FAUNA OF ANDHRA PRADESH

PART - 6
Protozoa
FAUNA OF ANDHRA PRADESH

(PART–6)

Protozoa

Edited by
The Director, Zoological Survey of India, Kolkata

Zoological Survey of India
Kolkata
CITATION

Published : September, 2004

ISBN 81-8171-048-7

© Govt. of India, 2004

ALL RIGHTS RESERVED

- No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher.
- This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.
- The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable.

PRICE
India : Rs. 700.00
Foreign : $ 50; £ 40

Published at the Publication Division by the Director, Zoological Survey of India, 234/4, AJC Bose Road, 2nd MSO Building, (13th Floor), Nizam Palace, Kolkata-700 020 and printed at Calcutta Repro Graphics, Kolkata-700 006.
STATE FAUNA SERIES
FAUNA OF ANDHRA PRADESH
PROTOZOA

CONTENTS

PARASITIC PROTOZOA .. 1-422
N. C. Nandi, C. Kalavati, A. K. Das and R. Nandi

Introduction .. 1
Material and Methods ... 6
Classification ... 7
Systematic list of parasitic Protozoa ... 11
Host-Parasite list ... 44
Systematic account .. 65

Phylum Sarcomastigophora .. 65
Subphylum Mastigophora ... 65
Subphylum Opalinata .. 164
Subphylum Sarcodina ... 164
Phylum Apicomplexa .. 167
Phylum Microspora ... 262
Phylum Ascetospora ... 288
Phylum Myxozoa .. 291
Phylum Ciliophora .. 353

General remarks on distribution ... 381
Summary ... 394
Acknowledgement ... 396
References .. 397

FREELIVING AND SYMBIOTIC PROTOZOA ... 423-466
A. K. Das, D. N. Tiwari, R. Nandi, N. C. Sarkar and D. Saha

Introduction .. 423
Material and Methods .. 424
Testacids and Symbiotic flagellates of Coastal districts .. 425
INTRODUCTION

The protozoa literally means first animal. It includes amazingly diverse group of organisms which are mostly microscopic, generally unicellular, and sometimes appear to be simple. But, these are the most complex cells known because all the biological and biochemical mechanisms for a complex life-style are contained within these single cells (Sleigh, 1991). Some protozoa are quite large, and are often multinucleate or have polyploid nuclei. They have different morphology and physiology at different stages of complex life cycle, especially among parasitic forms. Goldfuss (1817) introduced the term protozoa (in Greek, proto means first, and zoon means animal) and included in it a variety of simple organisms, including unicells, sponges, cnidarians, rotifers, and bryozoans. After the cellular nature of living organisms was discovered and the distinction between unicellular and multicellular organisms was clarified, von Siebold (1845) delimited the protozoa to only the "one celled animals" Being diverse organisms with divergent life-styles, morphologies, habits, and reproductive cycles, debate still continues on the phylogenetic relationships among unicellular organisms and about their evolutionary relationship to multicellular plants, animals and fungi. Some scientists consider unicellular eukaryotes to be classes in the phylum Protozoa (Hickman et al., 1979), while others treat them as phyla in a kingdom Protista (Whittaker, 1977; Margulis and Schwartz, 1988), and still others distribute them among multiple, newly created kingdoms (Leedale, 1974; Dillon, 1981; Lipscomb, 1989; Hausman and Huelsman, 1996).

In India, Andhra Pradesh which lies between 12°37' and 19°54' N latitudes and between 76°46' and 84°46' E longitudes, is the fourth largest state (275068 sq. km.) and also has the fifth biggest population in the country. It is the biggest and most populous state in south India, comprising of 23 districts as follows with state capital in Hyderabad:

* Department of Zoology Andhra University, Visakhapatnam – 530 003
1. Adilabad (Adilabad) 13. Medak (Medak)
3. Chittoor (Chittoor) 15. Nellore (Nellore)
5. East Godavari (Kakinada) 17. Prakasam (Ongale)
6. Guntur (Guntur) 18. Rangareddy (Hyderabad)
7. Hyderabad (Hyderabad) 19. Srikakulam (Srikakulam)
8. Karimnagar (Karimnagar) 20. Visakhapatnam (Visakhapatnam)
10. Krishna (Mechilipatnam) 22. Warangal (Warangal)
11. Kurnool (Kurnool) 23. West Godavari (Eluru)
12. Mahbubnagar (Mahbubnagar)

Physiographically, the state is situated on the eastern sea board of Indian peninsula with a vast coastline of about 1000 km, two major river systems (Godavari and Krishna) and three mountain chains (Eastern Ghats, Deccan plateau, and Horseley and other hills). As such, this state offers suitable habitats for freeliving as well as parasitic protozoa and their hosts.

It is worth mentioning that extensive studies on protozoa, particularly the parasitic ones, have been made from Andhra University, Osmania University, Kakatiya University, etc., of this state. As a result, more than 400 species have been reported comprising of various parasitic groups. It is in this respect Andhra Pradesh is the only state in India which represents six phyla, viz., Sarcomastigophora, Apicomplexa, Microspora, Ascetospora, Myxozoa and Ciliophora out of seven phyla in the classification scheme of Levine et al. (1980) which is adopted herein. The number of species of parasitic protozoa so far recorded from this state represents the second highest in India, being next to West Bengal (Das et al., 1993).

The present communication includes 433 species of parasitic protozoa out of which 156 belong to the phylum Sarcomastigophora, while 122, 33, 3, 76 and 43 species represent the phyla Apicomplexa, Microspora, Ascetospora, Myxozoa, and Ciliophora respectively. Amongst these, five species of gregarines are new to science, two species of gregarines comprise new host parasite records, one species of gregarine is redescribed and 9 species of coccidian parasites constitute first report from this state.

A glimpse of earlier works

Studies on the parasitic protozoa of Andhra Pradesh were initiated by the last decade of the Nineteenth Century. Sir Ronald Ross was probably the first to examine the protozoan
Map of Andhra Pradesh showing 23 districts.
parasites from Andhra Pradesh. During 1890s he was posted from place to place in India. While in Secunderabad in 1895, he elucidated the exflagellation of human *Plasmodium* species in the stomach of mosquito, *Anopheles stephensi*, demonstrating the active role of a vector insect in the transmission of malarial parasite. Since then as many as 433 species of parasitic protozoa from 208 species of both vertebrate and invertebrate hosts have been recovered from this state till date. So far Indian states are concerned this species number is next to West Bengal from where 596 species of parasitic protozoa have been reported from 351 species of hosts (Das *et al.*, 1993).

During the first half of the twentieth century no work could be cited on parasitic protozoa from this state. In the post independence period there has been significant contributions in this field made by Ganapati and his co-workers (1954-1974), Qadri and his co-workers (1951-1973), Narasimhamurti and his associates (1985-1991), Krishnamurthy and Bhaskar Rao in 1960s and 1970s, Kalavati 1968 onwards and their fellow researchers from Andhra University, Osmania University and Kakatiya University have contributed much on flagellates, gregarines, myxosporidians and microsporidians of Andhra Pradesh.

A parasitic amoeba, namely, *Malamoeba indica* was reported from Andhra Pradesh as early as 1980 from an insect host, *Poecilocera picta* by Narasimhamurti and Ahmed (1980). Subsequently, two species of *Rosculus* were reported by Kalavati and Lakshminarayana (1982) and, Aravindan *et al.* (2002) from the hosts freshwater snake and shrimps respectively. An opalinid protozoa, *Cepedea hylae* was also reported by Khan (1962) from amphibian host *Hyla arborea*.

Narasimhamurti and Kalavati (1960, 1968), Kalavati (1977) and Narasimhamurti (1977) made valuable contributions in the field of adeline coccidia from termites and centipedes of Andhra Pradesh. Narasimhamurti (1979) reported a single species of aggregatine coccidia from a cephalopod host. Saratchandra (1979, 1981) reported two new species of haemogregarines and made two new host records from reptilian hosts. Although many workers have contributed much to our knowledge of eimeriid coccidia from India (Mandal (1987), little attention was
paid on this important parasites from this state. However, Satyanarayanacharulu et al. (1969) encountered a new species of *Isospora* from avian hosts. Sivanarayan and Venkataratnam (1969) reported a new species, *Eimeria tirupatiensis* from a domestic goat, Narasimhamurti (1980) reported *Eimeria mecistophori* from centipede host and Aravindan et al. (2002) reported a new species, *Montonella macrobrachii* from shrimps.

Padmavathi et al. (1974) studied a piroplasmid parasite of cattle, while Raghavachari and Reddy (1959) reported acute theileriasis in sheep. However, Colonel H.E. Shortt in 1960s (cited from Garnham, 1966) studied the piroplasms of small mammals. He had inoculated a species of *Babesia*, from an Indian Gerbil, into a *Macaca radiata* which he had trapped in the adjacent forests. Interestingly, a few days later, Shortt and his colleagues at the Osmania University were surprised to find not only the piroplasm, but a malaria parasite in the monkey's blood, and soon afterwards they discovered natural infection of a new malaria parasite (*Plasmodium osmaniae* Shortt, Rao, Qadri and Abraham, 1961) from the same locality.

Microsporan parasites were studied by Narasimhamurti and Kalavati (1972-1978), Kalavati and Ganapati (1974), Kalavati (1976), Weiser et al. (1981), Kalavati and Lakshiminarayana (1982), Sandeep and Kalavati (1985) and Narasimhamurti et al. (1985), while haplosporidian parasites were reported by Ganapati et al. (1964) and Narasimhamurti and Kalavati (1976).

Coverage

The present communication deals with six phyla, viz., Sarcomastigophora, Apicomplexa, Microspora, Ascetospora, Myxozoa and Ciliophora. Accordingly, several specialists were entrusted to write up different chapters of this document as detailed below:

N. C. Nandi: Introductory and concluding parts as well as Phyla Sarcomastigophora and Apicomplexa (except Coccidia and Gregarinia).

C. Kalavati: Phyla Microspora, Ascetospora and Myxozoa as well as Gregarinia.

A. K. Das: Phylum Ciliophora and editing of the entire text.

R. Nandi: Order Coccidia, survey works in the state and library work.

A systematic list of parasitic species of protozoa occurring in the state is provided for quick reference to host and locality (district). A host parasite list is also provided for reference to parasites occurring in the respective host in addition to authors. A bibliography of references as many as available is incorporated at the end for the convenience of the readers, which include research papers, articles, Ph. D. and M. Phil. theses so that one may know the extent of work done on this subject from this state.

It is needed to mention here that collection locality of several parasitic species of Protozoa has been mentioned as Andhra Pradesh in the concerned literature. In such cases it has not been possible to ascertain from which district those parasites were recorded.

MATERIALS AND METHODS

Protozoa collections from Andhra Pradesh present in the National Zoological Collections of Zoological Survey of India (ZSI) and in the Division of Protozoology, Department of Zoology, Andhra University as well as parasitic protozoan species published so far from this state form the basis of this document. The explorations by ZSI scientists were conducted during 1970s, 1980s and in 2002-2003, while the investigations by scholars of Andhra University were made since 1950s. The host specimens, both invertebrates and vertebrates, as well as sample smears and histological sections were mostly examined in the Division of Protozoology of Andhra University where these were dissected and studied. Methodology followed for parasitological investigations over the years, in general, are as follows:

- Gut contents were examined after diluting them with Ringer's solution or Normal saline (0.56% for invertebrates and 0.8% for vertebrate hosts) on clean slides, wet-fixed in Schaudinn's fluid and stained with Heidenhain's iron haematoxylin.
- Organ-imprints and blood smears were drawn on clean grease-free slides, air-dried, fixed and/or stained with suitable stains (Geimsa, Wright or Leishman's stain).
- Faecal samples were kept in 2.5% aqueous potassium dichromate solution for subsequent sporulation and study of the coccidial oocysts for about a week.
Portargal staining or dry silver impregnation technique was employed for some endocommensal ciliates to study the ciliary lines.

Materials for histological study were fixed in alcoholic Bouin’s fluid, sectioned at 6 μm thickness and stained with Heidenhain’s iron haematoxylin or Ehrlich’s acid haematoxylin.

Live temporary preparations were made using a drop of dilute neutral red, methylene blue, Lugol’s iodine, ink, etc., for the detection of different organelles and vacuoles.

Extrusion of polar filaments was observed using 5-10% KOH solution.

Drawings were made with the aid of a camera lucida.

The details on the collection and preservation of parasitic protozoa were used following Mandal and Nandi (1980), Mandal et al. (1990) and Das et al. (1993). For reference and diagnostic characters Wenyon (1920), Bhatia (1936, 1938), Garnham (1966), Kudo (1966), Levine (1967, 1988), Kreier (1978, 1994) and Corliss (1979) were consulted.

In this connection this is to mention here that types of five new taxa are deposited with Andhra University, Protozoology Laboratory in the custody of Prof. C. Kalavati as mentioned in respective places.

CLASSIFICATION

The parasitic protozoa, like freeliving ones, are comprised of a large and highly heterogeneous taxonomic groups. They are of much interest to mankind because they produce disease in man and his livestock. There are others, which seldom produce disease, and still others, which live as commensals or symbionts in the animal body and thus, they all, must be recognized to avoid misdiagnosis as well as to understand their functional relationship in the animal’s economy.

Classification of Protozoa is still in an unsettled stage. In fact, there is no generally accepted classification of this group. In the classical scheme which was mainly based on their locomotory organelles, Protozoa was treated as a phylum, but in one of the revised schemes it is considered as a kingdom (Cavelier-Smith, 1993, 1998).

In 1980, the Society of Protozoologists (Levine et al., 1980) published a newly revised classification which recognized seven phyla: Sarcomastiphora, Labyrinthomorpha, Apicomplexa, Microspora, Ascetospora, Myxozoa and Ciliophora. Most of the parasitic protozoa were assigned to the phyla Sarcomastigophora, Apicomplexa, Microspora and Myxozoa. There are also some parasitic and commensalistic protozoa in the phyla Ascetospora and Ciliophora. This 1980 classification, though mostly followed in this document for convenience and wide acceptance, was realized to be unsatisfactory by the Society of Protozoologists (Lee et al., 1985). The classification proposed by Sleigh (1989) has shown a starting point of further revision (Table 1).
Table 1: Comparative outline classification of Levine et al. (1980) and Sleigh (1989)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subkingdom Protozoa</td>
<td>Kingdom Protista</td>
</tr>
<tr>
<td>Phylum Sarcomastigophora</td>
<td></td>
</tr>
<tr>
<td>Subphylum Mastigophora</td>
<td>Falgellated protozoa</td>
</tr>
<tr>
<td>Class Zoomastigophora</td>
<td></td>
</tr>
<tr>
<td>Order Kinetoplastida</td>
<td>Phylum Kinetoplasta</td>
</tr>
<tr>
<td>Order Retortamonadida</td>
<td>Phylum Metamonada</td>
</tr>
<tr>
<td>Order Diplomonadida</td>
<td>Order Retortamonadida</td>
</tr>
<tr>
<td>Order Oxymonadida</td>
<td>Order Diplomonadida</td>
</tr>
<tr>
<td>Order Trichomonadida</td>
<td>Order Oxymonadida</td>
</tr>
<tr>
<td>Order Hypermastigida</td>
<td>Phylum Parabasalia</td>
</tr>
<tr>
<td>Subphylum Opalinata</td>
<td>Order Trichomonadida</td>
</tr>
<tr>
<td>Subphylum Sarcodina</td>
<td>Order Hypermastigida</td>
</tr>
<tr>
<td>Superclass Rhizopoda</td>
<td>Phylum Opalinata</td>
</tr>
<tr>
<td>Order Amoebida</td>
<td>Amoeboid Protozoa</td>
</tr>
<tr>
<td>Phylum Apicomplexa</td>
<td>Phylum Rhizopoda</td>
</tr>
<tr>
<td>Class Sporozoea</td>
<td>Order Euamoebida</td>
</tr>
<tr>
<td>Subclass Gregarinia</td>
<td>Phylum Sporozoa</td>
</tr>
<tr>
<td>Order Eugregarinida</td>
<td>Class Gregarinea</td>
</tr>
<tr>
<td>Subclass Coccidea</td>
<td>Order Eugregarinida</td>
</tr>
<tr>
<td>Subclass Piroplasmea</td>
<td>Class Coccidea</td>
</tr>
<tr>
<td>Phylum Myxozoa</td>
<td>Class Piroplasmea</td>
</tr>
<tr>
<td>Class Myxosporea</td>
<td>Phylum Myxosporidia</td>
</tr>
<tr>
<td>Phylum Microspora</td>
<td>Class Myxosporea</td>
</tr>
<tr>
<td>Phylum Ciliophora</td>
<td>Phylum Microspora</td>
</tr>
</tbody>
</table>

The outline classifications of the parasitic protozoa as proposed by Cox (1991) and, Hausman and Huelsman (1996) are shown in Table 2 to orientate the reader about the turmoil, transition and revision of the higher taxa.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingdom Protista</td>
<td>Kingdom Mastigota</td>
</tr>
<tr>
<td>Group 1. The flagellated protozoa</td>
<td>Phylum Caryoblasta</td>
</tr>
<tr>
<td>Phylum Metamonada</td>
<td>Phyla Retortamonada and Axostylata</td>
</tr>
<tr>
<td>Order Retortamonadida</td>
<td>(Superphylum Tetramastigota)</td>
</tr>
<tr>
<td>Order Diplomonadida</td>
<td>Superclass Diplomonada</td>
</tr>
<tr>
<td>Order Oxymonadida</td>
<td>Superclass Oxymonadina</td>
</tr>
<tr>
<td>Phylum Parabasalia</td>
<td>Superclass Parbasalea</td>
</tr>
<tr>
<td>Order Trichomonadida</td>
<td>(Phylum Axostylata)</td>
</tr>
<tr>
<td>Order Hypermastigida</td>
<td>Order Trichomonadida</td>
</tr>
<tr>
<td>Phylum Kinetoplasta</td>
<td>Order Hypermastigida</td>
</tr>
<tr>
<td>Order Bodonida</td>
<td>Phylum Euglenoza</td>
</tr>
<tr>
<td>Order Trypanosomatida</td>
<td>Subphylum Kinetoplastlia</td>
</tr>
<tr>
<td>Phylum Opalinata</td>
<td>Superclass Bodonea</td>
</tr>
<tr>
<td>Incertae sedis</td>
<td>Superclass Trypanosomatidea</td>
</tr>
<tr>
<td>Class Heterolobosea</td>
<td>Phylum Heterolobosa</td>
</tr>
<tr>
<td>Order Schizopyrenida</td>
<td>Superclass Schizopyrenidea</td>
</tr>
<tr>
<td>Group 2. The amoeboid protozoa</td>
<td>Incertae sedis</td>
</tr>
<tr>
<td>Phylum Rhizopoda</td>
<td>(Superphylum Metakaryota : Kingdom Mastigota)</td>
</tr>
<tr>
<td>Class Lobosea</td>
<td>Superclass Lobosea (Subphylum Amoebozoa)</td>
</tr>
<tr>
<td>Order Euamoebida</td>
<td>Order Gymnamoebia</td>
</tr>
<tr>
<td>Order Acanthopodida</td>
<td>Order Gymnamoebia</td>
</tr>
<tr>
<td>Group 3. The Sporozoans</td>
<td>Subphylum Apicomplexa (Phylum Alveolata)</td>
</tr>
<tr>
<td>Phylum Sporozoa</td>
<td>Subphylum Apicomplexa</td>
</tr>
<tr>
<td>Class Gregarinea</td>
<td>Superclass Gregarinea</td>
</tr>
<tr>
<td>Order Archigregarinida</td>
<td>Superclass Gregarinea</td>
</tr>
<tr>
<td>Order Eugregarinida</td>
<td>Superclass Gregarinea</td>
</tr>
<tr>
<td>Order Neogregarinida</td>
<td>Superclass Gregarinea</td>
</tr>
<tr>
<td>Class Coccidea</td>
<td>Superclass Coccidea</td>
</tr>
<tr>
<td>Order Protococcida</td>
<td>Order Coelotrophiida</td>
</tr>
</tbody>
</table>
Table 2 Contd.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Adeleida</td>
<td>Order Adeleida</td>
</tr>
<tr>
<td>Order Eimeriida</td>
<td>Order Eimeriida</td>
</tr>
<tr>
<td>Class Haemosporidea</td>
<td>Superclass Haematozoea</td>
</tr>
<tr>
<td>Order Haemosporida</td>
<td>Order Haemosporida</td>
</tr>
<tr>
<td>Class Piroplasmea</td>
<td>Superclass Haematozoea</td>
</tr>
<tr>
<td>Order Piroplasmida</td>
<td>Order Piroplasmida</td>
</tr>
<tr>
<td>Order Dactylosomida</td>
<td>Order Piroplasmida</td>
</tr>
<tr>
<td>Group 4. The microsporidians</td>
<td></td>
</tr>
<tr>
<td>Phylum Microspora</td>
<td>Phylum Microspora</td>
</tr>
<tr>
<td>Class Rudimicrosporea</td>
<td>Superclass Rudimicrosporea</td>
</tr>
<tr>
<td>Order Metchnikovellida</td>
<td>Class Rudimicrosporea</td>
</tr>
<tr>
<td>Class Microsporea</td>
<td>Superclass Microsporea</td>
</tr>
<tr>
<td>Order Minisporida</td>
<td>–</td>
</tr>
<tr>
<td>Order Microsporida</td>
<td>Superclass Microsporea</td>
</tr>
<tr>
<td>Group 5. The haplosporidians</td>
<td></td>
</tr>
<tr>
<td>Phylum Haplosporidia</td>
<td>Subphylum Ascetospora; Superclass Haplosporea</td>
</tr>
<tr>
<td>Order Balanosporida</td>
<td>–</td>
</tr>
<tr>
<td>Group 6. The myxosporidians</td>
<td></td>
</tr>
<tr>
<td>Phylum Myxozoa</td>
<td>Subphylum Myxozoa (Superphylum Metakaryota incertae sedis)</td>
</tr>
<tr>
<td>Class Myxosporea</td>
<td>–</td>
</tr>
<tr>
<td>Order Bivalvulida</td>
<td>–</td>
</tr>
<tr>
<td>Order Multivalvulida</td>
<td>–</td>
</tr>
<tr>
<td>Group 7. The ciliated protozoa</td>
<td></td>
</tr>
<tr>
<td>Phylum Ciliophora</td>
<td>Subphylum Ciliophora (Phylum Alveolata)</td>
</tr>
<tr>
<td>Subphylum Postciliodesmatophora</td>
<td>Superclass Postciliodesmatophora</td>
</tr>
<tr>
<td>Class Karyorelictea</td>
<td>Class Karyorelictea</td>
</tr>
<tr>
<td>Class Spirotrichea</td>
<td>Class Spirotrichea</td>
</tr>
<tr>
<td>Subclass Heterotrichia</td>
<td>Subclass Heterotrichia</td>
</tr>
<tr>
<td>Order Clevelandellida</td>
<td>Order Clevelandellida</td>
</tr>
<tr>
<td>Subphylum Rhabdophora</td>
<td>Superclass Rhabdophora</td>
</tr>
<tr>
<td>Class Prostomatea</td>
<td>Class Prostomatea</td>
</tr>
<tr>
<td>Class Litostomatea</td>
<td>Class Litostomatea</td>
</tr>
<tr>
<td>Subclass Trichostomatia</td>
<td>Order Trichostomatia</td>
</tr>
<tr>
<td>Order Vestibuliferida</td>
<td>–</td>
</tr>
<tr>
<td>Subphylum Cyrtophora</td>
<td>Superclass Cyrtophora</td>
</tr>
</tbody>
</table>
Table 2 Contd.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Phyllopharyngea</td>
<td>Class Phyllopharyngea</td>
</tr>
<tr>
<td>Class Nassophoria</td>
<td>Superclass Nassophorea</td>
</tr>
<tr>
<td>Class Oligohymenophorea</td>
<td>Class Oligohymenophorea</td>
</tr>
<tr>
<td>Subclass Peritrichia</td>
<td>Subclass Peritrichia</td>
</tr>
<tr>
<td>Order Mobilina</td>
<td>Order Mobilida</td>
</tr>
<tr>
<td>Subclass Astomatia</td>
<td>Subclass Astomatia</td>
</tr>
<tr>
<td>Class Colpodea</td>
<td>Superclass Colpodea</td>
</tr>
</tbody>
</table>

