INVITATION OF NOMINATIONS FOR THE NATIONAL FELLOWSHIP AWARDS FOR PITAMBER PANT NATIONAL ENVIRONMENT FELLOWSHIP AND DR. B.P. PAL NATIONAL ENVIRONMENT FELLOWSHIP AWARD FOR BIODIVERSITY FOR THE YEAR 2009

Applications are invited from Indian Nationals for the following fellowships:

(i) Pitamber Pant National Environment Fellowship Awards for the year 2009.
(ii) Dr. B.P. Pal National Environment Fellowship Awards for Biodiversity for the year 2009.

These National Fellowships are given each year to one scientist/expert and are instituted in recognition of significant Research and Development contributions made by the scientist/expert and to encourage him/her to continue R&D pursuits in the area of environmental sciences and biodiversity, respectively.

Nominees should not be more than 60 years on the date of application or the last date fixed for submission of application. Application for both the fellowships should be supported by at least two Fellows of the National Academy of Science/Engineering/Agriculture.

The duration of the fellowship is for a period of two years. The details of the fellowship award, procedure and proforma for submitting research proposal as well as the terms and conditions are given in the guidelines (for Pitamber Pant Fellowship and B.P. Pal Fellowship) available on the website of the Ministry (www.envfor.nic.in).

The nominee should also submit his/her application in the prescribed proforma for nomination (ANNEXURE) for both the awards.

Applications complete in all respects should be sent by registered A.D. Post in 10 copies and one set of reprints and other documentary evidence of achievements in a confidential sealed cover by 30th December, 2009, addressed to:

The Advisor (Dr. G.V. Subramanayam)
RE-Division
Ministry of Environment and Forests
Paryavaran Bhawan, CGO Complex
Lodi Road, New Delhi-110003
Records of the Zoological Survey of India

Volume 109(Part-4)

Edited by the Director, Zoological Survey of India, Kolkata

Zoological Survey of India
Kolkata
2009
CONTENTS

Banerjee, Soumya, Sanyal, A.K. and Bhaduri, A.K. — Studies on soil microarthropod population in three different garden plots of 24 Parganas, West Bengal—A preliminary report... 1-9

Narendran, T.C., Girish Kumar, P. and Talukdar, S. — A new species of Philolema Cameron (Hymenoptera : Eurytomidae) Parasitic on spider eggs (Arachnida : Araneae) from India... 11-14

Paul, Moumita, Sandipan Gupta and Samir Banerjee — Fish fauna of major rivers of Darjeeling district, with special reference to their conservation status... 15-23

Sivalela, G. and Venkataraman, K. — Meiofauna of Gulf of Mannar... 25-33

Nandy, Supriya and R. Babu — On a collection of Dragonflies (Odonata : Anisoptera) from Andaman and Nicobar Islands... 35-51

Varadaraju — An account of the Amphibian and Reptilian Fauna of Sunderban, West Bengal... 52-66

Sharma, Narender — Acridoidea diversity of Patna Bird Sanctuary, Uttar Pradesh, India... 67-76

Srinivasan, G. and Girish Kumar, P. — Observations on some Behavioural aspects of the Potter Wasp Xenorhynchium nitidulum (Fabricius) (Hymenoptera : Vespidae : Eumeninae) from India... 77-78

Rizvi, Anjum N. and Bhutia, P.T. — Some bacteriovorous Nematodes from Uttarakhand, India... 79-86

Sureshan, P.M. — On a collection of Chalcidoidea (Hymenoptera : Insecta) from Orissa, India... 87-104

Short Communication

Palot, Jafer Muhamed, Bimalnath, K.G. and Radhakrishnan, C. — Holostemma Ada-Kodien Schult (Family : Asclepiadaceae), a new Larval food plant of the blue tiger, Tirumala limniace Cramer (Insecta : Lepidoptera : Nymphalidae) ... 105-106

Srivastava, J.P. — A note on the status, occurrence and distribution of Wild Buffalo, Bubalus bubalis (Linneaus) in Western Orissa and Chhattisgarh... 107-109

Girish Kumar, P. and Srinivasan, G. — New record of Vespa soror Du Buysson (Hymenoptera : Vespidae) from India... 111-112

Ghosh, Amitabha — A note on the occurrence of Sicamugil cascasia (Pisces : Mugilidae) in the freshwater zone of the Hooghly Estuary... 113-114
COMPUTERISED DATA ON NATIONAL ZOOLOGICAL COLLECTION

The National Zoological Collections comprising nearly 15,000 types are housed in the Zoological Survey of India, Calcutta and are properly maintained. All these specimens have Registration numbers and are readily available for study as and when required. Data pertaining to locality, date of collection, name of collector, sex, up to date valid species name, name of the host (for parasite) etc., of each type of collection have already been computerised. The computerised data are stored in the computer centre of Zoological Survey of India. Scientists/Naturalists interested for any information on type species present in Zoological Survey of India may contact the Director, Zoological Survey of India, ‘M’ Block, New Alipore, Kolkata-700 053.

Dr. Ramakrishna
Director
Zoological Survey of India
AN APPEAL

In order to enrich the “National Zoological Collection” (NZC) and to update information on the occurrence and distribution of animal species in India, Scientists/Naturalists and researchers working on animal taxonomy/systematics are requested to deposit their identified specimens to the Zoological Survey of India at the following address:

Officer-in-Charge, Identification and Advisory Section,
Zoological Survey of India, M-Block, New Alipore,
Kolkata-700 053.

These specimens will be registered and their data will be computerised. They are further requested to deposit their type collection positively to ZSI and use the Registration number in their publication of the new taxon.

DR. RAMAKRISHNA
Director
Zoological Survey of India
INSTRUCTION TO AUTHORS

Frequency of Publication: Quarterly – 4 parts in one volume.

Publication time: Within 3 months after final acceptance.

Categories of published material: Full paper, Interesting Case Reports, Field Reports, Taxonomic description and distributions, Description of new taxa, Short Communications, Checklists.

Instruction of submission: The article to be organized as:—

1. Title; 2. Author/Authors along with address clearly mentioning the corresponding author and Affiliation, e-mail address; 3. Introduction; 4. Materials and Methods; 5. Systematic accounts; 6. Results; 7. Discussion; 8. Summary; 9. Acknowledgement, 10. References; 11. Tables and Figures with appropriate title and legends on separate sheets.

For short communication, the combination of some of the above sections is recommended.

Format of Manuscript: Submission of a manuscript implies that the report is original, unpublished and is not being considered/disqualified for publication elsewhere.

Manuscript in English should be computer-typed, double-spaced with 1.5-inch right-hand margins on one side in A4 paper (210 × 297 mm). Font size 10-12 points, Times New Roman. Text should be justified. Footnotes should be avoided. All units of measurement are in metric. All manuscript sheets must be numbered successively. No portion of the article should be underlined except Latin names of genera and species, if not typed in italics. Submit in triplicate with a CD in MS Word, photo/map/chart/drawings in jpg/psd (photoshop).

Introduction section should clearly describe the objectives of the study and provide enough background information to make it clear why the study was undertaken. Lengthy literature review is discouraged. Some earlier references of work may be cited.

Materials and Methods should provide the reader with all the information necessary to repeat the work. For modification of published methodology, only modification needs to be described with reference to the original source.

Under material examined the following format should be followed strictly for e.g.:

Material Examined: Holotype : Female : India, Kerala, Calicut University campus, 3-xii-1994, coll. T.C. Narendran and Party (Reg. No.)

Results to be presented by referring to tables and figures (if any) and without discussion.

Discussion should include a concise statement of the findings, a discussion of the variety of the observations, a discussion of the findings in the light of other published works dealing with the same or allied subjects.

Summary: A short write up to be given describing the article and its importance/need.

References should be cited as follows:

Title of periodicals should be abbreviated as in the latest edition of World list of Scientific Periodicals, London.

Entries under “Reference” should not include any reference which is not cited in the text.
Examples:

State Fauna/Conservation Areas

Book

Tables – Each table should be typed on a separate sheet and must have an explanatory title. All numbers is in Arabic numerals.

Figures – All figures should be appropriately lettered and labeled with letters and numbers in Arabic numerals. The maximum dimension of figures is 131×193 mm. All figures should be submitted in original, no xerox copy would be entertained.

Photographs – All photographs to be submitted in original. For Maps – fresh maps shall be encouraged. The maps and photographs taken from other sources, if any, the sources must be given along with the manuscript and permission to be obtained for production of the same. In case of Digitized/Scanned photo, it should be in jpg or Photoshop format along with one set of colour printout.

Referee comments: Once the manuscript is received back from the referee, it will be communicated to the author with the comments on its suitability and required to be resubmitted the revised manuscript incorporating all the suggestions/comments within one-month time. Failing which, it will be assumed that the author is not interested for its publication and the case will be closed without any further intimation.

Proof reading: Galley proof will be delivered to the corresponding author and the corrected proof should be returned to the Publication Division within 15 days from the receipt of the galley proof.

Reprints: 25 copies of the reprints of the paper published in Records ZSI, State Fauna, Conservation Area Series and Ecosystem Series or any other contributory article published. In case of Bound volume in the shape of book viz. Occasional Paper, Memoirs, Handbook, Special Publication, Fauna of India, Ten copies will be provided in case of single author. However, for multiple authors, 5 copies will be provided to each author as gratis free of cost subject to a maximum of 25 copies.
STUDIES ON SOIL MICROARTHROPOD POPULATION IN THREE DIFFERENT GARDEN PLOTS OF 24 PARGANAS, WEST BENGAL—A PRELIMINARY REPORT

SOUMYA BANERJEE*, A.K. SANYAL AND A.K. BHADURI**
Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053, India

INTRODUCTION

Soil is a stratified mixture of organic materials both of which are decomposition products. The parent material, the soil forming rocks undergo physical and chemical processes of weathering resulting in the formation of mineral constituents of soil. Organic components of soil are formed either by decomposition of dead remains of plants and animals or through metabolic activities of living organisms present in the soil. According to Wallwork (1970) soil is the general habitat which harbours rich and varied communities, for living organisms find in the soil an environment providing food, shelter, anchorage and concealment from the predators. Soil microarthropods occur in all types of soil. They are of immense importance in maintenance of various ecological systems. They plan a very important and significant role in soil formation, increasing the porosity of the soil, soil aeration and in the promotion of the soil fertility by breaking down organic matters through the intricate process of digestion. The importance of these organisms in soil zoology and agriculture are enough to warrant more extensive studies on their bionomics and taxonomy.

The population density of soil microarthropods depends on various physico-chemical properties of soil such as porosity and permeability of the soil, soil temperature, soil moisture and the presence of inorganic elements and components, organic matters and the pH of the soil. Application of chemical fertilizers, pesticides, weedicides, etc. in the garden and adoption of various cultural methods like use of resistant varieties of seeds, tilling, raking, weeding and watering of the garden greatly affect the natural microarthropod population of the soil.

A study on the microarthropod population reveals that soil mites and collemboles occur predominantly in all type of soils. They are the major constituents of the soil. The studies on the population densities of the soil mites and other microarthropod organisms in India came to the
limelight of scientific investigation chiefly through the works of Singh and Mukherjee (1971),
Singh and Pillai (1975), Bhattacharya, Joy and Joy (1981), Mazumdar and Deb (1991a, 1991b),
Sanyal (1991), Sanyal and Sarkar (1993), Sengupta and Sanyal (1991), Sarkar, Sanyal and
Chakraborty (2007).

MATERIALS AND METHODS

A total of 120 litter mixed soil samples were collected from three selected cultivated plots in a
garden. Five samples were collected at random from each plot in every month for a period of 8
months i.e. October, 2006 to May, 2007. The samples were drawn by means of stainless steel
corers, each measuring 5 cm in diameter, from the sub-soil layer approximately 4-6 inches deep
into the soil. The samples were taken in polythene bags, loosely tied by rubber bands and brought
to the laboratory for extraction of soil inhabiting microarthropods. The larger insects were sorted
out from the samples by handpicking method. The microarthropods were extracted from the soil
samples by using a Tullgren funnel extractor as modified by Macfadyen (1953). The mites and
other microarthropods extracted were studied after following the usual procedure of cleaning in an
equal mixture of 90% alcohol and lactic acid.

Soil moisture, temperature and pH were measured by infra-red moisture meter, soil thermometer
and pH meter respectively.

SITE DESCRIPTION

Three plots in a garden containing different plants were selected for study in Dum Dum areas,
district 24 Parganas, West Bengal. The soils of the three plots were gangetic alluvial in nature,
blackish-grey in colour and dry to semi-wet in texture. The brief characteristics of the plots are
given below:

1. Plot A : The plot was a cultivated flower garden of about 550 sq. ft. having regular cultivation
of seasonal flowers like Hibiscus–Hibiscus rosa sinensis, Rose–Rosa damasciana, Marigold–Tagetes
patula, Dopati–Impatiens balsamina and Jasmine–Jasminum sambac.

2. Plot B : It was a plot in a cultivated vegetable garden of about 700 sq. ft. in area growing
varieties of vegetables like Gourd–Lagenaria ciceraria, Pumpkin–Cucurbita maxima, Spinach,
Cauliflower–Brassica oleracea and Squash–Sechium edule throughout the period of study.

3. Plot C : This plot was an uncultivated area of about 400 sq. ft. having thick growth of
varieties of weeds like Oxalis corniculata, Cleome rutidosperma, Portulaca quadrifida, Sida acuta
and Sida mysorensis.

The cultivated garden plots under study were properly manured with bio-fertilizers like cowdung,
rotten oil cakes and decomposed fruit and vegetable peel. Tilling, raking and watering of the plots
were done before cultivation. To prevent insect depredation suitable pesticides like Rogor, Sevin,
Blitoxin and Phosphamidon in prescribed doses (1 ounce of pesticide in 10 litres of water) were
applied.
Table 1: Arthropod Population and Mean Values of Soil Factors in Plot A (October 2006-May 2007)

<table>
<thead>
<tr>
<th>Arthropods/sq.m and Soil Factors</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACARINA</td>
<td>18140.13</td>
<td>14777.07</td>
<td>12433.12</td>
<td>12840.76</td>
<td>29146.49</td>
<td>35465</td>
<td>39439</td>
<td>33936</td>
</tr>
<tr>
<td>COLLEMBOLA</td>
<td>12433.12</td>
<td>11312.1</td>
<td>14777.07</td>
<td>8458.59</td>
<td>10496.82</td>
<td>21911</td>
<td>22318</td>
<td>15898</td>
</tr>
<tr>
<td>COLEOPTERA</td>
<td>1121.02</td>
<td>509.55</td>
<td>101.91</td>
<td>1222.93</td>
<td>509.55</td>
<td>1222.9</td>
<td>917.2</td>
<td>407.6</td>
</tr>
<tr>
<td>ANT</td>
<td>2445.86</td>
<td>305.73</td>
<td>0</td>
<td>1630.57</td>
<td>1324.84</td>
<td>5605.1</td>
<td>5299</td>
<td>3669</td>
</tr>
<tr>
<td>SPIDER</td>
<td>407.64</td>
<td>407.64</td>
<td>305.73</td>
<td>1324.84</td>
<td>305.73</td>
<td>203.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HEMIPTERA</td>
<td>1019.11</td>
<td>1630.57</td>
<td>509.55</td>
<td>3261.15</td>
<td>509.55</td>
<td>203.8</td>
<td>11618</td>
<td>305.7</td>
</tr>
<tr>
<td>DIPTERA</td>
<td>305.73</td>
<td>0</td>
<td>0</td>
<td>1834.39</td>
<td>203.82</td>
<td>101.91</td>
<td>509.6</td>
<td>203.8</td>
</tr>
<tr>
<td>CENTIPEDE</td>
<td>101.91</td>
<td>305.73</td>
<td>101.19</td>
<td>917.19</td>
<td>101.91</td>
<td>1222.9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Temperature (Degree C)	31.3	29.7	26.1	20.1	22.2	29.1	36.2	36.3
Moisture (%)	31.2	30.2	29.1	25.1	26.3	26.2	23.8	23.5
pH	6.6	6.4	6.3	6.23	6.1	6.7	7.1	7.1

Table 2: Arthropod Population and Mean Values of Soil Factors in Plot B (October 2006-May 2007)

<table>
<thead>
<tr>
<th>Arthropods/sq.m and Soil Factors</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACARINA</td>
<td>16101.91</td>
<td>22012.74</td>
<td>22420.38</td>
<td>17732.48</td>
<td>33019.11</td>
<td>30369.4</td>
<td>31287</td>
<td>30573</td>
</tr>
<tr>
<td>COLLEMBOLA</td>
<td>7235.67</td>
<td>12535.03</td>
<td>15388.54</td>
<td>2547.77</td>
<td>6420.38</td>
<td>8662.42</td>
<td>9375.8</td>
<td>11618</td>
</tr>
<tr>
<td>COLEOPTERA</td>
<td>101.91</td>
<td>0</td>
<td>305.73</td>
<td>713.38</td>
<td>509.55</td>
<td>1121.01</td>
<td>101.91</td>
<td>0</td>
</tr>
<tr>
<td>ANT</td>
<td>1222.93</td>
<td>1324.84</td>
<td>1630.57</td>
<td>5197.45</td>
<td>1630.57</td>
<td>1936.3</td>
<td>1019.1</td>
<td>0</td>
</tr>
<tr>
<td>SPIDER</td>
<td>407.64</td>
<td>203.82</td>
<td>305.73</td>
<td>203.82</td>
<td>509.55</td>
<td>407.64</td>
<td>305.73</td>
<td>203.82</td>
</tr>
<tr>
<td>HEMIPTERA</td>
<td>203.82</td>
<td>305.73</td>
<td>509.55</td>
<td>101.92</td>
<td>0</td>
<td>1426.75</td>
<td>305.73</td>
<td>101.92</td>
</tr>
<tr>
<td>DIPTERA</td>
<td>203.82</td>
<td>305.73</td>
<td>305.73</td>
<td>713.38</td>
<td>101.91</td>
<td>1630.57</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CENTIPEDE</td>
<td>407.64</td>
<td>0</td>
<td>305.73</td>
<td>305.73</td>
<td>0</td>
<td>713.38</td>
<td>407.64</td>
<td>305.73</td>
</tr>
</tbody>
</table>

Temperature (Degree C)	31.3	29.7	26.1	20.1	22.2	29.1	36.2	36.3
Moisture (%)	31.2	30.2	29.1	25.1	26.3	26.2	23.8	23.5
pH	6.6	6.4	6.3	6.23	6.1	6.7	7.1	7.1
Table 3: Arthropod Population and Mean Values of Soil Factors in Plot C (October 2006-May 2007)

<table>
<thead>
<tr>
<th>Arthropods/sq.m and Soil Factors</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACARINA</td>
<td>26700.64</td>
<td>30471.34</td>
<td>22726.11</td>
<td>15694.27</td>
<td>16305.73</td>
<td>21503.2</td>
<td>26395</td>
<td>34650</td>
</tr>
<tr>
<td>COLLEMBOLA</td>
<td>10394.9</td>
<td>18038.22</td>
<td>10598.73</td>
<td>14980.89</td>
<td>16713.38</td>
<td>13248.4</td>
<td>10497</td>
<td>10191</td>
</tr>
<tr>
<td>COLEOPTERA</td>
<td>509.55</td>
<td>815.29</td>
<td>0</td>
<td>101.91</td>
<td>203.82</td>
<td>305.73</td>
<td>101.91</td>
<td>407.64</td>
</tr>
<tr>
<td>ANT</td>
<td>1732.48</td>
<td>3261.15</td>
<td>0</td>
<td>6114.65</td>
<td>3668.79</td>
<td>5401.27</td>
<td>8662.4</td>
<td>2038.4</td>
</tr>
<tr>
<td>SPIDER</td>
<td>101.91</td>
<td>101.91</td>
<td>305.73</td>
<td>0</td>
<td>305.73</td>
<td>305.73</td>
<td>0</td>
<td>407.64</td>
</tr>
<tr>
<td>HEMIPTERA</td>
<td>101.91</td>
<td>101.91</td>
<td>101.91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DIPTERA</td>
<td>509.55</td>
<td>0</td>
<td>203.82</td>
<td>0</td>
<td>203.82</td>
<td>0</td>
<td>203.82</td>
<td>0</td>
</tr>
<tr>
<td>CENTIPEDE</td>
<td>101.91</td>
<td>407.64</td>
<td>0</td>
<td>101.91</td>
<td>101.91</td>
<td>203.82</td>
<td>203.82</td>
<td>203.82</td>
</tr>
</tbody>
</table>

Temperature (Degree C)
31.3 29.7 26.1 20.1 22.2 29.1 36.2 36.3
Moisture (%)
31.2 30.2 29.1 25.1 26.3 26.2 23.8 23.5
pH
6.6 6.4 6.3 6.23 6.1 6.7 7.1 7.1

RESULTS

Faunal Composition: Altogether 12408 arthropods belonging to 9 different groups viz., Acarina, Collembola, Hemiptera, Isopoda, Diptera, Spider, Centipede, Ant and Coleoptera were collected. As the population of Lepidoptera, Orthoptera, Diplopoda, Chilopoda and Pseudoscorpion were very low and irregularly distributed, these groups were not considered for calculation. A comparison between arthropods of the uncultivated weed filled plot and the flower and vegetable plots showed that the uncultivated plot was rich in faunal groups in comparison to the cultivated garden plots. In all the 3 plots, Acarina was the most dominant group. It formed 203515.92/m², 196178.36/m² and 194445.85/m² of the total densities of other soil microarthropods obtained from the vegetable garden, flower and the weed growing plot respectively. In the latter the second, third and fourth dominant groups were Collembola (104662.43/m²), Ant (30878.98/m²) and Isopoda (5197.39/m²) respectively.

Similarly, in Plot A, Collembola (117605.09/m²), Ant (20280.24/m²) and Isopoda (15898.08/m²); and in Plot B Collembola (73783.43/m²), Ant (16509.55/m²) and Isopoda (7133.74/m²) occupied first, second and third position according to the order of dominance (Tables-1, 2, and 3).

Edaphic Factors: All the three plots were more or less identical in their edaphic characteristics. The maximum and minimum temperatures recorded were 36°C (April-May) and 20.1°C (January) in all the three plots. The average temperature recorded was 21.71°C. The average moisture content
of the soil recorded was 26.8% when the maximum and the minimum soil moisture content recorded were 31% and 23.2% respectively. The soil pH recorded was within the normal range (6.10-7.00) (Tables 1, 2 and 3).

Population Fluctuation: The total number of arthropods collected showed population maxima in February, March and April in the cultivated flower and vegetables gardens. Arthropods were minimum in number in April in the plot growing weeds whereas in the cultivated flower and vegetable gardens it varied depending upon the types of plant grown as well as the usual cultural practices of tilling and weeding in the respective gardens (Figure 1).

The population of different groups of arthropods showed an irregular trend of fluctuation during the sampling period but there was a tendency to increase their number in February–April in the cultivated plots. The Collembola population recorded was maximum in April and December in the flower and vegetable gardens respectively and in November in the plot growing weeds (Figures 2, 3, 4).

DISCUSSION

The studies of population densities of soil arthropods in different plots reveal that application of insecticides though in minimal doses and concentrations as well as at long intervals may also affect the population densities of soil dwelling organisms in comparison to cultivated fields where the effect is more profound due to extensive applications of insecticides (Joy and Chakraborty, 1991).

The soil mites were usually most abundant in autumn and winter in all the three types of plots when the soil moisture was moderate and least abundant in summer when the soil moisture was low. Similar observations were also made by Sengupta and Sanyal, 1991; Sanyal and Sarkar, 1993 and Sheela and Haq, 1991.

The pH values of the soil samples being within the tolerance range do not seem to have any effect on the soil microarthropod population. This observation is supported by the works of Joy and Bhattacharya (1981) and Sanyal (1991).

Besides, the kitchen garden areas do not remain undisturbed because of frequent human interference in the form of caring of the garden which may force the soil organisms to take refuge either in the horizontal or in the vertical direction from the place of disturbance for concealment and shelter.

These observations are supported by the earlier works of Sanyal (1991) and Sanyal and Sarkar (1993). The study recorded that when there was standing crop in the field, the number of mites and other soil microarthropods were increased. The Acarina population decreased immediately after tillage. It was further observed that when there was no crop in the cultivated fields for a long time, the number of soil microarthropods increased to a good number. Mazumdar and Deb (1991a, 1991b) also reported that microarthropod population was poor in cultivated fields and suggested a crop-dependent association.
Figure 1. Shows the fluctuation of soil microarthropods at three plots.

