094596, one ex. 269.4 mm SL Wuchow, Kwangsi province, China, A. W. C. T. Herre coll. S. Y. Lin, 12.02.1934. NHMV 4583, one ex. 398 mm SL, Canton, China.

Description: D.I, 7; P.I, 9-10; V.i, 5; A.i-iii, 11-12; C. 7+8.
Body depth 14.9 (14.8-14.9), head length 24.9 (24.1-25.8), width of head 18.5 (16.3-18.5), dorsal spine length 14.6 (13.3-15.8), pre-dorsal length 37.0 (35.2-38.8), post-dorsal length 61.2 (59.3-63.1), length of anal fin base 13.3 (13.1-13.6) all in percent of standard length. Eye 13.9 (13.5-14.2), inter-orbital width 29.5 (26.8-32.3), dorsal spine length 58.2 (55.2-61.3), length of snout 36.6 (35.4-37.7), gape of mouth 48.8 (42.7-55.0), length of dorsal fin base 44.8 (44.7-44.9), length of anal fin base 53.5 (50.8-56.2), length of caudal peduncle 79.4 (79.2-79.6), height of caudal peduncle 31.2 (29.1-33.3) all in percent of head length. Adipose dorsal fin base 41.9 (37.7-46.1) in percent of anal fin base. Snout length 81.1 (71.0-91.2) in percent of inter-orbital width. Least depth of caudal peduncle 39.3 (36.5-42.1) in percent of its length.

Dorsal profile rising steadily from tip of snout to the base of occipital process. Head flat, depressed and longer than broad. Snout broad and rounded. Mouth opening crescentic. Median longitudinal groove on head long and reaching base of occipital process. Occipital process short and not reaching basal bone of dorsal fin, the latter being prolonged into a bony process. A short inter-space present between the top of the occipital process and the prolongation of the basal bone dorsal fin. Teeth on palate, villiform, in a semi-lunar uninterrupted band, on lower jaw in two deeply curved mesially interrupted bands.

Four pairs of barbels: one pair maxillary reaching almost end of base of dorsal fin, one pair nasal reaching middle of eye, one pair outer mandibular reaching origin of pectoral spine and one pair inner mandibular shorter.

Dorsal fin with a strong spine outer surface of dorsal spine rough and inner surface with seven small teeth. Adipose dorsal fin long with a short inter-space between the two fins. Pectoral fins with 10 branched rays and a strong spine shorter than dorsal spine, with 14 retrorse teeth; outer surface also finely serrated. Pelvic fins do not reach anal fin. Anal fin short, not reaching caudal fin. Caudal peduncle broad and flattened. Caudal fin bifurcated.

Colour: Light yellowish brown being lighter near the opercles and the fins. Body covered with uneven sized black spots all over. Fins also dotted with scattered black spots.

Distribution: CHINA: Canton, Wuchow, Kwangsi province.

Remarks: Steindachner (1883) described this species from a specimen 462 mm in total length. The holotype preserved under No. 4583 in Naturhistorisches Museum, Wien, Austria. The first author examined the holotype in 1973 and the data obtained by him have been incorporated in the description. The chief diagnostic feature of this species is that it is mottled all over the body with large number of scattered black dots. These dots are not in a regular pattern. Even the fins are similarly marked. Excepting M. punctatus and M. menoda no other species of Mystus posses such colouration.

Herre (1932) transferred this species to the genus Hypselobagrus. He stated in 1934 that the fish was abundant in the Fu river and West fiver at Wuchow. It was reported to weigh more than 25 kgs and attain a length of over a meter. Surplus catch was reported to be shipped to Canton and occasionally to Hongkong. It appears that the holotype may be one such market example.
Rendahl (1933) gave description of this species but under Aoria = Mystus. He considered the species allied to Hemibagrus macropterus Bleeker and differing in respect of the eyes. Nichols (1943) synonymised the species under Hemibagrus elongatus (Gunther). As stated earlier this is the only species of the Chinese Mystus, which has a mottled body with peculiar colouration. It is entirely different from H. elongatus and as such Nichols’ treatment is not valid.

Jayaram (1978) having examined the holotype gave a photograph of the species and justified its retention under Mystus.

Mystus elongatus (Gunther)
(Figure 7)

Fig 7. Lateral view drawing of Mystus elongatus (Gunther).

Specimens studied: Five exs. 164.5-236.0 mm SL in total as below:

BMNH 1855.9.19.1099. Holotype, 236 mm SL Singapore, ex-Hassler’s collection (type examined by Dr. P. J. Whitehead in Nov. 1975 for Dr. Jayaram; data as supplied by him).

VNHM 10347 three exs. 107-172 mm SL ZSI FF 1108. One ex. 164.5 mm SL Kankong river, Hainan, Owston coll. 1906.
Description: D.I, 7; P.I, 8-10; V.i, 5: A.i-iii, 10-11; C. 7+8.

Body depth 15.8 (13.7-18.3), head length 24.9 (23.3-26.2), width of head 17.7 (N=1), dorsal spine length 13.6 (12.0-15.2), pre-dorsal length 35.2 (34.4-38.0), post-dorsal length 63.9 (N=1), length of anal fin base 12.9 (N=1) all in percent of standard length. Eye 17.6 (14.6-21.4), inter-orbital width 26.4 (22.7-29.9), dorsal spine length 54.9 (50.1-61.0), length of snout 36.9 (34.1-39.3), gape of mouth 43.4 (N=1), length of dorsal fin base 51.1 (N=1), length of anal fin base 53.7 (N=1), length of caudal peduncle 87.3 (N=1), height of caudal peduncle 33.2 (N=1) all in percent of head length. Adipose dorsal fin base 30.9 (N=1), in percent of anal fin base. Snout length 75.3 (63.6-81.4) in percent of inter-orbital width. Least depth of caudal peduncle 38.0 (N=1) in percent of its length.

Dorsal profile gently rising from tip of snout to base of occipital process. Head flat, longer than broad and rugose. Snout rounded, slightly prominent. Mouth opening crescentic. Median longitudinal groove on head long, but not reaching the base of occipital process. Occipital process short slender and not reaching basal bone of dorsal fin. Teeth villiform and in bands on jaws and palate; a slightly curved continuous band on upper jaw, a deeply curved mesially interrupted band on lower jaw and a semi-lunar continuous band on vomer.

Four pairs of barbels: one pair maxillary extending up to middle of base of dorsal fin, one pair nasal reaching middle of eye, one pair inner mandibular extending beyond outer border of eye and one pair outer mandibular reaching end of operculum.

Dorsal fin inserted vertically above end of pectoral fin with seven rays and a slender spine, half as long as head and finely serrated behind. Outer surface of dorsal spine smooth. Adipose dorsal fin long, more than three times longer than dorsal base and commencing with a short inter-space. Pectoral fins not reaching pelvic fins, with 8-10 branched rays and a strong spine longer than dorsal spine and with 12 strong retrorse teeth. Pelvic fins do not reach anal fin. Anal fin not reaching caudal fin. Caudal peduncle broad, no pre-anal papilla. Caudal fin forked, upper lobe longer.

Colour: Yellowish brown.

Distribution: SINGAPORE. HAINAN. CHINA.

Remarks: Gunther (1864) described this species from a large specimen nearly 280 mm long from Hasslar’s collection from Singapore. Koller (1927) recorded this species from Hainan. Nichols (1943) considered it as belonging to the genus Hemibagrus and described it on the basis of specimens from Kwangtung, China. He felt that gunther’s locality Singapore as an error. Also he synonymised M. chinensis Steindachner (1883) under this species.

A comparison of M. elongatus and M. chinensis clearly indicates that the two are different. M. elongatus has smaller eyes, shorter barbels, shorter dorsal spine besides a more anterior insertion of pelvic fin. Further, the characteristic colouration of M. chinensis is absent in this species, although the dorsal and caudal fins may be tinged with a black margin.
Mystus gulio (Hamilton-Buchanan)
(Figure 8)

Fig 8. Lateral view drawing of Mystus gulio (Hamilton-Buchanan).

1822. *Pimelodus gulio* Hamilton-Buchanan, *Fish Ganges* : 201, pl. 23, fig. 66 (type locality upper parts of “Gangetic estuaries”).

1877. *Macrones gulio*, Day, *Fish India* : 445, pl. 99, fig. 2 (synonymy, local name, description; seas and estuaries and tidal waters from Sind and Bombay, throughout India and Burma to the Malay Archipelago).

1889. Macrones gilio, Day, Fauna Brit. India, Fish 1 : 151, fig. 64 (synonymy, local name, description and distribution).

1916. Macrones gilio, Chaudhuri, Mem. Indian Mus. 5 : 434 (synonymy, brief description. List of catch to show its distribution in Chilka Lake; seas, estuaries and tidal waters of Sind, Bombay, Madras, Orissa, Bengal, Assam, Burma, Ceylon and Malay Archipelago).

1917. Macrones gilio, Kemp, Rec. Indian Mus. 13 : 234 (under family Siluridae; abundantly found in Matlah river, Bengal).

1929. Aoria gilio, Prashad and Mukerji, Rec. Indian Mus. 31 : 162 (name only) : 179 (brief description; Indawgyi lake, Burma).

1932. Aoria gilio, Deraniyagala, Spolia Zeylanica 16 : 285 (local name, description, Ceylon, India, Burma, Malay Peninsula, Java, Madura, Sumatra, Borneo).

1944. Mystus gilio, Hora and Nair, Fishery development pamphlet 1 : 7 (local names, Sisirgunge, Bengal).

1948. Mystus gilio, Hora, Rec. Indian Mus. 46 : 65 (name only) : 72 (synonymy, local name, Gangetic estuaries).

1954. Mystus (Mystus) gilio, Jayaram, Rec. Indian Mus. 51(4) : 543, 543, fig. 7 (synonymy, description and distribution).

Specimens studied: 50 exs. 53.3-141.1 mm SL in total as below:

ZSI F. 470/2 one ex. 53.3 mm SL Maungmagan, Burma. ZSI F 5520/2 one ex. 55.4 mm SL Matlah river, Gangetic delta S. W. Kemp coll. December 1916. ZSI F. 5209/2 two exs. 57.5 & 62.2 mm SL Chilka Lake, Chilka Lake Survey. ZSI F. 9138/1 two exs. 58.2 & 58.6 mm SL Nalbano, Chilka Lake Survey. ZSI F. 5455/2 two exs. 63.7 & 63.8 mm SL Chilka Lake, Orissa, K. S. Misra coll. ZSI F. 4962/2 one ex. 63.9 mm SL Hooghly river near Barrakpore, Hooghly Survey, September 1954. ZSI F 1387/2 one ex. 64.5 mm SL Uppanar river, about 1 mile west of Tranquebar, A. G. K. Menon and party coll. 30.1.1957. ZSI F 9282/1 one ex. 64.4 mm SL Satpara Lake, Chilka Survey, ZSI Cat. Dup. 127 one ex. 65.6 mm SL Sittang, Burma, F. Day coll. ZSI FF 1323, three exs. 66.2-76.6 mm SL Muthukadu near Mahabalipuram, Madras, S. Michael coll. March 1979. ZSI 10552/1 one ex. 68.9 mm SL Nontaburi, Malcolm Smith coll. ZSI F. 9271/1 two exs. 69.1 & 73.5 mm SL Satpara, Lake Chilka, Chilka survey. ZSI F. 6169/1 one ex. 72.2 mm SL Tollygunge fish market,
Calcutta. B. L. Chaudhuri coll. ZSI F 5519/2 two exs. 74.1 & 78.6 mm SL Cox Bazaar, Bangladesh. ZSI Cat 536 one ex. 79.3 mm SL Calcutta bazaar, Asiatic Society of Bengal. ZSI F 5456/2 one ex. 83.7 mm SL Kalupara ghat, Chilka, Orissa, H. C. Ray coll. 15.1.1955. ZSI 1983 one ex. 85.6 mm SL Irrawaddy, Burma, purchased from F. Day. ZSI Cat Dup. 387 two exs. 85.7 & 85.8 mm SL Akyab, Burma, F. Day coll. ZSI 780 one ex. 96.7 mm SL Bombay, purchased from F. Day. ZSI FF 295 one ex. 98.4 mm SL Adyar river, Madras 25.10.1961. ZSI F 933/2 two exs. 103.6 & 204.6 mm SL about 3 miles south of Kalidai island, Lake Chilka, Orissa. K. S. Misra and M. A. S. Menon coll. 2.2.1954. ZSI F 9264/1 one ex. 109.6 mm SL Satpura Lake Chilka, Chilka survey. ZSI F 9290/1 one ex. 120.2 mm SL Rambha Bay, Chilka Lake, Chilka Survey. ZSI F 5456/2 two exs. 127.6 & 141.1 mm SL Kalupara ghat, Lake Chilka, Orissa, H. C. Ray coll 15.1.1955. ZSI Unregd. seven exs. 57.2-81.3 mm SL Bugmara block, Sunderban, C. K. Mitra coll. 18.9.1983. ZSI Unregd. three exs. 91.6-93.8 mm SL Rushipulya canal of Gopalpur, Ganjam district, Orissa, C. A. N. Rao and party coll. 13.12.1983. ZSI Unregd five exs. 58.7-136.5 mm SL Palur canal, Ganjam district, Orissa, C. A. N. Rao and party coll. 18.11.1983.

Description :

Body depth 23.6 (18.6-27.2), head length 27.2 (26.1-30.1), width of head 19.6 (15.2-22.2), dorsal spine length 16.5 (13.9-19.8), pre-dorsal length 42.2 (41.2-43.8), post-dorsal length 58.4 (50.3-66.0), length of anal fin base 14.9 (10.2-19.5) all in percent of standard length. Eye 21.1 (17.3-27.7), inter-orbital width 36.6 (34.6-41.5), dorsal spine length 59.5 (51.5-70.1), length of snout 34.8 (33.1-38.7) gape of mouth 49.6 (37.1-61.8), length of dorsal fin base 43.1 (38.1-48.8), length of anal fin base 58.5 (41.1-70.3), length of caudal peduncle 64.6 (58.9-72.8), height of caudal peduncle 40.0 (36.0-47.7) all in percent of head length. Adipose dorsal fin base 70.5 (56.5-98.4) in percent of anal fin base. Snout length 92.1 (85.2-99.1) in percent of inter-orbital width. Least depth of caudal peduncle 61.5 (54.5-75.8) in percent of its length.

Dorsal profile slightly arched with a gentle rise from tip of snout to the base of occipital process. Head flat, slightly depressed and blunt. Upper surface of head granulated. Snout, upper jaw, eyes rounded. Median longitudinal groove on upper surface of head shallow, lanceolate and does not reach base of occipital process. Occipital process not reaching basal bone of dorsal fin. Teeth villiform, numerous, in an uninterrupted semi-lunar band across palate; about four rows on upper jaw and five or six of mesially interrupted band on lower jaw.

Four pairs of barbels: One pair maxillary reaching middle or sometimes almost end of pelvic fins; one pair nasal reaching beyond posterior end of median longitudinal groove; one pair outer mandibular reaching more than half length of pectoral spine; one pair inner mandibular shorter.

Dorsal fin with a strong spine serrated posteriorly. Adipose dorsal fin short with a long inter-space equaling about twice the length of its base from the rayed dorsal fin. Pectoral fin with eight or nine branched rays and strong spine. Outer surface of pectoral spine smooth, inner surface having 9-12 retrorse teeth. Pelvic fins not reaching anal fin. Anal fin
not reaching caudal fin. Caudal fin bilobed; lobes rounded, upper slightly longer than lower.

Colour: Dark grayish brown on top, turning lighter beneath. In fresh specimens dark silvery gray on top and sides of body turning dull white beneath. All fins dotted with black spots.

Distribution: Widely distributed in India, Pakistan, Bangladesh, Myanmar, Thailand, Sri Lanka, Malaysia, Java, Sumatra and Borneo. It is found in the sea, estuaries and tidal waters.

Remarks: Hamilton-Buchanan (1822) described this species from the upper parts of the Gangetic estuaries. Valenciennes (1839) described *Bagrus albilabris, B. fuscus* and *B. birmanus* which are closely related to *M. gulio* and which have all been merged subsequently by Bleeker (1853). In a like manner Bleeker himself (1846, 1847) described five species: *B. abbreviatus, B. gulioides, B. melas, B. rhodopterigius* and *B. schlegelli* which have also been merged. All the above species were based on some trivial characters such as shorter barbels, different colour pattern or varying body proportions.

It must be stated here that *M. gulio* and *M. vittatus* are two species which have been recorded from the seas. Moreover, this species is widely distributed and is known to occur in almost all types of habitats excepting higher altitudes. During the course of our study of this species, we have come across several variations in individuals of the same population. It is worth mentioning here that Hamilton-Buchanan's (1822) original description of *Pimelodus gulio* in Fish Ganges differs considerably from his published illustration as detailed below:

<table>
<thead>
<tr>
<th>Published description (201, 379)</th>
<th>Published figure (Pl. 23, fig. 66)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Head short, flat and blunt</td>
<td>Head conical, pointed and longer than broad</td>
</tr>
<tr>
<td>2. Maxillary barbels extend beyond end of dorsal fin.</td>
<td>Maxillary barbels extend almost up to end of adipose fin.</td>
</tr>
<tr>
<td>3. Caudal fin divided into two rounded lobes</td>
<td>Caudal fin bifurcates into two pointed lobes.</td>
</tr>
</tbody>
</table>

Bleeker (1862, 1863) provided a new generic name *Aspidobagrus* for accommodating *M. gulio* which was however synonymised under *Macrones (=Mystus)* by Gunther (1864). It has already been stated elsewhere (see p. 19 & 20) that with a re-definition and restriction of the generic composition of *Mystus* it may be necessary to resurrect some of the available earlier Bleekerian names; if so *Aspidobagrus* qualifies for *M. gulio* aptly.