All these classification with diagnostic characters are made only up to order and suborder level. The characteristic features are mostly ultrastructural or based on argentophilic studies, while majority of old protozoan taxa are based on classical characters. In view of above, it is often very difficult to place those taxa particularly the families and the genera under a particular order or suborder. Perhaps, therefore, no classification is generally accepted to the workers who deal with taxonomy of lower protozoan taxa. To avoid this difficulty they often do not mention higher taxonomic hierarchy during their taxonomic works.

In the present communication, the classification of Levine et al. (1980) has been mostly followed for the convenience and keeping continuity with the earlier State Fauna Series published by the Zoological Survey of India. However, some other classifications have also been used in this paper for some protozoan phyla as mentioned in the respective portion in the text.

SYSTEMATIC LIST OF PARASITIC PROTOZOA

The systematic list of parasitic protozoa along with locality (district) of occurrence hitherto known/ recorded from the state of Andhra Pradesh is as follows:

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Host</th>
<th>Locality (District)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingdom</td>
<td>PROTISTA</td>
<td></td>
</tr>
<tr>
<td>Subkingdom</td>
<td>PROTOZOA</td>
<td></td>
</tr>
<tr>
<td>Phylum</td>
<td>SARCOMASTIGOPHORA</td>
<td></td>
</tr>
<tr>
<td>Subphylum</td>
<td>MASTIGOPHORA</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>ZOOMASTIGOPHOREA</td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>KINETOPLASTIDA</td>
<td></td>
</tr>
<tr>
<td>Suborder</td>
<td>BODONINA</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>CERCOBODONIDAE</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Alexeiefella Janakidevi, 1961</td>
<td></td>
</tr>
</tbody>
</table>

1. *A. cheloni* Janakidevi, 1961 *Lissemys punctata granosa* Hyderabad
<table>
<thead>
<tr>
<th>Suborder</th>
<th>TRYPANOSOMATINA</th>
<th>Family</th>
<th>TRYPANOSOMATIDAE</th>
<th>Genus</th>
<th>Ross, 1903</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L. donovani</td>
<td>(Laveran and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mesnil, 1903)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Genus *Trypanosoma* Gruby, 1843

A. *Trypanosoma* of fishes

<table>
<thead>
<tr>
<th>3. T. batrachi</th>
<th>Qadri, 1962</th>
<th>Clarias batrachus</th>
<th>Hyderabad</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. T. channai</td>
<td>Narasimhamurti and Saratchandra, 1980</td>
<td>Channa punctatus</td>
<td>Visakhapatnam and Srikakulum</td>
</tr>
<tr>
<td>5. T. danilewskyi</td>
<td>saccobranchi Qadri, 1962</td>
<td>Heteroneustes fossilis</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>6. T. godavariensis</td>
<td>Saratchandra and Jayaramaraju, 1981</td>
<td>Channa punctata</td>
<td>East Godavari</td>
</tr>
<tr>
<td>7. T. qadrii</td>
<td>Narasimhamurti and Saratchandra, 1980</td>
<td>Clarias batrachus</td>
<td>Visakhapatnam and Srikakulum</td>
</tr>
<tr>
<td>8. T. striati,</td>
<td>Qadri, 1955</td>
<td>Channa striatus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(=Ophicephalus striatus)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Channa punctatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(=Ophicephalus punctatus)</td>
<td></td>
</tr>
</tbody>
</table>

B. *Trypanosoma* of reptiles

<table>
<thead>
<tr>
<th>9. T. lissemysi</th>
<th>Saratchandra, 1980</th>
<th>Lissemys punctata granosa</th>
<th>Visakhapatnam</th>
</tr>
</thead>
</table>

C. *Trypanosoma* of birds

<table>
<thead>
<tr>
<th>10. T. avium</th>
<th>Danilewsky, 1885</th>
<th>Dicrurus macrocercus</th>
<th>Warangal</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. T. sp.</td>
<td></td>
<td>Eudynamis scolopacihs</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>12. T. sp.</td>
<td></td>
<td>Streptopelia chinensis</td>
<td>Andhra Pradesh</td>
</tr>
</tbody>
</table>

D. *Trypanosoma* of mammals

<table>
<thead>
<tr>
<th>13. T. bandicotti</th>
<th>Lingard, 1904</th>
<th>Nesocia (=Nesokia) bandicota</th>
<th>Hyderabad</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. T. evansi</td>
<td>Steel, 1885</td>
<td>Cattle</td>
<td>Krishna, Guntur, East Godavari</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffaloe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus</td>
<td>Species</td>
<td>Host</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>15.</td>
<td>T. indicum Luhe, 1906</td>
<td>Sciurus palmarum</td>
<td>Sciurus palmarum</td>
</tr>
<tr>
<td>16.</td>
<td>T. lewisi Kent, 1880</td>
<td>Rattus rattus frugivorus</td>
<td>Rattus rattus frugivorus</td>
</tr>
<tr>
<td>17.</td>
<td>T. theileri Laveran, 1902</td>
<td>Buffaloe</td>
<td>Buffaloe</td>
</tr>
<tr>
<td>18.</td>
<td>T. sp.</td>
<td>Vulpes bengalensis</td>
<td>Vulpes bengalensis</td>
</tr>
<tr>
<td>19.</td>
<td>T. sp.</td>
<td>Cow (Bos indicus)</td>
<td>Cow (Bos indicus)</td>
</tr>
<tr>
<td>20.</td>
<td>T. sp.</td>
<td>Buffalo (Bubalus bubalis)</td>
<td>Buffalo (Bubalus bubalis)</td>
</tr>
<tr>
<td>21.</td>
<td>T. sp.</td>
<td>Dog (Canis familiaris)</td>
<td>Dog (Canis familiaris)</td>
</tr>
</tbody>
</table>

Genus Leptomonas Kent, 1880

<table>
<thead>
<tr>
<th></th>
<th>Genus</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.</td>
<td>L. indica Prasad and Kalavati, 1987</td>
<td>Lygaeus hospes</td>
<td>Lygaeus hospes</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>

Order PROTEROMONADIDA

Family PROTEROMONADIDAE

Genus Proteromonas Kunstler, 1883

A. Proteromonas in reptiles

<table>
<thead>
<tr>
<th></th>
<th>Genus</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.</td>
<td>P. chameleoni Krishnamurthy, 1963</td>
<td>Chameleon zeylanicus</td>
<td>Chameleon zeylanicus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>29.</td>
<td>P. ganapatti Saratchandra, 1981</td>
<td>Hemidactylus giganteus</td>
<td>Hemidactylus giganteus</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>30.</td>
<td>P. grassei Saratchandra and Narasimhamurti, 1980</td>
<td>Hemidactylus prashadi</td>
<td>Hemidactylus prashadi</td>
<td>Srikakulum</td>
</tr>
<tr>
<td>31.</td>
<td>P. hemidactyli Krishnamurthy, 1968</td>
<td>Hemidactylus brooki</td>
<td>Hemidactylus brooki</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>32.</td>
<td>P. kakatiyae Bhaskar et al., 1978</td>
<td>Hemidactylus sp.</td>
<td>Hemidactylus sp.</td>
<td>Warangal</td>
</tr>
<tr>
<td>33.</td>
<td>P. krishnamurthyi, Saratchandra and Babu, 1982</td>
<td>Calotes versicolor</td>
<td>Calotes versicolor</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>No.</td>
<td>Species/Genus</td>
<td>Scientific Name</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>P. lacertae-viridis</td>
<td>Hemidactylus giganteus</td>
<td>Hyderabad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Grassi, 1879)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>P. mabuiae, Saratchandra et al., 1984</td>
<td>Mabuya beddomii</td>
<td>Visakhapatnam</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>P. waltairensis Saratchandra and Narasimhamurti, 1980</td>
<td>Hemidactylus prashadi</td>
<td>Visakhapatnam</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>P. warangalensis Bhaskar Rao et al., 1978</td>
<td>Mabuya carinata</td>
<td>Warangal</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>P. sp.</td>
<td>Chameleoon zeylanicus</td>
<td>Hyderabad</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>P. hystrix Todd, 1963</td>
<td>Hystrix leucura</td>
<td>Hyderabad</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>P. rattusi Kalavathi, Saratchandra and Sambasivarao, 1986</td>
<td>Rattus rattus</td>
<td>Visakhapatnam</td>
<td></td>
</tr>
</tbody>
</table>

B. Proteromonas in mammals

<table>
<thead>
<tr>
<th>No.</th>
<th>Species/Genus</th>
<th>Scientific Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.</td>
<td>R. blattae (Bishop, 1931)</td>
<td>Blatta orientalis</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corydia petiveriana</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptocercus sp.</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leucophaea sinninamensis</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Periplaneta americana</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>42.</td>
<td>R. toddi Bhaskar Rao, 1968</td>
<td>Laccotrephes maculatus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>43.</td>
<td>R. wenrichi Stabler, 1944</td>
<td>Gryllotalpa africana</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

B. Retortamonas in reptiles

<table>
<thead>
<tr>
<th>No.</th>
<th>Species/Genus</th>
<th>Scientific Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.</td>
<td>R. cheloni Janakidevi, 1962</td>
<td>Geochelone elegans (=Testudo elegans)</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>45.</td>
<td>R. sp.</td>
<td>Varanus sp.</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>46.</td>
<td>R. sp.</td>
<td>Zamenis mucosus</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Genus Chilomastix Alexeieff

A. Chilomastix in amphibians

<table>
<thead>
<tr>
<th>No.</th>
<th>Species/Genus</th>
<th>Scientific Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.</td>
<td>C. qadrii Krishnamurthy, 1970</td>
<td>Rana tigrina</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>
B. *Chilomastix* in reptiles

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.</td>
<td>C. kudoi Saratchandra and Narasimhamurti, 1980</td>
<td>Hemidactylus prashadi</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>50.</td>
<td>C. wenyoni Janakidevi, 1961</td>
<td>Calotes nimericola</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>51.</td>
<td>C. sp.</td>
<td>Varanus sp</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

C. *Chilomastix* in birds

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.</td>
<td>C. graecae Navarathnam, 1971</td>
<td>Alectoris graeca</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>53.</td>
<td>C. osmaniae Navarathnam, 1971</td>
<td>Gallus gallus domesticus</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

D. *Chilomastix* in mammals

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.</td>
<td>C. bandicooti Todd, 1963</td>
<td>Nesocia bandicota</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>55.</td>
<td>C. equi Abraham, 1961</td>
<td>Equus caballus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>56.</td>
<td>C. hyderabadiensis Todd, 1963</td>
<td>Rattus rattus frugivorus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>57.</td>
<td>C. indica Todd, 1963</td>
<td>Gerbillus indicus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>58.</td>
<td>C. megamorpha Abraham, 1962</td>
<td>Cavia cutleri</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>59.</td>
<td>C. nigricollisi Todd, 1963</td>
<td>Lepus nigricollis</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>60.</td>
<td>C. palmari Todd, 1963</td>
<td>Sciurus palmarum</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Order: **DIPLOMONADIDA**
Suborder: **ENTEROMONADINA**
Family: **ENTEROMONADIDAE**
Genus: **Enteromonas** Da Fonseca, 1915

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.</td>
<td>E. ratti Navarathnam, 1970</td>
<td>Rattus rattus frugivorus</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Genus: **Caviomonas** Nie, 1950

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
</table>

Suborder: **DIPLOMONADINA**
Family: **HEXAMITIDAE**
Subfamily: **HEXAMITINAE**
Genus: **Hexamita** Durjardin, 1841
A. Hexamita in insects

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.</td>
<td>H. gryllotalpae Bhaskar Rao, 1968</td>
<td>Gryllotalpa africana</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>64.</td>
<td>H. honigbergi Bhaskar Rao, 1968</td>
<td>Gryllotalpa africana</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

B. Hexamita in fishes

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.</td>
<td>H. sp.</td>
<td>Gobius giuris</td>
<td>Andhra Pradesh</td>
</tr>
</tbody>
</table>

C. Hexamita in amphibians

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
</table>

D. Hexamitus in reptiles

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.</td>
<td>H. sp.</td>
<td>Chameleon zeylanicus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>69.</td>
<td>H. sp.</td>
<td>Varanus sp.</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

E. Hexamita in birds

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.</td>
<td>H. singhi Navarathnam, 1970</td>
<td>Anas sp.</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

F. Hexamita in mammals

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.</td>
<td>H. nesocium Todd, 1963</td>
<td>Nesocia (=Nesokia) bandicota</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>72.</td>
<td>H. pigmentatus Todd, 1963</td>
<td>Rattus rattus frugivorous</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>73.</td>
<td>H. spinulus Todd, 1963</td>
<td>Gerbillus indicus</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Subfamily GIARDIINAE

Genus *Giardia*

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.</td>
<td>G. dasi Abraham, 1962</td>
<td>Paradoxurus hermaphroditus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>75.</td>
<td>G. indica Saratchandra, Sambasiva Rao and Kalavathi, 1982</td>
<td>Rattus rattus</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>76.</td>
<td>G. intestinalis (Lambl, 1859)</td>
<td>Homo sapiens</td>
<td>All districts</td>
</tr>
<tr>
<td>77.</td>
<td>G. qadrii Navarathnam, 1969</td>
<td>Capra hircus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>78.</td>
<td>G. wenyoni Abraham, 1962</td>
<td>Loris tardigradus lydekkerianus</td>
<td>Andhra Pradesh (Eastern Ghats)</td>
</tr>
</tbody>
</table>
Genus Octomitus Prowazek, 1904

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>O. rattusi Saratchandra, Sambasiva Rao and Kalavath, 1982</td>
<td>Rattus rattus</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>

Order OXYMONADIDA
Family POLYMASTIGIDAE
Genus Polymastix, Butschli, 1884

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>P. periplanetae Qadri and Bhaskar Rao, 1963</td>
<td>Periplaneta americana</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Genus Monocercomonoides Travis, 1932

A. Monocercomonoides in insects

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>M. ganapatii Bhaskar Rao, 1969</td>
<td>Gryllotalpa africana</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>82</td>
<td>M. garnhami Bhaskar Rao, 1969</td>
<td>Periplaneta americana</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>83</td>
<td>M. qadrii Bhaskar Rao, 1969</td>
<td>Oryctes rhinoceros</td>
<td>Andhra Pradesh</td>
</tr>
</tbody>
</table>

B. Monocercomonoides in reptiles

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>M. filamentum Janakidevi, 1962</td>
<td>Geochelone elegans</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>85</td>
<td>M. singhi Krishnamurthy, 1967</td>
<td>Chameleon zeylanicus</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

C. Monocercomonoides in mammals

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>M. indica Navarathnam, 1970</td>
<td>Gerbillus indicus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>87</td>
<td>M. lepusi Todd, 1963</td>
<td>Lepus nigricollis</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>88</td>
<td>M. sayeedi Abraham, 1961</td>
<td>Capra hircus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>89</td>
<td>M. shortti Navarathnam, 1970</td>
<td>Rattus rattus frugivorus</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Superorder PARABASALIDEA
Order TRICHOMONADIDA
Family MASTIGAMOEBIDAE
Genus Dientamoeba Jepps and Dobell, 1918

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>D. dobelli Bhaskar Rao, 1970</td>
<td>Oryctes rhinoceros</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Family MONOCERCOMONADIDAE
Subfamily MONOCERCOMONADINAE
Genus Monocercomonas Grassi, 1879
<table>
<thead>
<tr>
<th>A. Monocercomonas in insects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91. M. corydiae Bhaskar Rao, 1970</td>
<td>Corydia petiveriana</td>
</tr>
<tr>
<td>94. M. osmaniae Bhaskar Rao, 1970</td>
<td>Cryptocercus sp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Monocercomonas in reptiles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95. M. calotesi Saratchandra, 1979</td>
<td>Calotes versicolor</td>
</tr>
<tr>
<td>96. M. colubrorum (Hammerschmidt, 1844)</td>
<td>Zamenis mucosus</td>
</tr>
<tr>
<td>97. M. eryxi Krishnamurthy, 1968</td>
<td>Eryx johnii</td>
</tr>
<tr>
<td>98. M. ganapatii Saratchandra and Narasimhamurti, 1982</td>
<td>Hemidactylus prashadi</td>
</tr>
<tr>
<td>99. M. garnhami Krishnamurthy, 1968</td>
<td>Lycodon aulicus</td>
</tr>
<tr>
<td>100. M. gopali Krishnamurthy, 1967</td>
<td>Dryophis mycterizans</td>
</tr>
<tr>
<td>101. M. kakatiyae Dayakar et al., 1978</td>
<td>Varanus indica</td>
</tr>
<tr>
<td>102. M. prashadi Saratchandra, 1981</td>
<td>Hemidactylus prashadi</td>
</tr>
<tr>
<td>103. M. rayi Saratchandra and Narasimhamurti, 1982</td>
<td>Hemidactylus prashadi</td>
</tr>
<tr>
<td>104. M. srikakulamensis Saratchandra and Narasimhamurti, 1979</td>
<td>Calotes versicolor</td>
</tr>
<tr>
<td>105. M. varani Krishnamurthy, 1968</td>
<td>Varanus sp.</td>
</tr>
<tr>
<td>106. M. waltai-rensis Narasimhamurti and Saratchandra, 1980</td>
<td>Hemidactylus prashadi</td>
</tr>
<tr>
<td>107. M. sp.</td>
<td>Hemidactylus giganteus</td>
</tr>
<tr>
<td>108. M. sp.</td>
<td>Varanus sp.</td>
</tr>
</tbody>
</table>
C. Monocercomonas in birds