Figure 2. Shows the fluctuation of different groups of microarthropods at plot-A.
BANERJEE, SANYAL & BHADURI: Studies on soil microarthropod—A Preliminary Report

Figure 3. Shows the fluctuation of different groups of microarthropods at plot-B.

Figure 4. Shows the fluctuation of different groups of microarthropods at plot-C.
SUMMARY

The seasonal abundance of soil inhabiting arthropod fauna and their interrelationship with the edaphic factors like temperature, moisture and pH in flower and vegetable gardens and in a plot growing weeds in West Bengal were studied. The soil arthropods were extracted with the help of modified Tullgren funnel apparatus. Altogether 12408 arthropods belonging to 9 groups were extracted from the soil samples which were collected at random from each of the three plots every month for a period of eight months (October 2006-May 2007). Of the total population Acarina was the most dominant group (47% approx.) which was followed by Collembola and Ant population. The plots where weeds were grown was quantitatively rich in fauna as compared to that of the flower and vegetable gardens where different insecticides and manures were applied and traditional means of garden nurturing that include tilling, raking, weeding, etc. were followed. The arthropod population showed seasonal variation with peak in February-April in almost all the three different plots.

ACKNOWLEDGEMENTS

The authors are thankful to the Director, Zoological Survey of India, Kolkata for providing laboratory facilities. They also express their thanks to the officers and staff of Acarology, ZSI, Kolkata for extending necessary help for work in the laboratory.

REFERENCES

Majumdar, S. and Deb, D.C. 1991a. Composition and relative abundance of Microarthropods of uncultivated and cultivated fields in the district of West Dinajpur, West Bengal, India. Journal of Bengal Natural History Society, New Series, 10(2) : 56-63.

A NEW SPECIES OF PHILOLEMA CAMERON (HYMENOPTERA : EURYTOMIDAE) PARASITIC ON SPIDER EGGS (ARACHNIDA : ARANEAE) FROM INDIA

T.C. NARENDRAN, P. GIRISH KUMAR* AND S. TALUKDAR*
Systematic Entomology Laboratory, Department of Zoology, University of Calicut, Kerala-673 635, India
E-mail: drtcnarendran@yahoo.com
*Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053, West Bengal, India
Corresponding author: P. Girish Kumar

INTRODUCTION

The genus Philolema was raised by Cameron in 1908 based on the type species Philolema carinigena Cameron. Boucek (1988 : 106) stated that Philolema Cameron would be emerged with Eurytoma Illiger. But most of the recent workers (Narendran, 1994; Lotfalizadeh et al., 2007) considered it as a distinct genus. The generic classification in the family Eurytomidae is still very unsatisfactory. In the most recent classification (Lotfalizadeh et al., 2007; Noyes, 2009) this new species comes under Desantisca species group of the genus Philolema. In Desantisca species group all species are parasitic on spider eggs. This species group consists of 4 valid species from the Indian subcontinent namely, Philolema (=Desantisca) belgaumensis (Narendran) from Maharashtra, India, P. (=D.) palanichamyi (Narendran) from Tamil Nadu, India, P. (=D.) uloborae (Narendran) and P. (=D.) lankana (Narendran) from Nugegoda, Sri Lanka (Narendran, 1994; Noyes, 2009). In this paper one new species is described from West Bengal, India based on specimens which emerged from unidentified spider egg sacs.

The Holotype and Paratype are deposited in the ‘National Zoological Collections’ of the Zoological Survey of India, Kolkata (NZSI).

MATERIALS AND METHODS

The egg sacs of the unidentified spider species are collected from the spider web. They reared in the laboratory from which the parasite emerged out. The specimens are card mounted and studied under Wild Heerbrugg Stereozoom microscope (Made in Switzerland) and drawings were made using the drawing tube of the microscope.
The following abbreviations are used in the text:

F1-F6 = Funicular segments 1 to 6; MV = Marginal vein; PMV = Post marginal vein; OOL = Ocellocular line; POL = Postocellar line; SMV = Submarginal vein; STV = Stigmal vein; T1-T6 = Gastral tergites 1 to 6.

RESULTS

Philolema nadia Narendran and Girish Kumar sp. nov.
(Figs. 1-4)

Holotype: Female: Length 1.86 mm. Black. Mandible blackish brown; antenna brownish black with scape and pedicel black; tegula black; fore and mid tibiae pale brown except at bases and apices yellow; hind tibia dark brown except base and apex yellow; all tarsi yellow with apical tarsal segment yellowish brown; claws brown. Wings hyaline, veins whitish yellow with some brown margins on fore wing veins. Body hairs short, thick and white, originate from each umbilical puncture; hairs sparse on clypeus and supraclypeal area, absent on lateral corner of pronotum, scapula, axilla and mesopleuron (except a line of hairs on carina of mesopleuron anteriorly).

Head: Densely and umbilicately punctate including malar space; interstices narrow; front view as in Fig. 1; scrobe deep, its lateral margins carinate, dorsal margin ecarinate; relative measurement of dorsal width of head: length = 23.5 : 10; POL : OOL = 5 : 2; eye without pubescence. Antenna 11162; scape not reaching front ocellus; antenna (Fig. 2) with sensilla and setae; length: width of antennal segments: scape = 15 : 5.5; pedicel = 4 : 3.2; F1 = 9 : 6; F2 = 6 : 7; F3 = 6.5 : 7.5; F4 = 6.8 : 8; F5 = 7 : 8; F6 = 7 : 7.2; club = 12.3 : 6.5.

Mesosoma: Densely and umbilicately punctate; interstices narrow; punctures weak on lateral corner of pronotum, scapula, axilla, lateral sides of propodeum and mesopleuron; mesopleuron with some transverse striations; relative length of mesosoma (including pronotal collar) strictly in dorsal view: width (excluding tegulae): maximum height = 26.5 : 14.5 : 19; anterior margin of propodeum ecarinate; scutellum slightly jutting out posteriorly; posterior margin of propodeum concave medially (Fig. 4), propodeum with transverse rows of shallow pits; tegulae with a few irregularly scattered punctures on proximal half. Hind femur broad and flattened. Forewing (Fig. 3) 2.15 \(\times\) as long as wide; relative lengths of veins: SMV = 32; MV = 7; STV = 5.5; PMV = 8.

Metasoma: Petiole strongly sculptured, length subequal to length of hind coxa; gaster not compressed from sides; T1 to T4 without hairs, T5 with a bunch of fine lateral hairs and T6 with a bunch of fine apical hairs.

Male: Unknown.

Host: Egg sacs of unidentified spiders.

Biology: Unknown.

Distribution: India: West Bengal.
Figs. 1-4. Philolema nadia Narendran and Girish Kumar sp. nov. Female. Fig. 1. Head front view. Fig. 2. Antenna. Fig. 3. Body profile. Fig. 4. Propodeum

D:ZSI(Rec-'09)-109 Fol:Rec-109(1)-52(M-2):13
CD
Etymology: The species is named after the district from where the type specimens were collected.

DISCUSSION

This new species comes close to Philolema (=Desantisca) uloborae (Narendran) but distinctly differs from it in having: (1). Antenna brownish black with scape and pedicel black (In P. uloborae antenna yellow with club and distal funicular segment brownish tinge); (2). Scrobe deep, its lateral margins carinate (in P. uloborae scrobe shallow, its lateral margins ecarinate) and (3). Eye without pubescence (in P. uloborae eye pubescent).

SUMMARY

A new species of Philolema Cameron viz., Philolema nadia Narendran and Girish Kumar sp. nov., emerged from the spider eggs, is described from India and its affinities to the closest relative are discussed.

ACKNOWLEDGEMENTS

We are grateful to the Director, Zoological Survey of India, Kolkata for providing facilities and encouragements. First author is also grateful to the authorities of university of Calicut for providing facilities. Third author is also grateful to Bharatia Vignan and Yuktiwadi Samiti, Shyamnagar for their helps to visit the collection locality.

REFERENCES

Cameron, P. 1908. Descriptions of two new genera and species of reared Chalcididae from Borneo (Hym.). Dt. Ent. Z. 1908 : 559-561.

INTRODUCTION

Freshwater fishes represent the most diverse group of Indian vertebrates with minimum of 600 species (Talwar & Jhingran, 1991). In freshwater fish diversity India is eighth in the world and third in the Asia (Kottelat and Whitten, 1996). Recent conservation assessment reveals that 88 species in Western Ghat streams and 82 species in Eastern Himalayas are in threatened category. West Bengal possesses 59 threatened freshwater fish species of India (Menon, 1999 & 2004). Considering the presence of a number of the threatened and endemic species in North Bengal, the region may be described as the ‘Hot Spot’ of the fish resource of West Bengal (Barman, 2007).

Darjeeling, the north western district of West Bengal, lies between 26°31’N and 27°13’N latitude and between 87°59’E and 88°53’E longitude. This district is full of rivers, canals and jhoras. Rivers like Mechi, Balason, Mahananda and Teesta represent the major water resources of this district. Darjeeling is thickly interspersed with innumerable hill streams, some of which are potential sources of fish supply. The rich ichthyofaunal resources of these hill streams have never been explored before. Previously Shaw and Shebbeare (1937) recorded 131 species of fishes from different water bodies of Darjeeling and Jalpaiguri. The present work is an attempt to illustrate the status of different fish species available in District Darjeeling.

MATERIALS AND METHODS

Present work is based on extensive field survey and fish sampling conducted from September, 2005 to August, 2007.

1. Site descriptions

Surveys and fish sampling were conducted at 5 stations/sites of Darjeeling District according to the probable availability of fish fauna (Figure-I).
Station 1: It is a fish sampling site at River Mahananda near Siliguri with geographical position 26°43’N and 88°25’E.

Station 2: Fish fauna of river Balason were sampled near Matigarah village with geographical position 26°41’N and 88°24’E.

Station 3: Mechi river originates from the hills of the border of Nepal. Our sampling was done from this river near Naxalbari (26°44’N and 88°25’E).

Station 4: Fish sampling from river Teesta was done near Teesta Bazar of Kalimpong (27°54’N and 88°25’E).

Station 5: Fulbari Barrage on river Mahananda was chosen as fish sampling site (26°38’N and 88°24’E). It is situated at the border between Darjeeling and Jalpaiguri district where water of River Teesta is channelized to river Mahananda as a part of the Teesta River Valley Project.
reservoir indicates the association of important rivers and canals of District Darjeeling. Therefore, it is not so difficult to assume that fish fauna of the Mahananda reservoir significantly represents a larger section of fishes of this district.

II. Collection and Identification of fishes

The data is based on fish collection from rivers, direct field observations and information sampling. The fishermen used different types of gill nets and cast nets for fishing. Locally known Ber jal, Khapla jal, Porongi jal (Hand lift net) and Bhasal jal (Dip Net) are very commonly used in the different fishing sites of Darjeeling. Questionnaires were administered to collect the information regarding changing pattern of the rivers and fish distribution. Fish sampling involved collection at the water bodies of the above mentioned five stations and related local markets.

Collected samples were preserved in 4-8% formaldehyde solution and a longitudinal incision was made along the abdomen for larger specimens. Collected fish samples were identified after Day (1878), Jayaram (1999) and Talwar & Jhingran (1991). Identification was confirmed by the help of Zoological Survey of India, Kolkata.

RESULTS

The present work reports a total of 71 species from 48 genera, 20 families and 8 orders. In accordance with Conservation Assessment and Management Plan (CAMP) report (1998), out of 74 species 1 is categorized as Critically Endangered (CR), 8 Endangered (EN), 14 Vulnerable (VU), 1 Data Deficient (DD), 25 Lower Risk near threatened (LR-nt), 4 Lower Risk least concern (LR-lc) and about 18 species are Not Evaluated (NE) yet (Table-I).

DISCUSSION

The survey result shows that among the total fish species collected, Order Cypriniformes holds a major portion of the Darjeeling district’s fish fauna. Fishes of the Family Cyprinidae is most abundant (39% of the total fish species) followed by the Family Balitoridae (11%) as loaches are found at the upper course of River Teesta and Mahananda (Figure-II).

The present study reveals that percentage of fishes under the threatened category have raised almost up to 30%. More precisely, 11% of the total fish species have become Endangered, 20% have become vulnerable and one species namely Pangasius pangasius (Ham) is considered as Critically Endangered (on the basis of the report of BCPP-CAMP workshop, 1998). Status of the 25% of the total collected species is yet to be evaluated (Figure-III).

As our survey was concentrated around the southern portion of Darjeeling, upper hill stream and jhoras still remain unexplored. Reviewing the previous references it has been revealed that a major number of hill stream fishes (loaches) of this particular area have declined. The major causes behind this decline may be attributed to consecutive flood of river Teesta causing habitat destruction of loaches and other tiny species. River Teesta has experienced consecutive floods since 1960. This resulted in the destruction of breeding ground of many fish species. Sillation due to catchment
erosion or waste dumping makes the water column shallow, depriving Mahaseers (*Tor* sp.) and other larger fishes their habitat. Fishes like Boroli (*Barilius* sp.) have also shown significant decline as a result of excessive harvesting due to their high food value and demand.

Pollution has also driven significant population decline or loss. Not a single species of *Nandus nandus* was found during our survey period, but this fish was abundant here as recorded by Shaw and Shebbeare (1937).

Hara horai (Misra), a Sisorid fish is actually suggested as endemic to North Bengal (Barman, 2007). Another endemic fish *Aborichthys elongatus* (Hora) of Family Balitoridae can be suggested as endangered according to the BCPP-CAMP report.
Table-I. List of the fishes recorded from Darjeeling district

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Scientific Name</th>
<th>Local name</th>
<th>Status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cypriniformes</td>
<td>Cyprinidae</td>
<td>Aspidoparia morar (Ham.) Chela</td>
<td>L.Rnt</td>
<td>+ - - - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barilius bendileisis (Ham.) Joia, Guder</td>
<td>L.Rnt</td>
<td>- - + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barilius vagra (Ham.) Boroli</td>
<td>VU</td>
<td>+ - + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barilius shagri (Ham.) Koksa, Na-borna</td>
<td>L.Rnt</td>
<td>+ - + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chagunius chagunio (Ham.) Jerruah</td>
<td>NE</td>
<td>+ + - - +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chela labuca (Ham.) Bekichela, Dankena</td>
<td>L.Rlc</td>
<td>- - + - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crossocheilus latius (Ham) Lahari</td>
<td>DD</td>
<td>- - + + -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Danio aequipinnatus (McClelland) Chebl, Bhitti</td>
<td>L.Rnt</td>
<td>+ - + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Danio danica (Ham.) Nipat</td>
<td>NE</td>
<td>+ - + - +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Esomus danicus (Ham.) Danrika</td>
<td>L.Rlc</td>
<td>- - + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Garra annandalei (Hora) Choak-si, Ghor-poia</td>
<td>NE</td>
<td>+ + - - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Garra gotyla (Gray) Budena</td>
<td>VU</td>
<td>+ - + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labeo boga (Ham) Bogabata, Bangan</td>
<td>L.Rnt</td>
<td>+ - + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labeo dero (Ham) Kursa, Katalkusi, Gardi</td>
<td>VU</td>
<td>- - + + -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labeo gonius (Ham.) Kurchi, Goni</td>
<td>L.Rnt</td>
<td>+ - + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labeo pangiusia (Ham) Utii</td>
<td>L.Rnt</td>
<td>+ - - - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neolissocheilus hexagonlepis (Mc Clelland) Katli</td>
<td>NE</td>
<td>- - + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Puntius conchonius (Ham.) Kanchan-punti</td>
<td>VU</td>
<td>+ + - + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Puntius gelius (Ham) Gilli-punti</td>
<td>NE</td>
<td>+ - - - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Puntius sarana sarana (Ham) Swornopunti</td>
<td>L.Rnt</td>
<td>+ - + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Puntius phutunio (Ham) Phutuni-punti</td>
<td>L.Rlc</td>
<td>+ - - - +</td>
<td></td>
</tr>
</tbody>
</table>
Table-I. (Cont’d)

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Scientific Name</th>
<th>Local name</th>
<th>Status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Puntius terio (Ham)</td>
<td>Teri-punti</td>
<td>LRnt</td>
<td>+ - - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Puntius sophore (Ham)</td>
<td>Punti</td>
<td>LRnt</td>
<td>+ - - - +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Puntius ticto (Ham)</td>
<td>Tita-punti</td>
<td>LRnt</td>
<td>+ - - - +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Raiamas bola (Ham.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schizothorax richardsonii (Gray)</td>
<td>Nak-Katwa, Asala</td>
<td>VU</td>
<td>- + - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semilota semiplotos (Gray)</td>
<td>Chepti, Badangi</td>
<td>VU</td>
<td>- - + + +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tor putitora (Ham.)</td>
<td>Mahaseer</td>
<td>EN</td>
<td>- - - + +</td>
</tr>
<tr>
<td>Cypriniformes</td>
<td>Balitoridae</td>
<td>Aborichthys elongatus (Hora)</td>
<td>Langai</td>
<td>EN</td>
<td>- - - + -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Balitora brucei (Gray)</td>
<td>Tita-Kabri</td>
<td>LRnt</td>
<td>+ - - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schistura beavani (Gunther)</td>
<td>Pola</td>
<td>NE</td>
<td>+ + - + +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acanthocobitis botia (Ham)</td>
<td>Pola</td>
<td>LRnt</td>
<td>+ - - + +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nemacheilus devdevi (Hora)</td>
<td>Khorika</td>
<td>NE</td>
<td>- - - + +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nemacheilus multifasciatus (Day)</td>
<td>Khorkey</td>
<td>EN</td>
<td>- - - + -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schistura rupecula (Mc Clelland)</td>
<td>Rupali-Khorkey</td>
<td>LRnt</td>
<td>- - - + -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nemacheilus shebbearei (Hora)</td>
<td>Khorika</td>
<td>NE</td>
<td>- - - + -</td>
</tr>
<tr>
<td>Cobitidae</td>
<td></td>
<td>Pangio pangia (Ham)</td>
<td>Pangya</td>
<td>NE</td>
<td>- + - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Botia dario (Ham)</td>
<td>Balabotia</td>
<td>NE</td>
<td>- - - + -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lepidocephalichthys annandalei (Chaudhuri)</td>
<td>Poa, Poia</td>
<td>LRnt</td>
<td>+ - - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lepidocephalichthys berdmorei (Blyth)</td>
<td>Guntel</td>
<td>EN</td>
<td>+ - - + +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lepidocephalichthys gunea (Ham.)</td>
<td>Guntel</td>
<td>NE</td>
<td>+ + - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Somileptes gongota (Ham)</td>
<td>Nadiaari Maachh</td>
<td>VU</td>
<td>- + - - +</td>
</tr>
</tbody>
</table>

D:ZSF(Rec-‘09)-109 FolRec-109(1)-49(M-2)20
CD
Table I. (Cont’d)

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Scientific Name</th>
<th>Local name</th>
<th>Status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Psilorhynchidae</td>
<td>Psilorhynchus sucatio (Ham.)</td>
<td>Chepti</td>
<td>EN</td>
<td>- - + - +</td>
<td></td>
</tr>
<tr>
<td>Siluriformes</td>
<td>Bagridae</td>
<td>Mystus bleekeri (Day)</td>
<td>Tengra, Golsa tengra</td>
<td>VU</td>
<td>+ + - + +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mystus cavasius (Day)</td>
<td>Kabasi tengra</td>
<td>LRnt</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mystus vittatus (Bloch)</td>
<td>Tengra, Golsa tengra</td>
<td>VU</td>
<td>- + - - +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rita rita (Ham.)</td>
<td>Ria, Reta</td>
<td>LRnt</td>
<td>- - + + +</td>
</tr>
<tr>
<td>Siluridae</td>
<td>Ompok pabda (Ham)</td>
<td>Pabda</td>
<td>EN</td>
<td>+ - - +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ompok pabo (Ham)</td>
<td>Pabda</td>
<td>NE</td>
<td>+ - - -</td>
<td></td>
</tr>
<tr>
<td>Pangasidae</td>
<td>Pangasius pungtius (Ham)</td>
<td>Pangas</td>
<td>CR</td>
<td>- + + -</td>
<td></td>
</tr>
<tr>
<td>Schilbeidae</td>
<td>Pseudetropius atherinoides (Bloch)</td>
<td>Doya, Potasi</td>
<td>EN</td>
<td>- - - +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silonia silusid (Ham.)</td>
<td>Utri</td>
<td>LRnt</td>
<td>- - + +</td>
<td></td>
</tr>
<tr>
<td>Sisoridae</td>
<td>Bagarius bagarius (Ham)</td>
<td>Bagha-ar</td>
<td>VU</td>
<td>+ - - +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hara horai (Misra)</td>
<td>Kala-kabri</td>
<td>EN</td>
<td>- - - +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hara jerdoni (Day)</td>
<td>Tinkantiya</td>
<td>NE</td>
<td>- - + -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudecheneis sulcatas (McClelland)</td>
<td>Kabri</td>
<td>VU</td>
<td>- - - +</td>
<td></td>
</tr>
<tr>
<td>Heteropneustidae</td>
<td>Heteropneustes fossili (Bloch)</td>
<td>Singhi</td>
<td>VU</td>
<td>- + + -</td>
<td></td>
</tr>
<tr>
<td>Siluriformes</td>
<td>Chacidae</td>
<td>Chaca chaca (Ham.)</td>
<td>Chega, Chaka</td>
<td>NE</td>
<td>- - + + +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Olyra longicaudata (McClelland)</td>
<td>Bot-singhi</td>
<td>NE</td>
<td>+ - - + +</td>
</tr>
<tr>
<td>Perciformes</td>
<td>Badidae</td>
<td>Badis badis (Ham.)</td>
<td>Bot-koi</td>
<td>NE</td>
<td>+ - - - +</td>
</tr>
<tr>
<td></td>
<td>Osphronemidae</td>
<td>Polyacanthus fasciatus (Schneider)</td>
<td>Kholisa</td>
<td>LRnt</td>
<td>- + - - +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ctenops nobilis (McClelland)</td>
<td>Koleehona</td>
<td>NE</td>
<td>- - + + +</td>
</tr>
</tbody>
</table>
Table-I. (Cont’d)

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Scientific Name</th>
<th>Local name</th>
<th>Status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambassidae</td>
<td>Pseudambassis ranga</td>
<td>(Ham.)</td>
<td>Chanda</td>
<td>NE</td>
<td>+ - - - -</td>
</tr>
<tr>
<td>Channidae</td>
<td>Channa orientalis</td>
<td>(Bloch & Schneider)</td>
<td>Taki</td>
<td>VU</td>
<td>- + + - -</td>
</tr>
<tr>
<td>Synbranchiformes</td>
<td>Mastacembelidae</td>
<td>Macrognathus aral</td>
<td>Baan-Maachh</td>
<td>L.Rnt</td>
<td>+ + - + +</td>
</tr>
<tr>
<td>Tetraodontiformes</td>
<td>Tetraodontidae</td>
<td>Tetraodon cutcutia</td>
<td>Tepa</td>
<td>L.Rnt</td>
<td>+ - - + -</td>
</tr>
<tr>
<td>Clupeiformes</td>
<td>Clupeidae</td>
<td>Gudusia chapra</td>
<td>Khoira</td>
<td>L.Rlc</td>
<td>- + - - +</td>
</tr>
<tr>
<td>Osteoglossiformes</td>
<td>Notopteridae</td>
<td>Notopterus notopterus</td>
<td>Pholui</td>
<td>L.Rnt</td>
<td>- + + - +</td>
</tr>
<tr>
<td>Beloniformes</td>
<td>Belonidae</td>
<td>Xenentodon cancila</td>
<td>Kakla</td>
<td>L.Rnt</td>
<td>+ + - + +</td>
</tr>
</tbody>
</table>

Critically Endangered = CR; Endangered = EN; Vulnerable = VU; Lower Risk - near threatened = L.R-nt; Lower Risk - least concern = L.R-lc; Date Deficient = DD; Not Evaluated = NE; Present = +; Absent = - ;

CONCLUDING REMARK

The water bodies of District Darjeeling have undergone several major changes during the past few years through deforestation, flood and other activities. These changes have attributed to the changes in the composition of fish fauna. Several species may have become extinct from this region, which is yet to be proven. Conservation status of the freshwater fishes of this region is very poor. Despite the discovery of several new species to date, the rate of increase of pressure on these is so high that extinction may be expected even before discovery. The NBFG’R’s conservation research strategies should be implemented with immediate effect. Moreover, thorough exploration of hill streams and jhoras may provide ample information about the fish fauna of this district.