Mystus horai Jayaram

Specimen studied: No specimen seen by us.

Description: (After Jayaram, 1954). The original description was based on four exs. 59.5-84.5 mm SL from Indus River, Kalabagh, Pakistan, S. L. Hora coll. (All type specimens lost).

D.I, 7; P.I, 8; V.i, 5; A.iii, 8; C. 17.

Body depth 25.4 (24.8-26.1), head length 35.3 (33.7-36.5), width of head 22.7 (21.5-23.4), length of anal fin base 11.8 (10.9-12.8) all in percent of standard length. Eye 15.9 (14.0-17.5), inter-orbital width 29.9 (27.2-32.3), length of snout 24.5 (22.8-26.3), length of anal fin base 33.4 (30.9-36.0), length of caudal peduncle 11.8 (8.8-18.2), height of caudal peduncle 34.7 (30.7-38.6) all in percent of head length. Adipose dorsal fin base 43.9 (42.9-44.8) in percent of anal fin base. Snout length 82.3 (72.2-88.7) in percent of inter-orbital width. Least depth of caudal peduncle 33.6 (28.6-47.3) in percent of its length.

Dorsal profile arched with a steep rise from tip of snout to base of occipital process. Head depressed, longer than broad. Upper surface of head rough. Snout obtuse, eyes rounded, laterally placed above angle of mouth. Jaws equal. Median longitudinal groove on upper surface of head not reaching base of occipital process. Occipital process reaches basal bone of dorsal fin and is twice as long as broad at base. Teeth numerous and villiform, in two specimens teeth on palate in narrow continuous band while in the other two teeth on palate interrupted. Three to four rows of teeth on upper jaw, lower jaw having about five rows, interrupted.

Four pairs of barbels: one pair maxillary reaching pelvic fins; one pair nasal long, almost as long as head; one pair outer mandibular extending up to middle of pectoral fins and one pair inner mandibular shorter.

Dorsal fin with a short spine having five or six small teeth on upper half of inner edge, outer edge smooth. Adipose dorsal fin long, commencing immediately after rayed dorsal fin without any inter-space. Pectoral fins with eight branched rays and a strong spine with 12 retorse teeth. Pelvic fins not reaching anal fin. Anal fin does not reach caudal fin. Caudal peduncle very much constricted immediately after adipose fin and anal giving the posterior end a tapering appearance. Caudal fin bilobed.
Colour: Brownish yellow on top with gray on undersurface. Body plain without any parallel stripes or bands. A faint black shoulder spot.

Distribution: PAKISTAN: Indus River system.

Remarks: It is close to *M. vittatus* in having steep dorsal profile, prominent snout and long occipital process, but differs chiefly in the character of dentition. Moreover, the two species are quite different in body colouration: *M. vittatus* possess two parallel stripes on either side of lateral line which is absent in this species. *M. olyroides* Roberts has the palatal teeth band interrupted as in this species.

Mystus keletius (Valenciennes)

(Figure 9)

![Lateral view drawing of Mystus keletius (Valenciennes)](image)

Fig 9. Lateral view drawing of *Mystus keletius* (Valenciennes).

1877. *Macrones keletius*, Day, *Fish. India* : 449, pl. 98, fig. 5 (in text, number of figure stated as 3 erroneously; synonymy, description, Madras to Pondicherry and inland to Coimbatore, Mysore and also Ceylon).

Specimens studied: 12 exs. 39.8-70.2 mm SL in total as below:

ZSI Unregd. 12 exs. 39.8-70.2 mm SL Nainakulam tank, Tirunelveli, south India, G. Santhanakumar coll. 3.4.1976.

Description: D.I, 7; P.I, 9; V.i, 5; A.ii-iii, 7-8; C. 7+8.

Body depth 19.1 (16.8-22.1), head length 27.7 (26.6-29.4), width of head 19.2 (17.2-20.4), dorsal spine length 12.9 (11.9-14.4), pre-dorsal length 41.9 (40.3-42.9), post-dorsal length 64.7 (62.3-67.1), length of anal fin base 12.7 (10.8-14.5) all in percent of standard length. Eye 20.3 (18.9-22.2), inter-orbital width 32.8 (30.3-34.3), dorsal spine length 46.8 (44.8-53.6), length of snout 34.0 (30.4-37.9), gape of mouth 47.1 (42.0-51.0), length of dorsal fin base 56.4 (51.8-64.1), length of anal fin base 46.0 (38.8-52.9), length of caudal peduncle 70.1 (61.7-75.7), height of caudal peduncle 36.1 (32.3-38.8) all in percent of head length. Adipose dorsal fin base 61.3 (50.0-78.5) in percent of anal fin base. Snout length 94.6 (89.1-98.1) in percent of inter-orbital width. Least depth of caudal peduncle 52.2 (43.0-61.4) in percent of its length.

Dorsal profile arched with a gentle rise from tip of snout to the base of occipital process. Head small, depressed. Eyes circular, prominent, placed above angle of mouth. Snout rounded, prominent, jaws equal. Median longitudinal groove on dorsal surface of head extending little beyond eyes but does not reach base of occipital process. Occipital process narrow, reaching basal bone of dorsal fin and about three times as long as broad at base. Teeth numerous, villiform, in semi-lunar crescentic bands across upper jaw and palate, lower jaw having deeply curved mesially interrupted bands.

Four pairs of barbels: one pair maxillary reaching nearly end of pelvic fins, one pair nasal extending to opercle, one pair outer mandibular reaching origin of pectoral fins and one pair inner mandibular shorter.

Colour: Brownish turning dull white beneath. A dark shoulder spot and a light band along lateral line present. Dorsal and caudal fin tips tinged black, anterior portions of anal fin black.

Distribution: INDIA: Madras, Pondicherry, Coimbatore, Mysore, Tirunelveli. SRI LANKA: Colombo, Yakuala and Galata bendiyaya.

Remarks: Valenciennes (1839) described *Bagrus keletius* from Pondicherry out of Leschenault’s collection. This species is confined to south India only and has not been found anywhere in India above the Krishna River system. Bleeker (1853, 1859) Day, (1873) referred some specimens collected from Calcutta, Bengal, Yamuna, Ganges and Punjab respectively to this species. These specimens have been wrongly identified and they are referable to *M. bleekeri*. We have already clarified this confusion between *M. bleekeri* and *M. keletius* elsewhere (see p. 44).

A specimen 90.9 mm SL under Reg. No. CAS 30556 has the adipose dorsal fin commencing after the rayed dorsal fin; the intervening space is very short. The rayed dorsal fin is also very high as in *M. bocourti*. The maxillary barbels extend up to the end of anal fin. Upper lobe of caudal fin longer and shoulder spot translucent. The specimen apparently resembles *M. cavasius* but is only *M. keletius* in view of other body proportions etc.

Dutt et al. (1982) examined the systematic status of this species and compared it with *M. cavasius*. Madam Desoutter who provided the following data examined the two syntypes of *M. keletius* MHNM 4369 and A9011 in Paris Museum.

This species has a shorter adipose fin which is not contiguous with the rayed dorsal; the maxillary barbels extend only to the ventral and the median fontanel does not reach the base of occipital process.

On the basis of the above observations Dutt et al. opined that *M. keletius* is distinct from *M. cavasius*. It may be mentioned here that *M. keletius* is distinctly characterised by its slender body, narrow caudal peduncle unlike *M. cavasius*. Further the range of distribution of the two species is also different in the sense that *M. cavasius* has a wider distribution than *M. keletius*.
Mystus krishnensis Ramakrishnaiah
(Figure 10)

Fig 10. Photograph of specimen ZSI Unreg. 322.1 mm SL Mystus krishnensis Ramakrishnaiah.

Specimens studied: Four exs. 322.1-419.9 mm SL in total as below:

Description: D. I, 7; P. I, 8-9; V. i, 5; A. iii, 10-11; C. 7+8.

Body depth 17.8 (16.4-18.7), head length 30.3 (29.2-31.2), width of head 19.7 (18.8-20.5), dorsal spine length 14.3 (13.3-15.6), pre-dorsal length 44.3 (43.6-45.2), post-dorsal length 53.7 (42.9-58.8), length of anal fin base 12.3 (10.3-13.8) all in percent of standard length. Eye 10.3 (9.8-11.1), inter-orbital width 30.9 (30.3-31.6), dorsal spine length 49.4 (42.7-53.3), length of snout 33.9 (32.7-34.4), gape of mouth 47.4 (46.4-48.5), length of dorsal fin base 49.1 (48.4-50.0), length of anal fin base 40.4 (35.4-44.1), length of caudal peduncle 50.8 (46.8-53.2), height of caudal peduncle 26.6 (25.5-28.2) all in percent of head length. Adipose dorsal fin base 74.2 (65.7-82.1) in percent of anal fin base. Snout length 90.8 (88.1-96.8) in percent of inter-orbital width. Least depth of caudal peduncle 52.4 (48.8-55.9) in percent of its length.

Dorsal profile rising gently from tip of snout to base of occipital process. Head flat, broad and anteriorly depressed. Snout rounded. Mouth opening crescentic. Eyes oval,
anteriorly situated. Median longitudinal groove on head long, almost reaching base of occipital process. Occipital process short, not reaching basal bone of dorsal fin. Teeth numerous, villiform and in bands on upper and lower jaws.

Four pairs of barbels: one pair maxillary reaching end of base of anal fin, one pair nasal extending up to posterior border of eye, one pair outer mandibular reaching end of base of pectoral fins and one pair inner mandibular shorter.

Dorsal fin with a strong spine; outer surface of spine smooth, inner surface finely serrated towards tip. Adipose dorsal fin short, with a small inter-space from rayed dorsal fin. Pectoral fins with a strong spine and eight or nine branched rays. Outer surface of pectoral spine smooth, inner having 13-22 strong retrorse teeth. Pelvic fins do not reach anal fin. Anal fin not reaching caudal fin. Caudal fin forked, upper lobe longer.

Colour: Dark brownish black on top, becoming pale yellow beneath. In fresh specimens, upper surface of body dark silvery gray, turning pale white beneath. Fins dull whitish, body without any colour bands.

Distribution: INDIA: Gadwal, Nagarjunasagar Reservoir, Krishna River system, Andhra Pradesh.

Remarks: Mystus krishnensis attains a very large size and is of considerable commercial importance at the Nagarjunasagar reservoir. This species bears close resemblance to M. maydelli Rossel as shown under remarks for M. maydelli (see p. 74 infra).

Mystus leucophasis (Blyth)
(Figure 11)

![Fig 11. Lateral view drawing of Mystus leucophasis (Blyth).](image)

1877. *Macrones lellcophasis*, Day, *Fish India*: 449, pl. 100, fig. 2 (synonymy, description, local names; Tenasserim, Bassein rivers, Burma).

Specimens studied: 11 exs. 44.5-210.3 mm SL in total as below:

ZSI F 4828/1 44.5 mm SL one ex. Bassein district, Irrawaddy division, Burma, Lt. Col. F. D. Maxwell coll. 28.4.1910. ZSI F 4829/1 one ex. 44.9 mm SL, ZSI F 4830/1 one ex. 47.1 mm SL, ZSI F 4831/1 one ex. 47.3 mm SL details same as for 4828/1. ZSI 424 one ex. 83.7 mm SL Bassein, Lower Burma, F. Day purchased. ZSI Cat. 530 one ex. 95.1 mm SL Burma, F. Day coll. ZSI Cat. 526 one ex. 96.1 mm SL Moulmein, Burma, F. Day coll. ZSI Cat. 527 one ex. 97.9 mm SL Moulmein, Burma, F. Day coll. ZSI Cat. 527 one ex. 97.9 mm SL Moulmein, Burma, F. Day coll. ZSI Dup. Cat. 198 one ex. 156.8 mm SL Mandalay, Burma, Major Sladen coll. ZSI Dup. Cat. 304 one ex. 157.5 mm SL Moulmein, Burma, F. Day coll. ZSI Cat. 531 one ex. 210.3 mm SL Burma, F. Day coll.

Description: D. I, 7; I, 8-10; V. i. 5; A. ii-iii, 9-10; C. 17.

Body depth 24.4 (20.8-29.1), head length 27.8 (25.2-30.2), width of head 18.1 (16.9-19.9), dorsal spine length 23.6 (17.3-34.9), pre-dorsal length 47.0 (44.1-50.7), post-dorsal length 48.4 (43.6-61.1), length of anal fin base 14.2 (12.2-17.1) all in percent of standard length. Eye 25.0 (15.0-29.8), inter-orbital width 28.2 (20.6-37.8), dorsal spine length 79.9 (58.0-94.4), length of snout 41.7 (33.6-49.0), gape of mouth 43.2 (39.8-50.0), length of dorsal fin base 58.3 (46.4-78.5), length of anal fin base 50.4 (44.4-56.6), height of caudal peduncle 33.7 (28.4-39.8) all in percent of head length. Adipose dorsal fin base 68.8 (44.6-93.0) in percent of anal fin base. Snout length 68.0 (47.1-100.0) in percent of inter-orbital width. Least depth of caudal peduncle 50.8 (39.9-60.0) in percent of its length.

Dorsal profile arched with a steep rise from tip of snout to the base of occipital process. Head prominent, anteriorly depressed, longer than broad. Snout almost rounded upper jaw
slightly longer than the lower. Mouth opening crescentic. Eyes large, oval-shaped. Median longitudinal groove on head consists of two fontanels, which do not reach base of occipital process. Occipital process twice as long as broad at base and does not reach basal bone of dorsal fin. Upper surface of head rugose. Teeth numerous and villiform in an uninterrupted crescentic band across palate and upper jaw, a mesially interrupted deeply curved band on lower jaw.

Four pairs of barbels: one pair maxillary extending up to anal fin, one pair nasal reaching middle of eye one pair outer mandibular reaching middle of pectoral fins and one pair inner mandibular shorter. Dorsal fin with a moderately strong spine; outer surface smooth, inner surface posteriorly serrated. Adipose dorsal fin long, commencing just behind the rayed dorsal fin. Pectoral fins with 8-10 branched rays and a strong spine having 11-20 retrose teeth. Pelvic fins do not reach anal fin. Anal fin not reaching caudal fin. Anal papilla absent. Caudal fin deeply forked with filamentous prolongations.

Colour: Dark brown on top becoming lighter beneath. Upper surface of head and fins pale yellowish in colour.

Distribution: MYANMAR: Mandalay, Moulmein, Tenasserim, Bassein, Irrawaddy and Tenasserim Rivers.

Remarks: Jayaram (1954) erroneously thought that an inter-neural shield was present in this species also and considered it belonging to the sub-genus *Osteobagrus*. Later in 1966 he placed it under *Aorichthys* which however he rectified in 1967. In none of the 11 examples we have examined no inter-neural shield was found. *M. leucophasis* is allied to *M. cavasius* but differs from it in having shorter median longitudinal groove and occipital process and in possessing filamentous prolongations of the caudal fin.

Mystus macropterus (Bleeker)

Specimen studied: No specimen seen by us.
Description: After Bleeker (1870) and Nichols (1943). Total length of specimen 175 mm.

D. I. 7; P. I. 9; V. i, 5; A. v, 10; C. 7+8.

Body depth 10.8, head length 18.2, both in percent of total length; 12.5 and 20.8 in percent of standard length respectively. Eye 21.3, width of head 76.9 height of head 45.4, length of dorsal spine 50.0, length of pectoral fin 80.3 all in percent of head length.

Four pairs of barbels: one pair maxillary reaching anterior end of pectoral fins; one pair nasal reaching posterior margin of eye, one pair outer mandibular equal in length to inner mandibular pair, both of which reach base of pectoral fins.

Colour: Dorsal surface of body olive, ventral surface whitish. Eyes red. Dorsal fin margin, pectoral and pelvic fins tinged orange.

Distribution: CHINA: Yang-tse-Kiang basin

Remarks: This species is distinguished from its allies by its long adipose dorsal fin which is four times the width of the rayed dorsal fin. It differs from its close ally *M. amemiyae* mainly in having a deeper body, shorter barbels and a longer anal fin. Other differences have been clarified elsewhere (table 7 p. 34). Chu (1931) described certain specimens from Shanghai, which are referable to this species.

Mystus malabaricus (Jerdon)

(Figure 12)

1865. *Hara malabarica* Day, *Fish Malabar* : 184, pl. 13, fig. 3 (description, mountain streams of Malabar).

1877. *Macrones malabaricus*, Day, *Fish India* : 450, pl. 101, fig. 2 (synonymy, description; Malabar coast of India and Wayanad).

Specimens studied : 26 exs. 68.6-107.1 mm SL in total as below :

ZSI F. 1214/1 one ex. 107.1 mm SL Pune. ZSI F. 1357/1 three exs. 68.6-84.3 mm SL Chittar river. Palode, Travancore, C. C. John coll. 10.2.1940. ZSI F. 13569/1 one ex. 90.3 mm SL Achankovil river, 7 miles south of Konni, Travancore, C. C. John coll. ZSI Unreg. two exs. 93.8 & 99.8 mm SL Chandragiri river and tributaries near Mangalore 1983. ZSI Unreg. 2 exs. 94.8 & 100.3 mm SL Travancore. ZSI unreg. three exs. Cauvery river, G. M. Natarajan coll. 1984. ZSI unreg. five exs. 81.3-100.2 mm SL Travancore, 1946. ZSI unreg. 2 exs. 83.5 & 100.5 mm SL Manimala river, C. C. John 1940. ZSI unreg. seven

Fig 12. Lateral view drawing of *Mystus malabaricus* (Jerdon).