<table>
<thead>
<tr>
<th>Code</th>
<th>Species/Genus</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>110.</td>
<td>M. qudrii Navarathnam, 1971</td>
<td>Gallus gallus domesticus</td>
<td>Andhra Pradesh</td>
</tr>
</tbody>
</table>

D. Monocercomonas in mammals

<table>
<thead>
<tr>
<th>Code</th>
<th>Species/Genus</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>111.</td>
<td>M. andhrae Kalavathi, Saratchandra and Sambariva Rao, 1983</td>
<td>Rattus rattus</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>112.</td>
<td>M. cutleri Navarathnam, 1971</td>
<td>Cavia cutleri</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>113.</td>
<td>M. gerbilli Todd, 1963</td>
<td>Gerbillus indicus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>114.</td>
<td>M. hoarei Navarathnam, 1970</td>
<td>Rattus rattus frugivorus</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Genus Hexamastix Alexeieff 1912

A. Hexamastix in insects

<table>
<thead>
<tr>
<th>Code</th>
<th>Species/Genus</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
</table>

B. Hexamastix in reptiles

<table>
<thead>
<tr>
<th>Code</th>
<th>Species/Genus</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>118.</td>
<td>H. dobelli Janakidevi, 1961</td>
<td>Testudo elegans</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

C. Hexamastix in mammals

<table>
<thead>
<tr>
<th>Code</th>
<th>Species/Genus</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>119.</td>
<td>H. gerbilli Navarathnam, 1970</td>
<td>Gerbillus indicus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>120.</td>
<td>H. gopali Navarathnam, 1970</td>
<td>Rattus rattus frugivorus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>121.</td>
<td>H. hyderabadensis Navarathnam, 1971</td>
<td>Cavia cutleri</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>122.</td>
<td>H. sciuri Todd, 1963</td>
<td>Sciurus palmorum</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>123.</td>
<td>H. spheroides Todd, 1963</td>
<td>Nesocia bandicota</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Subfamily HYPOTRICHOMONADINAE

Genus Hypotrichomonas Lee, 1960

A. Hypotrichomonas in reptiles

<table>
<thead>
<tr>
<th>Code</th>
<th>Species/Genus</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Species</td>
<td>Host/Location</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>H. osmaniae Krishnamurthy, 1967</td>
<td>Varanus sp.</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>126</td>
<td>H. venkataramiahii Dayakar et al., 1977</td>
<td>Varanus sp.</td>
<td>Warangal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>Hypotrichomonas in birds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>H. avium Navarathnam, 1970</td>
<td>Cryptoptlectron erythrorhynchum</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>Family</td>
<td>TRICHOMONADIDAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subfamily</td>
<td>TRICHOMONADINAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geuns</td>
<td>Trichomonas Donne, 1836</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Trichomonas in birds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>T. bramae Sambasivarao and Narasimhamurti, 1982</td>
<td>Athene broma</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>129</td>
<td>Trichomonas gallinae Rivolta, 1878</td>
<td>Budgerigars (= Love bird)</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>130</td>
<td>T. sp.</td>
<td>Budgerigars</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>B. Trichomonas in mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>T. caballi Abraham, 1961</td>
<td>Equus caballus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>132</td>
<td>T. frugivori Todd, 1963</td>
<td>Rattus rattus frugivorous</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>133</td>
<td>T. leucuri Todd, 1963</td>
<td>Hystrix leucura</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>134</td>
<td>T. singhi Todd, 1963</td>
<td>Gerbillus indicus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>Genus</td>
<td>Trichomitus Swezy, 1915</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Syn. Tritrichomonas)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Trichomitus in insects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>T. corydiae Bhaskar Rao and Todd, 1968</td>
<td>Corydia petiveriana</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>B. Trichomitus in amphibians and reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>T. batrachorum (Perty, 1852) Honigberg, 1968</td>
<td>Eryx johnii</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Varanus sp.</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>137</td>
<td>T. hyderabadensis Krishnamurthy, 1968</td>
<td>Rana tigrina</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>138</td>
<td>T. sp.</td>
<td>Chameleleon zeylanicus</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>
C. *Trichomitus* in mammals

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>Host(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>T. honigbergi Navarathnam, 1971</td>
<td>Cavia cutleri</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Genus *Tetratrichomonas* Parisi, 1910

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>Host(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>T. garnhami Navarathnam, 1971</td>
<td>Coturnix coturnix</td>
<td>Andhra Pradesh</td>
</tr>
</tbody>
</table>

Genus *Pentatrichomonas* Mesnil, 1914

A. *Pentatrichomonas* in birds

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>Host(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>P. capellae Navarathnam, 1970</td>
<td>Capella gallinago</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>142</td>
<td>P. centropi Navarathnam, 1970</td>
<td>Centropus sinensis</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

B. *Pentatrichomonas* in mammals

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>Host(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>P. smithi Navarathnam, 1970</td>
<td>Herpestes smithi</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>144</td>
<td>P. tardigradi Navarathnam, 1970</td>
<td>Loris tardigradus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>145</td>
<td>P. vulpi Todd, 1963</td>
<td>Vulpes bengalensis</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Subfamily TRITRICHOMONADINAE

Genus *Tritrichomonas* Kofoid, 1920

A. *Tritrichomonas* in reptiles

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>Host(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>T. lissemyi Janakidevi, 1961</td>
<td>Lissemys punctata granosa</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

B. *Tritrichomonas* in Birds

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>Host(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>T. gigantica Navarathnam, 1970</td>
<td>Coturnix coturnix</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Incertae sedis

Family ?

Genus *Rhizomastix* Alexeieff, 1911

A. *Rhizomastix* in insects

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>Host(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>R. gryllotalpa Bhaskar Rao, 1970</td>
<td>Gryllotalpa africana</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>149</td>
<td>R. periplanetae Bhaskar Rao, 1963</td>
<td>Periplaneta americana</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>B. Rhizomastix in amphibians</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150. R. ranae Krishnamurthy, 1969</td>
<td>Rana tigrina</td>
<td>Hyderabad</td>
<td></td>
</tr>
</tbody>
</table>

Genus *Spheromonas* Liebetanz, 1910

| 151. *S. anteronucleatus* Todd, 1963 | *Lepus nigricollis* | Hyderabad |

Subphylum **OPALINATA**
Class **OPALINATEA**
Order **OPALINIDA**
Family **OPALINIDAE**

Genus *Cepedeia* Metcalf, 1920

| 152. *C. hylaean* Khan, 1962 | *Hyla arborea* | Medak |

Subphylum **SARCODINA**
Class **LOBOSEA**
Subclass **GYMNAMOEBA**
Order **AMOEBIDA**
Suborder **TUBULINA**
Family **ENDAMOEBAEIDAE**

Genus *Entamoeba* Casagrandi and Barbagallo (1895)

| 153. *E. histolytica* Schaudinn, 1903 | *Homo sapiens* | All districts |

Suborder **FLABELLINA**
Family **?**
Genus *Rosculus* Hawes, 1963

A. *Rosculus* in crustaceans

| 154. *R. macrobrachii* Aravindan Kalavati and Sheeja | *Macrobrachium rosinbergii* | Visakhapatnam |

B. *Rosculus* in reptiles

Incertae sedis

Genus *Malomoeba* Taylor and King, 1937

| 156. *M. indica* Narasimhamurti and Ahmed, 1980 | *Poecilocera picta* | Visakhapatnam |

Phylum **APICOMPLEXA**
Class **SPOROZOA**
Subclass **GREGARINIA**
<table>
<thead>
<tr>
<th>Order</th>
<th>EUGREGARINIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suborder</td>
<td>ASEPTATINA</td>
</tr>
<tr>
<td>Family</td>
<td>MONOCYSTIDAE</td>
</tr>
<tr>
<td>Subfamily</td>
<td>MONOCYSTINAE</td>
</tr>
<tr>
<td>Genus</td>
<td>Monocystis Stein, 1848</td>
</tr>
</tbody>
</table>

157. *M. odontotermitis* Kalavati, 1979 *Odontotermes obesus* Visakhapatnam

158. *M. pontodrilli* Subba Rao, Kalavati and Narasimhamurti, 1978 *Pontodrilus bermudensis* Visakhapatnam

<table>
<thead>
<tr>
<th>Subfamily</th>
<th>STOMATOPHORINAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus</td>
<td>Chakravartiella Misra and Raychaudhury, 1973</td>
</tr>
</tbody>
</table>

159. *C. krishnamurthyi* Sailaja, 1995 *Thyropagus sp.* Visakhapatnam

<table>
<thead>
<tr>
<th>Family</th>
<th>DIPLOCYSTIDAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus</td>
<td>Diplocystis Kunstler, 1887</td>
</tr>
</tbody>
</table>

160. *D. horni* Kalavati, 1977 *Odontotermes horni* Visakhapatnam, Vizianagaram and East Godavari

<table>
<thead>
<tr>
<th>Suborder</th>
<th>SEPTATINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfamily</td>
<td>GREGARINICAE</td>
</tr>
<tr>
<td>Family</td>
<td>CEPHALOIDOPHORIDAE</td>
</tr>
<tr>
<td>Genus</td>
<td>Caridohabitans Ball, 1959</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>CEPHALOLOBIDAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus</td>
<td>Cephalolobus Kruse, 1959</td>
</tr>
</tbody>
</table>

162. *C. andhrae* Kalavati and Aravindan, 1998 *Penaeus indicus* East Godavari

<table>
<thead>
<tr>
<th>Family</th>
<th>URADIOPHORIDAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus</td>
<td>Heliospora Goodrich, 1949</td>
</tr>
</tbody>
</table>

163. *H. sp.* *Caridina laevis* Visakhapatnam...

<table>
<thead>
<tr>
<th>Family</th>
<th>GREGARINIDAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus</td>
<td>Gregarina Dufour, 1866</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Species and Authors</th>
<th>Description</th>
<th>Localities</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>G. macrotermitis Kalavati and Narasimhamurti, 1978</td>
<td>Macrotermes estherae</td>
<td>Visakhapatnam and Krishna</td>
</tr>
<tr>
<td>166</td>
<td>G. poeciloceri Ganapati and Mrytyumjaya Devi, 1954</td>
<td>Poecilocerus pictus</td>
<td>Visakhapatnam and Guntur</td>
</tr>
<tr>
<td>167</td>
<td>A. triboli n. sp.</td>
<td>Tribolium ferruginum</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>168</td>
<td>G. nzarphysae Ganapati, Kalavati and Sundaram, 1974</td>
<td>Marphysa gravelyi</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>169</td>
<td>D. penaei Kalavati and Aravindan, 1998</td>
<td>Penaeus monodon</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>170</td>
<td>L. dytiscusi Kalavati and Prasada Rao, 1995</td>
<td>Dytiscus sp.</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>171</td>
<td>R. corcyrae n. sp.</td>
<td>Corcyra cephalanica</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>172</td>
<td>R. melanopli Kalavati and Krishnamurty, 1989</td>
<td>Melanoplus sp.</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>173</td>
<td>R. wallairensis Rajakumari and Narasimhamurti, 1984</td>
<td>Raphidopalpa stevensi</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>174</td>
<td>H. froilanoi Karandikar and Rodgi, 1955</td>
<td>Chondromorpha keelarti</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>175</td>
<td>S. thyrogluti Ganapati and Narasimhamurti, 1962</td>
<td>Thyroglutus sp.</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>176.</td>
<td>S. xenoboli Ganapati and Narasimhamurti, 1956</td>
<td>Xenobolus sp.</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>177.</td>
<td>S. sp. 1</td>
<td>Strongylosoma contortipes</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>178.</td>
<td>S. sp. 2</td>
<td>Strongylosoma contortipes</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>179.</td>
<td>S. sp. 3</td>
<td>Strongylosoma contortipes</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Family MONODUCTIDAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Monoductus Ray and Chakravarty, 1933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.</td>
<td>M. lunatus Ray and Chakravarty, 1933</td>
<td>Strongylosoma contortipes</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Family SPHAEROCYSTIDAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Sphaerocystis Leger, 1892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181.</td>
<td>S. odontotermitis Kalavati and Narasimhamurti, 1979</td>
<td>Odontotermes sp.</td>
<td>Visakhapatnam, Vizianagaram and East Godavari</td>
</tr>
<tr>
<td></td>
<td>Family DACTYLOPHORIDAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Grebneckiella Bhatia, 1938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182.</td>
<td>G. pixellae Misra, 1942</td>
<td>Scolopendra morsitans</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Genus Dendrorhynchus Keilin, 1920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>183.</td>
<td>D. keilini Nazeer Ahmed and Narasimhamurti, 1979</td>
<td>Ceriagrion coromandelianum</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Genus Mecistophora Ganapati and Narasimhamurti, 1960</td>
<td>Mecistocephalus punctifrons</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>184.</td>
<td>M. legeri Ganapati and Narasimhamurti, 1960</td>
<td>Gonocephalum arenarium</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Family STYLOCEPHALIDAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Cystocephalus Schneider, 1886</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185.</td>
<td>C. gonocephali n. sp.</td>
<td>Gonocephalum arenarium</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Genus Stylocephalus Ellis, 1912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186.</td>
<td>S. gonocephali Bhusana Rao, 1962</td>
<td>Gonocephalum arenarium</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gonocephalum brachyelytra</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>187.</td>
<td>S. serpentula Devdhar and Amoji, 1977</td>
<td>Gonocephalum arenarium</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>188.</td>
<td>S. sp</td>
<td>Gonocephalum arenarium</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
<td>Description</td>
<td>Location</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>189</td>
<td>X. rhytinotus n. sp.</td>
<td>Rhytinota sp.</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Genus Xiphicephalus Corbel, 1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>A. bradinopygi Narasimhamurti and Nazeer Ahmed, 1980</td>
<td>Bradinopyga geminata</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Genus Actinocephalus Stein, 1848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>A. hanumanthi Kalavati and Narasimhamurti, 1978</td>
<td>Odontotermes sp.</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Genus Anthorhynchus Labbe, 1887</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>A. hoshidei Kalavati, Narasimhamurti and Vidyullatha Devi, 1988</td>
<td>Leiogryllus sp.</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Genus Acanthogregarina Kalavati, Narasimhamurti and Vidyullatha Devi, 1988</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>H. murtii n. sp.</td>
<td>Gallerucida bicolor</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Genus Harendraia Sarkar, 1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>S. coptotermitis Kalavati and Narasimhamurti, 1978 (Syn. S. coptotermi)</td>
<td>Coptotermes heimi</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Genus Steinina Leger and Duboscq, 1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>S. rodgii Patil and Amoji, 1986</td>
<td>Heliocorpis sp.</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Subfamily ACANTHOSPORINAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Ancyrophora Leger, 1892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>A. ceriagrioni Nazeer Ahmed and Narasimhamurti, 1979</td>
<td>Ceriagrion coromandelianum</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Subclass COCCIDIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order EUCCOCIDIIDA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suborder ADELEINA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Family ADELEIDAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Adelea Schneider, 1885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>A. hyalospora Narasimhamurti, 1960</td>
<td>Rhysida longipes</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>
Genus *Adelina* Hesse, 1910

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>198</td>
<td>A. dimidiata (Schneider, 1885)</td>
<td>Rhysida longipes</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>199</td>
<td>A. rayi Narasimhamurti, 1977</td>
<td>Rhysida longipes</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>

Genus *Chagasella* Machado, 1911

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>C. ganapati Narasimhamurti and Kalavati, 1968</td>
<td>Odontotermes obesus</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>

Genus *Chagasella* Machado, 1911

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>G. odontotermitis Kalavati, 1977</td>
<td>(Syn. G. odontotermi)</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>

Family HAEMOGREGARINIDAE

Genus *Haemogregarina* Danilewsky, 1885

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>H. ganapati Saratchandra, 1981</td>
<td>Lissemys punctata granosa</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>203</td>
<td>H. mirabilis Castallani and Willey, 1904</td>
<td>Ptyas mucosus (Syn. Zamenis mucosus)</td>
<td>Krishna</td>
</tr>
<tr>
<td>204</td>
<td>H. waltairensis Saratchandra, 1981</td>
<td>Calotes versicolor</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>

Genus *Hepatozoon* Miller, 1908

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>H. canis (James, 1905)</td>
<td>Dog</td>
<td>Andhra Pradesh</td>
</tr>
</tbody>
</table>

Suborder EIMERIINA

Family SELENOCOCCIDIIDAE

Genus *Selenococcidium* Leger and Duboscq, 1910

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td>S. indicus Aravindan, Kalavati and Sheeja, 2002</td>
<td>Penaeus indicus</td>
<td>East Godavari</td>
</tr>
</tbody>
</table>

Family AGGREGATIDAE

Genus *Aggregata* Frenzel, 1885

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>A. kudoi Narasimhamurti, 1979</td>
<td>Sepia elliptica</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>

Family EIMERIIDAE

Genus *Eimeria* Schneider, 1875

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>208</td>
<td>E. meciostophori Narasimhamurti, 1976</td>
<td>Mecistocephalus punctifrons</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>
B. *Eimeria* of reptiles

<table>
<thead>
<tr>
<th>209. E. knowlesi Bhatia, 1936</th>
<th>Hemidactylus prashadi</th>
<th>Visakhapatnam</th>
</tr>
</thead>
</table>

C. *Eimeria* of birds

210. *E. anatis* Scholtyseck, 1955	*Anas platyrhynchos*	Nalgonda
211. *E. brunetti* Levine, 1942	*Gallus sp.*	Warangal
212. *E. columbae* Mitra and Dasgupta, 1937	*Columbia livia intermedia*	Hyderabad
213. *E. necatrix* Johnson, 1930	*Gallus domesticus*	Nalgonda
214. *E. tenella* (Railliet and Lucet, 1891)	*Gallus domesticus*	Khammam

D. *Eimeria* of mammals

215. *E. arloingi* (Marotel, 1905)	*Capra hircus*	Nalgonda, Khammam, Warangal and Hyderabad
216. *E. bovis* (Zublin, 1908)	*Bubalus bubalis*	Nalgonda, Khammam, Warangal and Hyderabad
217. *E. crandallis* Honess, 1942	*Ovis aires*	Nalgonda, Khammam and Hyderabad
218. *E. debliecki* Douwes, 1921	*Sus scrofa*	Nalgonda, Khammam, Warangal and Hyderabad
219. *E. faurei* (Moussu and Marotel, 1902)	*Ovis aires*	Khammam
220. *E. ninakohlyakimovae* Yakimoff and Rastegaieff, 1930	*Capra hircus*	Khammam and Hyderabad
221. *E. tirupatiensis* Sivanarayan and Venkatratnam, 1969	*Capra hircus*	Chittoor
222. *E. zuernii* (Rivolta, 1878)	*Bos indicus*	Nalgonda, Khammam, Warangal and Hyderabad
Genus *Isospora* Schneider, 1881

A. *Isospora* of birds

<table>
<thead>
<tr>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>223. I. lacazei Labbe, 1893</td>
<td>Passer domesticus</td>
<td>Andhra Pradesh</td>
</tr>
</tbody>
</table>

B. *Isospora* of mammals

<table>
<thead>
<tr>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>225. I. bigemina (Stiles, 1891)</td>
<td>Canis sp.</td>
<td>East Godavari</td>
</tr>
<tr>
<td>226. I. felis Wenyon, 1923</td>
<td>Canis sp.</td>
<td>East Godavari</td>
</tr>
</tbody>
</table>

Genus *Montonella* Vincent, 1936

<table>
<thead>
<tr>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>227. M. macrobrachii Aravindan Kalavati and Sheeja, 2002</td>
<td>Macrobrachium rosenbergi</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>

Suborder HAEMOSPORINA

Family PLASMODIIDAE

Genus *Plasmodium* Marchiafava and Celli, 1885

A. *Plasmodium* of reptiles

<table>
<thead>
<tr>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>228. P. sp.</td>
<td>Hemidactylus prashadi</td>
<td>Andhra Pradesh</td>
</tr>
</tbody>
</table>