ACKNOWLEDGEMENT

Authors are thankful to University Grants Commission (UGC) for their financial support.

REFERENCES

MEIOFAUNA OF GULF OF MANNAR

G. SIVAEELA AND K. VENKATARAMAN
Zoological Survey of India, Marine Biology Centre, 130, Santhome High Road, Chennai-600028

INTRODUCTION

Meiofaunal organisms are mobile metazoans, which are smaller than macrofauna and larger than microfauna. Meiofauna can be defined as those animals, which will pass through a sieve with a mesh size of 0.5 mm but be retained by 0.045 mm sieve. Some reach 1 or 2 mm in length but can pass through the larger sieve because they are long and slender. Being small and less conspicuous, they are often ignored altogether. Meiofauna live in both freshwater and Marine habitats. The meiofauna often extremely abundant in fine particle beaches, sometimes exceed the macro fauna in biomass in coarser sands. They also inhabit complex surfaces and the spaces between them such as are found on seaweeds and other structures.

The meiofauna consists of various representatives of the Gastotricha, Kinorhyncha, Nematoda, Copepoda, Ostracoda, Mystacocarida, Halacarina and many groups of Turbellaria and Oligochaeta, some Polychaeta and a few specialized species of the Hydrozoa, Nemertina, Bryozoa, Gastropoda, Aplacophora, Holothuroidea and Tunicata.

All of them are small and may have a worm like shape. Meiofauna have been distinguished into the burrowing muddy sediments forms and interstitial sandy sediments forms. Intertidal sediments tend to be dominated by nematodes, which can reach very high densities on finer particles beaches. Nematodes are usually long and thin, a shape well suited for moving through interstices. Slender species inhabit the larger interstitial spaces found on sandy beaches are bulkier epibenthic and shallow burrowing forms are more common in fine sediments.

The present paper gives a taxonomic account and distribution of 36 species belonging to 31 genera, 24 families of nematodes, copepods, foraminiferans, ostracods and polychaetes of Gulf of Mannar.

REVIEW OF LITERATURE

During 1900-1950, which was a period of early meiofaunal research. Many animals were discovered and described. Mare (1942) introduced and defined the term ‘Meiobenthos’. The term ‘Interstitial fauna introduced by Nichol’s (1935) for animals living in the interstitial water of sand
and its equivalent terms Mesopsammon introduced by Remane (1940) are often confused with the term meiofauna. Organism living in the interstitial spaces between particles of all types of sediment are referred to as interstitial if they move through the habitat with a minimum of disturbances of constituent particles. The term meiofauna is derived from Greek Meio meaning “smaller”. In this context it refers to the fauna smaller than what has been defined as the lower size limit for macrofauna.

Nematodes populating North American shores (Cobb, 1914, 1920) and the Archiannelids of the Northern French coast (Giard, 1904), Remane who is described as the “father of Meiofaunal research” was the first to recognize the rich populations in intertidal beaches, subtidal sands, muds and algal habitats. Remane described Gastrotricha, Rotifera, Archiannelids, Kinorhyncha and other taxa.

The free-living marine nematodes usually constitute the most abundant group of organisms in the meiofauna of littoral sediments. The works of Wieser (1953, 1954, 1956), Timm (1961) and Gerlach (1962, 1963, 1964) proved quite useful in the identification of many common genera and species of these marine nematodes.

Total and relative measurements of body are absolutely necessary for identification of marine nematodes. Structure of stoma, cup shaped with minute teeth, structure of tail, types of oesophagus, types of Amphids, are the identification characters. For this the Demanian formula is usually employed indicating, \(a = \frac{\text{total body length}}{\text{maximum body diameter}} \), \(b = \frac{\text{total body length}}{\text{length of tail}} \). The position of nerve ring, excretory pore and vulva is expressed in percentage of body or oesophageal length.

Brady (1884) has given an exhaustive and excellent account of the Foraminifera from the dredgings of the Challenger' expedition which crossed the Indian Ocean far to the south of the Peninsula. Chapman (1895) reported on the Foraminifera obtained by the Royal Indian Marine survey ship S.S. 'Investigator' from the Arabian Sea near Laccadive Islands. Stubbings (1939) reported on the distribution and biology of nearly 300 species of Foraminifera from the Marine deposits of the Arabian Sea collected during the Johan Murray’ expedition. Carter (1888) on the specimens dredged up from the Gulf of Mannar. Dakin (1906) recorded 131 species of Foraminifera from the Gulf of Mannar off Ceylon coast. Gnanamuthu (1943) has listed 47 species of Foraminifera from the Krusadai islands in the Gulf of Mannar. The identification of various families and genera is based on the classification adopted by Cushman (1948) K.M.S. Ameer Hamsa (1971) reported Foraminifera of the Palk Bay and Gulf of Mannar. Ganapati and Satyavati (1958) recorded the Report on the Foraminifera in bottom sediments in the Bay of Bengal off the east coast of India.

Sewell (1919, 1924) reported on the copepod fauna of Chilka Lake and more recently Devasundaram and Roy (1954) have discussed briefly the occurrence and seasonal variations of the copepods in the plankton of the Chilka Lake for the period 1950-1951.
There are brief references to Copepoda in the accounts on the brackishwater fauna of Adyar and other estuarine areas around Madras, by Panikkar and Aiyar (1937), Krishnaswamy (1953) and Chako et al. (1953).

Sewell (1919) described a new copepod from the Cochin backwater. The first attempt of making a systematic study and ecology of the planktonic copepods of the Cochin backwater was made by George (1958), Pillai (1970) while giving a list of the Pseudodiaptomus Herrick. The following authors also have contributed to our knowledge of the copepods on habitating brackish waters of India: Kasturirangan (1963), Sewell (1948, 1956) and Ummerkutty (1960). All the above studies have recorded a total of 62 species of Calanoid copepods from different estuaries in India as follows.

MATERIALS AND METHODS

The meiofauna along the beach are collected and field studies made during low tide when the intertidal zone is fully exposed. A Perspex corer having 40 cm long and had an internal cross-sectional area of 10 cm² was used for the collection of the sand samples (Nybakkan, 1997). The corer tube was vertically thrust into the beach sand up to 10-30 cm and the top portion of the corer was tightly closed with a rubber bung. Later the corer was carefully removed from the substratum, without disturbing the entire samples. To each core sample was added 4% solution of formaldehyde as preservative and a few drops of rose Bengal for necessary staining. In the laboratory, the meiofauna was extracted by washing with 10% solution of magnesium chloride. Then the solution was filtered on a 63 µm diameter mesh size plankton cloth and the concentrated organisms were carefully collected in petridishes. Later the organisms were sorted into different groups and numerically counted up to species level.

SAMPLE PROCESSING

Samples were processed in the laboratory using the methods of Higgins & Thiel (1988) to extract the fauna from the sand grains. Each sample in the vial is stirred with filtered sea water. The supernatant was decanted on to a 63 µm sieve and the fauna were preserved in 4% buffered formalin with rose Bengal stain. The Meiofauna collected on a finer sieve is then washed into a petridish, examined and counted under the binocular microscope.

Standard manuals and monographs were followed to identify the meiofaunal species.

LIST OF SPECIES RECORDED

Phylum ARTHROPODA

Class CRUSTACEA

Order HARPACTICOIDA

Family LONGIPEDIIDAE

1. *Longipedia weberii* (A. scott)

Family TACHIDIIDAE

2. *Euterpina acutifrons* (Dana)
3. *Microsetella norvegica* (Boek)
 Family ECTINOSOMIDAE

4. *Macrosetella gracilis* (Dana)
 Family MACROSETELLIDAE

5. *Isias tropica* (Sewell)
 Family CENTROPAGIDAE

6. *Paramesochra arenicola* (Klie, 1929)

7. *Emertonia pseudogracilis* Krishnaswamy, 1957
 - Phy NEMATODA
 - Class ADENOPHOREA
 - Order ENOPLIDA
 Family ANTICOMIDAE

8. *Anticoma* sp.

9. *Anticoma acuminata* (Eberth, 1863)
 Family OXYSTOMINIDAE

10. *Porocoma striata* Cobb, 1920
 Family MONHYSTERIDAE

11. *Theristus* sp.

12. *Theristus pertenuis*

 Family CHONIOLAIMIDAE

14. *Latronema orcinum* (Gerlach, 1952)
 Family SPHAEROLAIMIDAE

15. *Sphaerolaimus pacificus* Allgen
 Family ONCHOLAIMIDAE

16. *Oncholaimus* sp.

17. *Oncholaimus brachyceus* De Man, 1889

 Family CAMACOLAIMIDAE

19. *Procamacolaimus tubifer* Gerlach, 1953
 Family NEOTONCHIADAE

20. *Neotonchus* sp. W.B. Blome, 1982
 Family TRIPYLOIDIDAE

21. *Tripyloides gracilis*, (Ditlevsen, 1918)
22. *Daptonema* sp. (1)
23. *Daptonema* sp. (2) W. sm. Wetzel, 1993
24. *Metalinhomeus* sp. Chitwood, 1951
25. *Pselionema* sp.
26. *Anoplostoma* sp.
27. *Rhynchonema* sp.
28. *Enoplolaimus* sp.
29. *Chromadora* sp.
30. *Rotalia pulchela* D’Orbigny, 1939
31. *Quinqueloculina vulgaris* D’Orbigny, 1826
32. *Trochammina inflata* (Montagu, 1808)
33. *Elphidium reticulosum* Cushman, 1948
34. *Bullia vittata* Linnaeus, 1767
35. *Conscoecia indica*
36. *Typosyllis* sp.

CONCLUSION

Table 1 shows a total of 36 species of meiofauna including 21 species of nematodes belonging to 20 genera, 4 species belonging to 4 genera of foraminiferans, Ostracod such as *Conscoecia indica*, Polychaeta such as *Typosyllis* sp. Nematodes were most abundant group of meiofauna at all the sampling sites, followed by harpacticoid copepods (8 species) and foraminiferans.

Totally five species of nematodes were dominated, which occurred in all the 16 stations i.e., *Daptonema* sp. (1) *Daptonema* sp. (2) *Anoplostoma* sp. (3) *Oncholaimus* sp, (4) *Viscosia viscosa*,...
Table-1: Occurrence and distribution of meiofauna of southeast coast (i-Keelakarai, ii-Sethukarai, iii-Kalimangundu, iv Muthupetttai, v-Periapatnam, vi-Ervadi, vii-China Ervadi, viii-Pamban bridge, ix-Rameswaram, x-Thangatchimadam, xi-Single Island, xi-Krusadai Island, xiii-Pullivasal Island, xiv-Poomarichan, xv-Mnauli, xvi-Hare Island, xvii-Nallathani Island.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Species</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>1.</td>
<td>Longipedia weberii</td>
<td>+</td>
</tr>
<tr>
<td>2.</td>
<td>Euterpina acutifrons</td>
<td>+</td>
</tr>
<tr>
<td>3.</td>
<td>Microsetella norvegica</td>
<td>+</td>
</tr>
<tr>
<td>4.</td>
<td>Macrosetella gracilis</td>
<td>+</td>
</tr>
<tr>
<td>5.</td>
<td>Paramesochra arenicola</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>Ermontia pseudogracilis</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>Isias tropica</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>Anticoma acuminata</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>Porocoma striata</td>
<td>+</td>
</tr>
<tr>
<td>10.</td>
<td>Theristus tortuosa</td>
<td>+</td>
</tr>
<tr>
<td>11.</td>
<td>Latronema orcinum</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>Sphaerolaimus pacificus</td>
<td>-</td>
</tr>
<tr>
<td>13.</td>
<td>Oncholaimus brachyceus</td>
<td>-</td>
</tr>
<tr>
<td>14.</td>
<td>Procamacolaimus tubifer</td>
<td>-</td>
</tr>
<tr>
<td>15.</td>
<td>Neotonchus sp.</td>
<td>-</td>
</tr>
<tr>
<td>16.</td>
<td>Rotalia pulchella-</td>
<td>+</td>
</tr>
<tr>
<td>17.</td>
<td>Quinqueloculina vulgaris</td>
<td>+</td>
</tr>
</tbody>
</table>
Table-1: (Cont'd.)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Species</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>i ii iii iv v vi vii viii ix x xi xii xiii xiv xv xvi xvii</td>
</tr>
<tr>
<td>19.</td>
<td>Trochammina inflate-</td>
<td>- - - - - + - - + - - - - - - - - -</td>
</tr>
<tr>
<td>20.</td>
<td>Elphidium reticulosum-</td>
<td>+ - + - + - - + + + - - - - - - - - -</td>
</tr>
<tr>
<td>22.</td>
<td>Consoecia indica</td>
<td>- - + - - - - - + + - - + - - - - - -</td>
</tr>
<tr>
<td>23.</td>
<td>Bullia vittata</td>
<td>- - - + - + - - + + - + - - - - - - -</td>
</tr>
<tr>
<td>24.</td>
<td>Tripolyodes gracilis</td>
<td>+ - - - - + - - + - - - - - - - - - -</td>
</tr>
<tr>
<td>24.</td>
<td>Chromadora sp.</td>
<td>- - - - - + - - + - - - - - - - + - -</td>
</tr>
<tr>
<td>25.</td>
<td>Daptonema sp. (1)</td>
<td>- + - - - - - + - - + - - - + + - - -</td>
</tr>
<tr>
<td>26.</td>
<td>Daptonema sp. (2)</td>
<td>- + - - - - - + - - + - - + + + - - -</td>
</tr>
<tr>
<td>27.</td>
<td>Metalinhomoeus sp.</td>
<td>+ + - - - - - + - - - - - - - - - - -</td>
</tr>
<tr>
<td>28.</td>
<td>Theristus sp.</td>
<td>- - - - - - - + - - - - - - - - - - -</td>
</tr>
<tr>
<td>29.</td>
<td>Theristus pertenuis</td>
<td>- - - - - - - + - - - - - - - - - - -</td>
</tr>
<tr>
<td>30.</td>
<td>Pselionema sp.</td>
<td>- - - - - - - + - - - - - - - - - - -</td>
</tr>
<tr>
<td>31.</td>
<td>Anoplostoma sp.</td>
<td>+ - - - + - - - + - - - - - - - - - -</td>
</tr>
<tr>
<td>32.</td>
<td>Oncholaimus sp.</td>
<td>+ + - - - - - + - - - - - - - - - - +</td>
</tr>
<tr>
<td>33.</td>
<td>Anticoma sp.</td>
<td>+ - - - - - - + - - - - - - - - - - -</td>
</tr>
<tr>
<td>34.</td>
<td>Rhynchonema sp.</td>
<td>- - - - - - - + - - - - - - - - - - +</td>
</tr>
<tr>
<td>35.</td>
<td>Viscosia viscose-</td>
<td>+ - - - - - - + - - - - - - - - - - +</td>
</tr>
<tr>
<td>36.</td>
<td>Enoploaimus sp.</td>
<td>+ - - - - - - + - - - - - - - - - - -</td>
</tr>
</tbody>
</table>

(+ present, − absent)
(5) Theristus tortuosa. The foraminiferans species such as four species by (1) Rotalia pulchella, (2) Quinqueloculina vulgaris, (3) Trochammina inflata, (4) Elphidium reticulosu. The harpacticoids copepods species such as (1) Euterpinia acutifrons, (2) Microsetella norvegica, (3) Macrosetella gracilis were occurred sporadically. The greater diversity is occurred in muddy environment.

The greater diversity was observed at station I and XII, which had a cover of muddy with seagrass environment. At station IX (Rameswaram) is low diversity by human impact.

ACKNOWLEDGEMENTS

Our sincere thanks are due to the Director, Zoological Survey of India for permitting to carry out the work. the authors are thankful to Dr. Dr. K. Rema Devi, Officer-in-charge, MBS/ZSI for the facilities provided and also thankful to Dr. C. Raghunathan, Sci ‘B’ & Dr. G. Chinnadurai, Lecturer for identifying most of the groups to carry out the works and Shri Pabmanabhan Zool. Asstt. for photograph editing the document are duly acknowledged.

REFERENCES

Cushman, J.A. 1948 Foraminifera, their classification and Economic use, Harv. Univ. Press.

ON A COLLECTION OF DRAGONFLIES (ODONATA : ANISOPTERA) FROM ANDAMAN AND NICOBAR ISLANDS

SUPRIYA NANDY AND BABU, R.
Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053

INTRODUCTION

The study of Odonata fauna of Andaman and Nicobar Islands dates back to nineteenth century, with the description of a new species of damselfly *Libellago lineata blanda* by Selys (1853), from Great Nicobar Island. Afterwards many species have been recorded by Selys (1863, 1871, 1877). Fraser (1924) provided the first Odonata list of Andaman and Nicobar Islands and added 9 species to the fauna of this region, which were included in *Fauna of British India* (1933, 1934, 1936). Lahiri (1975) reported 31 species of Odonates from South Andaman with 15 Zygoptera and 16 Anisoptera but no species list was provided in that paper.

Chhotani et al. (1983) provided the consolidated list of 34 species from Andaman and Nicobar Islands with 19 species of Anisoptera which included two new species, *Gomphidia ganeshi* and *Oligoaeschna andamani*. Their work was based on the collections from various surveys during 1928 to 1969 made by Col. R.B.S. Sewell, B.S. Lamba, A. Daniel & H.K. Bhowmik and T.D. Soota, covering different areas of Andaman and Nicobar Islands. Later Lahiri and Mitra (1993) added 8 species to this Island fauna, which includes 6 species of Anisoptera. Mitra (1995) recorded 3 species of Zygoptera and 8 species of Anisoptera new to Great Nicobar Island, of which 4 species of Anisoptera were also new record to Andaman and Nicobar Islands. Lahiri (1998) reported eleven Odonate species as new record from Little Andaman Island of which 7 species are Anisoptera. Previously all these species were reported from South Andaman only.

Hämäläinen et al. (1999) recorded 9 species newly from Andaman and Nicobar Islands which includes 7 species of Anisoptera. Among these, *Neurothemis ramburii ramburii* (Brauer) and *Zyxomma obtusum* Albarda were recorded as new to India.

Ram et al. (2000) studied Odonate fauna of Andaman and Nicobar Islands based on the surveys conducted by the scientists of Andaman and Nicobar Regional Station, ZSI, Port Blair. They reported 7 species of Anisoptera as new to fauna of Andaman and Nicobar Islands. Ram et al. (2000) reported *Cratilla metallica* (Brauer) as first record from India, but it was previously recorded by Fraser (1936) from Hasimara, Duars, Bengal, which is distinctly within Indian Territory. Yeh and
Veenakumari (2000) described new species, *Gynacantha andamanae* from South Andaman Island. Mitra (2002a) discussed on the zoogeography of Odonates of Nicobar Islands and provided the list of known Odonates from that Nicobar Island group.

The present study is based on the collection of Odonata specimens made by the scientists of Zoological Survey of India from Andaman and Nicobar Islands during 1970-1988 and 2000 present in the National Zoological Collections, ZSI, Kolkata. The nomenclature followed here is after Fraser (1934 & 1936), Prasad & Varshney (1995) and Mitra (2002b). From this study, *Neurothemis intermedia atlanta* Ris and *Tramea basilaris burmeisteri* Kirby are reported for the first time from Andaman and Nicobar Islands. The consolidated list of 44 species/subspecies of suborder Anisoptera along with their distribution within Andaman and Nicobar Islands is given in the Table-1.

SYSTEMATIC ACCOUNT

Suborder ANISOPTERA

Superfamily LIBELLULOIDEA

Family LIBELLULIDAE

Genus *Agrionoptera* Brauer

Agrionoptera insignis insignis (Rambur)

Diagnostic character: Male: Frons creamy yellow at sides, brilliant metallic blue above and over greater part of anterior surface. Prothorax black, anterior lobe and borders of posterior lobe yellow. Thorax bronzed or metallic black, marked with greenish yellow. Legs black. Wings hyaline, with amber yellow streaks in the subcostal and cubital spaces not extending as far as the first antenodal nervure. Abdomen black marked with blood red. Anal appendages black.

Distribution: India: Andaman and Nicobar Islands (Nicobar), Assam, West Bengal.

Elsewhere: Indonesia, Japan, Malaysia, Myanmar, Thailand.

Genus *Crocothemis* Brauer

Crocothemis servilia servilia (Drury)

NANDY & BABU: On a collection of Dragonflies (Odonata: Anisoptera).....Nicobar Islands

Diagnostic character: Male: Most parts of head, often dorsum of thorax, abdomen and anal appendages blood-red. Middle lobe of prothorax ridged transversely, beset with stiff red hairs. Wings hyaline, bases of all marked with rich amber-yellow, apices of wings lined narrowly with pale brown. Pterostigma dark ochreous between blackish nervures. Female: Labium pale yellow; Labrum, frons, face and vesicle olivaceous yellow; Prothorax and thorax olivaceous brown, legs ochreous. Wings similar to male but basal markings paler in tint and the neuration in this part bright yellow instead of bright orange.

Distribution: India: Andaman and Nicobar Islands (Middle Andaman, South Andaman and Little Andaman), Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Chhattisgarh, Himachal Pradesh, Jharkhand, Karnataka, Kerala, Madhya Pradesh, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Rajasthan, Sikkim, Tamil Nadu, Tripura, Uttar Pradesh and West Bengal.

Elsewhere: Africa, America, Australia, Bangladesh, China, Iraq, Indonesia, Japan, Korea, Malaysia, Myanmar, Nepal, Philippines, Singapore, Sri Lanka, Taiwan, Thailand and Turkey.

Remark: This species is recorded for the first time from Middle Andaman.

Genus Diplacodes Kirby

Diplacodes trivialis (Rambur)

Diagnostic character: Male: Labium, labrum and bases of mandible creamy yellow; face, frons and vesicle palest azure blue. Prothorax pale brown to black, a mid dorsal stripe on dorsum. Thorax greenish yellow/olivaceous, sutures finely black; whole thorax pruinose in old adults. Wings hyaline, apices clear. Abdomen segments 1 to 3 greenish yellow, sutures finely black, prominent middorsal and subdorsal stripes, segments 4 to 7 with subdorsal yellow stripes, segments 8 to 10 black, marking obscured due to pruinescence in adults. Anal appendages bright yellow.
Female: Resembles subadult male in colour; abdominal markings broader and continued on to segments 8 to 10, the latter entirely yellow as well as anal appendages. Vulvar scale broad but short ‘scoop’ shaped.

NANDY & BABU: On a collection of Dragonflies (Odonata: Anisoptera)......Nicobar Islands

Distribution: India: Andaman and Nicobar Islands (North Andaman, Middle Andaman, South Andaman, Little Andaman and Nicobar), Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Chhattisgarh, Gujarat, Himachal Pradesh, Karnataka, Kerala, Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Sikkim, Tamil Nadu, Tripura, Uttarakhand, Uttar Pradesh and West Bengal.

Elsewhere: Australia, Bangladesh, China, Indonesia, Iraq, Japan, Malaysia, Myanmar, Nepal, Philippines, Sri Lanka, Taiwan and Thailand.

Remark: This species is recorded for the first time from Middle Andaman and Little Andaman.

Genus Lathrecista Kirby

Lathrecista asiatica asiatica (Fabricius)

Diagnostic character: Male: Prothorax blackish-brown, thorax dark coppery brown on dorsum, bright yellow laterally; Abdomen segments 1 and 2 with a broad lateral stripe and a fine middorsal, all sutures on these two segments finely black; segments 3-8 bright crimson red with sutures black; segments 9 and 10 black. Legs dark reddish brown to black. Wings hyaline with apices usually enfumed, sometimes dark reddish brown to proximal end of pterostigma. Female: Resembles the male closely but colour of abdomen is rich olivaceous-brown. Apices of wings tipped with brown to distal end of pterostigma only. Vulvar scale and ninth ventral plate projecting beyond end of abdomen and coated with golden hairs.