Description : D. I, 7; P. I, 7-8; V. i. 5; A. ii-iii, 8-9; C. 7+8

Body depth 18.0 (14.3-22.6), head length 24.3 (22.7-28.0), width of head 17.4 (15.7-20.1), dorsal spine length 11.4 (9.9-13.6), pre-dorsal length 39.0 (36.2-42.9), post-dorsal length 63.1 (60.8-68.4), length of anal fin base 15.7 (14.3-18.1) all in percent of standard length. Eye 21.6 (18.8-24.5), inter-orbital width 33.6 (30.5-36.4), dorsal spine length 46.7 (38.6-58.7), pectoral spine length 59.0 (48.4-78.0), length of snout 35.2 (31.8-39.9), gape of mouth 53.8 (48.8-58.7), length of dorsal fin base 66.2 (56.9-76.3), length of anal fin base 64.6 (55.4-69.9), length of caudal peduncle 83.3 (62.7-95.3), height of caudal peduncle 54.9 (46.9-61.7) all in percent of head length. Adipose dorsal fin base 53.4 (43.6-68.9) in percent of anal fin base. Snout length 92.0 (82.1-100.0) in percent of inter-orbital width. Least depth of caudal peduncle 66.6 (59.4-96.6) in percent of its length.

Dorsal profile almost straight with very little rise from tip of snout to base of occipital process. Head flat and depressed. Snout broad, upper jaw longer. Median longitudinal groove on head short, not reaching base of occipital process. Occipital process twice as long as wide and does not reach the basal bone of dorsal fin, a considerable inter-space present between the two. Teeth villiform and in bands on jaws and palate, a slightly curved continuous band on upper jaw and a deeply curved mesially interrupted band on lower jaw.

Four pairs of barbels: one pair maxillary reaching middle or end of pelvic fin, one pair nasal extending slightly beyond orbit, one pair inner mandibular reaching base of pectoral spines and one pair outer mandibular reaching nearly end of pectoral fins.

Dorsal fin with slender spine, nearly equal to length of pectoral spine and finely serrated behind, outer surface smooth. Adipose dorsal fin base almost three times length of base of rayed dorsal fin or the inter-space between the two. Pectoral fins with seven or eight branched rays and a strong spine articulated anteriorly with eight to ten teeth and equaling nearly height of head at occiput. Pelvic fins nearly as long as pectoral fins and does not reach anal fin. Anal fin not reaching caudal fin. Anal papilla major may or may not be present. Caudal fin bilobed, upper lobe longer.

Colour : Light brownish on top becoming dull white beneath; a dark blotch on shoulder another at the base of caudal fin and a dark band along the lateral line.

Distribution : INDIA: Malabar coast, Wayanad hills and the hill ranges of Travancore. The range is now extended by one specimen from Pune, Maharashtra.

Remarks : Jerdon (1849) described this species from “mountain streams of Malabar” Day (1865, 1869) erroneously placed this species under the genus *Hara* Blyth; this genus belongs to the family Sisoridae. However in 1873, he placed the species under the genus *Macrones = Mystus* correctly. We have examined through the kind courtesy of Dr. Barbara Herztwig, Curator of Fishes, Naturhistorisches Museum, Wien, Austria the photographs of NMW 45228, one of the topotypes of *Hara malabarica* Day. The morphometric data
furnished by Dr. Herztwig and the figures clearly indicate that the species is referable to the genus *Mystus*. The broad caudal peduncle is very characteristic of this species, although the caudal spot, which is prominently seen in fresh specimens, is faintly seen. The identity of the species is unmistakable.

During a field survey of the type localities in February 1985 we collected seven specimens of this species. Fresh live specimens are gray coloured with a dark streak along the lateral line ending in a triangular black patch at the base of the caudal fin. In the night, when a torchlight is focussed on live specimens the eyes reflect glowing red in the dark. The fishes do not seem to grow to a large size. The largest example was 107.1 mm SL.

M. malabaricus resembles *M. armatus* in having low dorsal profile, flattened head and a broad caudal peduncle but it is separated from it by its short median longitudinal groove and a short occipital process not reaching the basal bone of dorsal fin.

Mystus maydelli Rossel

(Figure 13)

Specimen studied: No specimen seen by us.

Description: (Drawn from data of Holotype H. 2180 preserved in Zoological Museum, Hamburg given by Dr. Rossel). Total length 94.0, standard length 81.4 mm.

D. I, 7; P. I, 9; V. 6; A. 12.

Head length 29.7, width of head 20.5, height of head 12.4, snout length 9.8, eye diameter 4.9, inter-ocular width 9.2 all in percent of standard length. Eye diameter 16.5, inter-ocular width 31.0, snout length 33.1, width of head 69.0, height of head 41.7 all in percent of head length. Snout length 93.8 in percent of inter-ocular width.
Dorsal profile gently rising from tip of snout to base of occipital process. Head broad, flat, depressed and longer than broad. Snout rounded. Mouth opening crescentic. Eyes somewhat oval, situated anteriorly. Median longitudinal groove on head very long, reaching base of occipital process. Occipital process very short, about as long wide at base and not reaching basal bone of dorsal fin.

Four pairs of barbels: one pair maxillary reaching origin of anal fin, one pair nasal extending beyond posterior border of eye, one pair inner mandibular reaching opercular end and one pair outer mandibular extending beyond base of pectoral fin.

Dorsal fin rounded with a strong spine. First ray of dorsal fin slender, smooth, its distal end soft and pliable, last rays reaching origin of adipose fin. Adipose dorsal fin short with a small inter-space from the rayed dorsal fin. Pectoral fin with a strong spine and nine branched rays. Pelvic fins inserted at right angle to base of last ray of dorsal fin and not reaching anal fin. Anal fin short and not reaching caudal fin. Caudal fin deeply forked, upper lobe almost twice as long as lower.

Colour: Dorsal surface of head chocolate brown, body brighter, ventral surface dull white, fins brownish.

Distribution: INDIA: Bhima falls, Wadgaon, Maharashtra State.

Remarks: It is one species of this genus which is with a plain body without any colour markings. Rossel (1964) considered the species close to *M. malabaricus* from which it was differentiated by the broad flat head and the length of caudal fin. This species is reported to attain a large size, although subsequent records are not known.

The only other close species is *M. krishnensis* Ramakrishnaiah, a giant Mystus which is caught in large numbers from the Krishna River system. We have examined four examples from the Nagarjunasagar reservoir (see p. 65) and the data obtained are below:

<table>
<thead>
<tr>
<th>Characters</th>
<th>M. maydelii</th>
<th>M. malabaricus</th>
<th>M. krishnensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL/LH</td>
<td>3.4</td>
<td>4.1(3.6-4.4)</td>
<td>3.3 (3.2-3.4)</td>
</tr>
<tr>
<td>SL/Body depth</td>
<td>5.8</td>
<td>5.2 (4.4-7.0)</td>
<td>5.6 (5.4-6.1)</td>
</tr>
<tr>
<td>SL/Width of head</td>
<td>4.9</td>
<td>5.9 (5.0-7.8)</td>
<td>5.1 (4.9-5.3)</td>
</tr>
<tr>
<td>SL/Height of head</td>
<td>8.1</td>
<td>7.1 (6.0-7.8)</td>
<td>7.4 (6.8-8.1)</td>
</tr>
<tr>
<td>LH/Eye</td>
<td>6.1</td>
<td>4.7 (4.1-5.3)</td>
<td>9.7 (9.0-10.2)</td>
</tr>
<tr>
<td>LH/Inter-orbital width</td>
<td>3.2</td>
<td>3.1 (2.7-3.3)</td>
<td>3.26 (3.2-3.3)</td>
</tr>
<tr>
<td>LH/Snout length</td>
<td>3.0</td>
<td>2.9 (2.6-3.2)</td>
<td>3.0 (2.9-3.1)</td>
</tr>
<tr>
<td>Snout length/Int. orb. width</td>
<td>1.1</td>
<td>1.1 (1.0-1.2)</td>
<td>1.1 (1.0-1.1)</td>
</tr>
</tbody>
</table>

From the above comparison it may be seen that *M. krishnensis* closely resembles *M. maydelii*. Considering that Nagarjunasagar reservoir is formed on the river Krishna and that
M. maydelli is also known from the upper reaches of this river, it appears possible that M. maydelli may only be a juvenile of this species. It may also be stated that so far no juvenile of M. krishnensis or grown up examples of M. maydelli are known. If the above thesis is proved at a later date, M. maydelli will have priority.

Mystus menoda (Hamilton-Buchanan)

1822. *Pimelodus menoda* Hamilton-Buchanan, *Fish Ganges*: 203, pl. 1, fig. 72 (type locality “Koši, Mahananda, north Bihar and Bengal”).

1877. *Macrones corsula*, Day, *Fish India*: 446, pl. 100, fig. 5 (synonymy, local names, description; Orissa through Bengal and Assam).

1929. *Pimelodus menoda*, Hora, *Mem. Indian Mus.* 9:183 (manuscript name in Hamilton-Buchanan’s drawing *Pimelodus telagra menoda* identified as *Pimelodus menoda*; vernacular name: 188 (details regarding Hamilton-Buchanan’s manuscript and published drawings).

Specimens studied: 11 exs. 150.1-287.1 mm SL in total as below:

Cat 550 one ex. 244.6 mm SL Tagoung, Burma Dr. J. Anderson coll. Cat 551 one ex. 287.1 mm SL Tagoung, Burma Dr. Anderson coll. Cat 554 one ex. 228.7 mm SL Calcutta. ZSI F 1223 two exs. 198.1 & 224.7 mm SL Hulivala, Hemavathy river, Karnataka, K. C. Jayaram coll. 7.5.1977. ZSI F 1403/1 one ex. 150.1 mm SL Saraghat, Ganges river R. A. Hodgart coll. ZSI unreg. five exs. 204.5-282.2 mm SL Calcutta fish market, catch reported from the Ganges. S. Anuradha coll. 3.2.1985.

Description: D. I, 7; P. I, 9; V. i, 5; A. iii-v, 8; C. 7+8.

Body depth 20.2 (18.6-21.6), head length 29.2 (27.6-31.6), width of head 21.0 (18.2-21.3), dorsal spine length 12.9 (11.5-15.0), pre-dorsal length 45.1 (43.5-47.7), post-dorsal length 57.8 (53.5-62.0), length of anal fin base 13.6 (11.8-14.6) all in percent of standard length. Eye 13.6 (12.4-13.4), inter-orbital width 34.1 (32.4-38.9), dorsal spine length 44.4 (36.2-50.6), length of snout 38.9 (37.0-42.3), gape of mouth 51.6 (45.6-57.2), length of dorsal fin base 50.1 (47.8-56.0), length of anal fin base 45.9 (38.9-51.8), length of caudal peduncle 55.9 (52.5-60.5), height of caudal peduncle 31.9 (26.3-35.1) all in percent of head length. Adipose dorsal fin base 55.6 (49.6-65.9) in percent of anal fin base. Snout length 87.6 (84.0-92.0) in percent of inter-orbital width. Least depth of caudal peduncle 57.1 (45.8-60.1) in percent of its length.

Dorsal profile rising steadily from tip of snout to base of occipital process. Head prominent, depressed and longer than broad. Upper surface of head rough with tubercular ridges. Snout obtuse, upper jaw longer. Eyes small, lateral margins free. Median longitudinal groove on head not reaching base of occipital process. Occipital process long and narrow with a slight inter-space between it and the basal bone of dorsal fin. Teeth villiform, numerous; five or six rows of an uninterrupted semi-lunar band across palate and upper jaw; six to seven rows of a mesially interrupted band on lower jaw.
Four pairs of barbels: one pair maxillary reaching base of anal fin, one pair nasal reaching below middle of eye, one pair outer mandibular extending to base of pectoral fin and one pair inner mandibular shorter.

Dorsal fin with a slender spine, outer surface of spine smooth, inner serrated anteriorly towards tip with two or three teeth. Adipose dorsal fin long, its base almost as long as or longer than base of rayed dorsal fin with a considerable inter-space between the two. Pectoral fins with nine branched rays and a strong internally serrated spine with 20-23 teeth. Pelvic fins not reaching anal fin. Anal fin does not reach base of caudal. Anal papilla absent. Caudal fin forked, bilobed, upper lobe longer.

Colour: Light brown on top with a grayish tinge, turning dull white beneath. All paired fins grayish or stained black. A number of black spots along anterior portion of lateral line present.

Distribution: INDIA: West Bengal, Assam, Orissa, Karnataka. MYANMAR: Tagoung.

Remarks: Hamilton-Buchanan (1822) described *Pimelodus menoda* from the Kosi, Mahananda rivers in north Bihar and Bengal respectively. He published a figure of the species (pl. 1, fig. 72) but by a misprint the name below the figure appeared as *P. corsula* although in the original drawing the name *Pimelodus telagra menoda* is found written in Hamilton-Buchanan’s own hand writing. Day confused this with *Mugil corsula* and called Hamilton-Buchanan’s fish as *P. corsula* erroneously, which error had crept into his Fauna volume also.

Valenciennes (1839) described *Bagrus corsula* independently, which has been synonymised under this species. *B. corsula* was characterised by its depressed head and body depth which is 6 times in total length, eyes 4.5 times in head length, upper lobe of caudal fin longer than lower.

It will be seen from the above that all these characters inter-grade with *Mystus menoda*. Subsequent workers as Bleeker (1853), Day (1869, 1877, 1889), Chaudhury (1911, 1913), Chu (1931), Nichols (1943), Menon (1951), Jayaram (1954) have all used the name *corsula* as an independent taxa. Chaudhuri (1913) while describing a new variety *trachacanthus* cleared the confusion and corrected the name as *M. menoda*.

M. menoda is mainly confined to north India and its record elsewhere is few. Jayaram et al (1982) recorded it from the Cauvery drainage which is a new record. The species closely resembles *M. microphthalmus* and *M. trachacanthus* but differs from them in possessing clusters of small vertical black spots along the anterior portion of lateral line, pectoral spine having 20-23 teeth and upper or lower lobe of caudal fin not prolonged as a filament.
Mystus micracanthus (Bleeker)
(Figure 14)

Fig 14. Photograph of specimen ZSI F 131/2 *Mystus micracanthus* (Bleeker).

1862. *Hyspelobagrus micracanthus*, Bleeker. *Atlas Ichth.* 2 : 59, pl. 74, fig. 3 (description, synonymy, local names; Java, Sumatra, Borneo in rivers).

Specimens studied: Two exs. 78.3 & 151.5 mm SL as below :

ZSI F 131/2 one ex. 78.3 mm SL Kaki Buki, Perak, Malaysia, Raffles Museum. F. 130/2 one ex. 151.5 mm SL Bukit Merah, Perak, Malaysia, Raffles Museum.

Description: D. I, 7; P. I, 9; V. i, 5; A. ii-iii, 8-9; C. 7+8.

Body depth 24.5 (23.3-25.9), head length 27.8 (27.6-27.9), width of head 20.1 (19.5-20.8), dorsal spine length 12.5, pre-dorsal length 41.95 (41.9-42.0), post-dorsal length 62.0 (60.8-65.3), length of anal fin base 14.4 (13.5-15.3) all in percent of standard length. Eye 22.2 (21.7-22.7), inter-orbital width 34.7 (34.5-35.2), dorsal spine length 44.7, pectoral spine length 77.5 (77.3-77.8), length of snout 35.8 (34.0-37.5), gape of mouth 44.8 (42.8-46.8), length of dorsal fin base 57.9 (55.6-60.2), length of anal fin base 52.0 (48.5-55.6), length of caudal peduncle 63.5 (60.8-66.2), height of caudal peduncle 39.6 (39.5-39.8) all in percent of head length. Adipose dorsal fin base 46.7 (44.8-49.6) in percent of anal fin base. Snout length 102.9 (99.3-106.6) in percent of inter-orbital width. Least depth of caudal peduncle 62.6 (60.1-65.0) in percent of its length.

Dorsal profile rising steadily from tip of snout to base of occipital process. Head flat, broader than long and rugose. Snout rounded, slightly prominent. Mouth opening crescent. Median longitudinal groove on head short, does not extend up to base of occipital process. Occipital process slender, finely rugose and reaching basal bone of dorsal fin. Teeth villiform and in bands on jaws and palate; a slightly curved continuous band on upper jaw, a deeply curved mesially interrupted band on lower jaw, a semi-lunar continuous band on vomer.

Four pairs of barbels: one pair maxillary extending to caudal fin, one pair nasal reaching anterior border of operculum, one pair inner mandibular reaching origin of pectoral fins and one pair outer mandibular extending to end of pectoral fin.

Dorsal fin inserted vertically above end of pectoral fin with a slender spine, half as long as head and finely serrated behind, outer surface smooth. Adipose dorsal fin much longer than dorsal and anal; more or less contiguous with dorsal. Pectoral fins not reaching pelvic
fins with nine branched rays and a strong spine much longer than dorsal spine with 8-14 strong retrorse teeth along inner edge. Pelvic fins do not reach anal fin. Anal fin not reaching caudal fin. No pre-anal papilla. Caudal fin forked, upper lobe longer.