B. *Plasmodium* of birds

<table>
<thead>
<tr>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>229. P. fallax Schwetz, 1930</td>
<td>Ploceus philippinus</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>230. P. formosam Manwell, 1962</td>
<td>Corvus splendens</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>231. P. garnhami Guindy, Hoogstral and Mohammed, 1965</td>
<td>Coturnix coromandelica</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>232. P. huffi Muniz, Soares and Batista, 1951</td>
<td>Ploceus philippinus</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>233. P. matuitinum (Huff, 1937)</td>
<td>Corvus splendens</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>234. P. nucleophilum Manwell, 1935</td>
<td>Corvus splendens</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>236. P. relictum (Grassi and Felletti, 1891)</td>
<td>Corvus splendens</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td></td>
<td>Lonchura malacca</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>No.</td>
<td>Species and Authors</td>
<td>Location</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>237.</td>
<td>P. vaughani Novy and MacNeal, 1904</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>238.</td>
<td>P. venkataramiahi Bhaskar Rao, Devi and Bhaskar Rao, 1977</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>239.</td>
<td>P. sp.</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>240.</td>
<td>P. sp.</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>241.</td>
<td>P. sp.</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>242.</td>
<td>P. sp.</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>243.</td>
<td>P. sp.</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td></td>
<td>Pterocles exustus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptopelia chinensis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corvus splendens</td>
<td></td>
</tr>
<tr>
<td>244.</td>
<td>P. cynomolgi Mayer, 1907</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>245.</td>
<td>P. fragile Dissanaike, Nelson and Garnham, 1965</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>246.</td>
<td>P. inui Halberstadtler and von Prowazek, 1907</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>247.</td>
<td>P. shortti, Bray, 1963</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>Macaca radiata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Plasmodium of mammals</td>
<td></td>
</tr>
<tr>
<td>248.</td>
<td>P. falciparum (Welch, 1897)</td>
<td>All districts</td>
</tr>
<tr>
<td>249.</td>
<td>P. malariae (Grassi and Feletti, 1892)</td>
<td>All districts</td>
</tr>
<tr>
<td>250.</td>
<td>P. vivax (Grassi and Feletti, 1890)</td>
<td>All districts</td>
</tr>
<tr>
<td></td>
<td>Homo sapiens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Plasmodium of man</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Family HAEMOPROTEIDAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Haemoproteus Kruse, 1890</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Haemoproteus in reptiles</td>
<td></td>
</tr>
<tr>
<td>251.</td>
<td>H. simondi Castellani and Willey, 1904</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus sp. (=Hemidactylus brooki)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Haemoproteus in birds</td>
<td></td>
</tr>
<tr>
<td>252.</td>
<td>H. borgesi, Tendeiro, 1947</td>
<td>Adilabad</td>
</tr>
<tr>
<td></td>
<td>Dendrocoops mahrattensis mahrattensis</td>
<td></td>
</tr>
<tr>
<td>253.</td>
<td>H. columbae Kruse, 1890</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>254.</td>
<td>H. coraciae de Mello and Afonso, 1935</td>
<td>Warangal</td>
</tr>
<tr>
<td></td>
<td>Cisticola juncidis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Plasmodium of mammals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. falciparum (Welch, 1897)</td>
<td>All districts</td>
</tr>
<tr>
<td></td>
<td>P. malariae (Grassi and Feletti, 1892)</td>
<td>All districts</td>
</tr>
<tr>
<td></td>
<td>P. vivax (Grassi and Feletti, 1890)</td>
<td>All districts</td>
</tr>
<tr>
<td></td>
<td>Homo sapiens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Plasmodium of man</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Family HAEMOPROTEIDAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Haemoproteus Kruse, 1890</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Haemoproteus in reptiles</td>
<td></td>
</tr>
<tr>
<td>251.</td>
<td>H. simondi Castellani and Willey, 1904</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
<td>Common Name</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>255</td>
<td>H. fringillae Labbe, 1894</td>
<td>Copsychus saularis</td>
</tr>
<tr>
<td>256</td>
<td>H. meropis (Zargar, 1945)</td>
<td>Merops orientalis</td>
</tr>
<tr>
<td>257</td>
<td>H. orizivora Anschütz, 1909</td>
<td>Copsychus saularis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ploteus philippinus</td>
</tr>
<tr>
<td>258</td>
<td>H. passeris Kruse, 1890</td>
<td>Passer domesticus</td>
</tr>
<tr>
<td>259</td>
<td>H. pastoris de Mello, 1935</td>
<td>Acridotheres tristis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sturnus pagodarum</td>
</tr>
<tr>
<td>260</td>
<td>H. velans Coatney and</td>
<td>Dendrocytozoon mahrattensis</td>
</tr>
<tr>
<td></td>
<td>Roudabush, 1937</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>H. sp.</td>
<td>Spizaetus cirratus</td>
</tr>
<tr>
<td>262</td>
<td>H. sp.</td>
<td>Nettapus coromandelianus</td>
</tr>
</tbody>
</table>

Family LEUCOCYTOZOIDAE

Genus Leucocytozoon Sambon, 1908

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Common Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>263</td>
<td>L. toddi, Sambon, 1908</td>
<td>Elanus caeruleus</td>
<td>Adilabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vociferus</td>
<td>Adilabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spizaetus cirratus</td>
<td>Adilabad</td>
</tr>
<tr>
<td>264</td>
<td>L. ziemanni (Laveran, 1902)</td>
<td>Athene brama</td>
<td>Adilabad</td>
</tr>
</tbody>
</table>

Subclass PIROPLASMIA

Order PIROPLASMIDA

Family BABESIIDAE

Genus Babesia Starcovici, 1893

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
<td>B. argentina Lignicres, 1901</td>
<td>Bos sp.</td>
<td>Chittoor</td>
</tr>
<tr>
<td>266</td>
<td>B. bigemina Smith and</td>
<td>Bos indicus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>Kilborne, 1893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>B. sp.</td>
<td>Bos sp.</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>268</td>
<td>B. sp.</td>
<td>Manis sp.</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>269</td>
<td>B. sp.</td>
<td>Buffalo</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>270</td>
<td>B. sp.</td>
<td>Sheep</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>271</td>
<td>B. sp.</td>
<td>Dog</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>272</td>
<td>B. sp.</td>
<td>Puma</td>
<td>Hyderabad</td>
</tr>
</tbody>
</table>

Family THEILERIIDAE

Genus Theileria Bettencourt, Franca and Burgess, 1907

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td>T. hirci Dschunkovsky and</td>
<td>Capra hircus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>Urodschevich, 1924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
<td>Host</td>
<td>Location</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>274</td>
<td>T. sp.</td>
<td>Cow</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>275</td>
<td>T. sp.</td>
<td>Sheep</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>276</td>
<td>T. sp.</td>
<td>Buffalo</td>
<td>Andhra Pradesh</td>
</tr>
</tbody>
</table>

Incertae sedis to Order Piroplasmida

Genus Anaplasma Theiler, 1910

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Host</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>277</td>
<td>A. marginale</td>
<td>Sheep</td>
<td>Ranga Reddy</td>
</tr>
<tr>
<td>278</td>
<td>A. sp.</td>
<td>Cattle</td>
<td>Andhra Pradesh</td>
</tr>
</tbody>
</table>

Phylum MICROSPORA
Class DIHAPLOPHASEA
Order MEIODIHAPLOPHASIDA
Superfamily THELOHANOIDEA
Family THELOHANIDAE
Genus Thelohania Henneguy, 1892

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>279</td>
<td>T. limbata Narsimhamurti, Nazeer Ahmed and Kalavati, 1980</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>280</td>
<td>T. orchestii Kalavati, 1976</td>
<td>Orchestia platensis Visakhapatnam</td>
</tr>
</tbody>
</table>

Genus Toxoglugea Leger and Hesse, 1924

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>281</td>
<td>Toxoglugea tillargi Kalavati and Narasimhamurti, 1978</td>
<td>Tholymis tillarga Visakhapatnam</td>
</tr>
</tbody>
</table>

Family DUBOSCQIIDAE
Genus Duboscqia Perez, 1908

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>282</td>
<td>Dubosqia coptotermi Kalavati and Narasimhamurti, 1976</td>
<td>Coptotermes heimi Visakhapatnam</td>
</tr>
</tbody>
</table>

Superfamily BURENELLOIDEA
Family BURENELLIDAE
Genus Burenella Jouvenaz and Hazard, 1978

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>283</td>
<td>B. sp.</td>
<td>Saurida tumbil Visakhapatnam</td>
</tr>
</tbody>
</table>

Order DISSOCIODIHAPLOPHASEA
Superfamily NOSEMATOIDEA
Family NOSEMATIDAE
Genus Nosema Nageli, 1857

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>284</td>
<td>N. bengalis Weiser, Kalavati and Sandeep, 1981</td>
<td>Nemipterus japonicus Visakhapatnam</td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
<td>Host(s)</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>285</td>
<td>N. gigantica</td>
<td>Canning and Madhavi, 1977</td>
</tr>
<tr>
<td>286</td>
<td>N. limbata</td>
<td>Narasimhamurti, Nazeer Ahmed and Kalavati, 1980</td>
</tr>
<tr>
<td>287</td>
<td>N. priacanthi</td>
<td>Sandeep and Kalavati, 1985</td>
</tr>
<tr>
<td>288</td>
<td>N. valamugili</td>
<td>Kalavati and Lakshinarayana, 1982</td>
</tr>
<tr>
<td>289</td>
<td>N. sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Family CAUDOSPORIDAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Octosporea</td>
<td>Flu, 1911</td>
</tr>
<tr>
<td>290</td>
<td>Octosporea porcelliolus</td>
<td>Kalavati and Narasimhamurti, 1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>emend. Sprague and Vavra, 1977</td>
</tr>
<tr>
<td></td>
<td>Family PSEUDOPISTOPHORIDAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Steinhausia</td>
<td>Sprague, Ormieres and Mainer, 1972</td>
</tr>
<tr>
<td>291</td>
<td>Steinhausia spraguei</td>
<td>Kalavati and Narasimhamurti, 1977</td>
</tr>
<tr>
<td></td>
<td>Family MRAZEKIIDAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Mrazekia</td>
<td>Leger and Hesse, 1916</td>
</tr>
<tr>
<td>292</td>
<td>M. caudata</td>
<td>Naidu, 1959</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class HAPLOPHASEA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order GLUGEIDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Family GLUGEIDAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Glugea</td>
<td>Thelohan, 1892</td>
</tr>
<tr>
<td>293</td>
<td>G. malabaracii</td>
<td>Narasimhamurti, Carangoides malabaricus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kalavati and Sandeep, 1985</td>
</tr>
<tr>
<td>294</td>
<td>G. nemipteri</td>
<td>Weiser, Kalavati and Sandeep, 1981</td>
</tr>
<tr>
<td>295</td>
<td>G. sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Loma</td>
<td>Morrison and Sprague, 1981</td>
</tr>
<tr>
<td>296</td>
<td>L. trichuri</td>
<td>Sandeep and Kalavati, 1985</td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
<td>Genus</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>298.</td>
<td>L. sp. II</td>
<td>Sciaenid fish</td>
</tr>
<tr>
<td></td>
<td>Family PLEISTOPHORIDAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Pleistophora Gurley, 1893</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Syn. Plistophora)</td>
<td></td>
</tr>
<tr>
<td>299.</td>
<td>P. atretii Narasimhamurti,</td>
<td>Atretium schistosum</td>
</tr>
<tr>
<td></td>
<td>Kalavati and Nazeer Ahmed, 1982</td>
<td></td>
</tr>
<tr>
<td>300.</td>
<td>P. blatellae Narasimhamurti</td>
<td>Blatella germanica</td>
</tr>
<tr>
<td></td>
<td>and Kalavati, 1977</td>
<td></td>
</tr>
<tr>
<td>301.</td>
<td>P. carangoidi Narasimhamurti</td>
<td>Carangoides malabaricus</td>
</tr>
<tr>
<td></td>
<td>and Sonabai, 1977</td>
<td></td>
</tr>
<tr>
<td>302.</td>
<td>P. eretesi Kalavati and</td>
<td>Eretes stictus</td>
</tr>
<tr>
<td></td>
<td>Narasimhamurti, 1976</td>
<td></td>
</tr>
<tr>
<td>303.</td>
<td>P. ganapatii Kalavati, 1976</td>
<td>Odontotermes horni</td>
</tr>
<tr>
<td></td>
<td>and Ganapati, 1971</td>
<td></td>
</tr>
<tr>
<td>304.</td>
<td>P. sauridae Narasimhamurti</td>
<td>Saurida tumbil</td>
</tr>
<tr>
<td></td>
<td>and Kalavati, 1972</td>
<td></td>
</tr>
<tr>
<td>305.</td>
<td>P. waltirensis Kalavati and</td>
<td>Euborellia plebeja</td>
</tr>
<tr>
<td></td>
<td>Ganapati, 1971</td>
<td></td>
</tr>
<tr>
<td>306.</td>
<td>P. weiseri Kalavati, 1976</td>
<td>Coptotermes heimi</td>
</tr>
<tr>
<td>307.</td>
<td>P. sp.</td>
<td>Dussumeria acuta</td>
</tr>
<tr>
<td></td>
<td>Family UNIKARYONIDAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Unikaryon Canning, Lai and Lie, 1974</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>308.</td>
<td>U. allocreadii Canning and</td>
<td>Allocreadium fasciatus</td>
</tr>
<tr>
<td></td>
<td>Madhavi, 1977</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incertae sedis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Family GURLEYIDAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Gurleya Dofliein, 1898</td>
<td></td>
</tr>
<tr>
<td>309.</td>
<td>G. spraguei Kalavati, 1976</td>
<td>Macrotermes estharae</td>
</tr>
<tr>
<td></td>
<td>Family ?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genus Stempellia Leger and Hesse, 1910</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>310.</td>
<td>S. odontotermi Kalavati, 1976</td>
<td>Odontotermes sp.</td>
</tr>
<tr>
<td></td>
<td>Genus Microsporidium</td>
<td></td>
</tr>
<tr>
<td>311.</td>
<td>M. sauridae (Narasimhamurti</td>
<td>Saurida tumbil</td>
</tr>
<tr>
<td></td>
<td>and Kalavati, 1972)</td>
<td></td>
</tr>
<tr>
<td>Phylum</td>
<td>ASCETOSPORA</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>HAPLOSPOREA</td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>MEIDIHAPLOPHASIDA</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>COELOSPORIDAE</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Coelosporidium Mesnil and Merchoux, 1892</td>
<td></td>
</tr>
</tbody>
</table>

Family ASCETOSPORA

312. *C. schmackeriae* Ganapati, Shantakumari and Narasimhamurti, 1964
Schmackeria serricaudata
Visakhapatnam

313. *C. oithonae* Narasimhamurti and Kalavati, 1976
Oithona rigida
Visakhapatnam

Family NEPHRIDIOPHAGIDAE

Genus *Nephritliophaga* Ivanic, 1937

314. *N. venoboli* Ganapati and Narasimhamurti, 1960
Xenobolus carnifex
Visakhapatnam

Phylum MYXOZOA

315. *M. aori* Lalitha Kumari, 1969
Macrones aor
Hyderabad, Warangal

316. *M. papernae* Padma Dorothy and Kalavati, 1992
Liza macrolepis
Visakhapatnam

Genus *Zschokkella* Auerbach, 1910

317. *Z. ganapatii* Padma Dorothy and Kalavati, 1992
Liza macrolepis
Visakhapatnam

318. *Z. labeonis* Lalitha Kumari, 1969
Labeo nigripinnis
Hyderabad

Channa (=Ophicephalus) striatus
Hyderabad and Visakhapatnam

320. *Z. sp.*
Heteropreustes (=Saccobranchus) fossilis
Hyderabad
<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Author Year</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parazschokkella</td>
<td>P. melanosticti Kalavati and Narasimhamurti, 1987</td>
<td>Bufo melanostictus</td>
<td>Krishna, Visakhapatnam, Vizianagaram</td>
</tr>
<tr>
<td>Ortholineidae</td>
<td>O. visakhapatnamensis Padma Dorothy and Kalavati, 1993</td>
<td>Liza macrolepis</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>Davisia</td>
<td>D. cynoglossi Narasimhamurti, Cynoglossus sp. Kalavati, Anuradha and Padma Dorothy, 1990</td>
<td>Thrissocles setirostris</td>
<td>Krishna</td>
</tr>
<tr>
<td></td>
<td>D. filiformis Padma Dorothy, Kalavati and Vaidehi, 1998</td>
<td>Liza macrolepis</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>D. murtii Padma Dorothy and Kalavati, 1994</td>
<td>Liza macrolepis</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>Bipteria</td>
<td>B. indica Kalavati and Anuradha, 1995</td>
<td>Mugil cephalus</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liza macrolepis</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>Neobipteria</td>
<td>N. coramandensis Narasimhamurti, Kalavati, Anuradha and Padma Dorothy, 1990</td>
<td>Nemipterus mesoprion</td>
<td>Krishna</td>
</tr>
<tr>
<td>Ceratomyxidae</td>
<td>L. asymmetrica Lalitha Kumari, 1969</td>
<td>Osteochilus neilli</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>Ceratomyxa</td>
<td>C. dissimilaris Narasimhamurti, Kalavati, Anuradha and Padma Dorothy, 1990</td>
<td>Nemipterus mesoprion</td>
<td>Srikakulam</td>
</tr>
<tr>
<td></td>
<td>C. kudoii Kalavati and Anuradha, 1993</td>
<td>Valamugil cunnesius</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>Parasite</td>
<td>Host</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>331. C. sagarsampadae Narasimhamurti, Kalavati. Anuradha and Padma Dorothy, 1990</td>
<td>Cynoglossus sp.</td>
<td>Krishna</td>
<td></td>
</tr>
<tr>
<td>332. C. thrissoclesi Padma Dorothy, Kalavati and Vaidehi, 1998</td>
<td>Thrissocles muystasc</td>
<td>Visakhapatnam</td>
<td></td>
</tr>
<tr>
<td>333. S. mayi Moser, Kent and Dennis, 1989</td>
<td>Mugil cephalus</td>
<td>Visakhapatnam</td>
<td></td>
</tr>
<tr>
<td>334. P. indicus Padma Dorothy and Kalavati, 1998</td>
<td>Liza macrolepis</td>
<td>Visakhapatnam</td>
<td></td>
</tr>
<tr>
<td>335. M. mastacembeli Qadri and Lalitha Kumari, 1965</td>
<td>Mastacembelus armatus</td>
<td>Hyderabad</td>
<td></td>
</tr>
<tr>
<td>336. M. sp.</td>
<td>Clarias batrachus</td>
<td>East Godavari</td>
<td></td>
</tr>
<tr>
<td>337. C. hoarei Lalitha Kumari, 1969</td>
<td>Labeo nigripinnis</td>
<td>Hyderabad and Warangal</td>
<td></td>
</tr>
<tr>
<td>338. C. mitchelli Kalavati and Narasimhamurti, 1984</td>
<td>Therapon jarbua</td>
<td>Visakhapatnam</td>
<td></td>
</tr>
<tr>
<td>339. C. tripathi Kalavati and Narasimhamurti, 1984</td>
<td>Therapon jarbua</td>
<td>East Godavari, Srikakulam and Visakhapatnam</td>
<td></td>
</tr>
<tr>
<td>340. P. hoffmanni Padma Dorothy and Kalavati, 1993</td>
<td>Liza macrolepis</td>
<td>Visakhapatnam</td>
<td></td>
</tr>
<tr>
<td>341. A. chorinemusi Padma Dorothy, Kalavati and Vaidehi, 1998</td>
<td>Chorinemus sp.</td>
<td>Visakhapatnam</td>
<td></td>
</tr>
</tbody>
</table>
Suborder PLATYSPORINA
Family MYXOBOLIDAE
Genus *Myxobolus* Butschli, 1882
(Syn. *Myxosoma*, *Gyrospora*)