Material examined: 1d, 1 km. east of Rangat Jetty, Middle Andaman, 1970, Coll. B.K. Tikader; 1G, Durgapur, 2 km south of Aeruial Bay Jetty, Diglipur, North Andamans, 26.iv.1971, Coll. B.K. Tikader; 2G1E, Pahelgaon, 2 km south of Rest House, Tugapur, Mayabunder, North Andaman,

Distribution: India: Andaman and Nicobar Islands (North Andaman, Middle Andaman, South Andaman, Little Andaman and Nicobar), Arunachal Pradesh, Assam, Bihar, Madhya Pradesh, Maharashtra, Manipur, Nagaland, Orissa, South India and West Bengal.

Elsewhere: China, Fiji, Indonesia, Japan, Malaysia, Myanmar, Philippines, Papua New Guinea, Samoa, Singapore, Sri Lanka, Taiwan and Thailand.

Remark: This species is recorded for the first time from Middle Andaman.

Genus Neurothemis Brauer

Neurothemis fulvia (Drury)

Diagnostic character: Male: Prothorax, thorax and abdomen reddish-brown, sutures and borders of latter finely black. Legs and anal appendages dark ferruginous. Wings opaque, dark reddish brown from base to about middle of pterostigma, apex of wings also opaque brown enclosing a clear window in each wing at apex. Female: Many forms of females are found, varying from complete isochrome (having tips of fore wings completely clear and that of hind wings bordered with amber yellow but not opaque brown) to several types of heterochromes: having the ground colour of head, thorax and body generally much paler or ochreous. Wings clear amber-yellow, with a dark ray in subcostal and costal areas near the node and form a nodal spot.

Distribution: India: Andaman and Nicobar Islands (South Andaman, Little Andaman and Nicobar), Arunachal Pradesh, Assam, Bihar, Jharkhand, Chhattisgarh, Himachal Pradesh, Karnataka, Kerala, Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Tamil Nadu, Tripura, Uttarakhanda and West Bengal.
Elsewhere: Australia, Bangladesh, China, Hong Kong, Indonesia, Iraq, Japan, Malaysia, Myanmar, Nepal, Philippines, Seychelles, Sri Lanka, Taiwan and Thailand.

Remark: This species is recorded for the first time from Little Andaman.

Neurothemis intermedia atlanta Ris

Diagnostic character: Male: Labrum, frons and whole of face brightly tinted with crimson; dorsum of thorax uniform olivaceous to dark reddish-brown without humeral stripe. Abdomen with broad ventro lateral stripe, continuous along whole length of abdomen, segment 8 and 9 with middorsal carina blackish and 9 entirely black except ventral border. Wings hyaline with intense golden amber basal marking to as far distal as outer border of discoidal cell, costal border of wing not tinted with yellow. Anal appendages reddish.

Distribution: India: Assam, Kerala, Meghalaya, Orissa, Sikkim, Tamil Nadu and Tripura.

Remark: This species is recorded for the first time from Andaman & Nicobar Islands in the present study.

Neurothemis intermedia intermedia (Rambur)

Diagnostic character: Female: Prothorax reddish brown, thorax pale greenish yellow, dorsum tinged with ferruginous and with a distinct humeral reddish-brown stripe. Wings uniformly tinted with pale yellow, this diffusely deepened along costal area. Abdomen bright reddish-brown/ochreous with sharply defined ventro-lateral brownish stripe interrupted at apical end of segments 3 to 8, some small dark points at base of segment 10. Anal appendages reddish.

Distribution: India: Andaman and Nicobar Islands (North Andaman and Nicobar), Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Chhattisgarh, Karnataka, Kerala, Madhya Pradesh,
Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Sikkim, Tamil Nadu, Tripura, Uttarakhand, Uttar Pradesh and West Bengal.

Elsewhere: Bangladesh, China, Myanmar, Malaysia, Nepal, Sri Lanka and Thailand.

Genus Orthetrum Newman

Orthetrum chrysis (Selys)

Diagnostic character: Male : Labium, labrum and face yellowish or pale brown; Frons bright scarlet; Thorax dark ferruginous and abdomen bright blood-red. Wings with the basal marking only extending to the first antenodal nervure and not beyond the border of the membrane; pterostigma dark reddish brown.

Distribution: India: Andaman and Nicobar Islands (North Andaman and South Andaman), Assam, Himachal Pradesh, Maharashtra, Orissa, Western Ghats and West Bengal.

Elsewhere: Australia, China, Hong Kong, Indonesia, Japan, Malaysia, Myanmar, Nepal, Pakistan, Philippines, Singapore, Sri Lanka, Taiwan and Thailand.

Orthetrum pruinosum neglectum (Rambur)

Diagnostic character: Male: Labium, labrum and face ochreous to pale reddish brown; Frons dark brown to blue-black anteriorly. Prothorax and thorax reddish brown to dull purple according to the amount of pruinescence present. Wings hyaline, enfumed pale brown towards apices with a reddish brown basal marking extending distalwards in hind wing; pterostigma reddish brown to black, covering 2 cells. 2 rows of cells between IR_{III} and R_{III}. Abdomen vermillion red to purplish-red due to pruinescence. Anal appendages red.

Distribution: India: Andaman and Nicobar Islands (North Andaman, South Andaman and Nicobar) Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Himachal Pradesh, Jammu-Kashmir, Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Rajasthan, Sikkim, South India, Tripura, Uttarakhand, Uttar Pradesh and West Bengal.

Elsewhere: Afghanistan, Bangladesh, China, Hong Kong, Indonesia, Japan, Laos, Malaysia, Myanmar, Nepal, Philippines, Singapore, Sri Lanka, Taiwan, Thailand and Vietnam.

Remark: This species is recorded for the first time from Andaman Islands (North and South Andaman) in this study. Previously it was recorded from Nicobar Islands only.

Orthetrum sabina sabina (Drury)

Diagnostic character: Male: Labium yellow, middle lobe brownish to black; labrum, face and frons yellowish. Frons very deeply notched forming two triangular facets in front. Prothorax bright yellow marked with black, its anterior and middle lobe blackish brown posteriorly. Thorax greenish yellow, sutures of thorax finely black. Abdomen greenish yellow marked with black; segment 1 to 3 enormously swollen dorso ventrally and laterally, segments 4 to 6 very narrow, cylindrical; segments 7 to 9 all dilated but compressed laterally; segment 10 very small. Anal appendages creamy white with a row of very small black spines below superiors. Female: Exactly similar to the male both in colour and shape of abdomen. Anal appendages pale yellow, shortly conical.

Distribution: India: Andaman & Nicobar Islands (North Andaman, Middle Andaman, South Andaman, Little Andaman and Nicobar), Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Goa, Gujarat, Himachal Pradesh, Jharkhand, Karnataka, Kerala, Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Orrisa, Rajasthan, Sikkim, Tamil Nadu, Tripura, Uttarakhand, Uttar Pradesh and West Bengal.

Elsewhere: Asia Minor, Australia, Bangladesh, China, Cyprus, Indonesia, Iran, Myanmar, Nepal, Philippines, Singapore, Somaliland, Sri Lanka, Syria and Thailand.

Remarks: This species is recorded for the first time from Middle Andaman and Little Andaman.

Genus Pantala Hagen

Pantala flavescens (Fabricius)

D:ZSI(Rec-‘09)-109 FolVRec-109(4)-44(M-2)-44
Diagnostic character: Male: Large species; Eyes reddish brown above. Prothorax rich ochreous with transverse belt of dark reddish brown between anterior and middle lobes. Thorax olivaceous or ferruginous coated thickly with yellowish downy hair. Wings hyaline, with base of hind-wing pale golden yellow up to anal loop and with a narrow apical brown spot limited to posterior border of wing; pterostigma bright ochreous; membrane white. Abdomen bright ochreous, dorsum tinted with bright brick red, sides of segments 1 to 4 pale yellow. Anal appendages ochreous. Female: Very similar to male except eyes olivaceous brown, wings evenly and deeply enfumed and always without apical brown spot, abdomen not constricted at segment 3, stouter and more robust.

Distribution: India: Andaman and Nicobar Islands (North Andaman, Middle Andaman, South Andaman, Little Andamans and Nicobar), Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Chhattisgarh, Goa, Himachal Pradesh, Karnataka, Kerala, Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Rajasthan, Sikkim, Tamil Nadu, Tripura, Uttarakhand, Uttar Pradesh and West Bengal.

Genus Potamarcha Karsch

Potamarcha congener (Rambur)

Diagnostic character: Male: Face and frons olivaceous yellow. Prothorax dark brown, thorax black and pruinosed in adult. Wings hyaline, tipped with brown at extreme apices. Two rows of
cells between IR_{st} and R_{sp}; arc lying between second and third antenal nervation; only 1 cubital nervation. Pterostigma dark reddish brown, covering 2 to 4 cells. Anal appendages black.

Distribution: India: Andaman and Nicobar Islands (North Andaman, Middle Andaman, South Andaman and Little Andaman), Andhra Pradesh, Arunachal Pradesh, Assam, Goa, Himachal Pradesh, Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Nagaland, Orissa, Sikkim, South India, Tripura, Uttarakhand, Uttar Pradesh and West Bengal.

Elsewhere: Australia, Bangladesh, China, Hong Kong, Indonesia, Kampuchea, Laos, Malaysia, Myanmar, Nepal, Philippines, Sri Lanka, Taiwan, Thailand and Vietnam.

Remark: This species is recorded for the first time from North Andaman.

Genus *Tholymis* Hagen

Tholymis tillarga (Fabricius)

Diagnostic character: Female: Abdomen olivaceous brown, broad at base then tapering gradually to the end. Wings hyaline, hind wing with very pale golden brown fascia. Borders of anal loop running on the posterior border of hind wing apex of loop open.

Distribution: India: Andaman and Nicobar Islands (North Andaman, Middle Andaman, South Andaman, Little Andaman and Nicobar), Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Goa, Himachal Pradesh, Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, South India, Uttarakhand, Uttar Pradesh and West Bengal.

Elsewhere: America, Australia, Bangladesh, Cameroon, China, Ethiopia, Indonesia, Japan, Kampuchea, Laos, Madagascar, Malaysia, Malawi, Micronesia, Mozambique, Myanmar, Nepal, Philippines, Somalii, Sri Lanka, Taiwan, Tanzania, Thailand and Vietnam.

Remark: This species is recorded for the first time from Little Andaman.

Genus *Tramea* Hagen

Tramea basilaris burmeisteri Kirby

 Diagnostic character: Female: Face and frons bright chrome yellow; labrum reddish brown, less broadly black. Prothorax yellowish; thorax olivaceous, bluish-green laterally with black markings, humeral suture finely black, lateral stripes expanded in their upper parts to form elongate spots. Abdomen olivaceous green with black markings-apical annules or rings on segments 4-7; segment 8 black with triangular yellow basal spot on each side; 9 and 10 black with medial lateral spot. Anal appendages as long as last three segments of abdomen. Wings tinted with yellow, deepening in tint to nearly as far as level of pterostigma; two large black spots within golden yellow areola at baso-anal area of hind wing, two portions of the black area are separated.

 Material examined: 1E, Marine Hills, Port Blair, South Andaman 15.xii.1972, ColI. K.S. Pradhan.

 Distribution: India: Andaman and Nicobar Islands (South Andaman), Andhra Pradesh, Bihar, Himachal Pradesh, Madhya Pradesh, Maharashtra, Meghalaya, Orissa, Rajasthan, South India, Uttarakhand, Uttar Pradesh and West Bengal.

 Elsewhere: Japan, Malaysia, Myanmar, Nepal, Thailand, Tibet and Vietnam.

 Remark: This species is recorded for the first time from Andaman & Nicobar Islands in the present study.

 Genus Trithemis Brauer

 Trithemis aurora (Burmeister)

 Diagnostic character: Male: Face and front of frons ochreous, changing to reddish above, vesicle and dorsum of frons metallic violaceous. Prothorax reddish-brown, thorax dull purple due to pruinescence. Abdomen swollen dorsoventrally at base, then slightly constricted at segment 3 and again dilated fusiformly, depressed and broad. Wings hyaline with crimson reticulation, broad amber yellow fascia at base of wing, dark brown rays in sub-costal and cubital space. Anal appendages red. Female: Thorax pale olivaceous on sides, darker on dorsum. Abdomen subcylindrical, sides parallal, ochreous with black markings. Wings hyaline with bright yellow to brown reticulation, basal marking pale and without ray in sub-costal and cubital space. Anal appendages black.

Distribution: India: Andaman and Nicobar Islands (North Andaman, Middle Andaman, South Andaman, Little Andaman and Nicobar), Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Chhattisgarh, Himachal Pradesh, Jharkhand, Karnataka, Kerala, Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Rajasthan, Sikkim, Tamil Nadu, Tripura, Uttar Pradesh, Uttar Pradesh and West Bengal.

Remark: This species is recorded for the first time from Nicobar Islands in this present study, previously its distribution was from Andaman Islands only.

SUMMARY

The paper deals with some collection of 15 species of Anisoptera from Andaman and Nicobar Islands. In this present study, *Neurothemis intermedia atlanta* Ris and *Tramea basilaris burmeisteri* Kirby have been recorded for the first time from Andaman & Nicobar Islands (South Andaman). Also *Orthetrum pruinum neglectum* (Rambur) is recorded newly from Andaman Islands (North and South Andaman) and *Trithemis aurora* (Burmeister) is recorded newly from Nicobar Islands. Distributions of *Potamarcha congener* (Rambur) from North Andaman, four species [*Crocothemis servilia servilia* (Drury), *Diplacodes trivialis* (Rambur), *Lathreca asiatica asiatica* (Fabricius) and *Orthetrum sabina sabina* (Drury)] from Middle Andaman and four species [*Diplacodes trivialis* (Rambur), *Orthetrum sabina sabina* (Drury), *Neurothemis fulvia* (Drury) and *Tholymis tillarga* (Fabricius)] from Little Andaman are newly recorded. A consolidated list of 44 species of Anisoptera, so far recorded from these Islands is provided along with distribution within Andaman & Nicobar Islands.

ACKNOWLEDGEMENTS

The authors express sincere gratitude to Dr. Ramakrishna, Director, Zoological Survey of India for providing all necessary facilities to carry out the work. Authors also grateful to Dr. T. K. Pal, Scientist-F, Dr. A. Bal, Scientist-E, Entomology Div. ZSI and senior scientists and colleagues for their encouragement and kind cooperation.

REFERENCES

Table-1. Consolidated list of species of Anisoptera with distribution within Andaman and Nicobar Islands

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>DISTRIBUTION (Within A & N Islands)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Superfamily AESHOIDEA</td>
<td></td>
</tr>
<tr>
<td>Family GOMPHIDAE</td>
<td></td>
</tr>
<tr>
<td>Gomphidia ganeshi Chhotani, Lahiri & Mitra</td>
<td>-</td>
</tr>
<tr>
<td>Gomphidia t-nigrum Selys</td>
<td>+</td>
</tr>
<tr>
<td>Family AESHNIDAE</td>
<td></td>
</tr>
<tr>
<td>Anaciaeschna jaspidea (Burmeister)</td>
<td>-</td>
</tr>
<tr>
<td>Anax guttatus (Burmeister)</td>
<td>-</td>
</tr>
<tr>
<td>Gynacantha andamanae Yeh & Veenakumari</td>
<td>-</td>
</tr>
<tr>
<td>Gynacantha bayadera Selys</td>
<td>-</td>
</tr>
<tr>
<td>Gynacantha dravida Lieftinck</td>
<td>-</td>
</tr>
<tr>
<td>Gynacantha subinterrupta Rambur</td>
<td>-</td>
</tr>
<tr>
<td>Oligoaeschna andamani Chhotani, Lahiri & Mitra</td>
<td>-</td>
</tr>
<tr>
<td>Superfamily LIBELLULOIDEA</td>
<td></td>
</tr>
<tr>
<td>Family CORDULIIDAE</td>
<td></td>
</tr>
<tr>
<td>Epophthalmia vittata vittata Burmeister</td>
<td>-</td>
</tr>
<tr>
<td>Family LIBELLULIDAE</td>
<td></td>
</tr>
<tr>
<td>Agrionoptera insignis insignis (Rambur)</td>
<td>-</td>
</tr>
<tr>
<td>Acisoma panorpoides panorpoides Rambur</td>
<td>-</td>
</tr>
<tr>
<td>Brachydiplax chalybea chalybea Brauer</td>
<td>+</td>
</tr>
<tr>
<td>Brachythelemin contaminata (Fabricius)</td>
<td>+</td>
</tr>
<tr>
<td>Camacinia gigantea (Brauer)</td>
<td>-</td>
</tr>
<tr>
<td>Cratilla lineata (Brauer)</td>
<td>-</td>
</tr>
<tr>
<td>Cratilla metallica (Brauer)</td>
<td>+</td>
</tr>
<tr>
<td>Crocothemis servilia servilia (Drury)</td>
<td>-</td>
</tr>
<tr>
<td>SPECIES</td>
<td>DISTRIBUTION (Within A & N Islands)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Diplacodes trivia lis (Rambur)</td>
<td>+</td>
</tr>
<tr>
<td>Indothemis carnatica (Fabricius)</td>
<td>+</td>
</tr>
<tr>
<td>Lathrecista asiatica asiatica (Fabricius)</td>
<td>+</td>
</tr>
<tr>
<td>Lyriothemis cleis Brauer</td>
<td>+</td>
</tr>
<tr>
<td>Nesoxenia lineata (Selys)</td>
<td>+</td>
</tr>
<tr>
<td>Neurothemis fluctuans (Fabricius)</td>
<td>+</td>
</tr>
<tr>
<td>Neurothemis fulvia (Drury)</td>
<td></td>
</tr>
<tr>
<td>Neurothemis intermedia atlanta Ris</td>
<td></td>
</tr>
<tr>
<td>Neurothemis intermedia intermedia (Rambur)</td>
<td>+</td>
</tr>
<tr>
<td>Neurothemis ramburii ramburii (Brauer)</td>
<td></td>
</tr>
<tr>
<td>Orthetrum chrysis (Selys)</td>
<td></td>
</tr>
<tr>
<td>Orthetrum pruinum neglectum (Rambur)</td>
<td></td>
</tr>
<tr>
<td>Orthetrum sabina sabina (Drury)</td>
<td></td>
</tr>
<tr>
<td>Pantala flavescens (Fabricius)</td>
<td></td>
</tr>
<tr>
<td>Potamarcha congener (Rambur)</td>
<td></td>
</tr>
<tr>
<td>Rhyothemis phyllis phyllis (Sulzer)</td>
<td></td>
</tr>
<tr>
<td>Rhyothemis variegata variegata (Linnaeus)</td>
<td></td>
</tr>
<tr>
<td>Tholymis tillarga (Fabricius)</td>
<td></td>
</tr>
<tr>
<td>Tramea basilaris burmeisteri Kirby</td>
<td></td>
</tr>
<tr>
<td>Tramea limbata similata (Rambur)</td>
<td></td>
</tr>
<tr>
<td>Tramea virginia (Rambur)</td>
<td></td>
</tr>
<tr>
<td>Trithemis aurora (Burmeister)</td>
<td></td>
</tr>
<tr>
<td>Trithemis festiva (Rambur)</td>
<td></td>
</tr>
<tr>
<td>Trithemis pallidimervis (Kirby)</td>
<td></td>
</tr>
<tr>
<td>Zyxomma obtusum Albarda</td>
<td></td>
</tr>
<tr>
<td>Zyxomma petiolatum Rambur</td>
<td></td>
</tr>
</tbody>
</table>

NA – North Andaman, MA – Middle Andaman, SA – South Andaman, LA – Little Andaman, N – Nicobar
INTRODUCTION

The threadfin fish family Polynemidae (Perciformes : Pisces) comprises 8 genera consisting of about 40 species throughout the world (Motomura, 2004). Talwar and Kacker (1984) and Talwar (1991) stated that only 12 species are known to occur in the coastal marine waters of our country. These are represented by one species of Eleutheronema Bleeker, two or three species of Filimanus Myers, one species of Leptomelanosoma Motomura and Iwatsuki, five species of Polydactylus Lacepede and two species of Polynemus Linnaeus (Motomura, 2004). The genus Filimanus Myers comprises six species in the world (Feltes, 1991). This genus can be well distinguished from Polydactylus Lacepede in having narrow tooth bands in premaxillaries, palatines and ectopterygoids, and the space between the tooth bands in jaws at symphasis is almost twice the width of tooth bands; basisphenoid is not in contact with prootic bone. Presence of Filimanus heptadactyla in Indian waters is doubtful and the reports of this species are mostly based on misidentification of Polydactylus mullani (Hora) or Filimanus similis Feltes. Hence, this genus is Indian waters is represented by only two species, viz., Filimanus similis Feltes and Filimanus xanthonema (Valenciennes). Motomura (2004) has rightly observed that many authors (Marathe and Bal, 1958; Nayak, 1959; Kagwade, 1970) have misidentified F. similis Feltes, Polydactylus mullani Hora and Polydactylus sextarius (Bloch & Schneider) as F. heptadactyla. During the study of polynemid fishes of Indian coast, the authors came across two specimens of unidentified fishes collected from the Great Nicobar Island of Andaman and Nicobar group of Islands, India during 1992. These were determined as Filimanus perplexa Feltes and presented here as a new record to the Indian coast.

A brief description of the species is presented here under with a discussion comparing its related threadfin fish species occurring in the world.

2004. *Filimanus perplexa*: Motomura, *FAO species catalogue for fishery purposes*, (3) : 25, fig. 51, pl. II.

Diagnostic features: D VIII + I, 11; A III, 14-15; P 13 + vii; total GR 51-52; LL 49-51; Ltr 6/9. Depth 3.0 to 3.1, head 3.0 to 3.1 in standard length; eyes 4.6 to 5.2 in head. Maxilla extends beyond posterior margin of adipose eyelid. Lip on lower jaw well developed. Teeth villiform in narrow bands on jaws, palatine and ectopterygoids. Width of tooth bands on upper and lower jaws less than space separating tooth bands at symphysis. Vomerine tooth patch inconspicuous. Posterior margin of preopercle serrated. Upper jaw length about twice in head length, less than pectoral fin base (including base of free filaments). Pectoral fin insertion well below midline of body. Upper pectoral fin rays all unbranched, its tip just reaching to level of pelvic fin tip. Free pectoral filaments 7 (asymmetrically 6 and 7 in one specimen); first filament shortest, reaching to level of anal fin origin; third and fourth filaments longest, reaching beyond caudal fin base. Airbladder simple. Colour: golden yellow; base of pectoral filaments white, light brown on posterior portion.

Distribution: Known only from Sumatra, Java, Bali, Indonesia and Thailand.

DISCUSSION

Feltes (1991) revised the genus *Filimanus* Myers, 1936 with the description of two new species and so, recognized only six species under this genus in the world. Only *F. hexanema* (Cuvier) and *F. perplexa* Feltes have 13 to 15 anal fin rays and free pectoral filaments extending beyond midpoint of anal fin base (Motomura, 2004). Other species of this genus have less number of anal fin rays and shorter pectoral filaments. *F. hexanema* differs from *F. perplexa* in having 6 pectoral filaments which are mostly white in colour and not reaching beyond caudal fin base. The former is also a deeper species, its depth being 29 to 32 per cent of standard length (32 to 37 per cent in *F.*
perplexa). In the above described specimens, the body depth contained between 32 to 33 per cent of standard length and the pectoral filaments usually 7, which extend beyond caudal fin base with their posterior part brown in colour which led us to designate them as *F. perplexa* Feltes.

Other polynemids having longer free pectoral filaments that reaching beyond anal fin base are *Parapolynemus verikeri* (Saville-Kent), *Pentanemus quinquarius* (Linnaeus), all *Polynemus* species and two *Polydactylus* species, *P. macrophthalmus* (Bleecker) and *P. longipes* Motomura, Okamoto and Iwatsuki. Anal fin base is distinctly longer with 24 to 30 rays in *P. quinquarius*, which is known to occur along the west coast of Africa. Other three genera, *Polynemus* Linnaeus, *Polydactylus* Lacepede and *Parapolynemus* Feltes, differs from the genus *Filimanus* in having wider tooth bands and narrower gap between maxillary tooth bands at symphasis. Further, *Parapolynemus verikeri* have 10 to 12 anal fin rays and 30 to 43 gill rakers and similarly, *P. longipes* and *P. macrophthalmus* have 10 to 11 anal fin rays and 25 to 32 gill rakers. All the *Polynemus* species have higher lateral line scale count (more than 65) and lower total gill raker count (24 to 34), whereas *F. perplexa* is known to have 47 to 55 gill rakers. However, in *Polynemus* species the pectoral fin insertion is at midline of body.