Colour: Yellowish brown. A dark spot at base of caudal fin present.

Remarks: *Mystus micracanthus* resembles closely *M. nigriceps* but differs from it in having shorter median longitudinal groove, broader caudal peduncle with a dark triangular spot at base of caudal fin. The outer mandibular barbels extend posteriorly to pelvic fin origin.

Mystus microphthalmus (Day)

(Figure 15)

1877. *Macrones microphthalmus* Day. *Fish India* : 446, pl. 100, fig. 4 (type-locality Irrawaddy, Burma).

Specimens studied: Two exs. 139.9 and 247.1 mm SL as below:

ZSI 2592 one ex. Holotype, 139.6 mm SL Irrawaddy river, Burma, F. Day coll. ZSI unreg. one ex. 247.1 mm SL Manipur, Vishwanath Singh coll.

Description: D. I, 7; P. I, 8-9; V. i. 5; A. ii-iii. 9; C. 7+8.

Body depth 16.1 (12.5-19.7), head length 29.5 (29.2-29.7), width of head 18.8 (18.2-19.3), length of dorsal spine 11.9 (8.8-15.0), pre-dorsal length 43.0 (42.2-43.7), post-dorsal length 57.9 (57.8-58.1), length of anal fin base 13.4 (12.7-14.0) all in percent of standard length. Eye 9.7 (8.3-11.1), inter-orbital width 29.7 (28.2-31.2), dorsal spine length 40.3 (30.1-50.6), pectoral spine length 43.8 (42.9-44.7), length of snout 33.3 (32.0-34.5), gape of mouth 45.6 (42.4-48.8), length of dorsal fin base 48.2 (47.0-49.5), length of anal fin base 45.5 (43.7-47.2) all in percent of head length. Adipose dorsal fin base 76.1 (71.9-80.3) in percent of anal fin base. Snout length 89.6 (81.8-97.4) in percent of inter-orbital width. Least depth of caudal peduncle 39.5 (34.3-44.5) in percent of its length.

Four pairs of barbels: one pair maxillary reaching anal fin or beyond, one pair nasal extending to middle of orbit, one pair outer mandibular equal to length of head and one pair inner mandibular shorter.

Dorsal fin with a weak, slender spine; osseous at base and serrated on upper half. Adipose dorsal fin small, broader than anal fin base. Pectoral fins with eight or nine branched rays and a strong spine serrated with 11-13 retrorse teeth. Pelvic fins not reaching anal fin which in turn does not reach caudal fin. Anal papilla absent. Caudal fin forked, upper lobe with a filamentous prolongation.

Colour: Brownish on top turning dull white beneath.

Distribution: INDIA: Manipur. MYANMAR: Along Irrawaddy valley.

Remarks: V. Singh and H. T. Singh (1986) recorded *M. microphthalmus* from Manipur valley. We have examined this specimen (plate 1) and it corresponds with Day's original description. It is reported that this fish grows to a considerable size and forms a good fishery in Manipur. The occurrence of a Burmese species north in Manipur valley is zoogeographically interesting since it is normally to be expected in the drainages of Chindwin only. *M. microphthalmus* closely resembles *M. menoda* from which it can be distinguished...
by the possession of plain body without any spot, pectoral spine having 11-13 retorse teeth and the upper lobe of caudal fin prolonged into a filament.

Mystus montanus (Jerdon)
(Figure 16)

Fig 16. Lateral view drawing of *Mystus montanus* (Jerdon).

1877. *Macrones montanus*, Day, *Fish India* 449, pl. 101, fig. 4 (synonymy, description; Manantoddy, Waynaad range of hills).

Specimens studied: 54 exs. 59.4-79.8 mm SL in total as below:

ZSI unreg. seven exs. 59.7-78.1 mm SL Malampuzha dam, right bank canal, Kerala, K. C. Jayaram and Anuradha coll. 22.2.1985. ZSI unreg. 11 exs. 59.6-77.8 mm SL Palayamkottai, Tamil Nadu, A. G. Murugesan coll. 1984. ZSI unreg. eight exs. 65.8-79.6 mm SL Sholayar dam, near Pollachi, on way to Munnar, G. M. Natarajan coll. ZSI unreg. eight exs. 65.6-76.9 mm SL Chitoorpuza at Tathamangalam road bridge about 17 km south of Palghat town, K. C. Jayaram and Anuradha coll. 20.2.1985. ZSI unreg. 13 exs. 59.5-79.8 mm SL purchased from fish market, Coimbatore, Tamil Nadu, catch reported from Vallanur Tank fed by Noyyal river, K. C. Jayaram and Anuradha coll. 23.2.1985. ZSI unreg. seven exs. 596-75.4 mm SL Valankunam tank on road from Coimbatore to Trichy, K. C. Jayaram and Aruradha coll. 23.2.1985.

Description: D. I, 7; P. I, 6; V. i, 5; A. iii, 8-9; C. 7+8.

Body depth 21.1 (18.7-22.8), head length 27.3 (19.7-30.2), width of head 19.7 (18.3-21.0), dorsal spine length 12.6 (10.6-13.9), pre-dorsal length 41.1 (39.1-43.8), post-dorsal length 63.1 (57.1-71.4), length of anal fin base 13.0 (11.0-15.7) all in percent of standard length. Eye 20.0 (15.2-23.4), inter-orbital width 32.1 (30.2-34.6), dorsal spine length 44.2 (38.2-50.6), length of snout 32.6 (30.8-34.5), gape of mouth 48.5 (44.0-54.1), length of dorsal fin base 55.3 (46.4-63.4), length of anal fin base 47.2 (40.9-57.6), length of caudal peduncle 69.0 (59.9-76.2), height of caudal peduncle 35.1 (30.8-39.8) all in percent of head length. Adipose dorsal fin base 63.4 (48.8-76.6) in percent of anal fin base. Snout length 966 (91.3-98.5) in percent of inter-orbital width. Least depth of caudal peduncle 51.5 (41.9-59.8) in percent of its length.

Dorsal profile arched with a steep rise from tip of snout to the base of occipital process. Head flat, anteriorly depressed. Snout broad, upper jaw slightly longer. Eyes oval. Median longitudinal groove on upper surface of head not reaching base of occipital process, but extends to midway between eye and base of occipital process. Occipital process narrow and reaches basal bone of dorsal fin. Teeth numerous, villiform in semi-lunar bands across palate and upper jaw, in mesially interrupted band on lower jaw.

Four pairs of barbels: one pair maxillary reaching anal fin, one pair nasal extending beyond posterior border of eyes, one pair outer mandibular reaching almost half length of pectoral spine and one pair inner mandibular shorter.
Dorsal fin with a weak spine; outer surface of spine smooth, inner surface slightly serrated. Adipose dorsal fin short with an inter-space equal to the length of base of rayed dorsal. Pectoral fins with six branched rays and a strong spine with 14-15 retrorse teeth. Pelvic fins do not reach anal fin. Anal fin does not reach caudal fin. Caudal fin forked, upper lobe longer.

Colour: In alcohol preserved specimens dark grayish brown with pale yellowish bands along sides above and below lateral line; ventral surface of head and abdomen light brown. Fresh specimens silvery gray with light yellowish bands along sides. Some examples caught from Malampuzha dam were dark violet with greenish bands along sides ending in a dark spot at base of caudal fin. Specimens gradually turned yellow when preserved in formalin.

Distribution: INDIA: Confined to Peninsular India, especially along Western Ghats.

Remarks: This species is usually found in narrow, rocky streams. We collected eight examples from Chitoorpuza at Tathamangalam Road Bridge which is a tributary of Bharathapuzha River having a rocky and sandy bottom. At the time of collection the river was about 15 meters wide with a depth of one to three meters and marginal vegetation of paddy fields; water was slow-flowing and contained a lot of weeds and algae. The catch was by cast net. The seven examples from Malampuzha dam were actually caught within a long dark culvert with a cast net. A peculiar feature observed was their colour, which was very dark violet with greenish bands along sides of body ending in a dark spot at base of caudal fin. This type of colour may be due to the habitat of the fishes that remained dark and stagnant for a long period of time. *M. montanus* is close to *M. malabaricus* in many aspects but differs from it in colouration, pectoral spine with 14 or 15 retrorse teeth and upper lobe of caudal fin longer.

Mystus multiradiatus Roberts

Specimen studied: No specimen seen by us.

Description: This species differs from all other species of the genus except *M. mysticetus* in having over 40 gill rakers on first gill arch. It differs from *M. mysticetus* in having the eye dorsolateral (rather than lateral) and from all striped *Mystus* of Thailand in having head from snout tip to behind eye very flat and relatively broad. Dorsal margin of eye nearly flush with dorsal profile of head. Inter-orbital width twice eye diameter. Anal fin margin rounded.

Distribution: THAILAND: Mekong, Chao Phraya and perhaps Mekong basins.

Mystus mysticetus Roberts

Specimen studied: No specimen seen by us.

Description: Differs from all other species of Mystus in having eyes lateral than dorso-lateral. Mouth nearly terminal, less down turned than in other striped species of Mystus. Adipose fin short but very high, originating far behind dorsal fin. Gill rakers increases in number throughout life, faster than in any other Mystus (36-97 rakers). Anal fin with 13-15 rays, slightly more than other striped Mystus species of Thailand (usually 12 or less).

Distribution: THAILAND: Mekong, Rayong, Bangpakong, Chao Phraya and possibly Meklong basins.

Mystus nemurus (Valenciennes)
(Figure 17)

Specimens studied: Five exs. 129.5-176.1 mm SL in total as below:

- ZSI F 128/2 one ex. 129.5 mm SL Kuala Tahan, Pahang, F. M. S. Raffles Museum collection.
- ZSI F 10555/1 one ex. 145.1 mm SL Nontaburi.
- ZSI F 120/2 one ex. 150.1 mm SL Singapore, Raffles Museum collection.
- ZSI unreg. one ex. 152.2 mm SL Pahang.
- ZSI F 126/2 one ex. Chanderoh, Perak, F. M. S. Raffles Museum.

Description: D. 7-8; P. I, 7-8; V. i. 5; A. ii, 9-10; C. 7+8.

Body depth 19.4 (16.5-21.6), head length 31.2 (27.4-32.7), width of head 19.7 (18.5-21.2), dorsal spine length 14.5 (11.5-15.9), Pre-dorsal length 46.5 (42.6-50.0), post-dorsal length 55.9 (52.7-57.7), length of anal fin base 13.1 (11.4-14.8) all in percent of standard length. Eye 17.9 (14.1-21.8), inter-orbital width 28.6 (27.0-30.5), dorsal spine length 46.4 (42.0-49.5), pectoral spine length 59.2 (53.4-62.4), length of snout 38.1 (35.4-40.3), gape of mouth 49.3 (47.4-50.0), length of dorsal fin base 53.4 (46.8-57.9), length of anal fin base 42.3 (35.0-46.8), length of caudal peduncle 54.2 (50.8-60.5), height of caudal peduncle 30.4 (26.6-33.7) all in percent of head length. Adipose dorsal fin base 71.4 (68.4-78.8) in percent of anal fin base. Snout length 75.2 (72.6-77.8) in percent of inter-orbital width. Least depth of caudal peduncle 56.1 (52.3-62.3) in percent of its length.

Dorsal profile elevated, rising slowly from tip of snout to the base of occipital process. Head depressed, upper surface of head rugose. Eyes oval. Snout spatulate, prominent. Mouth opening crescentic. Width of head greater than height of head, its greatest width almost equal to length of head without snout. Median longitudinal groove on dorsal surface of head reaching base of occipital process. Occipital process slender, long and reaching basal bone of dorsal fin. Teeth numerous, villiform and in curved bands across palate and upper jaw; a mesially interrupted band on lower jaw.

Four pairs of barbels: one pair maxillary extending beyond pelvic fin and reaching almost origin of anal fin, one pair nasal reaching eye, one pair outer mandibular reaching base of pectoral fins and one pair inner mandibular shorter.

Dorsal fin with a long spine, its outer surface smooth, inner surface with four to six small teeth towards tip. Adipose dorsal fin short situated above anal fin and slightly longer than anal fin with a considerable inter-space from the rayed dorsal fin. Pectoral fins with seven or eight branched rays and a strong flattened spine with 13-14 retrorse teeth. Pelvic fins not reaching anal fin. Anal fin not reaching caudal fin. Caudal fin deeply forked, upper lobe slightly longer than lower, often with a short filamentous extension.

Colour: Pale yellowish brown on top, becoming lighter beneath. No spots or marks present on body.

Distribution: JAVA : Batavia, Bekassi, Krawang, Buitenzorg, Dukok, Tjibilong, Garut, Surabaya, Gempol, Grati, Malang, Pasuruan. SUMATRA : Palembaang, Benkulen, Moara

Remarks: *Mystus nemurus* comes close to *M. baramensis* in many aspects but can be differentiated from it in having longer median longitudinal groove, long occipital process reaching basal bone of dorsal fin and prominent snout. The shape of adipose dorsal fin and gill raker counts also differentiate the species.

Mystus nigriceps (Valenciennes)

Specimens studied: Four exs. 63.4-200.7 in total as below:

ZSI F 123/2 two exs. 63.4 & 189.1 mm SL Pahang, F. M. S. Raffles Museum coll.
ZSIF. 122/2 one ex. 200.7 mm SL Perak, F. M. S. Raffles Museum coll. ZSI F 10322/1 one ex. 130.3 mm SL Pahang, F. M. S. Raffles Museum coll.
Description: Only diagnostic features are given.

Adipose dorsal fin contiguous with dorsal fin. Barbels very long, maxillary pair sometimes extending to or beyond caudal fin. Branchiostegal rays seven or eight. Gill rakers 21 to 25. Vertebrae 41 to 44 (After Roberts, 1989).

Distribution: Widely distributed in the Malay Peninsula, Sumatra, Borneo and Java. Also in Thailand.

Remarks: Dutt et al (1982) synonymised Mystus nigriceps under the widely distributed M. cavasius Desoutter. One of the authors of this paper (KCJ), re-examined the holotype of Bagrus nigriceps preserved in the Rijksmuseum van Natuurlijke Historie, Leiden RMNII 2953. He opined that no significant differences exist between M. nigriceps and M. cavasius as seen from the holotype. The holotype of M. nigriceps was found to agree with M. cavasius in all salient features such as the long median fontanel reaching the base of the occipital process; the occipital process reaching the basal bone of the dorsal fin; the maxillary barbels reaching caudal fin and the adipose dorsal fin long and contiguous with the rayed dorsal fin. Sharma and Dutt (1984) also examined two specimens of M. nigriceps preserved in the ZSI (F. 122/2 and F. 10322/1) and concluded that M. nigriceps is a junior synonym of M. cavasius.

Radiographs of specimens of M. cavasius and M. nigriceps were taken to ascertain whether any significant differences exist in their vertebral counts. M. cavasius has 20 + 19 = 39 vertebrae and M. nigriceps 20 + 21 = 41 (vide fig. e, pl. II). The neural spines of the pre-caudal vertebrae were branched towards the tip in both the species. We have not come across similar modification in any other Mystus species.

Roberts (1989) on the other hand found the colouration as a distinguishing feature in M. cavasius. He found that the longitudinal stripes and the humeral spot outlined by pale or white areas as characteristic of several Indian Mystus species, but not so in any Malaysian or Indonesian species. Further, he differentiated M. nigriceps from M. cavasius by gill raker counts 22-25 in M. nigriceps vs 15-21 in M. cavasius. However, samples of M. cavasius from Myanmar and Deolali, Maharashtra are exceptions in having 20-24 rakers.

This problem needs further study. Since at the time of preparation of the paper, we considered nigriceps as a synonym of cavasius, no detailed description can be given at this stage of updating the paper as explained in the beginning.

Mystus oculatus (Valenciennes)

(Figure 18)

Specimens studied: Five exs. 78.0-86.8 mm SL in total as below:

ZSI unreg. four exs. 78.0-78.6 mm SL, Chaliyar river at Edavanna, 2 km from Manjeri, Kerala, K. C. Jayaram and Anuradha coll. 18.2.1985. ZSI 487, one ex. 86.8 mm SL India, purchased from F. Day.

Fig 18. Lateral view drawing of *Mystus oculatus* (Valenciennes).

Description: D. I. 7; P. I. 8; V. i. 5; A. iii, 9; C. 7+8.

Body depth 22.2 (21.9-22.6), head length 23.8 (23.4-24.1), width of head 15.5 (14.8-16.4), dorsal spine length 16.1 (15.5-16.8), pre-dorsal length 38.6 (37.6-39.5), post-dorsal length 65.3 (64.8-65.8), length of anal fin base 14.8 (14.2-15.6) all in percent of standard length. Eye 30.2 (28.1-32.2), inter-orbital width 25.8 (24.3-27.3), dorsal spine length 67.7
(64.6-69.9), pectoral spine length 75.9 (72.4-79.2), length of snout 33.8 (31.9-35.5), gape of mouth 46.2 (44.3-49.2), length of dorsal fin base 61.9 (58.5-64.7), length of anal fin base 62.0 (59.4-66.7), length of caudal peduncle 81.0 (78.0-83.1), height of caudal peduncle 40.2 (38.4-43.2) all in percent of head length. Adipose dorsal fin base 72.0 (65.0-84.8) in percent of anal fin base. Snout length 76.6 (70.8-80.9) in percent of inter-orbital width. Least depth of caudal peduncle 49.7 (45.8-52.0) in percent of its length.