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Hosts</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>342</td>
<td>M. ampullaceus Lalitha Kumari, 1969</td>
<td>Barbus kolus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>343</td>
<td>M. andhrae (Lalitha Kumari, 1969)</td>
<td>Channa (=Ophicephalus) punctatus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>344</td>
<td>M. anili Sarkar, 1989</td>
<td>Liza macrolepis</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>345</td>
<td>M. bengalensis Chakravarty and Basu, 1948</td>
<td>Catla catla</td>
<td>Guntur</td>
</tr>
<tr>
<td>346</td>
<td>M. bivacuolatus Narasimhamurti and Kalavati, 1986</td>
<td>Clarias batrachus</td>
<td>West Godavari</td>
</tr>
<tr>
<td>347</td>
<td>M. channai (Kalavati, Sandeep and Narasimhamurti, 1981)</td>
<td>Channa punctata</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>348</td>
<td>M. clarii Chakravarty, 1943</td>
<td>Clarias batrachus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>349</td>
<td>M. crucifila (Qadri, 1962)</td>
<td>Labeo fimbriatus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>350</td>
<td>M. episquammalis Egusa, Maeno and Sorimachi, 1990</td>
<td>Mugil cephalus</td>
<td>Visakhapatnam and East Godavari</td>
</tr>
<tr>
<td>351</td>
<td>M. esomi (Kalavati and Narasimhamurti, 1984)</td>
<td>Esomus sp.</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>352</td>
<td>M. hyderabadense (Lalitha Kumari, 1969)</td>
<td>Barbus pinnauratus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>353</td>
<td>M. indiae (Lalitha Kumari, 1969)</td>
<td>Barbus sarana</td>
<td>Hyderabad and Warangal</td>
</tr>
<tr>
<td>354</td>
<td>M. koli Lalitha Kumari, 1969</td>
<td>Barbus kolus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>355</td>
<td>M. lizae (Narasimhamurti and Kalavati, 1979)</td>
<td>Liza macrolepis</td>
<td>Visakhapatnam, East Godavari</td>
</tr>
<tr>
<td>356</td>
<td>M. macrolepi Padma Dorothy and Kalavati, 1992</td>
<td>Liza macrolepis</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>357</td>
<td>M. mahendrae Sarkar, 1986</td>
<td>Catla catla</td>
<td>Guntur</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| **358.** M. *mugcephalus*
(Narasimhamurti, Kalavati and Saratchandra, 1980) | *Mugil cephalus* | Visakhapatnam |
| **359.** M. *narasii*
(Narasimhamurti, 1969) | *Mugil waigensis* | Visakhapatnam |
| **360.** M. *osmaniae* Lalitha Kumari, 1969 | *Barbus punjaubensis* | Hyderabad |
| **361.** M. *pinnaurati* Lalitha Kumari, 1969 | *Barbus pinnauratus* | Hyderabad |
| **362.** M. *potaili* Lalitha Kumari, 1969 | *Labeo potail* | Hyderabad |
| **363** M. *psilorhynchi* Lalitha Kumari, 1969 | *Psilorhynchus balitora* | Hyderabad |
| **364.** M. *seshadrii* Lalitha Kumari, 1968 | *Labeo fimbriatus* | Kurnool |
| **365.** M. *sphaeralis* Padma Dorothy and Kalavati, 1992 | *Liza macrolepis* | Visakhapatnam |
| **366.** M. *spinocurvatura* Maeno, Sorimachi, Ogawa and Egusa, 1990 | *Mugil cephalus* | Visakhapatnam |
| **367.** M. *tripathii* Kalavati Sandeep and Narasimhamurti, 1981 | *Clarias sp.* | Visakhapatnam and West Godavari |
| **368.** M. *sp.* | *Liza macrolepis*
Mugil cephalus | Visakhapatnam |

Genus Henneguya Thelohan, 1892

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>369. H. ganapatiae Qadri, 1970</td>
<td>Notopterus notopterus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>370. H. jubili Qadri, 1969</td>
<td>Notopterus notopterus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>371. H. notopteriae Qadri, 1965</td>
<td>Notopterus notopterus</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>372. H. qadrii Lalitha Kumari, 1965</td>
<td>Ophicephalus gachua</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>373. H. singhi Lalitha Kumari, 1969</td>
<td>Notopterus osmanii</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>374. H. waltairensis Narasimhamurti and Kalavati 1975</td>
<td>Channa(Ophicephalus) punctatus</td>
<td>Visakhapatnam and Vizianagaram</td>
</tr>
<tr>
<td>Genus</td>
<td>Species Details</td>
<td>Location</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Thelohanellus</td>
<td>T. andhrae Qadri 1962</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>T. batae Lalitha Kumari, 1969</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>T. boggoti Qadri, 1962</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>T. chelae Lalitha Kumari, 1969</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>T. chrysopomati, Lalitha Kumari, 1969</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>T. chrysoponlati, Lalitha Kumari, 1969</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>T. potaili Lalitha Kumari, 1969</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>T. qadrii Lalitha Kumari, 1969</td>
<td>Hyderabad</td>
</tr>
<tr>
<td></td>
<td>T. shortii Qadri, 1967</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>Unicauda</td>
<td>U. andhrae Kalavati and Narasimhamurti, 1981</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>Phlogospora</td>
<td>P. mysti Qadri, 1962</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>Kudoa</td>
<td>K. atropi Sandeep, Kalavati and Narasimhamurti, 1986</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>K. sphraeni Narasimhamurti and Kalavati, 1979</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>K. tetrastoria Narasimhamurti and Narasimhamurti, 1979</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>K. valamugili Kalavati and Anuradha, 1993</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>Triactinomyxon</td>
<td>T. naidanum Naidu, 1956</td>
<td>Cuddapah</td>
</tr>
<tr>
<td></td>
<td>T. sp.</td>
<td>Cuddapah</td>
</tr>
<tr>
<td>Class</td>
<td>ACTINOSPOREA</td>
<td></td>
</tr>
<tr>
<td>Subclass</td>
<td>ACTINOMYXEA</td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>ACTINOMYXIDA</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>ACTINOMYXIDAE</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Triactinomyxon</td>
<td></td>
</tr>
<tr>
<td>Stolic, 1899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Species</td>
<td>Authors</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Balantidium</td>
<td>B. caprae</td>
<td>Abraham, 1962</td>
</tr>
<tr>
<td></td>
<td>B. coli</td>
<td>(Malmsten, 1857)</td>
</tr>
<tr>
<td></td>
<td>B. duodenii</td>
<td>Stein, 1867</td>
</tr>
<tr>
<td></td>
<td>B. elongatum</td>
<td>Stein, 1867</td>
</tr>
<tr>
<td></td>
<td>B. helenae</td>
<td>Bezzenberger, 1904</td>
</tr>
<tr>
<td></td>
<td>B. indicum</td>
<td>Abraham, 1962</td>
</tr>
<tr>
<td></td>
<td>B. osmaniae</td>
<td>Qadri and Navarathnam, 1966</td>
</tr>
<tr>
<td></td>
<td>B. rhacophori</td>
<td>Kalavati, Narasimhamurthi and Usharani, 1991</td>
</tr>
<tr>
<td></td>
<td>B. waltaiensis</td>
<td>Kalavati, Narasimhamurthi and Usharani, 1991</td>
</tr>
<tr>
<td>Enerthecoma</td>
<td>E. dissimilis</td>
<td>Mahmood and Khan, 1980</td>
</tr>
<tr>
<td></td>
<td>E. melanoidi</td>
<td>Kalavati, Ramakumari and Narasimhamurthi, 1987</td>
</tr>
<tr>
<td>Holocoma</td>
<td>H. singii</td>
<td>Kalavati, Ramakumari and Narasimhamurthi, 1987</td>
</tr>
<tr>
<td>Raabella</td>
<td>R. helensis</td>
<td>Chatton and Lwoff, 1950</td>
</tr>
<tr>
<td>Family</td>
<td>PARAISOTRICHIDAE</td>
<td>Genus</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>404. P. equi</td>
<td>Abraham, 1961</td>
<td>Equus caballus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>FOETTINGERIIDAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incertae sedis</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Kofoidella Cepede, 1910</td>
</tr>
<tr>
<td>405. K. aplocheilusi</td>
<td>Rao, 1979</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order</th>
<th>SUCTORIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>CYATHODINIDAE</td>
</tr>
<tr>
<td>Genus</td>
<td>Cyathodinium Da Cunha, 1914</td>
</tr>
<tr>
<td>406. C. indiae</td>
<td>Bhaskar Rao and Bhaskar Rao, 1969</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>OLIGOHYMENOPHOREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oredr</td>
<td>SCUTICOCILIATIDA</td>
</tr>
<tr>
<td>Family</td>
<td>ANCISTRIDAE</td>
</tr>
<tr>
<td>Genus</td>
<td>Ancistrum Maupas, 1883</td>
</tr>
<tr>
<td>407. A. ganapatii</td>
<td>Kalavati, Ramakumari and Narasimhamurti, 1987</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus</th>
<th>Fenchelia Raabe, 1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>408. F. kapili</td>
<td>Jamadar and Choudhury, 1988</td>
</tr>
<tr>
<td>409. F. sagarica</td>
<td>Jamadar and Choudhury, 1988</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus</th>
<th>Protophyra Kofoid, 1903</th>
</tr>
</thead>
<tbody>
<tr>
<td>410. P. indica</td>
<td>Jamadar and Choudhury, 1988</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order</th>
<th>ASOMATIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>HOPLITOPHYRIDAE</td>
</tr>
<tr>
<td>Genus</td>
<td>Radiophrryoides Lom, 1956</td>
</tr>
<tr>
<td>411. R. puytoraci</td>
<td>Naidu, 1961</td>
</tr>
<tr>
<td>412. R. visakhapatnamensis</td>
<td>Joseph and Rao, 1980</td>
</tr>
<tr>
<td>Order</td>
<td>PERITRICHIDA</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>413. T. cyanophlycti Kalavati, Narasimhamurti and Usharani, 1991</td>
<td>Rana cyanophlyctis</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>POLYHYMENOPHOREA</th>
<th>Order</th>
<th>HETEROCIDA</th>
<th>Family</th>
<th>NYCTOTHERIDAE</th>
<th>Genus Nyctotherus Leidy, 1849</th>
</tr>
</thead>
<tbody>
<tr>
<td>415. N. indica Bhaskar Rao, 1969</td>
<td>Corydia petiveriana</td>
<td>Hyderabad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>417. N. cordiformis (Ehrenberg, 1838)</td>
<td>Rana cyanophlyctis</td>
<td>Vizianagaram</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418. N. foliatus Kalavati, Narasimhamurti and Usharani, 1991</td>
<td>Rana breviceps</td>
<td>Visakhapatnam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>420. N. reniformis (Bhatia and Gulati, 1927)</td>
<td>Rana hexadactyla</td>
<td>Guntur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>421. N. rhacophori., Kalavati, Narasimhamurti and Usharani, 1991</td>
<td>Rhacophorus maculatus</td>
<td>Visakhapatnam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422. N. waltairensis, Usharani and Narasimhamurti, 1991</td>
<td>Bufo melanostictus</td>
<td>Visakhapatnam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>SICUOPHORIDAE</th>
<th>Genus Metasicuophora Albert, 1973</th>
</tr>
</thead>
</table>
Genus *Prosicuophora* de Puytorac and Oktem, 1967

<table>
<thead>
<tr>
<th>Host</th>
<th>Parasite</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. andhrae</td>
<td>Rana cyanophlyctis</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>Kalavati, Narasimhamurti and Usharani, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. hexadactyli</td>
<td>Rana hexadactyla</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>Kalavati, Narasimhamurti and Usharani, 1991</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Genus *Sicuophora* de Puytorac and Grain, 1969

<table>
<thead>
<tr>
<th>Host</th>
<th>Parasite</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. fragilis</td>
<td>Rana cyanophlyctis</td>
<td>Nellore</td>
</tr>
<tr>
<td>Kalavati, Narasimhamurti and Usharani, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rana hexadactyla</td>
<td>Nellore</td>
</tr>
<tr>
<td>S. levinei</td>
<td>Rana cyanophlyctis</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>Kalavati, Narasimhamurti and Usharani, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. limnochari</td>
<td>Rana cyanophlyctis</td>
<td>Vizianagaram</td>
</tr>
<tr>
<td>Kalavati, Narasimhamurti and Usharani, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rana limnocharis</td>
<td>Vizianagaram</td>
</tr>
<tr>
<td>S. macropharyngea</td>
<td>Rana cyanophlyctis</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>(Bezzenberger, 1904)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rana breviceps</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>S. puytoraci</td>
<td>Rana breviceps</td>
<td>Krishna</td>
</tr>
<tr>
<td>Kalavati, Narasimhamurti and Usharani, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. ranae</td>
<td>Rana cyanophlyctis</td>
<td>West Godavari</td>
</tr>
<tr>
<td>Kalavati, Narasimhamurti and Usharani, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rana hexadactyla</td>
<td>West Godavari</td>
</tr>
<tr>
<td></td>
<td>Rana limnocharis</td>
<td>West Godavari</td>
</tr>
<tr>
<td>S. waltaires</td>
<td>Rana breviceps</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>Kalavati, Narasimhamurti and Usharani, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rana cyanophlyctis</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td></td>
<td>Rana limnocharis</td>
<td>Visakhapatnam</td>
</tr>
</tbody>
</table>

HOST-PARASITE LIST OF PARASITIC PROTOZOA

The host-parasite list of parasitic protozoa from Andhra Pradesh along with reference to the species concerned is given below:

<table>
<thead>
<tr>
<th>Host</th>
<th>Parasite</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum PLATYHELMINTHES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class TREMATODA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order DIGENEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Allocreadium</td>
<td>Nosema gigantica</td>
<td>Canning and Madhavi (1977)</td>
</tr>
<tr>
<td>fasciatusi</td>
<td>Unikaryon allocreadii</td>
<td>Canning and Madhavi (1977)</td>
</tr>
<tr>
<td>Phylum MOLLUSCA</td>
<td>Class GASTROPODA</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2. Cerithidea obtusa</td>
<td>Fenchelia kapili</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fenchelia sagarica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jamadar and Choudhury (1988)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jamadar and Choudhury (1988)</td>
<td></td>
</tr>
<tr>
<td>3. Littorina (Littorinopsis) scabra</td>
<td>Protophrya indica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fenchelia sagarica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jamadar and Choudhury (1988)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Melanoides tuberculatus</td>
<td>Enerthecoma melanoidii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holocoma singhii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kalavati et al. (1987)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Modiolus (Modiolus) striatulus</td>
<td>Raabella helensis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jamadar and Choudhury (1988)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Pila globosa</td>
<td>Ancistrum ganapatii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kalavati et al. (1987)</td>
<td></td>
</tr>
<tr>
<td>7. Viviparus dissimilis</td>
<td>Enerthecoma dissimilis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mahmood and Khan (1980)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class CEPHALOPODA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Sepia elliptica</td>
<td>Aggregata kudoi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steinhausia spraguei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Narasimhamurti (1979)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kalavati and Narasimhamurti (1977)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylum ANNELIDA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class OLIGOCHAETA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Aelosoma hyalinnum</td>
<td>Radiophryoides visakhapatnamensis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joseph and Hanumantha Rao (1980)</td>
<td></td>
</tr>
<tr>
<td>10. Aelosoma travancorense</td>
<td>Radiophryoides puytoraci</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naidu (1961)</td>
<td></td>
</tr>
<tr>
<td>11. Nais communis</td>
<td>Mrazekia caudata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naidu (1959)</td>
<td></td>
</tr>
<tr>
<td>12. Nais communis punjabensis</td>
<td>Triactinomyxon naidanum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naidu (1956)</td>
<td></td>
</tr>
<tr>
<td>13. Pontodrilus bermudensis</td>
<td>Monocystis pontodrili</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subba Rao et al. (1979)</td>
<td></td>
</tr>
<tr>
<td>14. Pristina longiseta</td>
<td>Triactinomyxon sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naidu (1959)</td>
<td></td>
</tr>
<tr>
<td>15. Pristina longiseta longiseta</td>
<td>Mrazekia caudata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naidu (1959)</td>
<td></td>
</tr>
<tr>
<td>Class POLYCHAETA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Marphysa gravelyi</td>
<td>Gopaliella marphysae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ganapati et al. (1974)</td>
<td></td>
</tr>
<tr>
<td>Phylum ARTHROPODA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class CRUSTACEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Caridina laevis</td>
<td>Heliospora sp.</td>
<td>Sailaja (1978); Narasimhamurti and Sailaja (1981)</td>
</tr>
<tr>
<td>18. Macrobrachium rosenbergi</td>
<td>Caridohabitans macrobrachii</td>
<td>Kalavati and Aravindan (1998)</td>
</tr>
<tr>
<td></td>
<td>Montonella macrobrachii</td>
<td>Aravindan et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Rosculus macrobrachii</td>
<td>Aravindan et al. (2002)</td>
</tr>
<tr>
<td>20. Orchestia platensis</td>
<td>Theholania orchestr*</td>
<td>Kalavati (1976)</td>
</tr>
<tr>
<td></td>
<td>Selenococcidium indicus</td>
<td>Aravindan et al. (2002)</td>
</tr>
<tr>
<td>22. Penaeus monodon</td>
<td>Didymophyes penaei</td>
<td>Kalavati and Aravindan (1998)</td>
</tr>
<tr>
<td>24. Schmackeria serricaudata</td>
<td>Coelosporidium schmackeriae</td>
<td>Ganapati et al. (1964)</td>
</tr>
<tr>
<td>Class INSECTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order ODONATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Ceriagrion coromandelianum</td>
<td>Ancyrophora ceriagrini</td>
<td>Nazeer Ahmed and Narasimhamurti (1979)</td>
</tr>
<tr>
<td></td>
<td>Dendrorhynchus keilini</td>
<td>Nazeer Ahmed and Narasimhamurti (1979)</td>
</tr>
<tr>
<td>27. Tholymis tillarga</td>
<td>Toxoglugea tillargi</td>
<td>Kalavati and Narasimhamurti (1978)</td>
</tr>
<tr>
<td>28. Tramea limbata</td>
<td>Nosema limbata</td>
<td>Narasimhamurti et al. (1980)</td>
</tr>
<tr>
<td></td>
<td>Theholania limbata</td>
<td>Narasimhamurti et al. (1980)</td>
</tr>
<tr>
<td>Order ORTHOPTERA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexamita gryllotalpae</td>
<td>Bhaskar Rao (1968)</td>
</tr>
<tr>
<td></td>
<td>Hexamita honigbergii</td>
<td>Bhaskar Rao (1969)</td>
</tr>
<tr>
<td></td>
<td>Monocercomonoides ganapati</td>
<td>Bhaskar Rao (1968; cited from Sultana, 1976)</td>
</tr>
<tr>
<td></td>
<td>Rhizomastix gryllotalpae</td>
<td>Bhaskar Rao (1970)</td>
</tr>
<tr>
<td>30. Leiogryllus sp.</td>
<td>Acanthogregarina hoshidei</td>
<td>Kalavat et al. (1988)</td>
</tr>
<tr>
<td>32. Poecilocercus pictus</td>
<td>Gregarina poecilocerum (= Poekilocercus pictus)</td>
<td>Ganapati and Mrutyunjayadevi (1954); Pampathi Rao (1958); Narasimhamurti and Ganapati (1961)</td>
</tr>
<tr>
<td></td>
<td>Malamoeba indica</td>
<td></td>
</tr>
<tr>
<td>Order DICTYOPTERA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. Blatella germanica</td>
<td>Pleistophora blatellae</td>
<td>Narasimhamurti and Kalavati (1978)</td>
</tr>
<tr>
<td></td>
<td>Nyctotherus indica</td>
<td>Bhaskar Rao (1969)</td>
</tr>
<tr>
<td></td>
<td>Retortamonas blattae</td>
<td>Bhaskar Rao (1968; cited from Sultana, 1976)</td>
</tr>
<tr>
<td></td>
<td>Trichomitus corydiae</td>
<td>Bhaskar Rao and Todd (1968)</td>
</tr>
<tr>
<td></td>
<td>Retortamonas blattae</td>
<td>Bhaskar Rao (1968; cited from Sultana, 1976)</td>
</tr>
<tr>
<td></td>
<td>Retortamonas blattae</td>
<td>Bhaskar Rao (1968; cited from Sultana, 1976)</td>
</tr>
<tr>
<td>38. Periplaneta americana</td>
<td>Hexamastix periplanetae</td>
<td>Bhaskar Rao (1970)</td>
</tr>
<tr>
<td></td>
<td>Monocercomonoides garnhami</td>
<td>Bhaskar Rao (1969)</td>
</tr>
<tr>
<td></td>
<td>Polymastix periplanetae</td>
<td>Qadri and Bhaskar Rao (1963)</td>
</tr>
<tr>
<td></td>
<td>Retortamonas blattae</td>
<td>Bhaskar Rao (1968; cited from Sultana, 1976)</td>
</tr>
<tr>
<td></td>
<td>Rhizomastix periplanetae</td>
<td>Bhaskar Rao (1963)</td>
</tr>
<tr>
<td>Order DERMOPTERA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39. Euborellia plebeja</td>
<td>Pleistophora waltairensis</td>
<td>Kalavati and Ganapati (1971)</td>
</tr>
<tr>
<td>Order ISOPTERA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40. Coptotermes heimi</td>
<td>Dubosquia coptotermi</td>
<td>Kalavati and Narasimhamurti (1976)</td>
</tr>
<tr>
<td></td>
<td>Pleistophora weiseri</td>
<td>Kalavati (1976)</td>
</tr>
<tr>
<td></td>
<td>Steinina coptotermitis</td>
<td>Kalavati and Narasimhamurti (1978)</td>
</tr>
<tr>
<td>41. Heliocorpi sp.</td>
<td>Steinina rodgii</td>
<td>Present report</td>
</tr>
<tr>
<td>42. Macrotermes estherae</td>
<td>Gregarina macrotermitis</td>
<td>Kalavati and Narasimhamurti (1978)</td>
</tr>
<tr>
<td></td>
<td>Gurleya spraguei</td>
<td>Kalavati (1976)</td>
</tr>
<tr>
<td>43. Odontotermes horai</td>
<td>Pleistophora ganapatii</td>
<td>Kalavati and Narasimhamurti (1982)</td>
</tr>
<tr>
<td>44. Odontotermes horni</td>
<td>Diplocystis hori</td>
<td>Kalavati (1977)</td>
</tr>
<tr>
<td></td>
<td>Pleistophora ganapatii</td>
<td>Kalavati (1976)</td>
</tr>
<tr>
<td>45. Odontotermes obesus</td>
<td>Chagasella ganapatii</td>
<td>Kalavati and Narasimhamurti (1968)</td>
</tr>
<tr>
<td></td>
<td>Ganapatiella odontotermitis</td>
<td>Kalavati (1977)</td>
</tr>
<tr>
<td></td>
<td>Monocystis odontotermitis</td>
<td>Kalavati (1979)</td>
</tr>
<tr>
<td>46. Odontotermes sp.</td>
<td>Anthorrhynchus hanumanthi</td>
<td>Kalavati and Narasimhamurti (1978)</td>
</tr>
<tr>
<td></td>
<td>Sphaerocystis odontotermitis</td>
<td>Kalavati and Narasimhamurti (1979)</td>
</tr>
<tr>
<td></td>
<td>Stempellia odontotermi</td>
<td>Kalavati (1976)</td>
</tr>
<tr>
<td>Order HEMIPTERA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47. Laccotrephes maculatus</td>
<td>Monocercomonas laccotrephis</td>
<td>Bhaskar Rao (1970)</td>
</tr>
<tr>
<td></td>
<td>Retortamonas toddi</td>
<td>Bhaskar Rao (1968)</td>
</tr>
<tr>
<td>No.</td>
<td>Taxon</td>
<td>Species</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>49.</td>
<td>Lygaeus militaris</td>
<td>Leptomonas bakeri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order COLEOPTERA</td>
</tr>
<tr>
<td>52.</td>
<td>Gallerucida bicolor</td>
<td>Harendraia murtii n. sp.</td>
</tr>
<tr>
<td>53.</td>
<td>Gonocephalum arenarium</td>
<td>Cystocephalus gonocephali n. sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stylocephalus gonocephali</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stylocephalus serpentula</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stylocephalus sp.</td>
</tr>
<tr>
<td>54.</td>
<td>Gonocephalum brachyelytra</td>
<td>Stylocephalus gonocephali</td>
</tr>
<tr>
<td>55.</td>
<td>Oryctes rhinoceros</td>
<td>Dientamoeba dobelli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monocercomonoides qadrii</td>
</tr>
<tr>
<td>56.</td>
<td>Raphidopalpa stevensi</td>
<td>Gregarina crescentica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retractocephalus waltairesis</td>
</tr>
<tr>
<td>57.</td>
<td>Rhytinota sp.</td>
<td>Xiphicephalus rhytinotus n. sp.</td>
</tr>
<tr>
<td>58.</td>
<td>Tribolium ferruginum</td>
<td>Anisolobus triboli n. sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order DIPTERA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order LEPIDOPTERA</td>
</tr>
<tr>
<td>59.</td>
<td>Corcyra cephalanica</td>
<td>Retractocephalus corcyrae n. sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class MYRIAPODA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order CHILOPODA</td>
</tr>
<tr>
<td>60.</td>
<td>Mecistoccephalus punctifrons</td>
<td>Eimeria mectistophori</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mecistophora legeri</td>
</tr>
<tr>
<td>No.</td>
<td>Species/Genus/Order</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>61.</td>
<td>Rhysida longipes</td>
<td>Adelea hyalospora</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adelina dimidiata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adelina rayi</td>
</tr>
<tr>
<td>62.</td>
<td>Scolopendra moristans</td>
<td>Grebneckiella pixellae</td>
</tr>
<tr>
<td></td>
<td>Chondromorpha keelarti</td>
<td>Hyalosporina froilani</td>
</tr>
<tr>
<td></td>
<td>Strongylosoma contortipes</td>
<td>Monodactus lunatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stenophora sp. 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stenophora sp. 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stenophora sp. 3</td>
</tr>
<tr>
<td>66.</td>
<td>Xenobolus carnifex</td>
<td>Nephridiophaga xenoboli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stenophora xenoboli</td>
</tr>
<tr>
<td>67.</td>
<td>Xenobolus sp.</td>
<td>Stenophora xenoboli</td>
</tr>
<tr>
<td></td>
<td>Uncertain Order of Myriapoda</td>
<td></td>
</tr>
<tr>
<td>68.</td>
<td>Thyroglutus sp.</td>
<td>Stenophora thyrogluti</td>
</tr>
<tr>
<td></td>
<td>Phylum CHORDATA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class OSTEICHTHYES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order CLUPEIFORMES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order CLUPEIFORMES</td>
<td></td>
</tr>
<tr>
<td>70.</td>
<td>Thrissocles muystasc</td>
<td>Ceratomyxa thrissoclesi</td>
</tr>
<tr>
<td>71.</td>
<td>Thrissocles setirostris</td>
<td>Davisia filiformis</td>
</tr>
<tr>
<td></td>
<td>Order OSTEOGLOSSIFORMES</td>
<td></td>
</tr>
<tr>
<td>72.</td>
<td>Notopterus notopterus</td>
<td>Henneguya ganapatiae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Henneguya jubili</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Henneguya notopteriae</td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
<td>Host</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>73.</td>
<td>Notopterus osmanii</td>
<td>Henneguya singhi</td>
</tr>
<tr>
<td>74.</td>
<td>Catla catla</td>
<td>Myxobolus bengalensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myxobolus mahendrae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myxobolus sphaeralis</td>
</tr>
<tr>
<td>75.</td>
<td>Chela bacaila (= Salmostoma bacaila)</td>
<td>Thelohanellus chelae</td>
</tr>
<tr>
<td>77.</td>
<td>Labeo bata</td>
<td>Thelohanellus batae</td>
</tr>
<tr>
<td>78.</td>
<td>Labeo boggut</td>
<td>Thelohanellus boggoti</td>
</tr>
<tr>
<td>79.</td>
<td>Labeo fimbriatus</td>
<td>Myxobolus crucifila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myxobolus seshadrii</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thelohanellus andhrae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thelohanellus shortii</td>
</tr>
<tr>
<td>80.</td>
<td>Labeo nigripinnis</td>
<td>Chloromyxum hoarei</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myxobolus hoarei</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zschokkella labeonis</td>
</tr>
<tr>
<td>81.</td>
<td>Labeo potail</td>
<td>Myxobolus potaili</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thelohanellus potaili</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thelohanellus qadrii</td>
</tr>
<tr>
<td>82.</td>
<td>Osteochilus neilli</td>
<td>Leptotheca asymmetrica</td>
</tr>
<tr>
<td>83.</td>
<td>Psilorhynchus balitora</td>
<td>Myxobolus psilorhynchi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myxobolus koli</td>
</tr>
</tbody>
</table>
Myxobolus hyderabdense Lalitha Kumari (1969) |