The distribution of this species in the Andaman Sea is known by a single specimen from Phuket, Thailand. This report extends its distributional range westward to the Great Nicobar Island, India.

ACKNOWLEDGEMENTS

The authors are thankful to the Director, Zoological Survey of India, Kolkata and to Sri A. K. Singh, Scientist-E and In-charge Spirit Building, Z.S.I., Kolkata for necessary facilities, permission and ninspiration.

REFERENCES

AN ACCOUNT OF THE AMPHIBIAN AND REPTILIAN FAUNA OF
SUNDERBAN, WEST BENGAL

VARADARAJU
Sunderban Field Research Centre, Zoological Survey of India,
Canning, 24 Parganas (South)-743 329

INTRODUCTION
The comprehensive account on amphibians and reptiles of Sunderban have been found practically unknown until the report of Mukherjee (1975) on 2 species of amphibians and 14 species of reptiles. Acharji and Mukherjee (1964); Saha (1983) and Talukdar (1982) have also reported few species of reptiles from Sunderban. Similarly Mandal and Nandi (1989) have reported 7 species of amphibians and 56 species of reptiles in their study on Sunderban. Agarwal and Ghose (1995) have reported 7 species of amphibians and 17 species of reptiles in their study on Sunderban tiger reserve; Chanda (1995) has reported 7 species of amphibians and Sanyal et al., (1995) have reported 17 species of reptiles from Sunderban. Recently Chowdhury and Vyas (2005) have reported 41 species of reptiles from Sunderban.

This will be the first report comprising totally 22 species of amphibians and reptiles of Sunderban based on the studies of collections made by different survey parties of Sunderban field research station, Zoological Survey of India. In the present paper author made an attempt to identify 5 species of amphibians belonging to 4 Genera and 17 species of reptiles belonging to 16 Genera.

ABBREVIATIONS USED

Coll.–Name of Collector.
Ex.(s)–Number of example.
KN–Registration No.
BR–B. Rana.
DBR–D.B. Ramnagar.
DM–Dilip Mondal.
HKB–H.K. Bhowmik.
HQ–Head Quarter.
JKD–Dr. J. K. De.

KNR–K.N. Reddy.
MS–Mahadev Sumanta.
NCB–N.C. Banerjee.
NCN–Dr. N.C. Nandi.
NPD–N.P. Debnath.
RAK–Dr. R.A. Khan.
UD–Uttam Das.
VAR–Dr. Varadaraju.
SYSTEMATIC LIST OF AMPHIBIANS AND REPTILES
REPORTED FROM SUNDERBAN

Phylum CHORDATA
Class AMPHIBIA
Order ANURA Fischer
Family I BUFONIDAE

1. *Duttaphrynus melanostictus* (Schneider, 1799)

Family II DICROGLOSSIDAE
Subfamily DICROGLOSSINAE

2. Genus *Euphlyctis* Fitzinger, 1843

2. *Euphlyctis cyanophlyctis* (Schneider, 1799)

3. *Euphlyctis hexadactylus* (Lesson, 1834)

4. *Fejervarya limnocharis* (Gravenhorst, 1829)

4. Genus *Hoplobatrachus* Peters, 1863

5. *Hoplobatrachus tigerinus* (Daudin, 1803)

Class REPTILIA
Order TESTUDINES
Suborder CRYPTODIRA
Family III CHELONIDAE

5. Genus *Lepidochelys* Fitzinger, 1843

6. *Lepidochelys olivacea* (Eschscholtz, 1829)

 Order SQUAMATA
 Suborder SERPENTS
 Family IV COLUMBRIDAE

6. Genus *Ptyas* Fitzinger, 1843

7. *Ptyas mucosus* (Linnaeus, 1758)

 7. Genus *Oligodon* Boie, 1827

8. *Oligodon arnensis* (Shaw, 1802)
8. Genus *Lycodon* Boie, 1826

9. *Lycodon aulicus* (Linnaeus, 1758)

9. Genus *Amphiesma* Dumeril & Bibron, 1854

10. *Amphiesma stolatum* (Linnaeus, 1758)

10. Genus *Xenochrophis* Günther, 1864

11. *Xenochrophis piscator* (Schneider, 1799)

11. Genus *Atretium* Cope, 1861

12. *Atretium schistosum* (Daudin, 1803)

12. Genus *Boiga*, Fitzinger, 1826

13. *Boiga trigonata* (Schneider in Bechstein, 1802)

13. Genus *Enhydris* Sonn & Latr, 1802

14. *Enhydris enhydris* (Schneider, 1799)

14. Genus *Cerberus* Cuvier, 1829

15. *Cerberus rhynchops* (Schneider, 1799)

Family V ELAPIDAE

15. Genus *Bungarus* Daudin, 1803

16. *Bungarus caeruleus* (Schneider, 1801)

16. Genus *Naja* Laurenti, 1768

17. *Naja naja kaouthia* (Lesson, 1831)

18. *Naja naja* (Linnaeus, 1758)

Family VI HYDROPHIDAE

17. Genus *Enhydrina* Gray, 1849

19. *Enhydrina schistosum* (Daudin, 1803)

18. Genus *Hydrophis* Latreille, 1802

20. *Hydrophis caerulescens* (Shaw, 1802)

Family VII VIPERIDAE

19. Genus *Vipera*, Laurenti, 1768

21. *Duboida russelli* (Shaw & Nodder, 1797)

20. Genus *Trimeresurus*, Lacepede, 1804

22. *Trimeresurus erythrurus* (Cantor, 1839)
SYSTEMATIC ACCOUNT

Class AMPHIBIA

Family I BUFONIDAE

1. *Duttaphrynus melanostictus* (Schneider, 1799)

Common name: Common Indian Toad.

Measurements: Total length from Snout to vent: 8.0-11.0 inches.

Distribution: India; They have been recorded from all over India.

Elsewhere: Myanmar; Sri Lanka; China; Malaysia; Indonesia; Philippines.

Family II DICROGLOSSIDAE

Subfamily DICROGLOSSINAE

2. Genus *Euphlyctis* Fitzinger, 1843

2. *Euphlyctis cyanophlyctis* (Schneider, 1799)

Common name: Skipper Frog.

Measurements: Total length from snout to vent: 3.0-5.8 inches.

Distribution: India; They have been recorded from all over India.

Elsewhere: Pakistan; Afghanistan; South Arabia; Sri Lanka.

3. *Euphlyctis hexadactylus* (Lesson, 1834)

Common name: Indian Green Frog.

Measurements: Total length from snout to vent: 0.8-1.6 inches.

Distribution: India; They have been recorded from all over India.

Elsewhere: Sri Lanka; Afghanistan; Bangladesh; Bhutan; Myanmar; Nepal; Pakistan; South Arabia.

4. *Fejervarya limnocharis* (Gravenhorst, 1829)

Common name: Paddy Field Frog.

Measurements: Total length from snout to vent: 2.0-4.7 inches.

Distribution: India; They have been recorded from all over India.

Elsewhere: Sri Lanka; China; Malaysia; Indonesia; Philippines; Bangladesh; Burma; Japan; Java; Myanmar; Nepal; Pakistan; Sumatra; Thailand; Vietnam.

4. Genus *Hoplobatrachus* Peters, 1863

5. *Hoplobatrachus tigerinus* (Daudin, 1803)

Common name: Common Indian Bullfrog.

Measurements: Total length from snout to vent: 4.2-14.5 inches.

Distribution: India; They have been recorded from all over India.

Elsewhere: Nepal; Myanmar; China; Indonesia; Bangladesh; Indo-China; Pakistan; Sri Lanka.

Class REPTILIA

Family III CHELONIDAE

5. Genus *Lepidochelys* Fitzinger, 1843

6. *Lepidochelys olivacea* (Eschscholtz, 1829)

Common name: Olive Ridley turtle.

Material examined: 2 egs., (Reg. No. KN-1367), Bhagbatpur, 28.v.1983, coll. by NCN.

Measurements: 2.8-2.9 inches.

Distribution: India; West Bengal; Orissa; Andaman and Nicobar Islands.

Elsewhere: Pacific; Indian and South Atlantic oceans.

Family IV COLUBRIDAE

6. Genus *Ptyas* Fitzinger, 1843

7. *Ptyas mucosus* (Linnaeus, 1758)

Common name: Indian Rat Snake.

Measurements: Total length: 30.0-60.0 inches.

Distribution: India; They have been recorded from all over India.

Elsewhere: Throughout South and South-East Asia.
7. Genus **Oligodon** Boie, 1827

8. **Oligodon arnensis** (Shaw, 1802)

Common name: Common Kukri Snake.

Measurements: Total length : 16.0 inches.

Distribution: India; Gujarat; Peninsular India; Western Himalaya; West Bengal.

Elsewhere: Pakistan; Nepal; Bangladesh; Sri Lanka.

8. Genus **Lycodon** Boie, 1826

9. **Lycodon aulicus** (Linnaeus, 1758)

Common name: Common Wolf Snake.

Measurements: Total length : 7.0-19.0 inches.

Distribution: India; They have been recorded from all over India.

Elsewhere: Pakistan; Nepal; Sri Lanka; Bangladesh; Myanmar.

9. Genus **Amphiesma** Dumeril & Bibron, 1854

10. **Amphiesma stolatum** (Linnaeus, 1758)

Common name: Striped Keelback.

Measurements: Total length : 20.0-24.0 inches.

Distribution: India; They have been recorded from all over India.

Elsewhere: Pakistan; Nepal; Bhutan; Bangladesh; Sri Lanka.

10. Genus **Xenochrophis** Günther, 1864

11. **Xenochrophis piscator** (Schneider, 1799)

Common name: Checkered Keelback.

Distribution: India; They have been recorded from all over India.

Elsewhere: Pakistan; Nepal; Myanmar; Malaysia; China; Taiwan.
11. Genus *Atretium* Cope, 1861
12. *Atretium schistosum* (Daudin, 1803)

Common name: Olivaceous Keelback.
Material examined: 1 ex., (Reg. No. KN-1314), Sandeshkhali, 23.iv.2006, coll. by VAR.
Measurements: Total length: 24.0 inches.
Distribution: India; Anaimalais; Wynaad; Karnataka; Uttar Pradesh; Orissa.
Elsewhere: Sri Lanka; Bangladesh; Nepal.

12. Genus *Boiga* Fitzinger, 1826
13. *Boiga trigonata* (Bechstein, 1802)

Common name: Indian Gaama.
Material examined: 1 ex., (Reg. No. KN-1347), Akhaynagar, 27.viii.1982, coll. by MS.
Measurements: Total length: 10.2 inches.
Distribution: India; Gujarat; Vadodara; Panchmahals and Dangs; Peninsular India; Rajasthan; Western and Eastern Himalayas.
Elsewhere: Throughout Most South Asia except Andaman and Nicobar Islands.

13. Genus *Enhydris* Sonn & Latr, 1802
14. *Enhydris enhydris* (Schneider, 1799)

Common name: Common Indian Water Snake.
Measurements: Total length: 7.0-16.5 inches.
Distribution: India; Madhya Pradesh; Uttar Pradesh; Andhra Pradesh; Bihar; Orissa; West Bengal; Assam.
Elsewhere: Bangladesh; Nepal; Myanmar.

14. Genus *Cerberus* Cuvier, 1829
15. *Cerberus rhynchops* (Schneider, 1799)

Common name: Dog-Faced Water Snake.
Rec. zool. Surv. India

Measurements: Total length: 7.5-28.2 inches.

Distribution: India; They have been recorded from all over India.

Elsewhere: Pakistan; Bangladesh; Sri Lanka; Australia.

Family V ELAPIDAE

15. Genus Bungarus Daudin, 1803

16. Bungarus caeruleus (Schneider, 1801)

Common name: Common Indian Krait.

Material examined: 1 ex., (Reg. No., KN-1422), Kshetra Mohanpur, 12.ii.1980, coll. by HQ.

Measurements: Total length: 25.0 inches.

Distribution: India; Gujarat; West Bengal; Peninsular India; Rajasthan; Punjab; Haryana; Uttar Pradesh; Madhya Pradesh; Orissa; Maharashtra; Andhra Pradesh; Karnataka; Tamil Nadu; Kerala.

Elsewhere: Pakistan; Bangladesh; Nepal; Sri Lanka.

16. Genus Naja Laurenti, 1768

17. Naja naja kaouthia (Lesson, 1831)

Common name: Monoce late Cobra.

Measurements: Total length: 12.0-16.0 inches.

Distribution: India; Whole of North-Eastern India; West Bengal; Bihar; Eastern Uttar Pradesh; Eastern Himalayas.

Elsewhere: Bangladesh; Nepal; China; Most of South East Asia.

18. Naja naja (Linnaeus, 1758)

Common name: Spectacled Cobra.

Material examined: 1 ex., (Reg. No. KN-1360), Sandeshkhali, 5.vii.1992, coll. by NPD.
Measurements: Total length: 19.5-28.5 inches.

Distribution: India; Gujarat; Peninsular India; Kashmir; Punjab; Rajasthan; United Provinces; Haryana; Bihar; West Bengal; Orissa; Madhya Pradesh; Andhra Pradesh; Maharashtra; Goa; Karnataka; Tamil Nadu; Kerala.

Elsewhere: Pakistan; Bangladesh; Nepal; Bhutan; Sri Lanka.

Family VI HYDROPHIDAE

17. Genus *Enhydrina* Gray, 1849

19. *Enhydrina schistosum* (Daudin, 1803)

Common name: Beaked Sea Snake.

Measurements: Total length: 26.0-37.0 inches.

Distribution: India; Gujarat; Coastal waters of Goa; Tamil Nadu; Orissa; West Bengal.

Elsewhere: Pakistan; Bangladesh; Sri Lanka; Indo-Pacific water (Thailand, Malaysia and Singapore).

18. Genus *Hydrophis*, Latreille, 1802

20. *Hydrophis caerulescens* (Shaw, 1802)

Common name: Many toothed sea snake.

Material examined: 1 ex., (Reg. No. KN-1364), Haldibari, 10.xi.1980, coll. by RAK.

Measurements: Total length: 11.0 inches.

Distribution: India; Coasts of Goa; Maharashtra; Karnataka; Tamil Nadu; West Bengal; Gujarat.

Elsewhere: Pakistan; Bangladesh; China; Myanmar; Malaysia; Thailand to Australia.

Family VII VIPERIDAE

19. Genus *Vipera* Laurenti, 1768

21. *Vipera russelli* (Shaw & Nodder, 1797)

Common name: Russell’s Viper.

Material examined: 1 ex., (Reg. No. KN-1425), Hazra, 27.xi.1981, coll. by DBR.

Measurements: Total length: 35.5 inches.

Distribution: India; They have been recorded from all over India.

Elsewhere: Indo-Australian Archipelago; Tropical area of Asia; Taiwan; Java; North and Tropical Africa.
20. Genus *Trimeresurus* Lacepede, 1804

22. *Trimeresurus erythrurus* (Cantor, 1839)

Common name: Naga Hill Pit Viper.

Material examined: 1 ex., (Reg. No. KN-1366), Haldibari, 20.i1.1991, coll. by SCS.

Measurements: Total length: 20.5 inches.

Distribution: India; West Bengal; Himalayas; Assam.

Elsewhere: Vietnam; Japan; Malaysia; China.

SUMMARY

The paper dealt with amphibian and reptilian fauna collected from Sunderban by different survey parties of Zoological Survey of India. It reports 5 species of amphibians in 2 families and 4 genera and 17 species of reptiles in 5 families and 16 genera.

ACKNOWLEDGEMENTS

The author wishes to thank Director, Zoological Survey of India, Kolkata for providing facilities for this study.

REFERENCES

ACRIDOIDEA DIVERSITY OF PATNA BIRD SANCTUARY, UTTAR PRADESH, INDIA

NARENDER SHARMA
Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053, India

INTRODUCTION

Patna Bird Sanctuary is about 6 kms. from Jalesar tehsil of Etah district of Uttar Pradesh on the Jalesar-Sikandrarao road, was declared as full fledged sanctuary in 1990 having an area of 108 hectare. The sanctuary extends between 78° 45' 00" east longitude and 27° 34' 60" north latitude with an altitude of 168 m msl. It is about 60 kms from Aligarh. The average year temperature varies from 47°C in peak summers to 4°C in winters. It is a typical rainfed wetland of the gangetic plains, being a natural, freshwater, shallow depression. The shallow parts of the sanctuary dry up during summer, leaving some puddles in the deeper zones. After the abundant Indian monsoon fills the lake to its brim, approx. 200 different species of birds can be sighted during this time of the year. Though on paper it’s the smallest bird sanctuary in Uttar Pradesh covering a wetland area of a mere 1 sq. km., Patna vies with the best when it comes to its avifauna. Date palm Phoenix sylvestris in the central part of the sanctuary is one of the most conspicuous features of this sanctuary. Aquatic vegetation consists of Hydrilla verticillata, Ceratophyllum demersum, Vallisneria spiralis, Pontamogoton crispus, and Najas sp., while surface vegetation consists of Salvinia, Azolla and Eichhornia crassipes. On the fringes of the wetlands, Ipomoea carnea grows in excess and Ipomoea aquatica is also spreading.

Short-horned grasshoppers are included in the Superfamily Acridoidea. They are moderate in size, but range from less than 10 mm to 65 mm. The form of body shape, head and thorax are diverse; antennae are filiform but sometimes ensiform; tarsi three segmented; hind femora long, slender and thick towards base and adapted for leaping. Wings are either fully developed or reduced or absent; forewings in the form of leathery tegmina; hind wings fan like; male external genitalia complex, symmetrical and concealed, when not in use, by the enlarged ninth abdominal sternum (Subgenital plate).

The most notable work on Indian grasshoppers was made by Kirby (1914). Later on Bolivar (1914, 18), Uvarov (1921, 1927, 1940, 1940a, 1942) have also studied the Orthoptera of Indian

The present paper deals with 18 species belonging to 2 families and 15 genera. All the species are reported from the sanctuary for the first time. Three species have been recorded from Uttar Pradesh for the first time. Classification followed here is according to Uvarov (1966).

ABBREVIATIONS USED

Coll.–Name of the Collector, ex (s)–Number of example (s).

SYSTEMATIC ACCOUNT

Order ORTHOPTERA

Superfamily ACRIDOIDEA

Family PYRGOMORPHIDAE

Genus 1. *Chrotogonus* Serville, 1839

1. *Chrotogonus (Chr.) trachypterus trachypterus* (Blanchard)

Material examined: 1 ex., 7.ix.05, Near Sanctuary Main Gate; 3 exs., 7.ix.05, Near Lake; 2 exs., 8.ix.05, Grassly Fields near Temple, Coll.: N. Sharma & party.

Distribution: India: Uttar Pradesh, Andhra Pradesh, Bihar, Goa, Himachal Pradesh, Kamataka, Kerala, South east of Maharastra, Madhaya Pradesh, Orissa, Tamil Nadu, and West Bengal.

Elsewhere: Sri Lanaka, Bangladesh and Pakistan.

Remarks: In general, it is widely distributed in the northern part of India. It is found on dry conditions on bare ground habitat and is a pest of various types of crops.

Genus 2. *Atractomorpha* Saussure, 1861

2. *Atractomorpha crenulata* (Fabricius)

Material examined: 2 exs., 7.ix.05, Near Lake; 2 exs., 8.ix.05, Near Sanctuary Main Gate; 3 exs., 8.ix.05,Grassy Fields near Temple, Coll.: N. Sharma & party.

Remarks: The species is very common in the sanctuary area.

Genus 3. Poecilocerus Serville 1831

3. Poecilocerus pictus Fabricius

Material examined: 1 ex., 8.ix.05, Grassy Fields near Temple, Coll. : N. Sharma & party.

Distribution: India: Uttar Pradesh, Tamil Nadu.

Elsewhere: Baluchistan, Pakistan.

Remarks: In the sanctuary, this species found to be rare and only one example could be collected from grassy fields.

Family ACRIDIDAE
Subfamily HEMIACRIDINAE

Genus 4. Spathosternum Krauss, 1877

4. Spathosternum prasiniferum (Walker)

Material examined: 3 exs., 7.ix.05, Grassy Fields near Lake; 3 exs., 7.ix.05, Near Sanctuary Main Gate; 4 exs., 8.ix.05, Near Lake; 3 exs., 8.ix.05, Grassy Fields near Temple, Coll. : N. Sharma & party.

Elsewhere: Myanmar, S.E. China, Thailand and Vietnam.

Remarks: The species occurs almost throughout India and is associated with the grassy habitats.

Genus 5. Hieroglyphus Krauss, 1877

5. Hieroglyphus nigrorepletus Bolivar

Material examined: 2 exs., 7.ix.05, Near bank of Lake; 3 exs., 8.ix.05, Grassy Fields near Temple, Coll. : N. Sharma & party.
70

Distribution: India: Uttar Pradesh, Assam, Bihar, Kashmir, Karnataka, Maharashtra, Orissa, Punjab, West Bengal.

Elsewhere: Bangladesh and Pakistan.

Remarks: The species varies greatly in body size and in form of tegmina-brachypterous forms being very frequent. Its degree of colouration also variable. It is a serious pest of paddy.

Subfamily OXYINAE

Genus 6. *Oxya* Serville, 1831

6. *Oxya fuscovittata* (Marschall)

Material examined: 3 exs., 7.ix.05, Grassy Fields near Entry Gate; 2 exs., 8.ix.05, Near Lake; 3 exs., 8.ix.05, Grassy Fields near Temple, Coll. : N. Sharma & party.

Distribution: India: Uttar Pradesh, Andhra Pradesh, Rajasthan, Madhya Pradesh, Jammu & Kashmir, Orissa and West Bengal.

Elsewhere: Afghanistan, Pakistan, USSR (South West).

Remarks: It is one of the most commonest species of the genus in India, but not so common as *velox* or *hyla*. In the sanctuary area, the species is associated to the paddy and grass adjoining the cultivated fields.

7. *Oxya hyla hyla* Serville

Material examined: 3 exs., 7.ix.05, Grassy Fields near Temple; 1 exs., 8.ix.05, Near Main Sanctuary Gate; 2 exs., 8.ix.05, Grassy Fields near Lake, Coll. : N. Sharma & party.

Distribution: India: Uttar Pradesh, Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Goa, Himachal Pradesh, Karnataka, Madhya Pradesh, Meghalaya, Orissa, Rajasthan, Tamil Nadu, Tripura, and West Bengal.

Remarks: It is a highly variable subspecies as regards its size and appearance. The length of tegmen, shape of male cercus and dentation on lateral ridges of sub genital plate are also variable.

Subfamily EYEPREPOCNEMIDINAE

Genus 7. *Choreodocus* Bolivar, 1914

8. *Choreodocus illustris* (Walker)

Material examined: 2 exs., 7.ix.05, Near Sanctuary Main Gate; 5 exs., 7.ix.05, Near Lake; 3 exs., Grassy Fields near Temple, 8.ix.05, Coll.: N Sharma.

Distribution: India: Uttar Pradesh, Uttarakhand, Himachal Pradesh and Tamil Nadu.

Remarks: This species was found very common in the sanctuary area.

9. Choreodocus robustus (Serville)

Material examined: 3 exs., 7.ix.05, Near Lake; 2 exs., 8.ix.05, Near Sanctuary Main Gate; 3 exs., 8.ix.05, Grassy Fields Near Temple, Coll.: N. Sharma & party.

Distribution: India: Uttar Pradesh, Arunachal Pradesh, Assam, West Bengal.

Elsewhere: Bangladesh.

Remarks: The species is unique in having non spotted tagmina, larger size and general green-yellowish appearance and particularly, reddish colouration of posterior tibiae and metatarsi.

Genus 8. Heteracris

10. Heteracris littoralis (Rambur)

Material examined: 1 exs., Grassy Fields Near Temple, 8.ix.05, Coll.: N. Sharma.

Distribution: India: Uttar Pradesh, Uttarakhand, Bihar, Rajasthan.

Elsewhere: Azerbaijan, S. Europe, Egypt, Greece, S. W. Asia.