Dorsal profile arched with a steep rise from tip of snout to base of occipital process. Head small, compressed longer than broad and rugose. Snout rounded, upper jaw slightly longer. Cleft of mouth not extending to orbit. Median longitudinal groove on head reaching base of occipital process. Occipital process narrow and reaching basal bone of dorsal fin. Teeth villiform and in semi-lunar bands across palate and upper jaw; a deeply curved mesially interrupted band on lower jaw.

Four pairs of barbels: one pair maxillary reaching middle of anal fin, one pair nasal extending beyond posterior border of eye, one pair inner mandibular reaching origin of pectoral fins and one pair outer mandibular reaching end of pectoral fin.

Dorsal fin with a weak slender spine with two minute teeth at tip outer surface smooth. Adipose dorsal fin with considerable inter-space from the rayed dorsal, its base almost equaling that of rayed dorsal. Pectoral fins not reaching pelvic fins, with eight branched rays and a strong spine having 8-10 retrorse teeth. Pelvic fins not reaching anal fin. Anal fin not reaching caudal fin. No pre-anal papilla. Caudal fin forked, upper lobe longer. Caudal peduncle slightly constricted in the middle.

Colour: Dark brown above, yellowish beneath with a dark shoulder spot, a dark spot at base and a dark band along middle of dorsal fin and a dark broad band along lateral line.

Distribution: INDIA: Nilgiris, Western Ghats and associated hills in Karnataka, Kerala and Tamil Nadu.

Remarks: Valenciennes (1839) described this species from a specimen sent by M. Beiluer from Malabar and named it *oculatus* in view of the large size of the eyes. As aptly named this species is characterized by a large eye which is one diameter in length of snout and also in the inter-orbital width. Of all the different species of *Mystus* this one is easily distinguished by this feature. It is confined to streams of Western Ghats only and that too in Kerala.

M. oculatus comes close to *M. montanus* from which it can be easily distinguished by the large eye, dorsal spine with two minute teeth and the median longitudinal groove reaching base of occipital process. The body coloration is also different.

Mystus olyroides Roberts

Specimen studied: No specimen seen by us.

Distribution: BORNEO: Kapuas.

Remarks: As per Roberts (1989: 126) this species does not appear to be close to any other species of Mystus.

Mystus peguensis (Boulenger)

(Figure 19)

Fig 19. Lateral view drawing of *Mystus peguensis* (Boulenger).

Specimen studied: SU 36039, one ex. 76.4 mm SL Rangoon, Burma 1928.
Description: After Boulenger (1894) from a single specimen 20 mm in TL and also from a single specimen noted above.

D. I, 7; P. I, 6; V. i, 5; A. ii, 12; C. 7+8.

Body depth 18.1, head length 29.5, width of head 21.4, dorsal spine length 19.1, predorsal length 44.5, post-dorsal 52.6; length of anal fin base 21.9 all in percent of standard length. Eye 15.8 (12.4-21.8), inter-orbital width 33.8 (25.5-38.3), length of snout 33.8, length of dorsal fin base 36.9, length of anal fin base 74.2, length of caudal peduncle 49.3, height of caudal peduncle 27.6 all in percent of head length. Adipose dorsal fin base 90.8 in percent of anal fin base. Snout length 98.7 in percent of inter-orbital width. Least depth of caudal peduncle 55.9 in percent of its length. Dorsal profile arched with a steep rise from tip of snout to base of occipital process. Head flat, longer than broad, upper surface of head slightly rough, Snout rounded, anteriorly depressed. Mouth opening crescentic. Eyes oval, anteriorly placed. Median longitudinal groove on upper surface of head almost reaching base of occipital process. Occipital process long and reaching basal bone of dorsal fin. Teeth on palate and upper jaw in a continuous crescentic band and on lower jaw in two mesially interrupted deeply curved bands, all teeth villiform.

Four pairs of barbels: one pair maxillary reaching middle of pectoral fins, one pair nasal reaching middle of eye, one pair outer mandibular reaching halfway between posterior border of eye and origin of pectoral fins and one pair inner mandibular shorter.

Dorsal fin with a moderately strong spine; outer surface smooth, inner surface finely serrated. Adipose dorsal fin short, with a long inter-space between the two fins. Pectoral fins with six branched rays and a strong spine; outer surface of spine serrated, inner surface having ten strong teeth. Pelvic fins reaching anal fin. Anal fin comparatively longer. Caudal fin deeply forked, Caudal peduncle slightly constricted in the middle.

Colour: Dark brownish above becoming lighter beneath. Adipose dorsal fin black and all rayed fins dark.

Distribution: MYANMAR: Sittang river enar Toungoo, Yangon,

Remarks: It is noteworthy that this is the only species of Mystus in which the outer surface of pectoral spine is finely serrated. This species is endemic to Myanmar and is close to *M. pelusius* differing from it in having shorter maxillary barbels and pectoral spine serration as cited.

Mystus pelusius (Solander)

(Figure 20)

Fig 20. Lateral view drawing of Mystus pelusius (Solander).
Specimens studied: Three exs. 142.8-171.2 mm SL in total as below:

Description: D. I, 7; P. I, 8; V. i, 5; A. ii, 8-9; C. 7+8.

Body depth 19.3 (17.9-20.7), head length 21.5 (21.4-21.6), width of head 16.2 (15.8-16.5), dorsal spine length 19.7 (17.7-22.0), pre-dorsal length 35.2 (33.4-36.3), post-dorsal length 69.9 (68.8-71.4), length of anal fin base 13.2 (12.4-14.2) all in percent of standard length. Eye 20.6 (18.9-21.8), inter-orbital width 29.1 (28.1-29.6), dorsal spine length 90.5 (82.0-97.8), length of snout 44.2 (42.7-45.3), gape of mouth 53.8 (50.8-55.7), length of dorsal fin base 62.7 (56.9-68.7), length of anal fin base 61.7 (57.6-66.1), length of caudal peduncle 84.2 (78.7-87.7), height of caudal peduncle 38.3 (37.4-38.8) all in percent of head length. Adipose dorsal fin base 34.3 (31.8-38.0) in percent of anal fin base. Snout length 65.9 (63.2-69.5) in percent of inter-orbital width. Least depth of caudal peduncle 32.3 (29.5-34.0) in percent of its length.

Dorsal profile rising gently from tip of snout to base of rayed dorsal fin. Eyes of moderate size, situated at center of head and with free orbital margins. Snout obtusely rounded. Lips thin, lower lip studded with four to six sensory pores on either side of lower jaw. Mouth sub-terminal, gape of mouth not extending to orbit. Median longitudinal groove on head as a long single fontanel, nearly reaching base of supra-occipital process. Occipital process reaching basal bone of dorsal fin and 4.5 times as long as broad. Cleithral process exposed and rugose, half as long as pectoral spine. Upper jaw slightly longer, jaws and palate with villiform teeth; teeth on palate in a semi-lunar uninterrupted band, on lower jaw in a moderately curved or angular band, mesially interrupted on upper jaw in a slightly curved continuous band. All teeth villiform.

Four pairs of barbels: one pair maxillary reaching not beyond pelvic fins, one pair nasal reaching slightly beyond posterior margin of eye, one pair outer mandibular extending up to half of pectoral fins and one pair inner mandibular extending to opercle.

Dorsal fin with a strong spine. Rayed dorsal fin inserted in anterior half of head, above tip of pectoral spine. Dorsal spine smooth on outer edge and rough on inner edge. Adipose dorsal fin commencing immediately after rayed dorsal fin with a short inter-space, smooth, high in posterior part, ending much above anal fin but not reaching caudal fin. Pectoral fins with eight branched rays and a spine stronger than dorsal spine, serrated along inner margin with 14-18 anttorose teeth. Pectoral fins not reaching pelvic fins. Pelvic and anal fins short, not reaching caudal fin. Caudal fin deeply forked with equal lobes.

Colour: Pale brown over body, fins and ventral surface lighter in colour. Occipital crest, head shield and cleithral process slightly rugose. One example 164.3 mm SL from Baghdad Museum is pale white with the head slightly brownish in colour. A black spot at base of
dorsal spine is also in this specimen. In all the three specimens examined a dark shoulder spot is visible.

Mystus planiceps (Valenciennes)

Specimens studied: ZSI F 124/2 & 125/2, two exs. 95.1 & 114.0 mm SL Kwala Tahan, Pahang, F. M. S. Raffles Museum coll.

Description: D. I, 7; P. I, 9; V. i, 5; A. ii, 9-10; C. damaged.

Body depth 15.5 (14.9-16.0), head length 28.36 (28.32-28.40), width of head 18.99 (18.94-19.04), pre-dorsal length 41.1 (40.7-41.5), post-dorsal length 61.95 (61.93-61.96), length of anal fin base 14.0 (13.6-14.5) all in percent of standard length. Eye 24.95 (24.90-25.0), inter-orbital width 25.7 (25.62-25.73), length of snout 36.6 (36.1-37.0), gape of
JAYARAM and ANURADHA: A taxonomic revision of the fishes of the genus Mystus Scopoli

Mouth 59.6 (59.3-59.9), length of dorsal fin base 61.7 (60.2-63.3), length of anal fin base 49.6 (48.3-50.9), length of caudal peduncle 71.9 (70.9-72.8), height of caudal peduncle 29.4 (26.8-31.9) all in percent of head length. Adipose dorsal fin base 56.9 (56.1-57.7) in percent of anal fin base. Snout length 70.2 (69.2-71.3) in percent of inter-orbital width. Least depth of caudal peduncle 40.9 (36.9-45.0) in percent of its length.

Dorsal profile slightly elevated in front of dorsal fin and rising steadily from tip of snout to base of occipital process. Head flat, anteriorly depressed, longer than broad. Upper surface of head smooth. Snout spatulate. Mouth opening crescentic. Median longitudinal groove on dorsal surface of head almost reaching base of occipital process. Occipital process not reaching basal bone of dorsal fin. Teeth numerous and villiform in a broad, horse-shoe shaped curved band across palate and upper jaw; on lower jaw in two deeply mesially interrupted bands.

Four pairs of barbels: one pair maxillary reaching base of pelvic fins, one pair nasal reaching eye, one pair outer mandibular extending up to base of pectoral fins and one pair inner mandibular shorter.

Dorsal fin with a short spine, slightly serrated behind. Adipose dorsal fin short, its base almost equal to the length of base dorsal fin, the inter-space between the two almost equal to their base length. Pectoral fins with nine branched rays and a strong flattened spine, longer than dorsal spine and denticulated behind. Pelvic fins not reaching anal fin. Anal fin not reaching caudal fin. Caudal fin deeply forked, upper and lower lobes pointed.

Colour: Dark brownish on top, turning yellow beneath. Fins yellowish brown.

Remarks: This species comes close to *M. nemurus* but can be differentiated by its shorter barbels, snout, broader occipital process and less rugose inter-orbital space.

Mystus pluriradiatus (Vaillant)

(Figure 21)

Description: D. I, 8; P. I, 8; V. i, 5; A. i, 9; C. 7+8.

Body depth 13.2, head length 26.5, width of head 19.6, dorsal spine length 11.4, predorsal length 37.3, post-dorsal length 59.6, length of anal fin base 10.5 all in percent of standard length. Eye 15.9, inter-orbital width 29.6, dorsal spine length 43.2, gape of mouth 45.4, length of dorsal fin base 45.4, length of anal fin base 39.8, length of caudal peduncle 72.7, height of caudal peduncle 31.8 all in percent of head length. Adipose dorsal fin base 39.8 in percent of anal fin base. Snout length 86.7 in percent of inter-orbital width. Least depth of caudal peduncle 43.8 in percent of its length.

![Fig 21. Photograph of Holotype MNHN 92-48 of *Mystus pluriradiatus* (Vaillant).](image)

Dorsal profile rising gently from tip of snout to base of occipital process. Head flat, anteriorly depressed, longer than broad. Snout slightly produced. Mouth opening crescentic. Eyes small, not subcutaneous. Median longitudinal groove on dorsal surface of head shallow, not reaching base of occipital process. Occipital process subcutaneous, two times longer than broad at base, not extending to pre-dorsal plate. Pre-maxillary band of teeth six times as long as broad, teeth on palate in a continuous semi-lunar band and in two deeply curved mesially interrupted bands on lower jaw. All teeth villiform.

Four pairs of barbels: one pair maxillary reaching midway between origin of pelvic fin and pectoral fin, one pair nasal reaching anterior border of eye, one pair outer mandibular reaching base of pectoral fin and one pair inner mandibular up to bend of operculum on the ventral side.

Colour: Dull brownish, head lighter. Ventral surface of body white. Adipose dorsal fin and caudal fin tinged dark brown.

Distribution: VIETNAM: Tonkin.

Remarks: The type locality is mentioned as "Tonkin: China. Jayaram (1978) stated on the basis of information from Dr. Wu Hsien-wen that Tonkin is an old name in the region of Vietnam and that "China" as mentioned in the original description is actually Indo-China, the present Vietnam. Northern Vietnam is drained by the Song Koi (= Red River) whose headwaters are in Yunnan, China. This species as such may be found in Chinese waters also, although records are lacking. *M. plurirdiatus* is close to *M. planiceps* but differs from it in having a longer adipose dorsal fin, slightly constricted caudal peduncle and a smooth feeble dorsal spine.

Mystus pulcher (Chaudhuri)

(Figure 22)

Fig 22. Lateral view drawing of *Mystus pulcher* (Chaudhuri).

Specimens studied: Four exs. 48.2-56.5 mm SL in total as below:

ZSI F 7407/1 one ex. 48.2 mm SL Myanoung town, Henzada, Burma, Sanitary commissioner coll. Burma. ZSI F 4713/1 one ex. 49.2 mm SL Bhamo, upper Burma. J. Coggin Brown coll. 26.5.1910 ZSI F 10870/1 two exs. 53.5 & 56.5 mm SL Myitkyana district, Burma. B. N. Chopra coll.

Descriptions: D. I, 7; P. I, 9; v. i, 5; A. ii, 9; C. 17.

Body depth 25.0 (20.9-28.2), head length 29.6 (28.7-30.8), body depth 25.0 (20.9-28.2), width of head 21.5 (17.4-23.4), dorsal spine length 13.0 (12.2-15.00). Pre-dorsal length 50.7 (41.7-74.2), post-dorsal length 61.3 (60.3-63.7), length of anal fin base 14.5 (12.7-15.6) all in percent of standard length. Eye 19.8 (19.0-21.6), inter-orbital width 35.7 (35.5-36.0), dorsal spine length 44.1 (39.7-52.5), pectoral spine length 68.5 (62.6-73.8), length of anal fin base 49.2 (41.4-54.6), length of caudal peduncle 61.4 (54.6-68.8), height of caudal peduncle 39.6 (37.4-42.5) all in percent of head length. Adipose dorsal fin base 53.2 (45.0-72.6) in percent of anal fin base. Snout length 94.7 (90.0-93.8) in percent of inter-orbital width. Least depth of caudal peduncle 64.0 (56.7-68.4) in percent of its length.

Dorsal profile arched, rising steadily from tip of snout to base of occipital process. Head small and compressed. Upper surface of head rough. Snout conical, upper jaw slightly longer than lower. Mouth anterior, terminal. Eyes prominent, placed anteriorly. Median longitudinal groove on dorsal surface of head broad, shallow, not reaching base of occipital process. Occipital process twice as long as broad at base and reaching basal bone of dorsal fin.

Teeth numerous, villiform, in an uninterrupted semi-lunar band across upper jaw and palate; lower jaw with a mesially interrupted band.

Four pairs of barbels: one pair maxillary reaching beyond anal fin, one pair nasal reaching base of occipital process, one pair outer mandibular extending beyond pectoral spine, one pair inner mandibular reaching half length of pectoral spine.

Dorsal fin with a short weak spine serrated on both sides. Adipose dorsal fin long, its base longer than anal fin base and inserted at a small inter-space from the rayed dorsal fin. Pectoral fin with nine branched rays and a strong spine longer than dorsal having 8-11 retrorse teeth on inner surface. Outer surface of pectoral spine slightly serrated. Pelvic fins not reaching anal fin. Anal fin short, not reaching caudal fin. Caudal fin bilobed, both lobes equal in length.

Colour: Brownish on top becoming lighter beneath. Two parallel whitish brown stripes run on either side of the body, one above and the other below lateral line. Upper stripe darker than lower. Two large prominent black spots present, one on shoulder and the other at the base of caudal fin.
Distribution: MYANMAR: Bhamo close to Yunnan border. Indawgyi Lake, Myitkyina district. CHINA: Yunnan.

Remarks: This species resembles *M. bleeker* to some extent but can be clearly distinguished from it due to the presence of prominent caudal and shoulder spots and the equal caudal lobes, whereas in *M. bleeker* sometimes only a shoulder spot may be present and the upper lobe of the caudal fin is longer than the lower. It is interesting to observe that *M. pulcher* is more confined to Myanmar and has been recorded from Yunnan and not from Thailand or Malaya.

Mystus punctatus (Jerdon)
(Figure 23)

Fig 23. Lateral view drawing of *Mystus punctatus* (Jerdon).

Specimens studied: Four exs. 120.8-196.8 mm in SL as below.

ZSI F 12403/1 one ex. 120.8 mm SL Cauvery river, Coorg, C. R. Narayan Rao coll. ZSI F 499 one ex. 128.3 mm SL Bhavani River, Tamil Nadu, purchased from F. Day. ZSI 426 one ex. 171.1 mm SL Bombay, purchased from F. Day. ZSI F. 11138/1 one ex. 196.8 mm Bhavani River, south India, R. W. Burton coll.