Order SILURIFORMES

| 91. | *Clarias batrachus* | *Myxobilatus sp.*
Myxobolus bivacuolatus | Anuradha and Kalavati (1987)
Narasimhamurti and Kalavati (1986)
Lalitha Kumari (1969)
Qadri (1962)
Narasimhamurti and Saratchandra (1980) |
| 93. | *Heteropneustes* (=*Saccobranchus* *fossilis*) | *Trypanosoma danilewskyi* var. *saccobranchi*
Zschokkella sp. | Qadri (1962)
Qadri (1951) |
| 94. | *Mystus bleekeri* | *Phlogospora mysti* | Qadri (1962) |

Order MYCTOPHIFORMES

| 95. | *Saurida tumbil* | *Burellula* sp.
Pleistophora sauridae
Microsporidium sauridae (Syn. *Nosema sauridae*) | Kalavati and Sandeep (1985)
Narasimhamurti and Kalavati (1972)
Narasimhamurti and Kalavati (1972) |

Order ATHERINIFORMES

| 96. | *Aplocheilus melastigma* | *Kofoidella* *aplocheilusi* | Rao (1979) |

Order CHANNIFORMES

| 97. | *Channa gachua* (Syn. *Ophicephalus gachua*) | *Henneguya qadri*
Unicauda andhrae | Lalitha Kumari (1965, 1969)
Kalavati and Narasimhamurti (1981) |
Parasitic Protozoa

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Myxobolus andhrae</td>
<td></td>
<td>Lalitha Kumari (1969)</td>
</tr>
<tr>
<td>Myxobolus channa</td>
<td></td>
<td>Kalavati et al. (1981)</td>
</tr>
<tr>
<td>Trypanosoma channa</td>
<td></td>
<td>Narasimhamurti and Saratchandra (1980)</td>
</tr>
<tr>
<td>Trypanosoma godavariensis</td>
<td></td>
<td>Saratchandra and Jayaramaraju (1981)</td>
</tr>
<tr>
<td>Trypanosoma striati</td>
<td></td>
<td>Qadri (1955)</td>
</tr>
</tbody>
</table>

| | Zschokella ophicephali | Lalitha Kumari (1969) |

Order PERCIFORMES

<p>| 100. Atropus atropus | Kudoa atropi | Sandeep et al. (1986) |
| 101. Carangoides malabaricus | Glugea malabarici | Narasimhamurti et al. (1985); Kalavati et al. (1985) |
| | Pleistophora carangoidi| Narasimhamurti and Sonabai (1977) |
| 102. Chorinemus sp. | Auerbachia chorinomusi | Padma Dorothy et al. (1998) |
| 103. Gobius giuris | Hexamita sp. | Qadri (1962) |
| | Davisia murtli | Padma Dorothy and Kalavati (1994) |
| | Myxidium papernae | Padma Dorothy and Kalavati (1992) |
| | Myxobolus anili | Padma Dorothy and Kalavati (1992) |
| | Myxobolus episquammalisis | Kalavati and Anuradha (1992) |
| | Myxobolus lizae | Narasimhamurti and Kalavati (1979) |
| | Myxobolus macrolepi | Padma Dorothy and Kalavati (1992) |</p>
<table>
<thead>
<tr>
<th>Taxonomy</th>
<th>Species</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>105. Megalaspis cordyla</td>
<td>Auerbachia chakravartyi</td>
<td>Narasimhamurti et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>Noosema sp.</td>
<td>Narasimhamurti and Kalavati (1979)</td>
</tr>
<tr>
<td></td>
<td>Kudoa tetraspora</td>
<td>Kalavati and Narasimhamurti (1979)</td>
</tr>
<tr>
<td></td>
<td>Myxobolus episquammalis</td>
<td>Kalavati and Anuradha (1992)</td>
</tr>
<tr>
<td></td>
<td>Myxobolus microspora</td>
<td>Narasimhamurti et al. (1980)</td>
</tr>
<tr>
<td></td>
<td>Myxobolus mugcephalus</td>
<td>Narasimhamurti et al. (1980)</td>
</tr>
<tr>
<td></td>
<td>Myxobolus spinocurvatura</td>
<td>Kalavati and Anuradha (1992)</td>
</tr>
<tr>
<td></td>
<td>Myxobolus sp.</td>
<td>Padma Dorothy and Kalavati (1992)</td>
</tr>
<tr>
<td></td>
<td>Sphaerospora mayi</td>
<td>Kalavati and Anuradha (1992)</td>
</tr>
<tr>
<td>108. Nemipterus japonicus</td>
<td>Glugea nemipteri</td>
<td>Weiser et al. (1981)</td>
</tr>
<tr>
<td></td>
<td>Leptotheca apogoni</td>
<td>Narasimhamurti et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>Noosema bengalis</td>
<td>Weiser et al. (1981)</td>
</tr>
<tr>
<td>109. Nemipterus mesoprion</td>
<td>Ceratomyxa dissimilaris</td>
<td>Narasimhamurti et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>Neobiptera coromandelensis</td>
<td>Narasimhamurti et al. (1990)</td>
</tr>
<tr>
<td>111. Sphyraena jello</td>
<td>Kudoa sphyraeni</td>
<td>Narasimhamurti and Kalavati (1979)</td>
</tr>
<tr>
<td>112. Therapon jarbua</td>
<td>Chloromyxum mitchelli</td>
<td>Kalavati and Narasimhamurti (1984)</td>
</tr>
<tr>
<td></td>
<td>Chloromyxum tripathi</td>
<td>Kalavati and Narasimhamurti (1984)</td>
</tr>
<tr>
<td>No.</td>
<td>Common Name</td>
<td>Host</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>113.</td>
<td>Trichiurus savala</td>
<td>Loma trichiuri</td>
</tr>
<tr>
<td>115.</td>
<td>Sciaenid fish (Unidentified)</td>
<td>Loma sp. II</td>
</tr>
<tr>
<td>116.</td>
<td>Valamugil cunnesius</td>
<td>Ceratomyxa kudoi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kudoa valamugili</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order PLEURONECTIFORMES</td>
<td></td>
</tr>
<tr>
<td>118.</td>
<td>Cynoglossus sp.</td>
<td>Davisia cynoglossi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceratomyxa sagarsampadæ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order MASTACEMBELIFORMES</td>
<td></td>
</tr>
<tr>
<td>119.</td>
<td>Mastacebelus armatus</td>
<td>Myxobilatus mast acembeli</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class AMPHIBIA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order ANURA</td>
<td></td>
</tr>
<tr>
<td>120.</td>
<td>Bufo melanostictus</td>
<td>Metasicuophora melanosticti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nyctotheroides waltairen sis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parazschokella melanosticti</td>
</tr>
<tr>
<td>121.</td>
<td>Hyla arboea</td>
<td>Cepedea hylae</td>
</tr>
<tr>
<td>122.</td>
<td>Rana breviceps</td>
<td>Balantidium elongatum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nyctotheroides foliatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sicuophora macrophryngea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sicuophora puytoraci</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sicuophora valtairen sis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tricodina valtairen sis</td>
</tr>
<tr>
<td>123.</td>
<td>Rana cyanophlyctis</td>
<td>Balantidium valtairen sis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metasicuophora cyanophlycti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nyctotheroides cordiformis</td>
</tr>
<tr>
<td>Species</td>
<td>Authors (Year)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Prosicuophora andhrae</td>
<td>Kalavati et al. (1991)</td>
<td></td>
</tr>
<tr>
<td>Sicuophora fragilis</td>
<td>Kalavati et al. (1991)</td>
<td></td>
</tr>
<tr>
<td>Sicuophora levinei</td>
<td>Kalavati et al. (1991)</td>
<td></td>
</tr>
<tr>
<td>Sicuophora limnochari</td>
<td>Kalavati et al. (1991)</td>
<td></td>
</tr>
<tr>
<td>Sicuophora ranae macropharyngearia</td>
<td>Kalavati et al. (1991)</td>
<td></td>
</tr>
<tr>
<td>Sicuophora ranae</td>
<td>Kalavati et al. (1991)</td>
<td></td>
</tr>
<tr>
<td>Sicuophora waltairensis</td>
<td>Kalavati et al. (1991)</td>
<td></td>
</tr>
<tr>
<td>Trichodina cyanophlycti</td>
<td>Kalavati et al. (1991)</td>
<td></td>
</tr>
<tr>
<td>Trichodina waltairensis</td>
<td>Kalavati et al. (1991)</td>
<td></td>
</tr>
</tbody>
</table>

124. *Rana hexadactyla* |

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyctotheroides hexadactyli</td>
<td>Kalavati et al. (1991)</td>
</tr>
<tr>
<td>Nyctotheroides reniformis</td>
<td>Kalavati et al. (1991)</td>
</tr>
<tr>
<td>Prosicuophora hexadactyli</td>
<td>Kalavati et al. (1991)</td>
</tr>
<tr>
<td>Sicuophora fragilis</td>
<td>Kalavati et al. (1991)</td>
</tr>
<tr>
<td>Sicuophora ranae</td>
<td>Kalavati et al. (1991)</td>
</tr>
</tbody>
</table>

125. *Rana limnocharis* |

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balantidium helenae</td>
<td>Kalavati et al. (1991)</td>
</tr>
<tr>
<td>Nyctotheroides bhatiae</td>
<td>Kalavati et al. (1991)</td>
</tr>
<tr>
<td>Sicuophora limnochari</td>
<td>Kalavati et al. (1991)</td>
</tr>
<tr>
<td>Sicuophora ranae</td>
<td>Kalavati et al. (1991)</td>
</tr>
<tr>
<td>Sicuophora waltairensis</td>
<td>Kalavati et al. (1991)</td>
</tr>
</tbody>
</table>

126. *Rana tigrina* |

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balantidium duodeni</td>
<td>Kalavati et al. (1991)</td>
</tr>
<tr>
<td>Chilonastix qadrii</td>
<td>Krishnamurthy (1970)</td>
</tr>
<tr>
<td>Hexamita hoarei</td>
<td>Krishnamurthy (1967)</td>
</tr>
<tr>
<td>Rhizomastix ranae</td>
<td>Krishnamurthy (1969)</td>
</tr>
<tr>
<td>Trichomitus hyderabadensis</td>
<td>Krishnamurthy (1968, 1969)</td>
</tr>
</tbody>
</table>

127. *Rhacophorus maculatus* |

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balantidium racophori</td>
<td>Kalavati et al. (1991)</td>
</tr>
<tr>
<td>Nyctotheroides rhacophori</td>
<td>Kalavati et al. (1991)</td>
</tr>
</tbody>
</table>

'Class REPTILIA |

Order CHELONIA |

128. *Geochelone elegans (= Testudo elegans)* |

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexamastix dobelli</td>
<td>Janakidevi (1961)</td>
</tr>
<tr>
<td>Monocercomonoides filamentum</td>
<td>Janakidevi (1962)</td>
</tr>
<tr>
<td>Retortamonas cheloni</td>
<td>Janakidevi (1962)</td>
</tr>
</tbody>
</table>

129. *Lissemys punctata granosa* |

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaciefella cheloni</td>
<td>Janakidevi (1961)</td>
</tr>
<tr>
<td>Haemogregarina ganapatti</td>
<td>Saratchandra (1981)</td>
</tr>
<tr>
<td>Tryrichomonas lissemysi</td>
<td>Janakidevi (1961)</td>
</tr>
<tr>
<td>Trypanosoma lissamyssi</td>
<td>Saratchandra (1980)</td>
</tr>
<tr>
<td>Order SQUAMATA Suborder LACERTILIA</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>130. Calotes versicolor</td>
<td>Haemogregarina wallairensis</td>
</tr>
<tr>
<td></td>
<td>Hexamita kakatiyae</td>
</tr>
<tr>
<td></td>
<td>Monocercomonas calotesi</td>
</tr>
<tr>
<td></td>
<td>Monocercomonas srikakulamensis</td>
</tr>
<tr>
<td></td>
<td>Proteromonas krishnamurthyi</td>
</tr>
<tr>
<td>131. Calotes nimericola</td>
<td>Chilomastix wenyoni</td>
</tr>
<tr>
<td>132. Chameleon zeylanicus</td>
<td>Hexamita sp.</td>
</tr>
<tr>
<td></td>
<td>Monocercomonoides singhi</td>
</tr>
<tr>
<td></td>
<td>Proteromonas chameleoni</td>
</tr>
<tr>
<td></td>
<td>Proteromonas sp.</td>
</tr>
<tr>
<td></td>
<td>Trichomitus sp.</td>
</tr>
<tr>
<td>133. Hemidactylus brooki</td>
<td>Proteromonas hemidactyli</td>
</tr>
<tr>
<td>134. Hemidactylus giganteus</td>
<td>Monocercomonas sp.</td>
</tr>
<tr>
<td></td>
<td>Proteromonas ganapatii</td>
</tr>
<tr>
<td></td>
<td>Proteromonas lacertae-viridis</td>
</tr>
<tr>
<td>135. Hemidactylus prashadi</td>
<td>Chilomastix kudoi</td>
</tr>
<tr>
<td></td>
<td>Eimeria knowlesi</td>
</tr>
<tr>
<td></td>
<td>Monocercomonas ganapatii</td>
</tr>
<tr>
<td></td>
<td>Monocercomonas prashadi</td>
</tr>
<tr>
<td></td>
<td>Monocercomonas rayi</td>
</tr>
<tr>
<td></td>
<td>Monocercomonas waltaiensis</td>
</tr>
<tr>
<td></td>
<td>Plasmodium sp.</td>
</tr>
<tr>
<td></td>
<td>Proteromonas grassei</td>
</tr>
<tr>
<td></td>
<td>Proteromonas waltaiensis</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>Haemoproteus simondi</td>
</tr>
<tr>
<td></td>
<td>Hypotrichomonas</td>
</tr>
<tr>
<td></td>
<td>hemidactyli</td>
</tr>
<tr>
<td></td>
<td>Proteromonas kakatiyae</td>
</tr>
<tr>
<td>137. Mabuya beddomii</td>
<td>Proteromonas mabuiae</td>
</tr>
<tr>
<td>138. Mabuya carinata</td>
<td>Proteromonas warangalensis</td>
</tr>
<tr>
<td>139. Varanus indica</td>
<td>Monocercomonas kakatiyae</td>
</tr>
<tr>
<td>140. Varanus sp.</td>
<td>Chilomastix sp.</td>
</tr>
<tr>
<td></td>
<td>Hexamita sp.</td>
</tr>
<tr>
<td></td>
<td>Hypotrichomonas</td>
</tr>
<tr>
<td></td>
<td>osmaniae</td>
</tr>
<tr>
<td></td>
<td>Hypotrichomonas</td>
</tr>
<tr>
<td></td>
<td>venkataramiahii</td>
</tr>
<tr>
<td></td>
<td>Monocercomonas varani</td>
</tr>
<tr>
<td></td>
<td>Monocercomonas sp.</td>
</tr>
<tr>
<td></td>
<td>Retortamonas sp.</td>
</tr>
<tr>
<td></td>
<td>Trichomitus batrachorum</td>
</tr>
</tbody>
</table>