Remarks: This species was found to be rare. Size medium; fastigium of vertex parabolic with obtuse apex and a little depressed; tegmina with numerous medium size dark brown patches; wings base clear; hind femur with 2-3 black, linear line on the dorso-external carina, with white yellow ring before the apex. This species is a new record from Uttar Pradesh.

Genus 9. Eyprepocnemis

11. Eyprepocnemis alacris alacris (Serville)

Material examined: 1 exs., Near Lake, 7.ix.05; 1 exs., Grassy Fields near Temple, 8.ix.05, Coll.: N. Sharma & party.

Distribution: India: Uttar Pradesh, Maharastra, West Bengal.

Elsewhere: Pakistan, Sri Lanka and Myanmar.
Remarks: The species is unique in having a very pointed apex of male cercus which differentiates it from allied Indian species. This typical subspecies is the commonest in the genus and it is widely distributed in all habitats. It is available both in plains as well as in Hills. This species is a new record from Uttar Pradesh.

12. **Eyprepocnemis rosea** Uvarov, 1942

Material examined: 1 exs., Grassy Fields near Water Body, 1 exs., Grassy Fields near Temple, 8.ix.05, Coll. : N. Sharma & party.

Remarks: Medium sized insects, wings at the base with pinkish tinge in colour; posterior tibiae with red in colour. This species is a new record from Uttar Pradesh.

Subfamily CATANTOPINAE

Genus 10. **Catantops** Schaum 1853

13. **Catantops pinguis innotabilis** (Walker)

Material examined: 2 exs., Near Sanctuary Main Gate, 7.ix.05; 1 exs., Near Lake, 2 exs., Grassy Fields near Temple, 8.ix.05, Coll. : N. Sharma & party.

Distribution: India : Uttar Pradesh, Arunachal Pradesh, Assam, Himachal Pradesh, Kerala, Orissa, Tamil Nadu.

Remarks: This species is distinguishable by its parallel-sided frontal ridge and colouration in details specially of wings. It is one of the commonest species found in all habitats in India.

Subfamily ACRIDINAE

Genus 11. **Acrida** Linnaeus, 1758

14. **Acrida exaltata** (Walker)

Material examined: 2 exs., Near Lake, 7.ix.05; 1 exs., Near Sanctuary Main Gate, 3 exs., Grassy Fields near Temple, 8.ix.05, Coll. : N. Sharma & party.

Distribution: India (Throughout India).
Elsewhere: Afghanistan, Aden, Arabia, Bangladesh, S.E. Iran, Nepal, Pakistan, Sri Lanka, S.E. Tibet and Yemen.

Remarks: The species is one of the commonest grasshoppers of India and available both in open grasslands including agricultural fields as well as in moist, deep tropical woods.

Genus 12. Phlaeoba Stål, 1860

15. Phlaeoba infumata Brunner

Material examined: 2 exs., Near Sanctuary Entry Gate, 2 exs., Near Lake, 7.ix.05; 1 ex., Near Lake, 2 exs., Grassy Fields near Temple, 8.ix.05, Coll.: N. Sharma & party.

Distribution: India (Widely distributed).

Remarks: The species is associated with crops of paddy, sorghum, maize, millets etc. and is generally found throughout the year in moist areas.

Genus 13. Ceracris Walker, 1870

16. Ceracris striata (Brunner)

Material examined: 2 exs., Near Lake, 7.ix.05; 1 ex., Near Sanctuary Main Gate, 2 exs., Near Lake, 3 exs., Grassy Fields near Temple, 8.ix.05, Coll.: N. Sharma & party.

Distribution: India: Uttar Pradesh, Uttarakhand, Tripura.

Elsewhere: S. China, Myanmar and Thailand.

Subfamily OEDIPODINAE

Genus 14. Aiolopus Fieber, 1853

17. Aiolopus thalassinus tamulus (Fabricius)

Material examined: 2 exs., Grassy Fields Near Sanctuary Main Gate, 1 exs., Near Lake, 7.ix.05; 1 ex., Grassy Fields near Main Gate 2 exs., Grassy Fields near Temple, 8.ix.05, Coll.: N. Sharma & party.

Distribution: India: Uttar Pradesh, Andaman & Nicobar Islands, Bihar, Delhi, Himachal Pradesh, Karnataka, Madhya Pradesh, Rajasthan, Tamil Nadu, Uttarakhand, West Bengal.

Elsewhere: Australia, Bangladesh, Borneo, Celebes, China, Hainan, Hong Kong, Japan, Java, Malaya, Myanmar, New Guinea, Papua, Philippines, Singapore, Sri Lanka, Sumatra, Taiwan, Thailand and Timor.
Remarks: The subspecies is one of the serious pests of agricultural fields, specially of paddy fields. Hundreds of them are noticeable from the seedling stage to ripening stage of paddy. This species is recorded throughout Oriental region and extends upto Australia.

Genus 15. *Trilophidia* Stål, 1873

18. *Trilophidia annulata* (Thunberg)

Material examined: 2 exs., Grassy Fields Near Sanctuary Main Gate, 3 exs., Grassy Fields near Temple, 7.ix.05; 2 exs., Near Lake, 2 exs., Grassy Fields near Main Gate, 8.ix.05, Coll.: N Sharma & party.

Distribution: India: Uttar Pradesh, Andhra Pradesh, Bihar, Goa, Himachal Pradesh, Karnataka, Madhya Pradesh, Orissa, Sikkim, Tamil Nadu, and West Bengal.

Elsewhere: Afghanistan, Bangladesh, Borneo, South China, Japan, Java, Korea, Malaysia, Mongolia, Myanmar, Nepal, Pakistan, Philippines, Sarawak, Singapore, Sri Lanka, Sumatra, Taiwan, Thailand, Vietnam.

Remarks: In India, the genus is represented by this species only. So its geographical isolation along with the colouration of inner surface of posterior femur and unique form of the lophi of epiphallus easily identify the species.

ACKNOWLEDGEMENTS

The author is grateful to Director, Zoological Survey of India, Kolkata and Incharge Division of Entomology B, Zoological Survey of India, Kolkata for providing facilities and encouragement.

REFERENCES

OBSERVATIONS ON SOME BEHAVIOURAL ASPECTS OF THE POTTER WASP *XENORHYNCHIUM NITIDULUM* (FABRICIUS) (HYMENOPTERA: VESPIDAE: EUMENINAE)

G. SRINIVASAN AND P. GIRISH KUMAR

Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053, West Bengal, India
E-mail: srideep@rediffmail.com and k_p_girish@yahoo.co.in

INTRODUCTION

In a study on eumenid wasp *Xenorhynchium nitidulum* (Fabricius), we observed the presence of more than one female in a nest without division of labour and also reuse of cells in a nest by other female wasps and young adults. These studies on *X. nitidulum* is based on direct observations on certain nests at different sites within the campus of Bharathiar University, Coimbatore district, Tamil Nadu, India and from Kanjikode, Palakkad district, Kerala state, India from January 2004 to January 2007.

OBSERVATIONS

Initially the wasp *Xenorhynchium nitidulum* (Fabricius) hovers several times round the area to be selected, and inspects the substratum. Usually the cell sites are locations like window sills, door frames, tube light frames and walls.

The wasp after site selection for cell building brings moist mud pellets directly from wet ground surface. The wasp places these pellets one by one and forms a barrel shaped cell (Plate 1). But at this instance it was observed that till the cell building proceeded half way the wasp constructed the cell from outside. Then the other half of the cell was completed by the wasp sitting inside the cell. In this way the adult female wasp measured the depth and surface area of the cell. In about 30-33 pellets, the cell was completed. Construction of a single cell was completed within one and half hours. After the completion of one cell, the wasp flew to the nearby areas and after gathering the resinous exudations from the *Acacia arabica* trees, gave a nice resinous coating on the whole surface area of the cell (Plate 3).

The female wasp then laid an egg at the bottom of the cell. In the same cell the mother wasp also resides. From the first day to the third day till the egg hatched and to a grub, the mother wasp stayed in the same cell. After hatching of the egg on the third day, the mother wasp immediately
started to feed the grub by progressive provisioning (Plate 2). After hatching for up to eight days
the mother wasp fed the grub twice a day. Everyday the mother wasp was seen feeding the grub in
the morning between 9 am to 11 am and in the evening between 3 pm to 4.30 pm. The mother
wasp used to collect pod borers from the pods of the nearby *Acacia arabica* trees. After eight
days, the mother wasp started to dump more caterpillars (9-12 caterpillars) as mass provisioning
and closed the cell. Then, it started to construct the next cell. In this way, the wasp constructed up
to 25 cells in a nest.

In a time of 10 to 12 days, the grub grew well and attained maturity. Then it started pushing
the faecal pellets to one corner of the cell and knitted a papery envelop throughout the inner
surface by using its saliva and underwent pupation. Pupation lasted to 10-12 days and in a few
days the young adult emerged its way out by gnawing through thus opening the cell. The whole
life cycle of the wasp was completed in a period of 32-35 days. All these activities were recorded
by dislocating the nest and by dissecting various cells of various nests at different localities from
the study sites during the study period from January 2004 to January 2007. The young ones that
emerged from the cells stayed in the same cell of the nest (Plate 4). It was also noticed that the
parent male, female and other female wasps also stayed in the cells of the same nest (Fig. 5).
Copulation took place on the nest itself. The male mounted on the female by fanning the wings
with the antennae lowered along with the females.

The mother wasp was always seen in the nest other than the times it went for foraging, cell
construction and provisioning.

SUMMARY

In the wasp *Xenorhynchium nitidulum* (Fabricius), only single female is responsible for cell
construction and brood rearing of that particular nest. Observations of different cells in a nest in
different nesting sites indicate that the larvae are progressively provisioned at least in the early
larval stages, i.e. from 5-8 days and then mass provisioning is given. Female sit facing outward in
uncapped cells and sting defensively. The wasp gives a resinous coating on the whole surface area
of the nest. The courtship behaviour was observed on the nest.

ACKNOWLEDGEMENTS

The first author is grateful to the Head of the Department of zoology, Bharathiar University,
Coimbatore. The authors are also grateful to Dr. Ramakrishna, Director, Zoological Survey of
India, Kolkata for facilities and encouragements.
The female *Xenorhynchium nitidulum* (Fabricius) in the process of cell construction.

The female *Xenorhynchium nitidulum* (Fabricius) in the process of feeding its young grub.

The female *Xenorhynchium nitidulum* (Fabricius) in the process of coating resinous material.

The young adult and mother wasp in a nest.

The parent male, female and other female wasps seen in different cells of a nest.
SOME BACTERIVOROUS NEMATODES FROM UTTARAKHAND, INDIA

ANJUM N. RIZVI AND P.T. BHUTIA
Zoological Survey of India, Northern Regional Station, Dehradun-248 195, Uttarakhand

INTRODUCTION

Nematodes are biologically diverse and versatile, occupying an enormous range of habitats with variable feeding habits. They constitute nearly 90% of all Metazoan in number and have 26646 recorded species with 8359 species parasitic in vertebrates, 10681 species free-living, 4105 species parasitic in plants and 3501 species parasitic in invertebrate hosts (Hugot et al., 2001). Further, soil-inhabiting nematodes predominate over all other soil animals, both in numbers and species. On the basis of feeding habits these soil inhabiting nematodes are classified as plant feeders, bacterial feeders, fungal feeders, predators and omnivores (Yeates et al., 1993). Earlier most of the researches were focused on plant feeders because of the economic loses to agriculture. Though free-living nematodes (bacterial and fungal feeders) accounts to a large number of species, they have remained ignored for a long time due to their apparent low economic value. However, recent researches proved that these groups are important components of food chains and possess several attributes that make them useful ecological indicators (Freckman, 1988; Bongers, 1990; Neher, 2001). The Bacterivorous (bacterial feeders) nematodes occur in several orders like Rhabditida, Alaimida, Monhysterida, Aerolaimida, Enoplida, etc.

A few papers on bacterivorous nematodes from Uttarakhand are of Siddiqi & Husain (1967) who recorded two species from Nainital and Dehradun districts; Khera & Chaturvedi (1977) recorded several species from the Tea Plantations of Dehradun; Jairajpuri & Khan (1982) recorded 3 species from Nainital & Dehradun Districts. Recently, Rizvi recorded these nematodes from Corbett Tiger Reserve (CTR), district Nainital (Rizvi, 2008) and from the Western Doon Shivalik (WDS) region of district Dehradun (Rizvi, 2007). The present paper reports 5 new records of bacterivorous nematodes from Uttarakhand, belonging to 3 orders, namely, Rhabditida (2 species); Aerolaimida (2 species) and Alaimida (1 species). Out of these 5 species, 4 are being recorded from district Dehradun and 1 species from district Chamoli.

MATERIALS AND METHODS

Soil samples collected from soil around roots of Sugarcane, Mango, Litchi, Deodar, Sal and Pine from Dehradun, were processed by sieving and decantation technique. The nematodes were fixed, dehydrated and mounted in anhydrous glycerine. Measurements were made with an ocular micrometer on Leica WILD MPS 32. Photomicrographs taken with BX51DIC Olympus microscope and DP20 digital camera.
OBSERVATIONS
Order RHABDITIDA
Suborder RHABDITINA
Superfamily RHABDITOIDEA
Family RHABDITIDAE
Subfamily PELODERINAE
Genus Caenorhabditis (Osche, 1952) Dougherty, 1953
1. Caenorhabditis elegans (Maupas, 1899) Dougherty, 1953
(Fig. 1)
1899. Rhabditis elegans Maupas, Arch. zool. exp. gen., 8 : 480.
Material examined: (n = 5) Female: L = 0.70-1.1 mm; a = 19-21; b = 6-8; c = 8-10; V = 52-55.
Male: (n = 2) L = 0.53-0.65 mm; a = 16-18; b = 4.2-4.8; c = 22-25.
Description: Body tapering slightly at extremities. Lips with the usual circles of six labial papillae and four cephalic papillae. Stoma 15 µm long, 4 µm wide; denticles on metarhabdions not clearly visible. Pharyngeal collar surrounds about half the stoma. Pharyngeal corpus with prominent basal swelling. Pharyngeal corpus without a median bulb. Basal bulb with valve plate. Lateral fields marked by four incisures. Nerve ring located at the middle of isthmus. Excretory pore opposite to anterior end of bulb. Vulva median, ovaries paired, opposed, reflexed. Female tail conical and long, 88-110 µm. Phasmids located at one-fourth-one-third of the tail.
Male tail peloderan with 9 pairs of bursal papillae. Spicules straight to slightly curved, 40-48 µm long. Gubernaculum straight to slightly curved, 28-30 µm long.
Remarks: The measurements are in agreement with the earlier workers. This species is being recorded for the first time from district Dehradun, Uttarakhand.
Distribution: India: Uttar Pradesh and Uttarakhand.
Elsewhere: Germany, France, Bulgaria, Italy, England, Denmark, Soviet Union, China, Algeria and United States.
Habitat and Locality: Soil around roots of Pine, Pinus sp from FRI forest, Dehradun.
Suborder CEPHALOBINA
Family CEPHALOBIIDAE
Subfamily ACROBELINAE
Genus Zeldia Thorne, 1937
2. Zeldia punctata (Thorne, 1925) Thorne, 1937
(Fig. 2)
Material examined: (n = 2) Female: L = 0.75-0.85 mm; a = 18.6-21; b = 3.5-4.1; c = 11.5-12.5; V = 58-60.

Description: Body straight or slightly curved ventrally upon fixation. Cuticle without punctuation. Cuticle annulated, annules 1.8-1.9 µm at midbody and 2.6 µm on tail. Lateral fields marked by five incisures. Outer incisures widely spaced, three inner incisures very closely placed and not visible clearly. Lip region 10-12 µm wide, 2.5 µm high. Labial probolae with rounded margins and shallow grooves. Cephalic probolae six, flap-like, edges crenate anteriorly projecting margins at the primary cephalic axils. Amphidial apertures elongate oval. Cheilostome wall prominent. Gymnostom smaller than stegostom. Pharyngeal corpus cylindrical, six or eight times isthmus length. Basal bulb valvated, 22-25 x 18-22 µm. Excretory pore opposite nerve ring. Cardia conoid, 3.0-3.5 µm long. Gonad single, prodelphic. Ovary reflexed, with additional flexures near the tip. Post-uterine sac 15-20 µm long. Vulval lips depressed, radially ridged. Rectum, 24-25 µm long. Tail 0.065-0.068 mm long, conoid, with pointed terminus. Phasmids anterior to middle of tail.

Male: Not found.

Remarks: This species is being recorded for the first time from Uttarakhand. Soil around root zone of Deodar is a new habitat record.

Distribution: India: Uttar Pradesh and Uttarakhand. Elsewhere: Namibia, Hungary, Poland, Spain and U.S.A.

Habitat and Locality: Soil around roots of Deodar from Chakrata, district Dhradun.

Order ARAEOLAIMIDA
Superfamily PLECTOIDEA
Family PLECTITIDAE
Subfamily PLECTINAE
Genus Plectus Bastian, 1865

3. Plectus cirratus Bastian, 1865
(Fig. 2)

Material examined: (n = 2) Female: L = 0.90-0.93 mm; a = 21-22; b = 4.1-4.3; c = 7.9-8.1; V = 51-52.

Description: Female: Body arcuate ventrally upon fixation. Cuticle thick finely striated. Lip region slightly set off, 9-10 µm wide. Setae behind the lip region. Stoma 21-30 µm long, 4-5 µm wide. Pharyngeal corpus cylindrical with a valvular terminal bulb. Cardia long, surrounded by intestine. Vulva median. Ovaries two, opposed reflexed. Tail, 0.113-0.114 mm long, tapering terminus with spinneret.

Male: Not found.
Remarks: All measurements are in agreement with earlier workers except for slightly posteriorly situated vulva (41-50% of body length). This species is being recorded for the first time from Uttarakhand and also for the first time from rice fields.

Distribution: India: Uttarakhand, Uttar Pradesh, Sikkim.
Elsewhere: South Africa, Hungary and USA.

Habitat and Locality: Soil from rice fields, Sahiya, district Dehradun.

Genus Chiloplectus Andrassy, 1984

4. Chiloplectus indicus Tahseen et al., 2004
(Fig. 3)

Material examined: (n = 3) Female: L = 0.48-0.52 mm; a = 17-20; b = 3.5-3.7; c = 8.7-9.0; V = 53.2-53.

Description: Female: Body arcuate towards posterior extremity. Cuticle thick, strongly annulated. Lateral Fields with three incisures. Lip region strongly set off, with conical lips, separated from each other by a distinct gap, with inner setose projections pointing towards oral aperture. Cephalic setae 2-3 μm long, originating from second to third annule. Cervical setae 7-9 in number. Stoma with cuticularized cheilostome. Amphidial apertures plectoid, located anterior to middle of stoma, at 5-6 annules from base of lips. Pharynx with corpus, slightly narrower isthmus and a basal bulb with post bulbar extension leading to a small cardia. Basal pharyngeal bulb with a six pairs of denticulate ridges in grinder. Reproductive system didelphic, amphidelphic, genital tract weakly developed. Ovaries small, reflexed. Vagina straight with weak sphincter muscles. Vulval lips protruding. Tail 55-75 μm long, ventrally curved, gradually narrowing towards tip with a subterminal mid dorsal spur and three pairs of caudal setae.

Male: Not found.

Remarks: Chiloplectus indicus is being recorded for the first time from Uttarakhand (district Chamoli) at an altitude of 10,000 ft. Soil around roots of thumer is a new habitat record. All the measurements are in agreement with Tahseen et al., (2004) except for smaller body length and slightly smaller tail length (L = 0.695-1.041 mm; Tail = 0.068-0.105 mm).

Distribution: India: Uttarakhand, Uttar Pradesh, and Arunachal Pradesh.

Habitat and Locality: Soil around roots of thumer, Taxus baccata and silver oak from Ghangharia, district Chamoli.

Order ALAIMIDA

Family ALAIMIDAE

Genus Alaimus de Man, 1880

5. Alaimus primitivus de Man, 1880
(Fig. 3)

Material examined: (n = 5) Female: L = 0.8-1.2 mm; a = 42-58; b = 3.7-4.3; c = 7.1-8.4; V = 39-55.

Description: Female: Body tapering uniformly at both extremities. Cuticle smooth. Lip region rounded. Pharynx in two parts, anterior narrow tubular and posterior slowly expanding to form an
elongated basal swelling. Vulva a transverse slit. Ovary reflexed about half way to vulva. Gonad mono-opisthodelphic. Tail long and narrow, 0.11-0.14 mm.

Male : Not found.

Remarks : This species is being recorded for the first time from Uttarakhand. Sugarcane fields and Pine plantations are new habitat records.

Distribution : India : Uttar Pradesh, Sikkim and Uttarakhand.

Elsewhere : U.S.A. South Africa, Germany, Belgium, Hungary, Poland, Sweden and Australia.

Habitat and Locality : Soil around roots of Sugarcane, Mohand Rao, Doiwala and Pine from FRI, Dehradun.

ACKNOWLEDGEMENTS

The Authors are grateful to the Director, Zoological Survey of India, Kolkata for providing necessary facilities. Sincere thanks are due to Dr. Mukhtar Ahmad, Head, and Shri R.S. Bhandari, Forest Entomology Division, Forest Research Institute, Dehradun for providing the Instrumentation Laboratory Facilities. Special thanks are due to Shri C. Radhakrishnan, Add. Director, Zoological Survey of India, Western Ghats Field Research Station, Calicut, for his valuable suggestions.

REFERENCES

Figs. 2. Photomicrographs of *Zeldia punctata* (A-C) & *Plectus cirratus* (D-F); A. Female anterior end. B. Pharyngeal bulb. C. Tail. D. Female anterior end. E. Pharyngeal bulb. F. Tail.
Figs. 3. Photomicrographs of *Chiloplectus indicus* (A-C) & *Alaimus primitivus* (D-F); A. Female anterior end. B. Vulval region. C. Tail. D. Female anterior end. E. Vulval region. F. Tail.
ON A COLLECTION OF CHALCIDIOIDEA (HYMENOPTERA : INSECTA) FROM ORISSA, INDIA

P.M. SURESHAN
Zoological Survey of India, Gangetic Plains Regional Centre, Rajendra Nagar, Patna, Bihar-800 016, India
Email: samanyu2003@yahoo.com

INTRODUCTION

The super family Chalcidoidea (popularly called “Chalcids”) forms one of the largest, species rich and taxonomically difficult group of insects belonging to the Order Hymenoptera (Ants, bees and wasps). As per the current estimates, about 22,000 species of Chalcids have been described and catalogued world wide and recent estimates suggest that there may be more than 500000 species in existence (Noyes, 2003). Chalcids are distributed in all zoogeographical regions of the world and majority of them are parasitoids attacking a large range of insect orders in their various stages of development and groups of species in several families are phytophagous, associated with different plant families. Chalcids attack insect hosts in 15 different orders and are also associated with spider egg sacs and some acari and other arachnids. By parasitizing a wide range of insects, chalcids play a vital in the terrestrial ecosystems in controlling the populations of insect pests. Many species of them have been utilized successfully in biological control programmes all over the world and majority of successful biological control projects of insect pests have used Chalcids to achieve substantial or complete control (Greathead, 1986). The great diversity in their morphology, biological intricacy and specialization combine to make them one of the most marvelously rewarding group of insects to study. Though Chalcids are mainly beneficial, more than 80 species of them are also known to be pests of agriculture. Members of some of the families like Eurytomidae and Torymidae make galls and attack seeds of crop plants.

Jajpur and Kendrapara during the years 2005 to 2007. The specimens were identified following recent literature on Chalcidioidea (Boucek, 1988, Gibson et al., 1993, Narendran 1989 (Chalcididae) Narendran, 1994 (Torymidae and Eurytomidae) Sureshan, 2003, Sureshan & Narendran 2004, Boucek and Rasplus, 1991, Graham, 1969 (Pteromalidae). The classification of Chalcidoidea and terminology given by Boucek (1988) is followed in the present work. A total of 45 species of Chalcidoidea belonging to 28 genera and 4 families are reported from the state of Orissa and almost all of them were recorded for the first time from the state. The collections are deposited in Zoological Survey of India, Estuarine Biological Station, Gopalpur-on-Sea, Orissa.