Description: D. I, 7; P. I, 9; V. i, 5; A. ii-iii, 7-9; C. 7+8.

Body depth 12.9 (11.3-15.6), head length 20.4 (26.8-29.5), width of head 19.9 (19.0-21.0), pre-dorsal length 42.1 (41.0-42.7), post-dorsal length 54.6 (42.7-59.4), length of anal fin base 14.4 (13.5-25.5) all in percent of standard length. Eye 16.2 (14.0-17.3), inter-orbital width 31.2 (30.8-31.7), dorsal spine length 45.3 (38.2-51.9), pectoral spine length 60.8 (53.1-68.1), length of snout 36.6 (36.0-37.3), gape of mouth 50.4 (49.8-51.1), length of dorsal fin base 51.7 (50.8-58.9), length of anal fin base 63.0 (57.3-65.7), length of caudal peduncle 63.0 (57.3-65.7), height of caudal peduncle 36.3 (32.5-39.7) all in percent of head length. Adipose dorsal fin base 91.3 (77.9-102.0) in percent of anal fin base. Snout length 85.3 (82.5-87.0) in percent of inter-orbital width. Least depth of caudal peduncle 57.8 (49.5-62.7) in percent of its length.

Dorsal profile almost straight, rising slowly from tip of snout to base of occipital process. Head flat, dorso-ventrally depressed. Snout broad and not overhanging, upper jaw longer than lower. Occipital process indistinct, long and narrow and covered by thick skin. A short inter-space present between occipital process and basal bone of dorsal fin. Median longitudinal groove on head broad, reaching halfway between eyes and base of occipital process. Teeth villiform, numerous in an uninterrupted semi-lunar band across upper jaw and palate, lower jaw with a row of mesially interrupted band of villiform teeth.

Four pairs of barbels: one pair maxillary extending up to pelvic fins, one pair nasal reaching posterior border of eye, one pair inner mandibular extending midway from snout to origin of pectoral fins, one pair outer mandibular extending up to pectoral fins.
Dorsal fin inserted vertically above end of pectoral fins with a spine with four or five serrations anteriorly towards the tip along the inner edge. Outer surface of dorsal spine smooth. Adipose dorsal fin short with a long inter-space between the two dorsal fins. Pectoral fins with nine branched rays and a strong spine with 12-16 retrorse teeth along inner border. Pelvic fins do not reach anal fin. Anal fin short, not reaching caudal fin. Caudal peduncle broad. Caudal fin deeply forked, upper lobe longer.

Colour: Light yellowish brown. About 10-13 dark rounded spots along lateral line present.

Distribution: INDIA: Cauvery River system in south India up to Bhavani River in Tamil Nadu. Also in rivers in Mysore, Western Ghats and adjoining hills ranges.

Remarks: Jerdon (1849) described this species from specimens collected from Cauvery river, Western Ghats. No pinpoint locality was given. Day in 1865 considered this fish as belonging to the genus Hemibagrus, perhaps in view of the depressed head. However in 1873, he transferred the species to the genus Macrones = Mystus and described it from specimens from the Bhavani River. Subsequent records of this species indicate that it is confined only to the Cauvery watershed. Jayaram (1977) stated that this species is found in the Tungabhadra reservoir which is an error. *M. punctatus* comes close to *M. menoda* from which it can be distinguished by the presence of 10-13 prominent, dark rounded spots along the lateral line.

Mystus rhegma Fowler

Specimen studied: No specimen seen by us.

Description: Differs from all other *Mystus sensu stricts* by its strongly demarcated narrow, bold, lateral, longitudinal dark stripe straddling the lateral line and in having the base of the outer mandibular barbel inserted slightly behind rather than in front of a line vertical of posterior margin of the labial rictus. Other characters are adipose fin relatively short, originating at a distance of about one eye diameter posterior to dorsal fin and extending only a short distance on to caudal peduncle. Gill rakers 19-22, vertebrae 22-23 or 18-20 = 40-43 (after Roberts, 1992).

Distribution: THAILAND: Bangkok, Mekong River, Chao, Phraya near Chinat. CAMBODIA: Lower Mekong.

Remarks: Roberts (1992) resurrected this species from the synonymy of *M. cavasius*.
Mystus rufescens (Vinciguerra)

Specimen studied: No specimen seen by us.

Description: This species differs from most other species of *Mystus sensu stricto* in having a large triangular mid-peduncular spot. Maxillary barbels extend posteriorly to anal fin origin. Gill rakers 13-20, vertebrae 40-42 (after Roberts, 1992).

Colour: Formalin preserved specimens are overall brownish with snout also of same colour. Nuchal spot at dorsal fin base extremely faint, virtually absent.

Distribution: MYANMAR: Irrawaddy, Sittang and lower Salween River basins.

Remarks: This species has a close resemblance to *M. bleekeri* but differs in colouration and meristic characters. The shoulder spot and longitudinal stripes are not so bold in this species as in *M. bleekeri*. Further in *M. bleekeri* the triangular dark mark at base of caudal fin (peduncular mark) is absent whereas it is seen in *M. rufescens*. The gill raker count is also 11-15 in *M. bleekeri* versus 13-20 in *M. rufescens*.

Mystus sabanus Inger and Chin

(Figure 24)

Specimen studied: C 22, one ex. 77.8 mm SL ACC 4405 coll. Borneo.

Description: D. I, 7; P. I, 9; V. i, 5; A. iv, 8; C. damaged.

Body depth 22.9, head length 26.5, width of head 18.5, dorsal spine length 14.8, pre-
dorsal length 41.6, post-dorsal length 50.5, length of anal fin base 15.3 all in percent of standard length. Eye 24.8, inter-orbital width 34.9, dorsal spine length 55.8, length of snout 36.0, gape of mouth 36.9, length of dorsal fin base 56.3, length of anal fin base 57.8, length of caudal peduncle 70.9, height of caudal peduncle 38.3 all in percent of head length. Adipose dorsal fin base 41.6 in percent of anal fin base. Snout length 94.7 in percent of inter-orbital width, least depth of caudal peduncle 54.1 in percent of its length.

Dorsal profile rising steadily from tip of snout to base of occipital process. Head flat, broader than long and rugose. Snout slightly prominent. Mouth opening crescentic. Median longitudinal groove on head short, not extending up to base of occipital process. Occipital process slender and reaches basal bone of dorsal fin. Teeth, villiform, numerous and in a slightly curved continuous band across upper jaw; lower jaw with a deeply curved mesially interrupted band and a semi-lunar continuous band on the vomer.

Fig 24. Lateral view drawing of specimen C.22 from ROM Mystus sabanus Inger & Chin.

Four pairs of barbels: One pair maxillary reaching the base of caudal fin; one pair nasal extending beyond eye, almost reaching end of preopercle; one pair inner mandibular reaching origin of pectoral fins; one pair outer mandibular extending to end of pectoral fins.

Dorsal fin inserted vertically above end of pectoral fin with seven branched rays and a slender spine, almost half as long as head and finely serrated behind, smooth on outer surface. Adipose dorsal fin extremely long, beginning almost immediately behind dorsal fin and is about one-third the standard length. Pectoral fin not reaching pelvic fins with nine branched rays and a strong spine longer than dorsal with 11 strong retrorse teeth. Pelvic fins not reaching anal fin. Anal fin not reaching caudal fin. Caudal peduncle broad. Caudal fin deeply forked, both lobes equal.
Colour: Pale yellowish brown, light below and a dark shoulder spot. dorsal, anal and caudal fins dusky, pectoral and pelvic fins colourless.

Distribution: BORNEO: Kinabatangan River, Deramakot, Kinabatangan district, Segama River at Sagama estate, Lahad Datu district.

Remarks: Inger and Chin (1959) described this species from North Borneo but subsequent records of this species do not appear to be extensive. It seems to co-exist with *M. cavasius* in the island of Borneo.

The species is close to *M. cavasius* in possessing very long adipose dorsal fin and maxillary barbels, but it can be separated by the absence of a dark spot on the basal bone of the dorsal fin and a short median longitudinal groove which does not extend up to the base of occipital process as in *M. cavasius*.

Mystus singaringan (Bleeker)

Specimens studied: No specimen seen by us.

Description: This species is distinguished from other *Mystus sensu stricto* by having the colour uniform (gray to brown in life without stripe or marks) together with moderately high count of gill rakers (18-25 on first gill arch) and vertebrae 42-45.

Distribution: LAOS, CAMBODIA, VIETNAM and THAILAND: Mekong, Bangpakong, Chao Phrya, Meklong, Tapi and Patani basins. PENINSULAR MALAYSIA: Pahang, Perak and Johore. SUMATRA, BORNEO and JAVA: most largely basins.

Remarks: Bleeker (1846) described *Bagrus macronemus, B. singaringan* and *B. heterurus* all from Batavia. In 1862 he considered all the three as conspecific and referred them as *Hypselobagrus macronema*. As stated by Roberts (1994 : 253) *Bagrus macronemus* Bleeker 1846 is a junior primary homonym of *Bagrus macronemus* Ranzani 1842 = *Bagrus bagre* (Linnaeus, 1766), a arid catfish of Neotropical waters. As per Art. 52(C), 60 of ICZN a junior primary homonym is permanently invalid and is to be replaced by the available oldest synonym. In the case of *Bagrus macronemus* Bleeker as stated already two other synonyms *B. singaringan* (p. 150) and *B. heterurus* (p. 151) are available. On the basis of page priority *B. singaringan* replaces *B. macronemus*. Roberts (1994) also as first reviser proposed this change.
Mystus tengara (Hamilton-Buchanan)
(Figure 25)

![Lateral view drawing of Mystus tengara](image)

Fig 25. Lateral view drawing of Mystus tengara (Hamilton-Buchanan).

1822. *Pimelodus tengara* Hamilton-Buchanan: 183, Pl. 3, fig. 61 (description, northern parts of Bengal).

1877. *Macrones tengara*, Day, *Fish India*: 447, Pl. 101, fig. 5 (synonymy, local name, description; Northern India, Punjab and Assam).

Specimens studied: 32 exs. 36.8-67.9 mm SL in total as below:

ZSI F 1930/2 one ex. 36.8 mm SL Ext. F. B. No. 17, Pulta Survey. ZSI F 1435 one ex. 44.3 mm SL Punjab, purchased F. Day. ZSI F 2596/2 one ex. 45.9 mm SL Lakhimpur fish market, Assam, B. Prashad and S. L. Hora coll. ZSI F 4388/1 one ex. 49.9 mm SL Gandak river, Saran district, Bihar, M. Mackenzie coll. ZSI F 4568/1 one ex. 55.1 mm SL Hordighat, Saran district, Bihar, M. Mackenzie coll. ZSI F 4587/1 one ex. 55.6 mm SL Jharia river, Saran district, Bihar, M. Mackenzie coll. ZSI F 2661 one ex. 59.7 mm SL Assam, purchased F. Day. ZSI F 4398/1 one ex. 60.5 mm SL Gandak river, Saran district, Bihar, M. Mackenzie coll. ZSI F 13150/1 one ex. 64.3 mm SL biweekly market at Sihawa, Bihar, H. S. Rao coll. 13.12.1939. ZSI F 3784/1 one ex. 67.8 mm SL Jharia river, Sirpur, Bihar. ZSI F 7668/1 one ex. 50.7 mm SL Bhagmati river, Champaran, Bihar, M. Mackenzie coll. ZSI F 7669/1 one ex. 52.5 mm SL Bhagmati river, Champaran, Bihar, M. Mackenzie coll. ZSI F 3785/1 one ex. 67.9 mm SL Jharia river, Bihar, M. Mackenzie coll. ZSI unreg. eight exs. 46.6-67.8 mm SL Dhamtari Bazaar, catch reported from Mahanadi river. ZSI unreg. six exs. 41.2-66.2 mm SL Sibsagar, Assam, S. K. Pal coll. ZSI unreg. five exs. 37.1-59.8 mm SL Ganges river, Bhagalpur.

Description: D. I, 7; P. I, 8; V. i, 5; A. ii-iii, 9-10; C. 7+8.

Body depth 24.8 (22.0-30.2), head length 28.9 (25.4-31.5), width of head 20.9 (19.8-21.8), dorsal spine length 16.6 (14.6-18.7), pre-dorsal length 45.5 (42.3-47.5), post-dorsal length 61.5 (57.5-65.6), length of anal fin base 15.4 (13.8-18.2) all in percent of standard length. Eye 24.4 (22.0-28.4), inter-orbital width 36.2 (31.9-39.7), dorsal spine length 57.0 (49.1-61.9), length of snout 34.9 (31.3-39.0), gape of mouth 42.9 (41.1-48.6), length of dorsal fin base 56.3 (45.7-62.3), length of anal fin base 53.1 (47.7-63.1), length of caudal peduncle 61.8 (53.4-66.7), height of caudal peduncle 39.8 (32.4-43.1) all in percent of head length. Adipose dorsal fin base 48.3 (39.9-58.3) in percent of anal fin base. Snout length 93.7 (79.3-98.6) in percent of inter-orbital width. Least depth of caudal peduncle 62.7 (55.1-68.3) in percent of its length.

Dorsal profile arched, rising steeply from tip of snout to base of occipital process. Head small, compressed. Snout obtuse, upper jaw slightly longer. Eyes rounded. Upper surface of head rough. Median longitudinal groove on upper surface of head reaches base of occipital process. Occipital process long, narrow, reaching basal bone of dorsal fin. Teeth
numerous and villiform with three to five rows on palate and five or six rows on upper jaw; a mesially interrupted band across lower jaw.

Four pairs of barbels: one pair maxillary extending up to base of pelvic fins; one pair nasal reaching anterior end of opercle, one pair outer mandibular reaching base of pectoral fins and one pair inner mandibular shorter.

Dorsal fin with a strong spine, outer surface smooth, inner surface finely serrated towards tip. Adipose dorsal fin fairly long but with a prominent inter-space from rayed dorsal fin. Pectoral fin with eight branched rays and a strong spine, outer surface smooth, inner surface with 8-10 retorse teeth. Pelvic fins not reaching anal fin. Anal fin not reaching caudal fin. Caudal fin forked, upper lobe longer.

Colour: Brownish or light brown on top turning dull yellow on sides and beneath. About five parallel longitudinal stripes on either side of body present. Sometimes a dark shoulder spot may also be seen.

Distribution: Widely distributed in INDIA, PAKISTAN, BANGLADESH, SRI LANKA, THAILAND, MYANMAR and JAVA.

Remarks: *Mystus tengara* comes close to *M. vittatus* in having longitudinal stripes on the body and shorter adipose dorsal fin. However, its longer median longitudinal groove and the longitudinal stripes on the body not so prominent as in *M. vittatus* can differentiate it. Moreover, the head and body of *M. tengara* are low and long unlike in *M. vittatus* where it is short. From the point of distribution it may be said *M. tengara* is more a species of north India whereas *M. vittatus* is mainly from the southern parts of India.

Mystus vittatus (Bloch)
(Figure 26)

Fig 26. Lateral view drawing of *Mystus vittatus* (Bloch).

Specimens studied: 38 exs. 35.5-88.5 mm SL in total as below:

ZSI FF 117 one ex. 38.1 mm SL Jamuna river, Hilli, West Dinajpur. ZSI FF 118 one ex. 40.2 mm SL Jamuna river, Hilli, West Dinajpur. ZSI F 1616/2 one ex. 51.56 mm SL Hooghly river. ZSI F 2602/2 one ex. 55.5 mm SL West Dinajpur. ZSI F 1719/2 one ex. 64.2 mm SL Chapanala, Balaghat, Madhya Pradesh. ZSI F 4479/2 one ex. 66.5 mm SL Bhagirathi river, Purbasthali Ghat. ZSI F 1468/2 one ex. 70.8 mm no details. ZSI F 755/2 one ex. 72.9
mm SL Hooghly river near Nawadip Dak Bunglow. ZSI F 1369/2 four exs. 37.2-78.1 mm SL Poonniyar river south-east of Madukkarai, Pondicherry. ZSI F 2569/1 four exs. 79.2-87.9 mm SL Shasthancotta Lake, Travancore, N. Annandale coll. 8.11.1905. ZSI F 2570/1 four exs. 73.7-81.3 mm SL Travancore. ZSI F 2799/2 one ex. 84.0 mm SL Raxaul, Bihar. ZSI unreg. five exs. 35.5-38.7 mm SL narrow stream at Bogran village, one km from Karnajhora, West Dinajpur, A. K. Dutta and party coll. ZSI unreg. 10 exs. 39.8-76.5 mm SL river Vennar at its bifurcation from River Vettar at V. V. R. near Thenperambur village 15 km from Thanjavur town, K. C. Jayaram coll. 26.3.1973.

Description: D. I, 7; P. I, 8-9; V. i, -5; A. ii-iii, 7-10; C. 7+8.