Suborder OPHIDIA

141. Atretium schistosum	Pleistophora atretii	Narasimhamurti et al. (1982)
142. Dryophis mycterizans	Monocercomonas gopali	Krishnamurthy (1967)
143. Eryx johnii	Monocercomonas eryxi	Krishnamurthy (1968)
	Trichomitus batrachorum	Krishnamurthy (1967)
144. Lycodon aulicus	Monocercomonas garnhami	Krishnamurthy (1968)
	Monocercomonas colubrorum	Krishnamurthy (1968)
	Retortamonas sp.	Krishnamurthy (1968)

Class AVES

Order ANSERIFORMES

<table>
<thead>
<tr>
<th>147. Anas platyrhynchos</th>
<th>Eimeria anatis</th>
<th>Present report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monocercomonas anasae</td>
<td>Navarathnam (1971)</td>
</tr>
<tr>
<td>149. Nettapus coromandelianus</td>
<td>Haemoproteus sp.</td>
<td>Nandi and Mandal (1984)</td>
</tr>
</tbody>
</table>

Order FALCONIFORMES

150. *Elanus caeruleus vociferus*	*Leucocytozoon toddi*	Nandi and Mandal (1984)
151. *Spizaetus c. cirrhatus*	*Haemoproteus sp*	Nandi and Mandal (1984)
	Leucocytozoon toddi	Nandi and Mandal (1984)

Order GALLIFORMES

152. *Alectoris graeca*	*Chilomastix graecae*	Navarathnam (1971)
154. *Coturnix coturnix*	*Tetratrichomonas garnhami*	Navarathnam (1971)
	Tritrichomonas gigantica	Navarathnam (1970)
155. *Cryptoplectron erythrorhynchum*	*Hypotrichomonas avium*	Navarathnam (1970)

156. *Gallus gallus domestica* (= *Gallus domesticus*)	*Chilomastix osmaniae*	Navarathnam (1971)
	Eimeria necatrix	Present report
	Eimeria tenella	Padmavathi *et al.* (1987, 1988); Present report
	Monocercomonas qadrii	Navarathnam (1971)
157. *Gallus sp.*	*Eimeria brunetti*	Present report

| 158. *Perdicula asiatica* | *Plasmodium pinotti* | Bhaskar Rao and Bhaskar Rao (1980) |

Order CHARADRIIFORMES

<p>| 160. Capella gallinago | Pentatrichomonas capellae | Navarathnam (1970) |</p>
<table>
<thead>
<tr>
<th>Order COLUMBIFORMES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>162. Columbia livia</td>
<td>Eimeria columbae</td>
</tr>
<tr>
<td>intermedia</td>
<td>Haemoproteus columbae</td>
</tr>
<tr>
<td>(= Columbia livia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trypanosoma sp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order CUCULIFORMES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>164. Centropus sinensis</td>
<td>Pentatrichomonas centropi</td>
</tr>
<tr>
<td>165. Eudynamis scolopacea</td>
<td>Trypanosoma sp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order STRIGIFORMES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>166. Athene brama</td>
<td>Leucocytozoon ziemanni</td>
</tr>
<tr>
<td></td>
<td>Trichomonas bramae</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order CORACIIFORMES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>167. Coracias bengalensis</td>
<td>Haemoproteus coraciae</td>
</tr>
<tr>
<td>168. Merops orientalis</td>
<td>Haemoproteus meropis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order PICIFORMES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>169. Dendrocoptes m. mahrattensis</td>
<td>Haemoproteus borgesi</td>
</tr>
<tr>
<td></td>
<td>Haemoproteus velans</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order PASSERIFORMES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>170. Acridotheres t. tristis</td>
<td>Isospora rajuli</td>
</tr>
<tr>
<td>(= Acridotheres tristis)</td>
<td>Haemoproteus pastoris</td>
</tr>
<tr>
<td>171. Budgerigars</td>
<td>Trichomonas gallinae</td>
</tr>
<tr>
<td>(Love bird)</td>
<td>Trichomonas sp.</td>
</tr>
<tr>
<td>172. Cisticola juncidis</td>
<td>Plasmodium sp.</td>
</tr>
<tr>
<td>173. Copsychus saularis</td>
<td>Haemoproteus fringillae</td>
</tr>
<tr>
<td></td>
<td>Haemoproteus orizivora</td>
</tr>
<tr>
<td></td>
<td>Host Species</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>175.</td>
<td>Dicrurus adsimilis</td>
</tr>
<tr>
<td>176.</td>
<td>Dicrurus macrocercus</td>
</tr>
<tr>
<td>177.</td>
<td>Loncura malacca</td>
</tr>
<tr>
<td>178.</td>
<td>Passer domesticus</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>180.</td>
<td>Sturnus pagodarum</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>181.</td>
<td>Cavia cutleri</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
</tr>
<tr>
<td>182.</td>
<td>Gerbillus indicus</td>
</tr>
<tr>
<td></td>
<td>Hexamastix gerbilli</td>
</tr>
<tr>
<td></td>
<td>Hexamita spinulus</td>
</tr>
<tr>
<td></td>
<td>Monocercomonas gerbilli</td>
</tr>
<tr>
<td></td>
<td>Monocercomonoides indica</td>
</tr>
<tr>
<td></td>
<td>Trichomonas singhi</td>
</tr>
<tr>
<td>183.</td>
<td>Hystrix leucura</td>
</tr>
<tr>
<td></td>
<td>Trichomonas leucuri</td>
</tr>
<tr>
<td>184.</td>
<td>Nesokia bandicota (=Nesocia bandicota)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>186.</td>
<td>Rattus rattus frugivorus</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>187.</td>
<td>Sciurus palmorum</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order PHOLIDOTA

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Genus</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>188.</td>
<td>Manis sp.</td>
<td>Babesia sp.</td>
<td>Qadri (1962)</td>
</tr>
</tbody>
</table>

Order LAGOMORPHA

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Genus</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>189.</td>
<td>Lepus nigrlicollis</td>
<td>Chilomastix nigrlicollisi</td>
<td>Todd (1963)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monocercomonoides lepusi</td>
<td>Todd (1963)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spheromonas anteronucleatus</td>
<td>Todd (1963)</td>
</tr>
</tbody>
</table>
Order CARNIVORA

<table>
<thead>
<tr>
<th>Number</th>
<th>Species</th>
<th>Species</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>Canis aureus (=Jackal)</td>
<td>Trypanosoma sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td>191</td>
<td>Canis familiaris (=Dog)</td>
<td>Babesia sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hepatozoon canis</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trypanosoma evansi</td>
<td>Mandal et al. (1977);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mandal and Nandi (1983)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trypanosoma sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td>192</td>
<td>Canis sp. (=Alsatian pup)</td>
<td>Isospora bigemina</td>
<td>Rao (1968)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isospora felis</td>
<td>Rao (1968)</td>
</tr>
<tr>
<td>193</td>
<td>Herpestes smithi</td>
<td>Pentatrichomonas smithi</td>
<td>Navarathnam (1970)</td>
</tr>
<tr>
<td>194</td>
<td>Panthera tigris (=Tiger)</td>
<td>Trypanosoma sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td>195</td>
<td>Paradoxurus h. hermaphroditus</td>
<td>Giardia dasi</td>
<td>Abraham (1962)</td>
</tr>
<tr>
<td>196</td>
<td>Puma concolor (=Puma)</td>
<td>Babesia sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trypanosoma sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td>197</td>
<td>Vulpes bengalensis</td>
<td>Pentatrichomonas vulpi</td>
<td>Todd (1963)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trypanosoma sp.</td>
<td>Todd (1963)</td>
</tr>
</tbody>
</table>

Order ARTIODACTyla

<table>
<thead>
<tr>
<th>Number</th>
<th>Species</th>
<th>Species</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>198</td>
<td>Axis axis (=Spotted deer)</td>
<td>Anaplasma marginale</td>
<td>Sundaran and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bhaskar Rao (1989)</td>
</tr>
<tr>
<td>199</td>
<td>Bos indicus (=Cattle/cow)</td>
<td>Anaplasma sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Balantidium indicum</td>
<td>Abraham (1962)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Babesia sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eimeria zuernii</td>
<td>Present report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theileria sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trypanosoma evansi</td>
<td>Mandal et al. (1977);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mandal and Nandi (1983)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trypanosoma sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td>200</td>
<td>Bos sp. (=Cross-bred cow)</td>
<td>Babesia argentina</td>
<td>Padmavathi et al. (1974)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Babesia sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td>201</td>
<td>Bubalus bubalis (=Buffalo)</td>
<td>Babesia sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Balantidium coli</td>
<td>Rao and Anjanyulu (1974)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eimeria bovis</td>
<td>Present report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theileria sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trypanosoma evansi</td>
<td>Mandal et al. (1977);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mandal and Nandi (1983)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trypanosoma sp.</td>
<td>Rao et al. (1986)</td>
</tr>
<tr>
<td>202. Capra hircus</td>
<td>Balantidium caprae</td>
<td>Abraham (1962)</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eimeria arloingi</td>
<td>Present report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eimeria ninakohlyakimovae</td>
<td>Present report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eimeria tirupatiensis</td>
<td>Sivanarayana and Venkataratnam (1969)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Giardia qadrii</td>
<td>Navarathnam (1969)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monocercomonoides sayeedi</td>
<td>Abraham (1961)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theileria hirci</td>
<td>Raghavachari and Reddy (1959)</td>
<td></td>
</tr>
<tr>
<td>203. Ovis aires (=Sheep)</td>
<td>Anaplasma marginale</td>
<td>Sundaran and Bhaskar Rao (1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Babesia sp.</td>
<td>Rao et al. (1986)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eimeria crandallis</td>
<td>Present report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eimeria faurei</td>
<td>Present report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theileria sp.</td>
<td>Rao et al. (1986)</td>
<td></td>
</tr>
<tr>
<td>204. Sus scrofa</td>
<td>Eimeria debliecki</td>
<td>Present report</td>
<td></td>
</tr>
</tbody>
</table>

Order PERISSODACTYLA

205. Equus caballus	**Chilomastix equi**	Abraham (1961)
(Horse/pony)	**Paraisotricha equi**	Abraham (1961)
	Trichomonas caballi	Abraham (1961)
	Trypanosoma sp.	Rao *et al.* (1986)

Order PRIMATE

	Leishmania donovani	Kalra *et al.* (1977)
	Giardia intestinalis	Pers. comm.
	Plasmodium falciparum	Knowles *et al.* (1930)
	Plasmodium malariae	Knowles *et al.* (1930)
	Plasmodium vivax	Knowles *et al.* (1930)
207. Loris tardigradus	**Giardia wenyoni**	Abraham (1962)
lydekkerianus	**Monocercomonas lori**	Abraham (1962)
	Pentatrichomonas tardigardi	Navarathnam (1970)

208. Macaca radiata	**Balantidium osmaniae**	Qadri and Navarathnam (1966)
	Plasmodium cynomolgi	Anantaraman (1980)
	Plasmodium fragile	Anantaraman (1980)
	Plasmodium inui	Anantaraman (1980)
	Plasmodium shortii	Anantaraman (1980)
SYSTEMATIC ACCOUNT

Kingdom PROFISTA
Subkingdom PROTOZOA
Phylum SARCOMASTIGOPHORA
Subphylum MASTIGOPHORA
Class ZOOMASTIGOPHOREA
Order KINETOPLASTIDA
Suborder BODONINA
Family CERCOBODONIDAE

Genus Alexeiefella Janakidevi, 1961

Diagnosis: Three blepharoplasts placed close to the nucleus; cysts typically oval or elongated in form with little chromatoid substance.

1. Alexeiefella cheloni Janakidevi, 1961
(Fig. 1)

Diagnosis: Body round or pear-shaped, measuring 5.0-10.0 (6.9) μm x 3.0-8.5 (5.5) μm in dimensions; cytoplasm loaded with granules and vacuoles containing ingested bacteria; nucleus round and vesicular, situated at the extreme anterior end, generally containing a small endosome; three blepharoplasts; three unequal flagella, two anterior (averaging 10.7 μm and 6.1 μm respectively) and one recurrent (averaging 18.2 μm) with a long acroneme; each flagellum originating from a separate blepharoplast; a short, thick funis associated with the recurrent flagellum; cysts oval or elongated oval in form, averaging 8.0 μm in diameter.

Host: Turtle, Lissenys punctata granosa; site of infection: large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Suborder TRYPANOSOMATINA
Family TRYPANOSOMATIDAE

Diagnosis: Body characteristically leaf-like; a single nucleus, a blepharoplast, a flagellum and an undulating membrane present; blepharoplast giving rise to the flagellum; exclusively parasitic; a number of species responsible for serious diseases of man and domestic animals.
Key to the genera

1(2) Body highly flattened, leaf-like, pointed at flagellar end and bluntly rounded or pointed at the other, parasite in the circulatory system of vertebrates ... Genus Trypanosoma

2(1) Body not so highly flattened and leaf-like; parasitic in vertebrates and invertebrates.

3(4) Body spindle-shaped; leishmanial stage non-flagellated; exclusively parasitic in intestine of invertebrates ... Genus Leptomonas

4(3) Body ovoid or round in leishmanial stage and spindle-shaped in leptomonad stage, intracellular parasite in the cells of reticulo-endothelial system ... Genus Leishmania

Genus Leishmania Ross, 1903

Diagnosis: Body ovoid or round with a nucleus and a blepharoplast in leishmanial stage as intracellular parasite in the cells of reticulo-endothelial system of vertebrates; multiplication by binary fission; leptomonad stage spindle-shaped in the intestine of blood sucking sandflies of the genus Phlebotomus, multiplication by longitudinal fission.

2. Leishmania donovani (Laveran and Mesnil, 1903)

Diagnosis: Leishmanial stage round or ovoid in stained spleen puncture smears, measuring 2.5-5.0 μm x 1.5-2.0 μm in dimensions; cytoplasm homogenous, but often with minute vacuoles; nucleus comparatively large, often spread out and of varied shapes; blepharoplast or kinetoplast staining more deeply and small; a few to over 100 parasites in a host cell; occurring in man and other mammals primarily rodents; heteroxenous parasite transmitted by sand flies belonging to the genus Phlebotomus in which spindle-shaped leptomonad stage measuring 14-20 μm x 1.5-3.5 μm in dimensions.

Host: Man, Homo sapiens; site of infection: reticulo-endothelial system.

Distribution: India: Andhra Pradesh (exact locality not known, possibly in Hyderabad, Krishna and West Godavari districts), Assam and Bihar.

Remarks: It causes a disease known as kala-azar or visceral leishmaniasis. Kalra et al. (1977) reported this disease as endemic in this state. The distribution of phlebotomid sandfly vectors of this disease was recorded from Hyderabad (Qutubuddin, 1944), Krishna and West Godavari districts (Modi and Samon, 1978).
Genus *Trypanosoma* Gruby, 1843

Diagnosis: Body highly flattened, pointed at flagellate end, and bluntly rounded, or pointed at the other; usually pleomorphic; nucleus central; a blepharoplast near aflagellate end; a flagellum arising from the blepharoplast running towards the opposite end, making the outer boundary of the undulating membrane; in most cases flagellum extending freely beyond the body; many with myonemes; multiplication by binary fission; parasitic in the circulatory system of vertebrate; transmitted by blood sucking invertebrate vectors.

Key to the species

A. **Key to the species of *Trypanosoma* of fishes**

1(4) Trypomastigote form monomorphic

2(3) Cytoplasm granular with large vacuoles situated mostly at anterior end; nucleus located at the posterior half .. *T. danilewskyi* saccobranchi

3(2) Cytoplasm nongranular with few vacuoles on either side of the nucleus located more towards the kinetoplast and lying parallel to the long axis of the body *T. qadrii*

4(1) Trypomastigote form not monomorphic

5(8) Trypomastigote form dimorphic

6(7) Trypomastigote form with long and slender (41-57 μm) as well as short slender (19-30 μm) forms, having pointed ends; approximately centrally placed nucleus and almost terminal nucleus .. *T. godavariensis*

7(6) Trypomastigote form with volutin granules present sometimes in the form of compact mass in large forms measuring 22-29 μm; nucleus located towards posterior end and always encircled with a clear halo .. *T. batrachi*

8(5) Trypomastigote form pleomorphic

9(10) Trypomastigote form with hyaline cytoplasm devoid of vacuoles or inclusions in slender forms, nucleus of slender forms located at the middle of the body *T. channa*

10(9) Trypomastigote form with cytoplasm having less granules and containing many vacuoles in larger forms; nucleus located at the anterior half of the body *T. striati*

B. **Key to the *Trypanosoma* species of reptiles**

Trypomastigote elongate, 52-83 μm in total length, with pointed ends, occurring in freshwater turtle ... *T. lissemysi*
C. Key to the species of *Trypanosoma* of birds

Pleomorphic, cell body 30–55 μm in length, nucleus located at about middle of the body, occurring in wide range of avian hosts .. *T. avium*

D. Key to the species of *Trypanosoma* of mammals

1(6) Trypomastigote form monomorphic

2(3) Nucleus usually elongated, rod-like, sometimes oval, triangular and bean-shaped, chromatin characteristically localised at anterior and posterior regions of nucleus, parasitic in bandicoot rat ... *T. bandicotti*

3(2) Nucleus usually oval and without chromatin granules as above

4(5) Parasitic in rats, cell body 30.02-38.14 μm in length, nucleus located at anterior half of the body ... *T. lewisi*

5(4) Parasitic in buffalo, cell body large, usually 31.20-64.90 μm in length, nucleus located near the middle of the body. ... *T. theileri*

6(1) Trypomastigote form usually di- or pleomorphic

7(8) Trypomastigote form dimorphic, parasitic in squirrel, cell body 19.74-33.84 μm in length .. *T. indicum*

8(7) Trypomastigote form pleomorphic, sometimes monomorphic, cell body 15-33 μm in length, parasitic in bovines, equines, camels, dogs, etc.......................... *T. evansi*

A. *Trypanosoma* of fishes

(Fig. 2)

Diagnosis: Dimorphic trypanosome with volutin granules and granular cytoplasm; cell body in large trypomastigote form measuring 22-29 μm, with long flagellum of 9-14 μm in length; nucleus located towards posterior end and always encircled with a clear halo; kinetoplast compact, oval, round or bean-shaped, situated posteriorly covering more than the entire width of the body.

Host: *Clarias batrachus* (Linnaeus); site of infection: blood.

Distribution: India : Andhra Pradesh (Hyderabad district), Goa, Maharashtra, Uttar Pradesh, West Bengal.

Remarks: Qadri (1962) described this species as dimorphic but Mandal (1984) did not come across any stumpy form in hosts collected from Calcutta market, West Bengal.
4. Trypanosoma channai Narasimhamurti and Saratchandra, 1980
(Figs. 3 & 4)

Diagnosis: Trimorphic trypanosome with slender, medium and stumpy forms, measuring 38.4-51.2 μm, 44.8-62.0 μm and 42.0-53.0 μm in total length respectively; cytoplasm hyaline containing no vacuoles or inclusions in slender forms only; cell body in slender forms, elongated, measuring 23.2-41.6 μm with both anterior and posterior ends tapering to fine points; free flagellum of slender form 8-12 μm in length; nucleus of slender form located almost at the middle with irregular mass of deeply stained chromatin materials; kinetoplast round or oval and subterminal in position.