Following abbreviations are used in the text: F-Female, F1-F6-Funicular segments 1 to 6; M-Male, MV-Marginal vein; OOL-Ocellocular distance; PMV-Post marginal vein; POL-Postocellar distance; SMV-Submarginal vein; STY-Stigmal vein; T1-T4-Gastral tergites 1 to 4.

SYSTEMATIC ACCOUNT

Family PTEROMALIDAE

Subfamily PTEROMALINAE

Diagnostic characters: Length 2.1-3.1 mm. Head and thorax bluish black, gaster brownish black; head finely reticulate, POL 1.6x OOL; antennae with scape not reaching median ocellus; pronotal collar not carinate, edge sharp; gaster elongate, as long as or longer than head and thorax combined.

Material examined: 1F, Jajpur dist., Krishnadaspur, Mantuka village, 10.iii.07, coll. P.M. Sureshan.

Distribution: India: Kerala, Orissa (present record) Tamil Nadu, West Bengal; Pakistan and Myanmar. Cosmopolitan.

Remarks: Common parasite of beetles (Coleoptera) associated with stored products. Recorded hosts include *Sitophilus oryzae*, *Sitophilus granarius*, *Tribolium castaneum*, and *Callosobruchus* sp.

Diagnostic characters: Female : Length 1.4-2.1 mm. Head and thorax metallic green with bronzy reflection dorsally; gaster brown with a broad yellowish spot dorsally at base; head 1.4x as wide as thorax, POL 1.6x OOL; anterior margin of clypeus shallowly emarginate, antennal scape reaching well beyond level of vertex, terminal stylus of club long; pronotal collar anteriorly margined; gaster elongate, ovate, 0.84x as long as head and thorax combined.

D:ZSF(Rec’09)-109 FolRec-109(1)-34(M-2)88
SURESHAN : *On a collection of Chalcidoidea (Hymenoptera : Insecta) from Orissa, India*

3. Callitula rugosa (Waterston)

Diagnostic characters : Female : Length 1.5-1.8 mm. Head and thorax dark green, almost black, gaster brownish black, antennae brown except scape yellowish brown; POL 1.5x OOL; anterior margin of clypeus slightly emarginate; Forewing with MV 2x STY; gaster as long as thorax, not collapsing, T1 occupying more than 1/3 length, T2 large, occupying 0.2x length of gaster.

Material examined : 1F, Kendrapara dist., Girango village, 12.iii.07, coll. P.M. Sureshan.

Distribution : India : Kerala, Maharashtra, Orissa (present record).

Remarks : Parasitoid of *Ophiomyia phaseoli* (Diptera : Agromyzidae).

4. Callitula travancorensis Sureshan

Diagnostic characters : Length 1.1-1.4 mm. Head and thorax black, gaster mostly yellowish brown; clypeus weakly emarginate; POL 1.7x OOL; terminal stylus of antennal club short. Pronotal collar finely but sharply carinate. Forewing with basal cell closed, speculum narrow, almost closed below. Gaster short, petiole wider than long, T1 reaching more than one third length of gaster.

Material examined : 3F, Puri dist., Ashram, 22.i.06; 1F, Kendrapara dist., Girango village, 12.iii.07, coll. P.M. Sureshan.

Distribution : India : Kerala, Orissa (present record).

5. Dinarmus acutus (Thomson)

Diagnostic characters : Female : Length 2.1-3.3 mm. Dark metallic blue; anterior margin of clypeus with two small teeth; antennae with third anellus not longer than second, pedicel as long as F1; propodeum with nucha long; forewing with PMV as long as MV; gaster short, non collapsing, 0.7x as long as head plus thorax.

Material examined : 3F, Ganjam dist., Gopalpur, 9.viii.05; 1F, Jajpur dist., Ratnagiri, 17.iii.07; 1F, Udayagiri, 17.iii.07; 1F, Kendrapara, Girango village, 12.iii.07, coll. P.M. Sureshan.

Distribution : India : Kerala, Maharashtra, Orissa (present record); Europe.

Remarks : Common species parasitizing bruchid beetles.
6. Dinarmus maculatus (Masi)

Diagnostic characters : Female : Length 2.5-3 mm. Metallic blue with bronzy patches on vertex and thorax, gaster darker; anterior margin of clypeus almost straight, not projecting ; POL sub equal to OOL; antennal scape reaching up to middle of median ocellus; third anellus as long as first and second combined; forewing with PMV as long as or slightly longer than MV; gaster cordiform.

Distribution : India: Kerala, West Bengal, Maharashtra, Orissa (present record); Myanmar.

Remarks : Common species, parasitic on Bruchid beetles.

7. Dinarmus colemani (Crawford)

Diagnostic characters : Length 2.4 mm. Bluish black with metallic reflection, gaster brownish black; head narrow in profile, anterior margin of clypeus almost straight, slightly projecting ; antennae with third anellus longest, pedicel little shorter than F1; propodeum with nucha long ; forewing with stigma moderately capitate; PMV little shorter than MV; gaster ovate, slightly collapsing, sub equal to head and thorax combined.

Material examined : 1F, Jajpur dist., Panchpandava, 15.iii.07, coll. P.M. Sureshan.

Distribution : India : Kerala, Bihar, Delhi, Kamataka, Tamil Nadu, Orissa (present record); Bangladesh.

Remarks : Uncommon species, parasitoid of Callosobruchus chinensis and other bruchid beetles in stored products.

8. Metastenus indicus Sureshan & Narendran

Diagnostic characters : Length 1.6-1.8 mm. Black; antennae testaceous; POL little greater than OOL; antennae inserted below centre of face; both mandible with three teeth; anterior margin of pronotal collar not carinate; propodeum with nucha short, finely reticulate, plicae very fine, almost indistinct. Gaster little longer than head plus thorax combined.

Material examined : 1F, Puri dist., Kushabadra, 22.i.2006, 6F, 1M, Kendrapara dist., Indupur, Dhumata, 13.iii.07; 1F, Giango village, 12.iii.07, 2M, Jajpur dist., Ratnagiri, 17.iii.07, coll. P.M. Sureshan.
SURESHAN : On a collection of Chalcidoidea (Hymenoptera : Insecta) from Orissa, India

Distribution: India : Kerala, Orissa (present record).

9. *Norbanus acuminatus* Dutt & Ferriere

Diagnostic characters: Length 2.5-5 mm. Head and thorax bluish black, gaster brown with greenish coppery tinge. Head engraved reticulate, POL almost as long as OOL, anterior margin of clypeus weakly emarginate, antennae with second anellus twice as long as first, clava almost as long as two preceding segments combined; gaster elongate, ovate, 1.2x as long as head plus thorax combined.

Material examined: 1F, Ganjam dist., Gopalpur, 4.i.2005, coll. P.M. Sureshan.

Distribution: India : Kerala, West Bengal, Orissa (present record).

Remarks: Parasitoid of *Nupserha bicolor* Thoms. (Coleoptera).

10. *Notoglyptus scutellaris* (Dodd & Girault)

Diagnostic characters: Length 1.3 mm. Head, thorax and petiole dark green, gaster brown; antennae with scape yellow, remainder brown; clypeus separated from face by obscure sulcus, anterior margin nearly straight, slightly reflexed; prontal collar finely carinate, scutellum coriaceous with distinct discal fovea; propodeum with nucha not bordered by carina anteriorly; gastral petiole length 1.2x width with weak medina carina, gaster length 1.3x width.

Distribution: India : Delhi, Orissa (present record), Kerala, Uttar Pradesh; Italy, Japan, America, Australia.

11. *Oniticellobia longigastra* Sureshan & Narendran

Diagnostic characters: Length 2.5-5 mm. Body shiny black with greenish gloss; antennae with third anellus as long as first and second combined; POL 1.5x OOL; ocelli moderate, median from lateral by 1.5x of its maximum diameter; gaster long, acuminate, 1.4x as long as head plus thorax combined, epipygium 2.5x as long as broad.

Material examined: 1F, Kendrapara dist., Bhuinpur, 14.iii.07, coll. P.M. Sureshan.

Distribution: India : Kerala, West Bengal, Orissa (Present record).

12. *Oxysychus nupserhae* (Dutt & Ferriere)

Diagnostic characters: Length 3.6 mm. Head and thorax dark blue, almost black, gaster aeneous with coppery shine, head swollen, POL greater than OOL; antennae with third anellus little longer than others, propodeum without median carina; forewing with MV almost half of SMV, STV half of MV, Gaster oval, longer than head plus thorax combined.

Material examined: 2F, 3M, Orissa: Kendrapara dist., Near Dangmal (Rajnagar), banks of river Hansina, 11.iii.2007; 1M, Jajpur dist., Balchandrapur, Rukatipato village, near river Virupa, 16.iii.2007; 1F, Krishandaspur, Mantuka village, 10.iii.07, coll. P.M. Sureshan.

Distribution: India: Kerala, West Bengal, Delhi, Orissa (present record).

Remarks: Parasitic on Cerambycid beetle *Nupserha bicolor* girdling the stem of jute.

13. *Propicroscytus mirificus* (Girault)

Diagnostic characters: Length 2.5-4 mm. Head and mesosoma black or bluish black, gaster pale to dark yellow with sides and middle with brown streaks longitudinally, antennae dark brown with scape, pedicel and anelli testaceous; clypeus slightly emarginate anteriorly; POL almost equal to OOL; pronotum distinctly at lower level, notauli indicated only anteriorly; gaster lanceolate, 1.2x as long as head plus thorax combined.

Material examined: 2F, 5M, Kendrapara dist., Nr Dangmal (Rajnagar), banks of river Hansina, 11.iii.2007, 2M, Manpur, Indupur, 1F, Dhumata, 13.iii.07, 14.iii.07, coll. P.M. Sureshan.

Distribution: India: Andhra Pradesh, Karnataka, Kerala, Maharashtra, Orissa (present record), Uttar Pradesh, South China, East Malaysia, Indonesia, Sri Lanka.

Remarks: Parasitic, sometimes secondarily on gall midges in rice and stems of some other grasses. Commonly occurring in paddy fields and adjacent grassy vegetations.

14. *Propicroscytus oryzae* (Subba Rao)

Diagnostic characters: Closely resembles *P. mirificus* (Girault) and mainly segregated by the body color. Head and thorax usually metallic green, dorsum usually with distinct green iridescence in certain lights.

Material examined: 2M, Jajpur dist., Ratnagiri, 17.iii.07, 1M, Ponosora village, Panchapandava, 15.ii.07, coll. P.M. Sureshan.

Distribution: India: Kerala, Orissa, Maharashtra, Andhra Pradesh, Arunachal Pradesh; Sri Lanka, China, Indonesia, Thailand.

D:ZSI(Rec-'09)-109 FolVRec-109(1)-34(M-2)92
SURESHAN : On a collection of Chalcidoidea (Hymenoptera : Insecta) from Orissa, India

Remarks : Parastic on Orseolia oryzae (Wood–Mason), paddy gall fly. Commonly occurring in paddy field and adjacent grassy vegetation.

15. Pteromalus puparum (Linnaeus)

Diagnostic characters : Length 2.4-3 mm. Dark metallic blue, antennae brown, scape testaceous. POL as long as OOL; temple wide, length 0.6x eye length; anterior margin of clypeus shallowly emarginate; antennae with F1 longer than pedicel, funicular segments longer than wide, propodeum with nucha long, gaster ovate, shorter than head and thorax combined.

Material examined : IF, Jajpur dist., Udayagiri, 17.iii.07, coll. P.M. Sureshan.

Distribution : India : Kerala, Uttar Pradesh, Orissa (present record) Bihar, Assam cosmopolitan.

Remarks : Parasitic in the pupae of various butterflies.

16. Pteromalus semotus (Walker)

Diagnostic characters : Length 1.9-2.8 mm. Dark metallic green with golden reflection, antennae testaceous, POL 1.8x OOL; temple 0.4x as long as eye; anterior margin of clypeus weakly emarginate; antennae with pedicel little longer than F1. Forewing with MV short, 1.1 -1.6x STV, gaster 1.1x as long as head plus thorax.

Material examined : 2F, Puri dist., Ashram, 22.i.06; 2F, Kendrapara dist., Nr Dangmal (Rajnagar), banks of river Hansina, 11.iii.2007; 9F, 2M, Indupur, Dhumata, 13.iii.07, 9F, Bhuinpur, 14.iii.07, 4F, Girango village, 12.iii.07, 1F, Jajpur dist., Udayagiri, 17.iii.07, Sukuapoda, nr. Lalitagiri, 15.iii.07, 1F, Jajpur dist, Ratnagiri, 17.iii.07, coll. P.M. Sureshan.

Distribution : India : Kerala, Orissa (present record) cosmopolitan.

Remarks : Primary or secondary parasite in pupae of various Lepidoptera, less often certain beetles (Curculionidae).

17. Sphegigaster brunneicornis (Ferriere)

Diagnostic characters : Female : Length 2-2.5 mm. Body dark green, almost black. Antennal scape, pedicel and anelli yellow, otherwise reddish brown. Antennae with F1 longer than pedicel, narrowed basally, funicular segments longer than wide except F6 sub quadrate; pronotum distinctly carinate; gaster (without petiole) not longer than thorax.

Distribution: India: Kerala, Maharashtra, Orissa (present record); Sri Lanka.

Remarks: Common species parasitic on pupae of Diptera (Agromyzidae).

18. Sphegigaster stepticola Boucek

Diagnostic characters: Length 1.5-2 mm. Body shiny black, slender; antennae with all funicular segments transverse, F1 shorter than pedicel; gaster oval, shorter than mesosoma, petiole length nearly 3 x width, hind margin of T1 with middle portion truncate or virtually so.

Distribution: India: Kerala, Delhi, Bihar, Uttar Pradesh, Orissa (present record); Austria, Chezchoslovakia, USSR, Algeria.

Remarks: Parasitic on Melanagromyza soyae (Soya bean fly), Melanagromyza sp. and Phytomyza sp. (Agromyzidae : Diptera) mining the leaves of Helianthus and Vigna catjang.

19. Toxeumorpha minuta Sureshan & Narendran

Diagnostic characters: Length 1.2 mm. Black. Antennae brown with scape paler; POL 1.4x OOL; antennae inserted along the lower margin of eyes, scape not reaching median ocellus, pedicel longer than F1, third anellus as long as first and second combined; propodeum with plicae complete, callus with black bristles similar as on other areas of thorax; forewing with basal vein setate; gaster with T1 and T2 covering most of the length.

Distribution: India: Kerala, Orissa (present record).

20. Trichomalopsis apanteloctena (Crawford)

Diagnostic characters: Length 1.6-2.5 mm. Lower margin of clypeus rather deeply incised medially, striae on clypeus extending to lower margin of eyes and to malar sulcus; both mandibles
SURESHAN: On a collection of Chalcidoidea (Hymenoptera: Insecta) from Orissa, India

with four teeth; occipital carina sharp, in posterior-dorsal view strongly curved medially. Antennae with combined length of pedicel plus flagellum length 0.8-0.93x head width in female and 0.95-1.05x in male. Gaster 1.7-2x as long as broad.

Distribution: India: Kerala, Tamil Nadu, Karnataka, Orissa (present record); Bangladesh, Korea, Malaysia, China, Japan, Taiwan, Philippines, Vietnam.

Remarks: Parasitic on Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and Pelopidas mathias (Lepidoptera: Hesperidae) Commonly occurring in paddy field and adjacent grassy vegetation.

Diagnostic characters: Length: 1.5-2 mm. head and thorax black with little metallic reflection. Pronotal collar weakly but sharply margined except at sides; antennae with scape as long as eye, pedicel plus flagellum 0.84x head width; gaster with T1 reaching almost half length of it; temple narrow, length 0.4x eye length.

Distribution: India: Kerala, Orissa (present record).

Remarks: Associated with paddy field and grasses.

Diagnostic characters: Length 1.8-2.4 mm. Dark brownish green with metallic reflection; temples rounded; pronotal collar regularly margined even on sides; forewing with PMV as long as MV; median area of propodeum broad, 1.3x as broad as long, plicae not very sharp. Gaster oval, ovipositor sheaths strongly protruding.

Distribution: India: Kerala, Orissa (present record).

Diagnostic characters: Length 1.6-2.7 mm. Bluish green with metallic reflection. Temple strongly converging behind eyes; pronotal collar irregularly margined; propodeum with plicae
very sharp, reaching up to tip of nucha, nucha more constricted, median carina strong; T1 of gaster reaching only one third length.

Material examined: 1F, Puri dist., Ashram, 22.i.06, coll. P.M. Sureshan.

Distribution: India: Kerala, Orissa (present record).

Subfamily SPALANGINAE

24. Spalangia nigroaenea Curtis

Diagnostic characters: Female: Length: 2.9-3.8 mm. Black, often with brassy lusture; head distinctly longer than broad (in male only as long as broad), umbilicately punctate with interspaces about as wide as punctures; pronotum with an isolated crenulate cross-line consisting of close punctures in front of hind margin, disc of collar more or less smooth, impunctate, collar bordered anteriorly by a narrow groove, setting off ridge like margin; gaster petiole expanded anteriorly.

Distribution: India: Delhi, Karnataka, Maharashtra; Pondicherry; cosmopolitan.

Remarks: Parasitoid of fly puparia, especially of the synanthropic species.

25. Spalangia simplex Perkins

Diagnostic characters: Black. Pronotal collar anteriorly rounded. Mesoprescutum with a distinct cross-line (similar to those on pronotum and scutellum) and a round fovea behind it on disc.

Distribution: India (Uttar Pradesh, Tamil Nadu, Orissa (present record); East Africa, Malaysia.

Subfamily DIPARINAE

26. Netomocera nigra Sureshan & Narendran

Diagnostic characters: Length 1.73-2.36 mm. Black, gaster ventrally brown. POL 3.5x OOL; antennal toruli at the level of anterior margin of eyes, funicular segments of equal length; club broad, as long as four preceding segments combined; forewing with MV 2x as long as PMV and 3x STV; gaster (without petiole) short, oval, 1.7x as long as its maximum width; petiole longitudinally rugose, as long as broad, T1 exceeding well beyond middle of gaster.

Distribution: India: Kerala, Orissa (present record).
SURESHAN: On a collection of Chalcidoidea (Hymenoptera: Insecta) from Orissa, India

Subfamily HERBERTIINAE

27. Herbertia indica Howard

Diagnostic characters: Female: Length 1.1-1.5 mm. Black, metallic violaceous reflection on face and gaster dorsally; legs whitish except coxae, trochanter and femora bluish black; head and thorax granulate reticulate; antennae inserted on lower face, scape not reaching middle of face, extending 0.75x eye height, F1 shorter than pedicel, club as long as three preceding segments combined; forewing with MV slightly greater than 2x as long as PMV; gaster broad and short, T1 covering most of the gaster.

Material examined: 1F, Puri dist., Ashram, 22.i.06, coll. P.M. Sureshan.

Distribution: India: Madhya Pradesh, Bihar, Kerala, Karnataka, Maharashtra, Orissa (present record); Sri Lanka.

Remarks: Uncommon species parasitic on leaf mining dipterous larvae.

Subfamily PANTENONINAE

28. Panstenon oxylus (Walker)

Diagnostic characters: Length 1.6-2.4 mm. Metallic green, head brownish with slight violaceous tinge, finely reticulate, anterior margin of clypeus truncate; eyes large; malar space about two fifths the length of an eye; pronotal collar weakly margined or not margined, notauli tending to be less slightly impressed; frenal line of scutellum fine and weak; gaster usually sunken dorsally, petiole without hairs, 2x as long as broad.

Distribution: India: Orissa (Present record), China, Finland, Japan, Korea, Sweden, United Kingdom.

Subfamily ORMOCERINAE

Tribe SYSTASINI

29. Systasis dalbergiae Mani

Diagnostic characters: Length 1.5-1.8 mm. Body bright metallic green, antennae dark brown; OOL 1.25x ocellar diameter, face rugously punctate between scape and inner orbital border, just below antennae transversely reticulate; both mandibles tridentate; antennae with pedicel much longer than F1, all funicular segments sub equal.

Material examined: 1F, Kendrapara dist., Indupur, Dhumata, 13.iii.07, coll. P.M. Sureshan.

Distribution: India: Karnataka, Orissa (present record).

30. Systasis dasyneurae Ahamd & Mani

1939. Systasis dasyneurae Mani. in Ahmad & Mani, 1939 : 535-537. India (Haryana).

Diagnostic characters: Length 1.75-2.0 mm. Bright metallic green. Antennae with pedicel slightly longer than first funicular segment, funicular segments sub equal; left mandible tridentate, right with an additional tooth between second and third; propodeum very short, almost hidden by scutellum medially; forewing hyaline, about twice as long as broad, MV nearly twice STY, PMV nearly one and one fourth to twice STV.

Material examined: 1F, Jajpur dist., Panchapandava, 15.iii.07, coll. P.M. Sureshan.

Distribution: India: Uttar Pradesh, Madhya Pradesh, Orissa (present record).

Family CHALCIDIDAE
Subfamily CHALCIDINAE

31. Brachymeria bengalensis (Cameron)

Diagnostic characters: Hind femur red (often with black patch of varying size on outer disc) with a yellow spot or patch at apex. Apex of scutellum distinctly and well emarginate with dense silvery pubescence.

Distribution: India: Assam, Delhi, Rajasthan, Uttar Pradesh, West Bengal, Orissa (present record); all over Oriental region and Japan.

Remarks: A common Brachymeria species parasitic on Earias vietlla (= fabia) Fabricius. (Lepidoptera: Noctuidae).

32. Brachymeria euploeae (Westwood)

Diagnostic characters: Apex of scutellum rounded or entire or at the most very weakly or slightly emarginate; hind femur always black with apex yellow. Antennal club more than twice preceding segment; gaster globose or subglobose.

Material examined: 1F, Orissa, Jajpur dist., Rainagiri, 17.i.2007, coll. P.M. Sureshan.
SURESHAN: On a collection of Chalcidoidea (Hymenoptera: Insecta) from Orissa, India

Distribution: India: W. Bengal, Uttaranchal, Tamil Nadu, Kerala, Karnataka, Orissa (present record); North Borneo, Sumatra, Java, and Philippines.

Remarks: Common Brachymeria species parasitizing various Lepidoptera.

33. **Brachymeria minuta** (Linnaeus)

Diagnostic characters: Hind femur not more than one and four fifth times as long as wide with a distinct tooth at inner basal side, dorsal margin not angulate, usually black with apex yellow.

Material examined: 1F, Jajpur dist., Ratnagiri, 17.iii.07, coll. P.M. Sureshan.

Distribution: India: Karnataka, Sikkim, Tamil Nadu, Uttar Pradesh, W. Bengal, Orissa (present record); cosmopolitan.

Remarks: Common. Parasitoid of various Diptera, sometimes secondarily.

34. **Kriechbaumerella rufimanus** (Walker)

Diagnostic characters: Pre-orbital carina distinct, post orbital carinae indistinct, genotemporal furrow absent; apex of scutellum bilobed; gaster shorter than thorax, first tergite smooth and shiny in female, in male microsculptured or shagreened. Hind femur black, liver brown or testaceous.

Material examined: 1F, Jajpur dist., Ratnagiri, 17.iii.07, coll. P.M. Sureshan.

Distribution: India: Kerala, Uttar Pradesh, Rajasthan, Tamil Nadu, Karnataka, Assam, Orissa (present record); Nepal, Sri Lanka, Indonesia, Pakistan, Java, Philippines.

Subfamily DIRHININAE

35. **Dirhinus anthracia** Walker

Diagnostic characters: Head below apex of each horn without distinct additional tooth, anterior and dorsal (inner) edge of horn converging in acute to right angle, anterior and lateral edges forming acute angle of about 60°; antennae fore and mid legs testaceous or rufous; antennae of female thick; scutellum anteriorly with a median impunctate strip; striae on first gastral tergite reaching only one-third length.

Material examined: 1F, Jajpur dist., Ponosora village, 15.iii.07; 1F, Kendrapara dist., Potamundi, 11.iii.07, 1M, Ganjam dist., Gopalpur, 26.08.05, coll. P.M. Sureshan.

Distribution: India: Madhya Pradesh, Manipur, Punjab, Tripura, Uttar Pradesh, Orissa (present record); Oriental region. Africa, Australian and Mediterranean region.