Body depth 26.2 (20.8-31.8), head length 28.0 (24.7-30.4), width of head 19.9 (18.9-21.3), dorsal spine length 16.1 (12.0-22.0), pre-dorsal length 43.8 (38.1-49.3), post-dorsal length 62.7 (55.5-67.6), length of anal fin base 16.3 (12.2-24.1) all in percent of standard length. Eye 22.6 (19.1-26.8), inter-orbital width 37.5 (32.1-45.1), dorsal spine length 57.2 (45.4-72.9), length of snout 34.8 (30.8-36.0), gape of mouth 45.4 (38.9-53.9), length of dorsal fin base 58.0 (47.0-70.5), length of anal fin base 57.0 (49.2-71.8), length of caudal peduncle 63.1 (50.4-78.2), height of caudal peduncle 39.1 (33.9-46.1) all in percent of head length. Adipose dorsal fin base 55.0 (36.6-73.0) in percent of anal fin base. Snout length 90.0 (76.5-98.4) in percent of inter-orbital width. Least depth of caudal peduncle 65.8 (54.0-79.3) in percent of its length.

Dorsal profile arched with a steep rise from tip of snout to base of occipital process. Head small, compressed. Upper surface of head rough. Width of head almost equal to height of head at occiput. Snout rounded, upper jaw slightly longer than lower. Eyes oval. Median longitudinal groove on dorsal surface of head shallow and does not reach base of occipital process. Occipital process almost three times longer than its width at base and reaches the basal bone of dorsal fin. Teeth numerous, villiform, in an uninterrupted band across palate and upper jaw, in two deeply curved mesially interrupted bands on lower jaw.

Four pairs of barbels: one pair maxillary reaching base of pelvic fins, one pair nasal reaching end of opercle, one pair outer mandibular reaching a little distance beyond origin of pectoral fin and one pair inner mandibular shorter.

Dorsal fin with seven branched rays and a long spine with three to five serrations posteriorly in adult examples. Adipose dorsal fin short with a long inter-space from the rayed dorsal fin. Pectoral fin with eight or nine branched rays and a strong spine, outer surface smooth, inner surface with 15-16 retrorse teeth. Pelvic fin not reaching anal fin. Anal fin not reaching caudal fin. Caudal fin forked, upper lobe longer than lower.

Colour: Deep brownish on top becoming dull white beneath. Two parallel stripes on either side of lateral line present in adult as well as juvenile specimens. A dark shoulder spot may be present in a few.

Distribution: INDIA: Widely distributed throughout from Meghalaya, North Bengal,

Remarks: *M. vitatus* and *M. tengara* are closely related and their exact identity has been in confusion. For a number of years these two species have been considered separate. It may be mentioned here that *M. tengara* is more a north Indian species unlike *M. vitatus*, which is mainly from the southern parts of India. Jayaram and Bhimachar (1967) examined these two species osteologically and treated them as separate. However Sharma and Dutt (1983) synonymised them. We have examined 38 specimens of *M. vitatus* and 32 of *M. tengara*. The median longitudinal groove in *M. vitatus* is short unlike in *M. tengara* where it is long. Moreover, the characteristic longitudinal stripes present in *M. vitatus* are not so prominent in *M. tengara*. Dorsal profile in *M. vitatus* is steeper, the head and body short unlike in *M. tengara* where it is low and long. Until and unless fresh examples of *M. tengara* are collected from the type locality in northern parts of Bengal and compared with *M. vitatus* it is preferable to keep the two separate.

Mystus wolffii (Bleeker)
(Figure 27)

![Fig 27. Lateral view drawing of Mystus wolffii (Bleeker).](image-url)

Specimens studied: Four exs. 72.5-131.2 mm SL in total as below:

ZSI F 10554/1 two exs. 72.5 & 123.0 mm SL Nontaburi, Dr. Malcom Smith coll. USNM 103173 one ex. 97.1 mm SL Menam Chao Phya, Paknam Central Thailand H. M. Smith coll. 10.9.1923. USNM 109584 one ex. 131.2 mm SL Gulf of Bandon Bight Pacific Thailand, H. M. Smith coll. 19.9.1923.

Description: D. I, 7; P. I, 9; V. i, 5; A. ii, 10-12; C. 7+8.

Body depth 26.1 (23.6-28.4), head length 24.7 (23.2-25.5), width of head 19.1 (18.5-19.7), dorsal spine length 18.8 (18.1-19.1), pre-dorsal length 42.0 (40.9-43.3), post-dorsal length 63.8 (63.1-64.3), length of anal fin base 17.5 (16.6-19.0) all in percent of standard length. Eye 24.5 (23.4-26.0), inter-orbital width 37.0 (34.3-37.9), dorsal spine length 76.8 (74.9-78.0), length of snout 35.8 (34.7-36.8), gape of mouth 50.0 (47.6-51.7), length of dorsal fin base 57.8 (53.7-62.2), length of anal fin base 70.7 (67.9-74.6), length of caudal peduncle 80.5 (75.3-85.1), height of caudal peduncle 46.8 (43.0-50.0) all in percent of head length. Adipose dorsal fin base 78.9 (65.4-94.5) in percent of anal fin base. Snout length 94.3 (91.6-98.6) in percent of inter-orbital width. Least depth of caudal peduncle 58.3 (56.2-60.1) in percent of its length.
Dorsal profile rising steadily from tip of snout to base occipital process. Head conical, longer than broad. Upper surface of head rugose. Snout prominent. Mouth opening crescentic. Eyes situated anteriorly. Median longitudinal groove on upper surface of head almost reaching base of occipital process. Occipital process narrow, ending just in front of the elongated basal bone of dorsal fin. Teeth numerous and villiform, in a continuous curved band on palate and upper jaw, two deeply curved mesially interrupted bands on lower jaw.

Four pairs of barbels: one pair maxillary extending up to caudal fin, one pair nasal reaching base of occipital process, one pair outer mandibular reaching almost anal fin and one pair inner mandibular reaching almost pectoral fin origin.

Dorsal fin with seven branched rays and a moderately strong, flattened spine, outer rough, inner surface finely serrated. Adipose dorsal fin base almost equal to anal fin base and the inter-space between the two dorsal fins. Pectoral fins with nine branched rays and a strong spine longer than dorsal spine, with 10-17 strong teeth. Pelvic fins do not reach anal fin. Anal fin does not reach caudal fin. Caudal fin forked, bilobed.

Colour: In alcohol preserved specimens dark brownish on top, becoming lighter beneath. Nasal and maxillary barbels black, mandibular barbels white.

Mystus wyckii (Bleeker)

(Figure 28)

Fig 28. Lateral view drawing of *Mystus wyckii* (Bleeker).
1864. Macrones wyckii, Gunther, Cat. Fish. Brit. Mus. 5 : 83 (synonymy, description of the type from Bleeker’s collection; Tijitarum river, Java).

1913. Macrones wyckii, Weber and Beaufort, Fish Indo-Austral. Archipel. 2 : 343 (synonymy, description, local names; Java and Sumatra in rivers).

1954. Mystus (Mystus) wyckii, Jayaram, Rec. Indian Mus. 51(4) : 553 (synonymy and distribution).

Specimens studied: Three exs. 100.5, 117.9 & 398.5 mm SL in total as below:

USNM 109578 one ex. 100.5 mm SL Thailand, N. Mechem, 50 miles above mouth of tributary of Meping river, A. R. Buchanan coll. 23.1.1935. USNM 109579 one ex. 117.9 mm SL Thailand, N. Meping river at Chianmai, H. G. Deignan coll. 22.4.1935. USNM 103196 one ex. 398.5 mm SL Menam Chao Phya, Kohyal (Bangkok market), Thailand, H. M. Smith coll. 19.11.1929.

Description: D. I, 7; P. I, 9-11; V. i, 5; A. iii, 10; C. 7+8.

Body depth 12.8 (10.1-17.7), head length 30.2 (29.6-30.5), width of head 21.6 (20.5-23.3), dorsal spine length 43.6 (36.2-48.9), pre-dorsal length 43.7 (42.4-47.6), post-dorsal length 57.1 (52.5-59.8), length of anal fin base 13.1 (10.9-14.5) all in percent of standard length. Eye 12.2 (7.0-15.4), inter-orbital width 30.9 (29.9-32.3), dorsal spine length 43.6 (36.2-48.9), pectoral spine length 44.9 (44.1-45.6), length of snout 34.6 (33.8-35.2), gape of mouth 51.9 (46.5-54.8), length of dorsal fin base 43.6 (37.2-50.8), length of anal fin base 43.5 (35.0-49.0), length of caudal peduncle 35.4 (46.3-63.8), height of caudal peduncle 33.3 (26.5-46.3) all in percent of head length. Adipose dorsal fin base 65.5 (58.1-76.0) in percent of anal fin base. Snout length 89.3 (86.7-92.9) in percent of inter-orbital width. Least depth of caudal peduncle 49.9 (42.6-60.0) in percent of its length.

Dorsal profile almost straight with very little rise from tip of snout to base of occipital process. Head broad, flat and depressed. Snout bluntly rounded. Cleft of mouth not extending halfway to orbit. Median longitudinal groove on head prominent, reaching base of occipital process. Occipital process short, not extending up to basal bone of dorsal fin with a
considerable inter-space between the two. Teeth villiform and in broad bands on jaws and palate; a slightly curved continuous band on upper jaw and a deeply curved mesially interrupted band on lower jaw.

Four pairs of barbels: one pair maxillary reaching beyond dorsal fin, almost up to adipose dorsal fin, one pair nasal reaching outer margin of eye, one pair outer mandibular almost reaching origin of pectoral fin and one pair inner mandibular shorter.

Dorsal fin with seven branched rays and a long, flattened spine with is finely serrated behind. In the largest specimen 17 minute teeth are present on the inner side of dorsal spine. Adipose dorsal fin base longer than anal fin base or dorsal inter-dorsal distance and almost equal to length of dorsal fin base. Pectoral fins with 9-11 branched rays and a strong spine denticulated internally with 9 or 10 teeth and shorter than dorsal spine. Pelvic fins do not reach anal fin. Anal fin not reaching caudal fin. Caudal fin bifurcated with pointed lobes, upper lobe longer.

Colour: Head, body and all fins largely black but with well defined white markings on tips of pectoral and dorsal fins.

Distribution: THAILAND: Mekong, Menam Chap Phya, Lopburi, Kanburi, Meping and Mechan rivers. MALAYSIA: Chenderoh Lake, Perak. CAMBODIA: Beng Cha Prek-tuk-Kampot. JAVA: Tijitarum River. SUMATRA.

Remarks: This species grows to a large size and it appears to be commercially important in Thailand from where it has been recorded extensively.

IX. ZOOGEOGRAPHY

Fishes of the genus Mystus comprises of 44 species distributed from Syria in West Asia through India, Borneo, South China, Kampuchea, Java, Malay Peninsula, Myanmar, Nepal, Pakistan, Sri Lanka, Sumatra, Thailand and Yunnan. The genus is absent in Japan, Manchuria and also from the African continent. The north-eastern limit in China seems to be the Yangtse-Kiang and records above this are doubtful. (see Jayaram, 1978). Amongst the 44 species 14 are found in the Indian sub-continent only, which is the largest number. Of these nine are endemic in India, four in Myanmar and one (Mystus horai) in Pakistan.

The type species of M. pelusius is the only one found in Syria. There are no species endemic to Sri Lanka. Two species, M. olyroidei and M. sabanus are confined to Borneo. Considering the northern limit of distribution of the genus it is seen that only five are known to occur in China (see Jayaram 1978 for their systematic position). These are M. amemiya, M. argentivittatus, M. chinensis, M. elongatus, M. macropterus and M. pluriradiatus. The areawise break up of all the 44 species is given below:
I. DISTRIBUTION WITHIN THE INDIAN REGION
 (India, Pakistan, Nepal, Bangladesh and Sri Lanka)

i. Species widely distributed all over India: *M. cavasius*, *M. gulio*, *M. tengara*
 and *M. vittatus*

ii. Species confined only to Western Ghats: *M. keletius*, *M. krishnensis*, *M. malabaricus*,
 M. maydeli, *M. montanus*, *M. oculatus*, *M. punctatus*

iii. Western Ghats and Eastern Himalaya: *M. armatus*

iv. Peninsular India up to Mahanadi River: *M. bleekeri*, *M. tengara*

v. Peninsular India up to Krishna River: *M. menoda*

vi. Western ghats (including Tamil Nadu) and Sri Lanka: *M. keletius*

II. MYANMAR ONLY
 : *M. microphthalmus*, *M. armatus*, *M. menoda*,

III. MYANMAR AND INDIA
 : *M. peguensis*, *M. pulcher*, *M. rufescens*,
 M. leucophasis

IV. THAILAND AND CAMBODIA
 : *M. bocourti*, *M. rhegma*

V. THAILAND ONLY
 : *M. albolineatus*, *M. atrifasciatus*,
 M. multiradiatus, *M. mysticetus*

VI. THAILAND AND SUMATRA
 : Nil

VII. THAILAND AND BORNEO
 : Nil

VIII. THAILAND, JAVA, SUMATRA AND BORNEO
 : *M. nemurus*

IX. THAILAND, JAVA, SUMATRA, BORNEO AND MALAYA
 : *M. nigriceps*

X. JAVA ONLY
 : Nil

XI. JAVA AND SUMATRA
 : Nil

XII. JAVA AND BORNEO
 : Nil

XIII. BORNEO AND SUMATRA
 : Nil

XIV. BORNEO AND MALAYA
 : Nil

XV. SUMATRA ONLY
 : *M. bimaculatus*

XVI. CHINA ONLY
 : *M. amemiya*, *M. argentivittatus*,
 M. pluriradiatus, *M. elongatus*, *M. chinensis*
 and *M. macropterus*
JAYARAM and ANURADHA: A taxonomic revision of the fishes of the genus Mystus Scopoli

It is seen that four species *M. cavasius*, *M. gulio*, *M. tengara* and *M. vittatus* are rather widely distributed. *M. gulio* and *M. vittatus* are known to enter the sea within tidal limits. These are not considered for our discussion in view of their wide distribution. From the zoogeographical point only those which are discontinuously distributed are of interest. Also species which are confined to a particular area and locality, distributed in microclimatic zones are of added value. The above listed geographical grouping of the species and their affinities are discussed below:

Species found in the Indian subcontinent: Amongst the 14 species which are found within this region as already stated *M. cavasius*, *M. gulio*, *M. tengara* and *M. vittatus* are widely distributed. *M. keletius*, *M. krishnensis*, *M. malabaricus*, *M. maydelli*, *M. montanus*, *M. oculatus* and *M. punctatus* are confined (exception *M. keletius* also known from Sri Lanka) only to the Western Ghats. Of these seven species *M. montanus* has been recorded from Hoshangabad (Madhya Pradesh) in the Satpura range of hills, but has not been subsequently recorded; it is more prevalent in the Western Ghats extending south up to Coimbatore. *M. keletius* though known from Sri Lanka also is a species more common in the Western Ghats than in Sri Lanka. *M. oculatus* and *M. punctatus* are two species which are occasionally found in the plains of Tamil Nadu also. It is quite likely that these species are washed down during the monsoon floods originating from the Western Ghats and joining the major streams in Tamil Nadu. *M. malabaricus* is apparently a well-established species in the hill ranges in north Kerala. *M. krishnensis* is closely related to *M. maydelli* and may be the adult form of the latter as stated earlier. *M. krishnensis* is confined to Tungabhadra River of the Krishna River system whereas *M. maydelli* is found in the Bhima River, which is again a part of the Krishna drainage. *M. maydelli* is known so far by only one example (81.4 mm) whereas *M. krishnensis* is known by several adult examples ranging from 322.1-419.9 mm SL. As such considering the seven species it appears that *M. malabaricus* is the oldest of the lot that may have given rise to the other species.

A single species of *M. armatus* normally known from Western Ghats has been recorded from the Eastern Himalayas also. Five examples were brought to us (1985) from Manipur University for identification which proved to be *M. armatus*. A solitary adult specimen of this species from Myanmar (F. 11150/1) is also present in ZSI Calcutta. Though Jayaram (1954) doubted its occurrence in Myanmar the specimens from Manipur confirms its possible occurrence in the East.

M. microphthamus is confined to Eastern Himalaya only. This has been recorded from Manipur valley also (Singh, 1986). It is a derivative of the peninsular *M. montanus* like ancestor. This is an instance of discontinuous distribution of taxa in the Western Ghats and the Eastern Himalaya which has been discussed by Blanford (1872) and Hora (1937, 1944, 1949, 1949a). This aspect of distribution will be discussed later.

Three other species of *M. bleekeri*, *M. tengara* and *M. menoda* show a different pattern. These are found in most places in north India but they do not extend beyond the Krishna River system in the south. These also can be grouped as widely distributed although not so widely occurring as *M. cavasius*, *M. gulio*, and *M. vittatus.*
Species found in India and Sri Lanka: Three species *M. gulio*, *M. keletius* and *M. vittatus* are found in India and Sri Lanka. Of these *M. gulio* and *M. vittatus* are widely distributed and are known to enter the sea within tidal limits. *M. keletius* is found in Southern Western Ghats and is of localised distribution.

Extra Indian Species: It has already been stated that the Indian landmass has got the largest concentration of *Mystus* species. Considering the number of species of *Mystus* which are found outside the Indian landmass, we find that 22 species are found exclusively outside this area (XI-XIX in table). The break up of these species is given in Table 10. Amongst these it is seen that *M. peguensis, M. pulcher, M. rufescens* and *M. leucophasis* are endemic to Myanmar.