Remarks: Common species parasitic on various Diptera and Lepidoptera.
36. **Dirhinus bakeri** (Crawford)

Diagnostic characters: Forewing pubescence reduced especially with no hairline recurrent from stigmal or if a hair line partly developed, then petiole at least slightly transverse, in female area of four carinae on petiole 1.5-2 x as broad as long, dense striae on first tergite forming broad area with convex hind margin and taking up more than quarter of tergite length.

Distribution: India: Kerala, Orissa (present record), Uttar Pradesh, Karnataka, S. Nadu, Sikkim); Sri Lanka, Malaysia, Philippines and Japan.

Remarks: Common parasite of various Diptera and Lepidoptera.

Subfamily **EPITRANINAE**

37. **Epitranus albipennis** Walker

Diagnostic characters: Body mainly red brown, eyes large, in dorsal view maximum diameter about two-third the breadth of vertex; POL clearly more than twice OOL; hind femur behind basal tooth with comb of at lest 20 narrow regular teeth.

Material examined: 2F, Jajpur dist., Ratnagiri, 17.iii.07, coll. P.M. Sureshan.

Distribution: India: Uttar Pradesh, Kerala, Orissa (present record), W. Bengal, Andhra Pradesh); Malaysia, Indonesia, S. China, Taiwan, Philippines, Borneo and Japan.

Remarks: Parasitoid of Pyralid moth.

38. **Epitranus erythrogaster** Cameron

Diagnostic characters: Malar space hairy, frons with fine structure, scrobal part mainly reticulate to finely cross striate, clypeal roof more pilose, more extensively concave, antennae long and slender, thorax black.

Material examined: 2F, Jajpur dist., Panchapandava, 15.iii.07, coll. P.M. Sureshan.

Distribution: India: Karnataka, Kerala, Maharashtra, Tamil Nadu, Uttar Pradesh, West Bengal, Orissa (present record); All over Oriental region, S, Japan.

Remarks: Most common species. Parasitic on Pyralid moths.

39. **Epitranus observator** Walker

SURESHAN : On a collection of Chalcidoidea (Hymenoptera: Insecta) from Orissa, India

Diagnostic characters: Head red, thorax black, pubescence on thorax longer and denser; prontosomal collar carina broadly interrupted, head stout with almost round temples.

Material examined: 1F, Ganjam dist., Gopalpur, 20.viii.05, coll. P.M. Sureshan.

Distribution: India: Bengal, Orissa (present record), Africa, Sri Lanka, Thailand and Malaysia.

Family TORYMIDAE
Subfamily TORYMINAE

40. Podagrion charybdis Fernando

Diagnostic characters: Length 3.1-3.3 mm. Head and thorax metallic greenish blue; antennae testaceous, club brown, almost equal to preceding five segments combined; propodeum with an inverted V shaped carina, base of V not reaching base, join with irregular longitudinal rugae at the base; hind femora with 6 teeth, second tooth small, forewing with speculum and basal cell closed below, gaster including petiole slightly longer than thorax and 0.81x as long as head plus thorax, ovipositor 2.63x as long as gaster and 1.2x length of body.

Distribution: India: (Orissa) Sri Lanka.

Remarks: Reported for the first time from India after the original description from Sri Lanka (Sureshan, 2009).

41. Odopoia reticulata Sureshan

Diagnostic characters: Length 2.35 mm. Black with bright metallic greenish blue reflection on face and thorax; pronotum distinctly raised reticulate, mesoscutum, scutellum (except for a central oval shiny spot posteriorly) moderately reticulate; Forewing with a narrow cross band at stigmal area. Propodeum smooth, median area raised, with distinct median carina and several irregular longitudinal carinulae on either side, gaster with hind margin of T1 and T2 distinctly incised in the middle.

Distribution: India (Orissa).

42. Torymoides anamalaianus (Mani & Kurian)

Diagnostic characters: Female length: 2 mm scape, thorax, gaster, coxae, femora metallic green, length of ovipositor equal to thorax, POL 2x OOL, first four funicular segments of antenna width and length sub equal; ovipositor equal to length of gaster.

Distribution: India: Uttar Pradesh, Kerala, Tamil Nadu, Orissa (present record).

Remarks: Sureshan (2007) reported the species first time from Orissa.

43. *Palm on orchesticus* (Masi)

Diagnostic characters: Length 3.1 mm. Head and thorax metallic green with thorax darker, hind coxa yellow with blackish patch on dorsal side of basal half. Antennal club length exceeding preceding 5 or 6 segments but not exceeding 7 segments; hind femur with 8-9 teeth (7 teeth reported) 4 large primary teeth and 4 or 5 smaller secondary teeth, forewing with MV not longer than 3x PMV, Ovipositor 3 to 5x longer than the body.

Distribution: India: Kerala, Andhra Pradesh, Orissa; Sri Lanka, Taiwan.

Remarks: Sureshan (2007) reported the species first time from Orissa.

Family EURYOMIDAE
Subfamily EURYOMINAE

44. *Acantheurytoma spinifera* Cameron

Diagnostic characters: Length : 4.3 mm. Black, fore and mid femora, fore and mid tibiae, all trochanters reddish brown; maximum diameter of eye 2-3x malar space in profile; anterior width of head 1.62x distance between front ocellus and clypeal margin; frons concave, preorbital carinae profoundly raised, running up to vertex, vaguely joining each other behind front ocellus, front ocellus situated inside scrobe. Gastral petiole shorter than half length of hind coxa, with a tooth on either side on dorsal region.

Material examined: 1F, Kendrapara dist., Indupur, Dhumata, 13.iii.07, coll. P.M. Sureshan.

Distribution: India: Kerala, Orissa (present record), Tamil Nadu, East Malaysia (N. Borneo).

Remarks: Parasitic on sphecid wasp larva.
SURESHAN: On a collection of Chalcidoidea (Hymenoptera: Insecta) from Orissa, India

Subfamily RILEYINAE

45. Burasium naso Boucek

Diagnostic characters: Length 3-4.2 mm. Body reddish brown with antennae distally, gaster dorsally beyond middle of T4, all femora and tibiae darkened or infuscate. Forewing with two conspicuous infuscations one at parastigma and another attached to PMV and STV; inter antennal projection forming round headed tooth projecting abruptly between upper margins of antennal sockets, gaster with T4 with a deep transverse depression just behind base.

Material examined: 1F, Ganjam dist, Gopalpur, 16.viii.05, coll. P.M. Sureshan.

Distribution: India: Delhi, Orissa (present record), Pakistan and Thailand.

Remarks: Only known from Delhi (Type locality) and Orissa in India.

SUMMARY

The present paper deals with the report of 45 species of Chalcidoidea (Hymenoptera) belonging to 28 genera under 4 families (Pteromalidae, Eurytomidae, Chalcididae and Torymidae) from Orissa. The study is based on specimens collected from the coastal districts of South Orissa during the year 2005-07.

ACKNOWLEDGEMENTS

I am grateful to the Director, Zoological Survey of India, Kolkatta and the Officer in charge, Zoological Survey of India, Estuarine Biological Station, Gopalpur-on-Sea, Orissa for the facilities provided for undertaking the work.

REFERENCES

Short Communication

HOLOSTEMMA ADA-KODIEN SCHULT
(FAMILY : ASCLEPIADACEAE), A NEW LARVAL FOOD PLANT OF THE BLUE TIGER, **TIRUMALA LIMNIACE CRAMER
(INSECTA : LEPIDOPTERA : NYMPHALIDAE)

INTRODUCTION

While conducting the studies on the butterfly fauna of Kerala, many larvae of Blue Tiger (*Tirumala limniace* Cramer) butterflies were observed feeding on the plants of *Holostemma ada-kodien* Schult during November 2005 at Narikuni area of the Kozhikode district, Kerala. Three larvae were reared in captivity fed with *Holostemma* plants. The adults emerged after 10-12 days subsequent to pupation.

Holostemma ada-kodien Schult. (Asclepiadaceae) is a common climber found along the moist deciduous forests and the sacred groves of midland hills of north Kerala. It is a medicinal plant and locally called *adapathiyan kizhangu*. Its tuber is locally used in traditional medicine for treatment of arthritis and rheumatic pain. Existing literature showed that the Blue Tiger, *Tirumala limniace* is known to feed on *Asclepias curassavica, Calotropis gigantea, Hoya sp.*, *Tylophora indica*, and *Wattakaka volubilis*, all belonging to the family Asclepiadaceae (Wynter-Blyth, 1957 and Kunte, 2000). Among these, *Wattakaka volubilis* is the most favoured host plant of the Blue Tiger in our locality. The present record of *T. limniace* feeding on *Holostemma ada-kodien* forms a new addition to the existing list of larval food plants known for the Blue Tiger.

The Blue Tiger is one of the commonest danaine species and constitute one of the important participants in the large scale mixed danaine migrations during November. Narikuni area happens to fall in the migratory path of the danaine butterflies in Kerala and *T. limniace* can be seen migrating during November, every year, along with the Dark Blue Tiger (*Tirumala septentrionis*), Double-branded Crow (*Euploea sylvester*) and the Common Crow (*Euploea core*).

ACKNOWLEDGEMENTS

The authors are grateful to the Director, Zoological Survey of India, Kolkata for encouragement and facilities.
REFERENCES

MUHAMED JAFER PALOT, BIMALNATH, K.G.* AND C. RADHAKRISHNAN
Western Ghats Regional Centre
Zoological Survey of India, Calicut-673 006, Kerala
*Malabar Natural History Society, Kozhikode-673 004.
Short Communication

A NOTE ON THE STATUS, OCCURRENCE AND DISTRIBUTION OF WILD BUFFALO, BUBALUS BUBALIS (LINNEAUS) IN WESTERN ORISSA AND CHHATTISGARH

The wild Buffalo has now been one of the most highly endangered species of mammals, due to its utility in different ways by human being. The population of this animal is on continuous decline, despite the implementation of Wildlife Protection Act 1972. Several workers, such as Moone (1930), Daniel and Grubb (1966), Divekar (1979), Divekar and Bhusan (1988), Choudhury (1994) have conducted important surveys to study the status and population of this species. Studies undertaken by Gee (1953), Inverarity (1985), Lall (1953), Naronha (1954) are not less important however, they have mainly focused on the morphological features and behavioural characters. Moone (1930) stated that the wild Buffalo had been extinct in coastal districts of Orissa for over 25-30 years back. He opined that the animal was present in Raipur and that there were 40-50 animals, which frequented a locality within ten miles of C.P. Border and a small herd of about 15 individuals, forty miles further east. He added that the first named buffalos might join with the herds in the south of Raipur district. Behura and Guru (1964) reported the existence of two herds of this animal, one each in Kalahandi and Koraput district. During the faunistic survey of Orissa (1970-1983) the survey parties of Zoological Survey of India however, could not see any trace of this wild animal. Daniel and Grubb (1966) estimated 400-500 individuals in Peninsular India. Godwin and Holloway (1972) gave an estimation of 2000 animals in India including Nepal (400-500 individuals in Peninsular India, including 200-250 in Bastar and Chandrapura). Daniel et al. (1979) reported that no wild Buffalo was left in Orissa and Maharashtra. Tikadar (1983) has shown its distribution in grass jungle of Nepal terai, extending to the plains of Brahmaputra in Assam and Arunachal Pradesh. He also reported this species to occur in Raipur and Bastar district of Chhattisgrah, Western Orissa and Maharastra. He mentioned its population to be less then 1000. As per Red Data Book (ZSI, 1994), this species has been reported to occur in Assam (Manas, Pabha, Kaziranga, Loakhowa and Lakhimpur), Orissa (Koraput district), Chhattisgrah (West, North, South Bastar and southern Raipur district) and Maharastra (Eastern Chandrapura). Choudhury (1994) estimated a population of 3000-3500 in north-east India. Alfred, Ramakrishna and Pradhan (2006) have shown its distribution in Arunachal Pradesh, Meghalaya, Orissa, Madhya Pradesh and Eastern Maharastra. Alfred and De (2006) stated the occurrence of this species in Assam, Arunachal Pradesh, Madhya Pradesh, Maharastra, Meghalaya, Orissa and probably West Bengal.
The author conducted a survey of forest ranges in Koraput district from 23-28 December, 2003 but could not get any clue of this animal.

The picture in Chhattisgrah is different. Though their population has been on decline for the last several years, yet they still occur in protected areas of Chhattisgrah in different localities. About 200-250 individual existed upto 1968. In 1986-87, the number of Buffalo was estimated to be around 127 in Indravati National Park and 25 animals in Bhairamgrah Sanctuary, whereas in Pamed Sanctuary and Udanti Sanctuary their number was 58 and 40 respectively. Divekar and Bhusan (1988) reported 39 Buffalos in Indravati National Park and 15 in Bhairamgrah Sanctuary. In Pomed Sanctuary and Udanti Sanctuary, their number was 25 individual in each Sanctuary. Ranjitsinghji et al. (2004) have conducted the latest survey of this state and estimated 42-46 Buffalo in Udanti and 25-30 individual in Indravati National Park, the total number being less than 75. The population is split in to three clusters with little or no interbreeding. These clusters remain confined to south-eastern part of the Indravati National Park.

Thus, it is very difficult to say whether wild Buffalo still exist in Orissa. It is quite possible, as also opined by Moone (1930) that the borders of Orissa might be visited by some individuals from across the border. But it is certain that their number is declining very fast and if ultimate effective measure is not taken the animal may vanish forever.

ACKNOWLEDGEMENTS

The author is thankful to the Director, Zoological Survey of India for providing facilities and to the Forest Department Orissa for help.

REFERENCES

Alfred, J.R.B., Ramakrishna and Pradhan, M.S. 2006. Validation of threatened Mammals of India. 1-568 (Published by the Director, Zool. Surv. India, Kolkata).

J.P. SRIVASTAVA

Zoological Survey of India, M-Block, New Alipore, Kolkata
Short Communication

NEW RECORD OF VESPA SOROR DU BUYSSON (HYMENOPTERA: VESPIDAE) FROM INDIA

INTRODUCTION

The species *Vespa soror* du Buysson is so far reported from China, Laos, Myanmar, Thailand and Vietnam (Das & Gupta, 1989 and Carpenter & Kojima, 1997). Kundu et al. (2006) listed the vespid fauna of Arunachal Pradesh state. Thus this short communication is intended to report the extended distribution of this species in India.

Vespa soror du Buysson
(Plate-I)

Diagnosis: Female. Size 23-26 mm. Fore wing 22-24 mm. Head, anterior border of pronotum, scutellum, postscutellum and two marks on propodeum yellow. Area around ocelli black; gastral segment 1 and 2 yellow with reddish brown stripes in the middle; 3rd to 6th tergites wholly black. Head strongly widened, produced behind the eyes; temple in profile 2x as wide as eye; posterior ocelli 3x farther from occiput than from eye; clypeus coarsely punctate, strongly emarginated apically, lateral lobes large and broadly rounded.

Variations: In some specimens colour of head, scutellum, postscutellum and first two gastral segments brownish yellow.

Discussion: This species comes close to *Vespa mandarinia* Smith in having head strongly widened and produced behind the eyes; temple in profile more than 1.8x as wide as eye and posterior ocelli 3x or more than 3x farther from occiput than from eye. But it distinctly differs from *V. mandarinia* in having: (1). Area around ocelli with black markings. (in *V. mandarinia* area around ocelli without black markings); (2). Scutellum, postscutellum, two marks on propodeum
and often with anterior border of pronotum yellow or orange red. (in *V. mandarinia* thorax usually black, reddish); (3). 1st and 2nd gastral tergites yellow and usually with reddish brown or black stripes in the middle, 3rd to 6th tergites wholly black. (in *V. mandarinia* abdomen reddish brown with narrow yellow apical bands on 1st to 5th tergites, last tergite yellowish brown); (4). Gena proportionately thinner (in *V. mandarinia* gena proportionately wider).

Distribution: India : Arunachal Pradesh.

Elsewhere: China, Laos, Myanmar, Thailand and Vietnam.

Remarks: This is the first report of the species from India.

ACKNOWLEDGEMENT

The authors are grateful to the Director, Zoological Survey of India, Kolkata for providing facilities and encouragements. The first author is also grateful to James M. Carpenter, American Museum of Natural History, New York for providing some valuable reprints of his papers.

REFERENCES

GIRISH KUMAR, P., AND SRINIVASAN, G.

Zoological Survey of India, M-Block, New Alipore, Kolkata- 700 053, India.

E-mail: k_p_girish@yahoo.co.in; srideeep@rediffmail.com
A NOTE ON THE OCCURRENCE OF SICAMUGIL CASCASIA
(PISCES: MUGILIDAE) IN THE FRESHWATER ZONE OF THE
HOOGHLY ESTUARY

INTRODUCTION

During a recent survey in the stretch between Nababgunj and Monirampore (Barrackpore) in the freshwater zone of the Hooghly estuary thirteen (13) specimens of Sicamugil cascasia (Plate-1a), a small mullet, could be collected from set barriers operated near Monirampore during the months of August, 2005, June, 2006 and August, 2006. Day (1889), stated that the species is distributed in the upper reaches of Ganga and Jamuna, as low down as Patna. Jhingran and Talwar (1991) also stated that the species is purely a freshwater one and the lowest point on the Ganga river system where they were recorded was Patna. The present author, however, could record the species from about 20 km above Barauni (Bihar) down to Manikchakwak in the district of Malda, West Bengal during an extensive investigation on the environment and fishery of the river Ganga instituted by the Central Inland Fisheries Research Institute between 1994-'96. The species, however, was not recorded earlier from the Nababgunj-Barrackpore (Monirampore) freshwater stretch of the Hooghly estuary.

Keywords: Mullet, Sicamugil cascasia, Freshwater zone, Hooghly estuary.

GENERAL DESCRIPTION

Colour in fresh condition : Slightly greenish yellow on the back and upper sides of the body. Silvery white on the lower sides and belly. Scattered black dots on the body. A large yellow blotch at the caudal base. Yellow dot at the base of the pectoral (Plate-1a).

Description of the specimens : The largest specimen : TL-46 mm; SL-38 mm; weight in fresh condition : 1.137 g; The smallest specimen : TL-30 mm; SL-24 mm; weight in fresh condition : 0.285 g.

Head a little wide, dorsally flattened; Length of head (Mean) 4.45 (4.10-4.88) in Total length; adipose eye-lid absent; pre-orbital with serrated lower margin, provided with 3 minute denticles posteriorly. Opercle with a spine. The proportion of the space between 1st and 2nd dorsal : total length = 1 : 4.57 (Mean value), 1st dorsal inserted almost at the middle, nearer to the tip of the snout and provided with 4 spinous rays of which 2nd one is the largest. Anal fin origin opposite to 2nd dorsal origin. Anal fin with three spinous and 8-9 soft rays. Caudal fin lunate. Scales ctenoid (Plate-Ib); Lateral line absent.
DISCUSSION

Though Jayaram (1981) and Jhingran and Talwar (1991) opined that the species is a freshwater one and found only in the upper reaches of the river Ganga, Sen (1992) stated that the species was found in the Sundarbans complex of estuarine water. This is, however, not substantiated by Talwar, et al. (1992) who while giving an account of estuarine and marine fishes of West Bengal did not enlist Sicamugil cascasia. David (1954) did not mention about the presence of the species in the Nababgunj-Barrackpore stretch of the Hooghly estuary. Menon, et al. (1972) also did not make any mention about the species in the upper reaches of Hooghly. Recent survey conducted by CIFRI, Barrackpore during 1995-'96 did not reveal its presence in the Hooghly estuary. The present author could not record the species in any of the stretches from down stream of freshwater to high saline zone save and except the ones reported in the present communication. The water salinities in the Barrackpore-Nababgunj stretch, when these small mullets were collected, were 0.04, 0.06 and 0.05% respectively, thus demonstrating a freshwater condition.

ACKNOWLEDGEMENTS

The author is indebted to Dr. K.K. Vaas, Director CIFRI, for his keen interest in these studies and providing necessary facilities. Thankful acknowledgement is also due to Shri R.N. Misra, Acting Head, Estuarine Division for encouragement. The author acknowledges the assistance rendered by Shri A.K. Jana, Technical Assistant. Thanks are also due to Shri Sujit Choudhury, Photographer for his help.

REFERENCES

Day, F. (1889) : The fauna of British India including Ceylon and Burma, Fishes, Vol. II, (Published by Govt. of India, New Delhi, 1963).

AMITABHA GHOSH
Estuarine Division of Central Inland Fisheries Research Institute,
Barrackpore-700 120, West Bengal
GHOSH: A note on the occurrence of Sicamugil cascasia (Pisces: Mugilidae)Houghly Estuary

PLATE-Ia

Sicamugil cascasia (Hamilton-Buchanan) (enlarged)

PLATE-Ib

A ctenoid scale of *S. cascasia* (enlarged)
INSTRUCTION TO AUTHORS

Frequency of Publication: Quarterly – 4 parts in one volume.

Publication time: Within 3 months after final acceptance.

Categories of published material: Full paper, Interesting Case Reports, Field Reports, Taxonomic description and distributions, Description of new taxa, Short Communications, Checklists.

Instruction of submission: The article to be organized as:

1. Title; 2. Author/Authors along with address clearly mentioning the corresponding author and Affiliation, e-mail address; 3. Introduction; 4. Materials and Methods; 5. Systematic accounts; 6. Results; 7. Discussion; 8. Summary; 9. Acknowledgement, 10. References; 11. Tables and Figures with appropriate title and legends on separate sheets.

For short communication, the combination of some of the above sections is recommended.

Format of Manuscript:

Submission of a manuscript implies that the report is original, unpublished and is not being considered/disqualified for publication elsewhere.

Manuscript in English should be computer-typed, double-spaced with 1.5-inch right-hand margins on one side in A4 paper (210 x 297 mm). Font size 10-12 points, Times New Roman. Text should be justified. Footnotes should be avoided. All units of measurement are in metric. All manuscript sheets must be numbered successively. No portion of the article should be underlined except Latin names of genera and species, if not typed in italics. Submit in triplicate with a CD in MS Word, photo/map/chart/drawings in jpg/psd (photoshop).

Introduction section should clearly describe the objectives of the study and provide enough background information to make it clear why the study was undertaken. Lengthy literature review is discouraged. Some earlier references of work may be cited.

Materials and Methods should provide the reader with all the information necessary to repeat the work. For modification of published methodology, only modification needs to be described with reference to the original source.

Under material examined the following format should be followed strictly for e.g.:

Material Examined: Holotype : Female : India, Kerala, Calicut University campus, 3-xii-1994, coll. T.C. Narendran and Party (Reg. No.)

Results to be presented by referring to tables and figures (if any) and without discussion.

Discussion should include a concise statement of the findings, a discussion of the variety of the observations, a discussion of the findings in the light of other published works dealing with the same or allied subjects.

Summary: A short write up to be given describing the article and its importance/need.

References should be cited as follows:

Title of periodicals should be abbreviated as in the latest edition of World list of Scientific Periodicals, London.

Entries under “Reference” should not include any reference which is not cited in the text.
Examples:

State Fauna/Conservation Areas

Book

Tables – Each table should be typed on a separate sheet and must have an explanatory title. All numbers is in Arabic numerals.

Figures – All figures should be appropriately lettered and labeled with letters and numbers in Arabic numerals. The maximum dimension of figures is 131 × 193 mm. All figures should be submitted in original, no xerox copy would be entertained.

Photographs – All photographs to be submitted in original. For Maps – fresh maps shall be encouraged. The maps and photographs taken from other sources, if any, the sources must be given along with the manuscript and permission to be obtained for production of the same. In case of Digitized/Scanned photo, it should be in jpg or Photoshop format along with one set of colour printout.

Referee comments : Once the manuscript is received back from the referee, it will be communicated to the author with the comments on its suitability and required to be resubmitted the revised manuscript incorporating all the suggestions/comments within one-month time. Failing which, it will be assumed that the author is not interested for its publication and the case will be closed without any further intimation.

Proof reading : Galley proof will be delivered to the corresponding author and the corresponding author proof should be returned to the Publication Division within 15 days from the receipt of the galley proof.

Reprints : 25 copies of the reprints of the paper published in Records ZSI, State Fauna, Conservation Area Series and Ecosystem Series or any other contributory article published. In case of Bound volume in the shape of book viz. Occasional Paper, Memoirs, Handbook, Special Publication, Fauna of India, Ten copies will be provided in case of single author. However, for multiple authors, 5 copies will be provided to each author as gratis free of cost subject to a maximum of 25 copies.