Chinese species: Jayaram (1978) discussed the systematic position of Chinese species and we have also elaborated and re-examined these species in the main text. Six species occur in China, which are *M. amemiya*, *M. argentivittatus, M. chinensis, M. elongatus, M. macropterus* and *M. pluriraidatus*. We have examined three out of these and it may be stated that each one is unique in its own features. Further, excepting *M. chinensis* none of these species have been recorded subsequent to their first description. In some cases even the holotypes are not traceable nor are they represented in any World Museums. Jayaram (1978) considered these species as relicts and suggested that the genus itself may not occur in China. It appears that reproductively viable populations are diminishing in their normal range of distribution of these species due to several factors such as ecological incompatibility, changes in watersheds due to man made alterations etc. These species have become archaic and as suggested by Jayaram have yielded to better evolved species of the genus *Pelteobagrus* Bleeker (Jayaram, 1968). The above distribution pattern brings out three facts:

1. There are hardly any species, which have not traversed or migrated to adjacent areas, thereby indicating that they are all immigrants.

2. The East Indian group of islands is faunistically poor in respect of *Mystus* species.

3. There are some species, which show some affinity to the species of the Indian landmass.

We shall discuss the possible causes for such patterns.

Before we discuss the above three patterns of distribution it is worthwhile to recapitulate certain paleogeographic facts of the Indian landmass, which have played a major role in determining the biogeography of India.

During the middle of the Tertiary era the areas that are now Tibet and the Himalaya were covered by an extension of the Tethya Sea in which deposition of immense sediments had continued for a vast period of time. The peninsula of India was a compact natural unit since the Cambrian Period. The Tethya Sea separated Eurasia in the north and the Gondwana landmass in the south. The sedimentation of the Tethya Sea accumulated from the Paleozoic
Era and as a result of great orogenic movements separated by periods of relative quiescence, the submerged Himalayas were thrown to form a series of long parallel wave like folds even at that time.

Due to the tectonic plate movement the Southern Madagascar Gondwana landmass moved north-eastward and the northern Laurasia landmass advanced southwards, both of which thus squeezed the Tethyan geosyncline. The opposing fronts squeezed the soft contents of the Tethys sediments to form the east west Himalaya. Since however the southern Madagascar-Gondwana landmass was much narrower than the broad northern Laurasian mass, its advance in a conical form threw the sediments on either side into the north-south folds of Baluchistan and Myanmar. Laurasia over rode the Peninsular block and the latter also dived under Laurasia which led to the formation of Tibet, Assam, Myanmar, South China and other eastern countries as Vietnam, Laos, Cambodia etc. In this process of buckling and down warping, the peninsular rim fissured east west and through these areas of weakness the Deccan lava spewed forth. The same movements brought about the block fracturing of the western part of the peninsula and subsidence of the marine fragments into the Arabian Sea which has thus given rise to the scarps of the Western Ghats. This is one of the reasons that most Western Ghat ranges are table topped and are multi-tiered horizontally.

The formation of the Assam gateway, the rise of the Himalaya, the configuration of Peninsular mountain ranges, more or less in the form as they are now, represent the most important phases in the biogeographical evolution of India. The Assam gateway opened up extensive interchanges between the peninsular autochthonous and Asiatic Tertiary fauna. The dispersal was both from east to west and vice versa. The indigenous peninsular fauna spilled over and spread into the extra peninsular areas of India, Myanmar, Thailand, Malaya and also westwards along the Himalaya. They also spread southwards into southern India and even to Sri Lanka.

Further to the above physiographic changes the Pleistocene glaciations on the Himalaya also played a considerable role. During the pluvial periods the fauna spread southwards on the Himalaya and during the arid periods they moved northwards and also to certain heights of the mountain ranges they chose to occupy.

X. PATTERNS OF DISTRIBUTION AND INTER RELATIONSHIPS

Species found in Western Ghats and Sri Lanka: Sri Lanka and India remained connected to each other till as late as upper Pleistocene, about 25,000 years ago. Sri Lanka became an island for the first time during the Paleocene and Miocene epochs when a wide arm of the sea extended across the southern parts of the peninsula. Due to slow uplift of the seabed, connection with India was established since the close of the Miocene-Lower Pliocene times. Fluctuations in sea level have been responsible for subsequent land connections with India via the Mannar Peninsula (Adam’s Bridge). Interchange of fauna took place whenever land connections were established and suitable climatic conditions prevailed. This is evidenced
by the occurrence of *M. keletius*, *M. vittatus* and *M. gulio*; the latter two are known to enter the sea within tidal limits. There is no species of *Mystus* endemic to Sri Lanka.

Species confined to Western Ghats: The high percentage of endemicity of species in Western Ghats is explained by the above paleogeographical facts. It would seem that many species as *M. montanus* were indigenous to the area and have either spread out northwards along the Ghats or have died out in the intervening areas. Species as *M. montanus*, *M. punctatus* are derivatives of the *M. malabaricus* stock. It is already stated earlier that *M. maydelli* may be the juvenile of *M. krishnensis*. That these species are more dominant in the southern peninsula corroborate the archaic nature of the southern landmass where they must have lived even before the uplift of the Himalaya. These are definitely older in age than their counter parts in the north and elsewhere.

Species found in the Western Ghats and the Eastern Himalaya: Blanford (1829) first noticed the discontinuous distribution of species between the eastern Himalaya and Western Ghats. Blanford observed this in Mammals but subsequent workers as Francis Day observed this in fishes also but did not pay much attention to this. Several theories have been put forward for explaining this discontinuous distribution and also for the presence of this so-called Malayan element by which name these were called. Notable amongst these are the Theory of Hologenesis proposed by Rosa in 1931; Theory of Continental Bridges; Wagenar’s Theory of continental drift; Father Sarasin’s Deccan Traps Theory, Dilger’s Brij Hypothesis and Hora’s (1937) Satpura Hypothesis. The late Dr. Sunder Lal Hora was the first ichthyologist who studied this problem in depth and proposed his famous Hypothesis in 1937, mostly for distribution of hill-stream fishes. The whole hypothesis was analyzed in a symposium in 1949. According to Hora, certain hill-stream fishes normally found in the Eastern Himalaya and further east migrated to the Western Ghats via a supposed land bridge through the elevated Vindhya Satpura range of hills across the Garo-Rajmahal gap and colonised the Western Ghats. He postulated that during the earth movements that occurred in the Tertiary era, such as the upheaval of the Himalaya, effect of glaciation these fishes became discontinuous in their distribution.

Hora’s Satpura Hypothesis is the first to create a serious awareness amongst ichthyologists of the discontinuity of the fishes in the Indian subcontinent. Hora did not take into consideration that the Indian landmass was a recipient of several migrants from different areas besides the one from Eastern Himalaya which he thought was the only source and origin, especially for the fauna of the Western Ghats. He also ignored the fact that the Indian landmass itself had its own indigenous fauna which became discontinuous by several factors as development pressures, anthropogenic changes, physiographic factors, climatic modulations etc. The present accepted theory for such discontinuity is that the original pattern of distribution of these species have been destroyed and species which are thus far flung are occupying favourable niches in the ecosystem though in a discontinuous manner.
XI. PHYLOGENY

Bagrus of Africa, Pimelodus of South America and Mystus of Indian region are similar in looks and most characters. Pimelodus is under Pimelodidae whereas Bagrus and Mystus are under Bagridae. Bagrid fishes are more widespread, most of the species are found in abundant numbers occupying every conceivable niche and habitat. The family is predominantly an African group with a proliferation of many genera and species in that continent. There are eight genera distributed in the Indian region. Of these Mystus is the dominant genus with as many as 44 species spread all over its range. Mystus and Rita are similar to the African genera Bagrus and Chrysichthys respectively in many respects. They are known from Pilocene Siwalik fossil beds of India. Mystus is the most generalised genus, much older in age than the other Indian genera (except Rita) and has given rise to other genera as Horabagrus, Batasio, Chandramara, etc. Mystus is replaced by Pelteobagrus and Leiocassis in China and by Pseudobagrus in Japan and other adjacent areas.

Overall it can be stated that Mystus is derived from an African Bagrus like ancestor and the genus has spread from west to east. Fossil evidences support such a view. The sparse presence of Mystus species in west Asia and the prolific occurrence of M. cavasius and M. bleekeri in North India, the increased number of species in Thailand and adjacent areas strongly support such a thought. The East Indian islands are also known as a part of the Gondwana landmass, which disintegrated during the tertiary era as stated earlier. The fact that no Mystus species is found in Celebes and also that the East Indian islands as a whole have very few species indicate that the fauna is not very old in the geological time scale. It is no doubt a much-generalized genus but its affinities with the African stock are indisputable.

Table 9. Frequency distribution in certain species of Mystus.

<table>
<thead>
<tr>
<th>Species</th>
<th>Dorsal</th>
<th>Pectoral</th>
<th>Pelvic</th>
<th>Anal</th>
<th>Caudal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. M. armatus</td>
<td>I, 7</td>
<td>I, 7</td>
<td>I, 8</td>
<td>i, 5</td>
<td>ii, 8</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3</td>
<td>14</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>2. M. bleekeri</td>
<td>I, 7</td>
<td>I, 9</td>
<td>I, 10</td>
<td>i, 5</td>
<td>iii, 6</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>14</td>
<td>21</td>
<td>35</td>
<td>12</td>
</tr>
<tr>
<td>3. M. cavasius</td>
<td>I, 7</td>
<td>I, 8</td>
<td>I, 10</td>
<td>i, 5</td>
<td>iii, 7</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>37</td>
<td>4</td>
<td>41</td>
<td>4</td>
</tr>
<tr>
<td>4. M. gulio</td>
<td>I, 7</td>
<td>I, 8</td>
<td>I, 9</td>
<td>i, 5</td>
<td>iii, 9</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>22</td>
<td>28</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>5. M. keletius</td>
<td>I, 7</td>
<td>I, 9</td>
<td>i, 5</td>
<td>ii, 8</td>
<td>iii, 7</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Species</td>
<td>Dorsal</td>
<td>Pectoral</td>
<td>Pelvic</td>
<td>Anal</td>
<td>Caudal</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>6. M. krishnensis</td>
<td>I, 7, 8, 9</td>
<td>i, 5</td>
<td>iii, 10</td>
<td>iii, 11</td>
<td>7+8</td>
</tr>
<tr>
<td>7. M. leucophaxis</td>
<td>I, 7, 8, 9, 10i, 5</td>
<td>ii, 9, iii, 9, ii, 10i, 11</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. M. malabaricus</td>
<td>I, 7, 8, 9, 10i, 5</td>
<td>ii, 9, iii, 8</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. M. menoda</td>
<td>I, 7, 8, 9, 10i, 5</td>
<td>iii, 8, iv, 8, v, 8</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. M. micracanthus</td>
<td>I, 7, 8, 9, i, 5</td>
<td>iii, 8, ii, 9</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. M. microphthalmus</td>
<td>I, 7, 8, 9, i, 5</td>
<td>ii, 9, iii, 9</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. M. montanus</td>
<td>I, 7, 8, 9, i, 5</td>
<td>iii, 8, iii, 9</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. M. nemurus</td>
<td>I, 7, 8, 9, i, 5</td>
<td>ii, 9, ii, 10</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. M. oculatus</td>
<td>I, 7, 8, 9, i, 5</td>
<td>iii, 9</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. M. pelusius</td>
<td>I, 7, 8, 9, i, 5</td>
<td>ii, 8, ii, 9</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. M. planiceps</td>
<td>I, 7, 8, 9, i, 5</td>
<td>ii, 9, ii, 10</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. M. pulcher</td>
<td>I, 7, 8, 9, i, 5</td>
<td>ii, 9, ii, 10</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. M. punctatus</td>
<td>I, 7, 8, 9, i, 5</td>
<td>ii, 7, ii, 9, iii, 9</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. M. tengara</td>
<td>I, 7, 8, 9, i, 5</td>
<td>ii, 10, iii, 9</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. M. vittatus</td>
<td>I, 7, 8, 9, i, 5</td>
<td>ii, 7, iii, 10</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. M. wolffii</td>
<td>I, 7, 8, 9, i, 5</td>
<td>ii, 10, ii, 12</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. M. wyckii</td>
<td>I, 7, 8, 9, i, 5</td>
<td>iii, 10</td>
<td>7+8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10. Geographical distribution of *Mystus* species

<table>
<thead>
<tr>
<th>Species</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
<th>XV</th>
<th>XVI</th>
<th>XVII</th>
<th>XVIII</th>
<th>XIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. albolineatus</td>
<td></td>
</tr>
<tr>
<td>2. amemiyae</td>
<td></td>
</tr>
<tr>
<td>3. argentivittatus</td>
<td></td>
</tr>
<tr>
<td>4. armatus</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. atrifasciatus</td>
<td></td>
</tr>
<tr>
<td>6. baramensis</td>
<td></td>
</tr>
<tr>
<td>7. bimaculatus</td>
<td></td>
</tr>
<tr>
<td>8. bleekeri</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>9. bocourti</td>
<td></td>
</tr>
<tr>
<td>10. cavasius</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11. chinensis</td>
<td></td>
</tr>
<tr>
<td>12. elongatus</td>
<td></td>
</tr>
<tr>
<td>13. gulo</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14. horai</td>
<td></td>
</tr>
<tr>
<td>15. keletius</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>16. krishnensis</td>
<td></td>
</tr>
<tr>
<td>17. leucophasis</td>
<td></td>
</tr>
<tr>
<td>18. macropertus</td>
<td></td>
</tr>
<tr>
<td>19. malabaricus</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>20. maydelli</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21. menoda</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>22. micracanthus</td>
<td></td>
</tr>
<tr>
<td>23. microphthalus</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>24. montanus</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25. multiradiatus</td>
<td></td>
</tr>
<tr>
<td>26. mysticetus</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27. nemurus</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>28. nigriceps</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>29. oculatus</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>30. olyroides</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Geographical Zones (see end of Table for explanation of numbers)
<table>
<thead>
<tr>
<th>Species</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
<th>XV</th>
<th>XVI</th>
<th>XVII</th>
<th>XVIII</th>
<th>XIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>31. penguensis</td>
<td></td>
</tr>
<tr>
<td>32. pelusius</td>
<td></td>
</tr>
<tr>
<td>33. planiceps</td>
<td></td>
</tr>
<tr>
<td>34. pluriradiatus</td>
<td></td>
</tr>
<tr>
<td>35. pulcher</td>
<td></td>
</tr>
<tr>
<td>36. punctatus</td>
<td></td>
</tr>
<tr>
<td>37. rhegma</td>
<td></td>
</tr>
<tr>
<td>38. rufescens</td>
<td></td>
</tr>
<tr>
<td>39. sabanus</td>
<td></td>
</tr>
<tr>
<td>40. singaringan</td>
<td></td>
</tr>
<tr>
<td>41. tengara</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>42. vittatus</td>
<td></td>
</tr>
<tr>
<td>43. wolfii</td>
<td></td>
</tr>
<tr>
<td>44. wyckii</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

I = Widely distributed, II = Western Ghats, III = Western Ghats & Eastern Himalayas, IV = North India up to Mahanadi, V = North India up to Krishna River System, VI = Eastern Himalayas, VII = Western Ghats and Sri Lanka, VIII = Tamil Nadu and Sri Lanka, IX = Pakistan, X = Bangladesh, XI = Myanmar, XII = Thailand, XIII = Java, XIV = Sumatra, XV = Borneo, XVI = Malaya, XVII = Cambodia, XVIII = China, XIX = Syria

ADDENDA

Since this MS was sent to the Press, certain changes have come to our notice which are outlined below:

I. The following species of *Mystus* are now placed under the genus *Hemibagrus* Bleeker. References are given in brackets.

II. Other changes.

7. Mo (1991) revised the family Bagridae and has recognised only 23 species as belonging to *Mystus*.
8. Ferraris and Runge (1999) propose *Sperata* Holly, 1939 in place of *Aorichthys* Wu in view of the former having priority in date of publication. They have segregated the Burmese population as *Sperata acicularis* new species and have resurrected *Bagrus aorella* Blyth from the synonymy of *Pimelodus aor* Hamilton-Buchanan and have described it as a separate species of *Sperata*.

REFERENCES

Belon, P. 1553. Deaqualtilibus libriduo cum eiconibus ad vivam ipsorum effigiem, quoad eis fieri potuit, expressis, Paris. 16 leaves, 448 pages.

Blyth, M. E. 1797. Ichthyologie ou Histoiire naturele generale et particulier des poissons. (2) 11 : 117.

Hamilton-Buchanan, F. 1822. *An account of the fishes found in the River Ganges and its branches. Edinburg and London. vii + 405, 39 pls, 97 figs.*

Hora, S. L. 1921. Fish and fisheries of Manipur with some observations on those of the Naga hills. *Rec. Indian Mus.* 22(3) : 165-214, 4 pls.

*Meuschen, F.C. 1781.IN : (Gronow's Zoophylacium Gronoviana Index continens Nomina generica specieorum propria trivialia et synonyma (Lugdani Batavorum) 1781. (Follows p. 380 of the Zoophylacium Gronovianum part Pisces 31/2 pages unpaged, but with signature E ee ee 2 F ff ff-Index Piscium) iii (*Not seen in orginal).

PLATES
Fig. a. Mystus argentivittatus, b. Mystus armatus, c. Mystus baramanesis, d. Mystus bleekeri
Fig. e. Mystus cavasius, f. Mystus gulio, g. Mystus krishnensis, h. Mystus leucophasis
Fig. i. Mystus malabaricus, j. Mystus micracanthus, k. Mystus microphthalmus, l. Mystus montanus
Fig. m. Mystus nemurus, n. Mystus penguensis, o. Mystus pelusius, p. Mystus punctatus
Fig. q. *Mystus sabanus*, r. *Mystus tengara*, s. *Mystus vittatus*, t. *Mystus wyckii*