Host: Channa punctatus (Bloch); site of infection: blood.

Distribution: India: Andhra Pradesh (Visakhapatnam and Srikakulum districts).

5. Trypanosoma danilewskyi saccobranchi Qadri, 1962
(Fig. 5)

Diagnosis: Monomorphic trypanosome with granular cytoplasm having large vacuoles situated mostly at the anterior end; cell body measuring 27-33.5 μm and free flagellum 11-15.5 μm in length; nucleus compact, elongated and located at the posterior half of the body and not always across the entire width of the body; kinetoplast very dense, elongated, round or bar-like, sometimes covering entire width of the body.

Host: Heteropneustes fossilis (Bloch); site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district) and West Bengal.

Remarks: Besides T. danilewskyi saccobranchi, another species, namely, T. saccobranchi also occurs in the same host, Heteropneustes fossilis (syn. Saccobranchus fossilis and this parasite was named solely due to its occurrence in this host). In T. saccobranchi Castellani and Willey, 1905, the caudal prolongation is obsolescent. The centrosome is placed very far backwards much as in T. danilewskyi Laveran and Mesnil, 1904 from Cyprinus carpio. Qadri (1962) found that except in dimension his material of T. danilewskyi saccobranchi resembled in many respect with T. danilewskyi, in having a narrow undulating membrane, an elongated nucleus surrounded by a narrow halo and, relatively large and variously shaped kinetoplast. It was for these reasons Qadri (1962) treated it as a new variety and named it as T. danilewskyi var. nov. saccobranchi. However, the status of this variety can be properly ascertained only after the taxonomic review of the trypanosomes from Heteropneustidae: Siluriformes.

Diagnosis: Dimorphic trypanosome with long-slender, 41-57 μm, and short-slender, 19-30 μm, forms, identical in structure but differing in dimensions, one being twice as long as the other; trypanosomes elongated with pointed ends; cell body 34-42 μm and 11-18 μm respectively; cell membrane thin; cytoplasm finely granular and vacuolated; nucleus elongate, measuring 2.5-5.0 μm and 2.0 μm respectively, approximately centrally placed; kinetoplast round or oval and almost terminal; undulating membrane with 5-10 folds; free flagellum 9-15 μm and 5-12 μm respectively.

Host: *Channa punctata* (Bloch) site of infection: blood.

Distribution: India: Andhra Pradesh (East Godavari district).

(Figs. 6 & 7)

Diagnosis: Monomorphic trypanosome with a few vacuoles on either side of the nucleus and non-granular cytoplasm; cell body elongated with pointed anterior and posterior ends measuring 20.0-31.5 μm excluding free flagellum of 6-14 μm in length; nucleus elongated and located more towards the kinetoplast and lying parallel to the long axis of the body; kinetoplast oval or slightly elongated, subterminal in position; undulating membrane distinct with 6-8 convolutions over the body.

Host: *Clarias batrachus* (Linnaeus); site of infection: blood.

Distribution: India: Andhra Pradesh (Visakhapatnam and Srikakulam districts).

8. *Trypanosoma striati* Qadri, 1955

Diagnosis: Polymorphic trypanosome with small (average 40 μm in total length), intermediate(49 μm) and large (65 μm) forms, the latter appearing very broad and stumpy and the commonest in occurrence; cytoplasm of smaller forms usually with dense granules and very few vacuoles but larger forms with less granules and containing many vacuoles; cell body elongated and fusiform, measuring about 30-54 μm excluding free flagellum of 8-11 μm in average length; nucleus spherical, oval, pear-shaped or bean-shaped and located at the
anterior half of the body; kinetoplast oval, rounded, varying in size; undulating membrane completely hyaline, narrow in all forms and having 5-8 folds.

Host: Ophicephalus striatus (= Channa striatus (Bloch)) and Ophicephalus punctatus (= Channa punctatus); site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district) and West Bengal.

B. Trypanosoma of reptiles

(Figs. 8 & 9)

Diagnosis: Body elongated with pointed ends, measuring 52-83 µm in total length including free flagellum of 5-33 µm; cell body measuring 33-66 µm x 2.3-4.0 µm; cytoplasm coarsely alveolated; nucleus oval, 2.6-5.3 µm x 1.5-2.9 µm, containing irregular chromatin masses; distance between the anterior end of the cell body and the nucleus 28-44 µm, nucleus and the kinetoplast 2.0-7.5 µm and kinetoplast and the posterior end 4.5-14.5 µm; a single large vacuole associated with the kinetoplast; undulating membrane with 8-12 folds.

Host: Freshwater turtle, Lissemys punctata granosa (Shoepfl); site of infection: blood.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

C. Trypanosoma of birds

10. Trypanosoma avium Danilewsky, 1885

Material examined: A few exs., Warangal, 12.i.1979, N. C. Nandi.

Diagnosis: Pleomorphic forms measuring 30-55 µm in length; kinetoplast small, elliptical, staining deep red; nucleus round or oval, located at about the middle of the cell body; free flagellum short.

Host: Dicrurus macrorhynchos (Vieillot); site of infection: blood.

Distribution: India: Andhra Pradesh (Warangal district); Delhi, Jammu and Kashmir, Goa, West Bengal.

Remarks: It is a cosmopolitan species with worldwide distribution. Nandi and Mandal (1984) reported this species from this state.

11. Trypanosoma sp.

Host: Eudynamis scolopacius; site of infection: blood.
Distribution: India: Andhra Pradesh.

Remarks: Qadri (1962) reported this unnamed species from this state without mentioning the collection site.

12. Trypanosoma sp.

Host: Streptopelia chinensis; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: Qadri (1962) reported this unnamed species from this state without mentioning the collection site.

D. Trypanosoma of mammals

13. Trypanosoma bandicotti Lingard, 1904
(Figs. 10 & 11)

Diagnosis: Body usually long, slightly curved and fusiform, pointed at both ends, measuring 24.44-36.19 (32.96) μm in length; nucleus elongated, rod-like or sometimes oval, triangular or bean-shaped, situated anterior to the central point of the body; chromatin characteristically localised at the anterior and posterior regions of the nucleus; parabasal body spherical, oval, triangular or bar-like, well developed, situated at a considerable distance from the posterior end of the body; rounded or pear-shaped vacuoles always present in front of the parabasal body; free flagellum well developed, 2.35-11.28 (6.13) μm in length; undulating membrane hyaline, conspicuous but narrow, with a few folds.

Host: Nesocia bandicota (= Nesokia (= Mus) gigantea); site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district), Maharashtra.

Remarks: Todd (1963) reported this species from this state.

14. Trypanosoma evansi (Steel, 1885)

1885. Spirochaete evansi, Steel, Investigation into an obscure and fatal disease among transport mules in British Burma. (Bombay?); cited from Hoare (1972).

Material examined: Several blood smears from domestic animals of Krishna, Guntur and Kakinada areas.
Diagnosis: Usually monomorphic and sometimes pleomorphic with slender, intermediate and stumpy forms; slender forms with 15-33 μm cell body and long free flagellum; intermediate form with 19-21 μm cell body and short free flagellum; stumpy form with 15-19 μm cell body and short free flagellum; slender forms with small kinetoplast and more or less drawn out narrow rounded or truncated posterior end; stumpy and dyskinetiplastic form rare.

Host: Cattle, *Bos indicus*; Buffalo, *Bubalus bubalis*; Dog, *Canis familiaris*.

Distribution: India: Andhra Pradesh (Krishna, Guntur and East Godavari districts), West Bengal.

Remarks: This parasite is the causative agent of ‘Surra’ disease which is one of the most important and wide spread diseases in domestic animals like cattle, buffalo, horse, camel and some carnivores. Mandal *et al.* (1977) reported the outbreak of this disease in bovines from Krishna district, Andhra Pradesh. Mandal and Nandi (1983) studied the behaviour of *Trypanosoma evansi* in some domestic animals from Andhra Pradesh and observed the higher intensity of infection in dogs, less in cattle and moderate in buffalo. Venkataratnam *et al.* (1964) recorded *T. evansi* in bears received from Clinical Laboratory, Cuddapah, Andhra Pradesh, which revealed the presence of large number of trypanosomes measuring 15-24 (18.62 ± 0.36) μm in length. Govinda Reddy *et al.* (1975) also recorded *T. evansi* in six tiger in a circus stationed at Vijayawada, Andhra Pradesh.

15. *Trypanosoma indicum* (Luhe, 1906)
(Fig. 12)

Diagnosis: Dimorphic, a slender and a broad form, almost equal in length, entire body 19.74-33.84 (28.19) μm; nucleus elongated oval or spherical or pear-shaped, situated in the anterior half of the body; kinetoplast rounded or oval, sub-terminal, situated a short distance from the posterior extremity; free flagellum nearly one-third the length of the body; undulating membrane universally straight in thin forms and thrown into 2-6 folds in broad forms.

Host: Squirrel, *Sciurus palmarum*; site of infection : blood.

Distribution: India : Andhra Pradesh (Hyderabad district).

Remarks: This species is reported from above-mentioned host by Todd (1963).

16. *Trypanosoma lewisi* Kent, 1880
(Fig. 13)

Diagnosis: Body spindle-shaped and pointed at both ends, measuring 30.02-38.14 μm in length; nucleus oval, 2.35-3.29 μm in length situated at the anterior half of the body; parabasal body large and round or rarely oval; free flagellum quite long, measuring 3.29-8.46 μm in length, nearly one-third the length of the body; undulating membrane thin, conspicuously thrown into 2-6 folds.

Host: Rat, *Rattus rattus frugivoros*; site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Todd (1963) reported this species from this state.

17. *Trypanosoma theileri* Laveran, 1902

Diagnosis: Large trypanosome, usually 31.2-64.9 μm and sometimes 25-120 μm including free flagellum measuring 3.6-26.5 μm in length; cell body usually 34-40 μm in length and 1.4-5.0 μm in breadth; nucleus round, oval or elliptical located near the middle of the body; kinetoplast large, 1.1 μm, typically rounded and occupying a marginal position, far from posterior extremity of the body (12-43 μm).

Host: Buffalo, *Bubalus bubalis*; site of infection: blood.

Distribution: India: Andhra Pradesh (Guntur district).

Remarks: Mandal and Kahali (1984) reported this species in five she buffaloes from Nidubrolu, Guntur district, Andhra Pradesh. These buffaloes did not show response to treatment with the common antitrypanosomal drug.

18. *Trypanosoma* sp.

Host: Fox, *Vulpes bengalensis*; site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Todd (1963) reports this unnamed species from above-mentioned host.

19. *Trypanosoma* sp.

Host: Cow, *Bos indicus*; site of infection: blood.

Distribution: India: Andhra Pradesh.
Remarks: Rao et al. (1986) reported this unnamed species from this state above-mentioned host without mentioning the collection site..

20. Trypanosoma sp.

Host: Buffalo, *Bubalus bubalis*; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: Rao et al. (1986) reported this unnamed species from this state above-mentioned host without mentioning the collection site.

21. Trypanosoma sp.

Host: Dog, *Canis familiaris*; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: Rao et al. (1986) reported this unnamed species from above-mentioned host without mentioning the collection site.

22. Trypanosoma sp.

Distribution: India: Andhra Pradesh.

Remarks: Rao et al. (1986) reported this unnamed species from this state above-mentioned host without mentioning the collection site.

23. Trypanosoma sp.

Distribution: India: Andhra Pradesh.

Remarks: Rao et al. (1986) reported this unnamed species from this state above-mentioned host without mentioning the collection site.

24. Trypanosoma sp.

Host: Puma, *Puma concolor*; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: Rao et al. (1986) reported this unnamed species from this state above-mentioned host without mentioning the collection site.
25. *Trypanosoma* sp.

Host: Jackel, *Canis aureus*; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: Rao et al. (1986) reported this unnamed species from this state above-mentioned host without mentioning the collection site.

Genus Leptomonas Kent, 1880

Diagnosis: Blepharoplast very close to flagellate end; without undulating membrane; non-flagellate phase resembling *Leishmania*; exclusively parasitic in invertebrates.

Key to the species

1(2) Promastigotes elongated and fusiform, L : W ratio 7.91 : 1; nucleus situated at the anterior third of the body ... *L. bakeri*

2(1) Promastigotes tadpole-shaped, L : W ratio 6.6 : 1; nucleus situated at the posterior third of the body ... *L. indica*

(Fig. 14)

Material examined: Sev. exs., from Andhra University campus, Waltair.

Diagnosis: Promastigotes elongate and fusiform, measuring 20.7 μm x 2.6 μm; with a pointed anterior end and a drawn out posterior end; length : width 7.91 : 1; length of flagellum 24.3 μm; body length : flagellar length 0.85 : 1; nucleus oval vesicular with a centrally placed endosome measuring 1.7 μm x 1.85 μm in dimension situated at the anterior third of the body; nuclear index 1.96; kinetoplast index 3.87; length of flagellar pocket 2.99 μm; parasitic in the midgut and hindgut of *Lygaeus militaris*.

Host: *Lygaeus militaris* (Insecta: Hemiptera); site of infection: midgut and hindgut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

(Fig. 15)

Material examined: Sev. exs., from Andhra University campus, Waltair.

Diagnosis: Promastigotes tadpole-shaped, measuring 18.5 μm x 2.8 μm; with a broadly rounded anterior end, and a pointed posterior end with maximum breadth at the anterior third
of the body; length : width 6.6 : 1; length of flagellum 21.6 μm; body length : flagellar length 0.85 : 1; nucleus vesicular with a centrally placed endosome measuring 1.46 μm in diameter situated at the posterior third of the body; nuclear index 1.206; kinetoplast index 1.984; length of flagellar pocket 2.48 μm; parasitic in the crop, midgut and hindgut of *Lygaeus hospes*.

Host: *Lygaeus hospes* (*Insecta*: Hemiptera); site of infection: midgut and hindgut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Order PROTEROMONADIDA

Family PROTEROMONADIDAE

Diagnosis: Uninucleate flagellates equipped with two or four flagella; a single big mitochondrion. Golgi apparatus, rhizoplast and centrosome present; body limited by pellicle folded in strips containing subpellicular microtubules; kinetoplast and flagellar pocket absent; parasitic in the gut of vertebrates.

Genus *Proteromonas* Kunstler, 1883

Diagnosis: Elongated pyriform; two flagella from anterior end, one directed anteriorly and the other posteriorly; nucleus anterior; encysted stage capable of increasing in size to a marked degree; exclusively parasitic in the gut of various species of amphibians, reptiles and mammals.

Key to the species of Proteromonas in reptiles

1(6) Body elongate, anterior end pointed and posterior end terminating in a spike-like structure or narrowed in a typically spatulate form, sometimes tapering into a caudal spine

2(3) Paranuclear body triangular, lying in contact with the posterior border of the nucleus ... *P. grassei*

3(2) Paranuclear body not triangular

4(5) Paranuclear body long, narrow, ribbon-like, appearing ‘S’ or ‘8’ shaped or as an irregular body; two blepharoplasts and a sub-blepharoplast mass fairly large and kidney-shaped .. *P. hemidactyli*

5(4) Paranuclear body ribbon or rod-like, sometimes spherical; posterior end narrowed in a typically spatulate form, sometimes tapering into a caudal spine; single blepharoplasts but sub-blepharoplast mass absent .. *P. kakatiyae*
6(1) Body elongate, fusiform without any spike like structure in the posterior end
7(18) Sub-blepharoplastic body present
8(11) Sub-blepharoplastic body kidney-shaped present beneath the blepharoplast
9(10) Dimorphic with elongate forms 11-23 μm x 4-7 μm and rounded forms 7-10 μm in dimensions; large crescent-shaped parabasal body present in front of nucleus; occurring in the Wall lizard, Hemidactylus giganteus ... P. ganapati
10(9) Dimorphic with elongate forms 10-16 μm x 2.5-5.0 μm and round or slightly oval forms 6.8-8.5 μm x 5.5-8.0 μm in dimensions; parabasal body absent; occurring in the Skink, Mabuya beddomii ... P. mabuiae
11(8) Sub-blepharoplastic body not kidney-shaped
12(15) Both blepharoplast and sub-blepharoplastic body appearing like a single mass
13(14) Body spindle-shaped or elongate, ranging from 6-23 μm in length ... P. waltairensis
14(13) Body round, pear-shaped or oval ranging from 6-11 μm in length .. P. warangalensis
15(12) Both blepharoplast and sub-blepharoplastic body not appearing like a single mass
16(17) Sub-blepharoplastic body cone-shaped lying below the basal granules without having any connection, a prenuclear body or the ring-like parabasal body present ... P. lacertae-viridis
17(16) Sub-blepharoplastic body crescent-shaped; paranuclear body round, crescentic or elongated; parabasal body absent ... P. krishnanurthyi
18(7) Sub-blepharoplastic body absent, blepharoplasts two in numbers and dot-like, nucleus spherical or oval lying little above the middle of the body with a prenuclear body behind and on the sites of the nucleus ... P. chameleoni

Key to the species of Proteromonas in mammals

1(6) Body elongate, 11–20 μm x 2–3 μm; with two blepharoplasts; parasitic in Rattus rattus ... P. rattusi
2(1) Body fusiform, ovoid or rounded, 3.52–16.92 μm x 2.35–5.32 μm; with a blepharoplast; parasitic in porcupine, Hystrix leucura ... P. hystrixi

A. Proteromonas in reptiles

28. Proteromonas chameleoni Krishnamurthy, 1963
(Fig. 16 & 17)

Diagnosis: Elongated fusiform parasites, sometimes rounded or oval, measuring 10.0-15.5 (12.58) μm in length excluding flagella and 4.0-10.0 (6.73) μm in breadth at the widest portion of the body; cytoplasm devoid of any granules; nucleus spherical or oval, measuring 1.0-3.0 (1.99) μm x 1.5-3.5 (2.4) μm, situated a little above the middle of the body with a paranuclear body behind and on the sides of the nucleus; blepharoplast two in numbers, closely placed and dot-like; two unequal flagella arising from two blepharoplasts, long flagellum 26.5-54.5 (42.33) μm in length, about 1.5 times the short flagellum measuring 19.0-36.5 (27.99) μm, and 2.5-4.0 times the length of the body.

Host: Chameleon zeylanicus; site of infection: large intestine and caecum.

Distribution: India: Andhra Pradesh (Hyderabad district), Maharashtra.

Remarks: Krishnamurthy (1963, 1967 and 1968) reported this species from Hyderabad in Andhra Pradesh and Aurangabad in Maharashtra state. Kulda and Nohynkova (1978) treated this species as a synonym of Proteromonas lacertae-viridis (Grassi, 1879) even though there are morphological differences. However, this species is retained herein as a valid species until further taxonomic review of the proteromonids from reptiles and amphibians based on type materials/specimens.

29. Proteromonas ganapatii Saratchandra, 1981
(Fig. 18 & 19)

Diagnosis: Body round, oval or elongate with rounded anterior end and bluntly pointed posterior end; elongate forms measuring 11-23 μm x 4-7 μm and round forms 7-10 μm in diameter; cell membrane thin; cytoplasm vacuolated; nucleus oval, 2.5-4.0 μm x 1.5-3.0 μm; two flagella, equal in thickness and unequal in length, originated from two blepharoplasts situated at the anterior end; anteriorly directed flagellum 14-41 μm and trailing flagellum 12-32 μm in length; a small kidney-shaped, sub-blepharoplastic body present; a thin rhizoplast extending between the blepharoplast and the nucleus and a clear space present around the rhizoplast; a large crescent-shaped parabasal body present in front of nucleus; crescentic, elongate or ‘S’ shaped paranuclear body situated behind the nucleus.

Host: Hemidactylus giganteus; site of infection: rectum.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

30. Proteromonas grassei Saratchandra and Narasimhamurti, 1980
(Figs. 20 & 21)

Diagnosis: Body elongate, measuring 12.0-22.0 μm x 2.2-5.0 μm, with anterior end abruptly pointed; posterior end drawn out into a short, narrow, slightly curved spike of
1.5-2.5 \mu m; nucleus round, oval or slightly elongate, 2.0-3.5 \mu m x 1.2-1.8 \mu m, containing coarsely packed chromatin masses lacking distinct nuclear membrane, situated at the anterior end; paranuclear body, triangular, measuring 2.0-4.5 \mu m x 2.0-3.5 \mu m, lying in contact with the posterior border of the nucleus; blepharoplast situated at the anterior tip, connected to nucleus by a thread-like rhizoplast; flagella two in number, unequal, arising from the anterior tip; anterior flagellum, thick, 13-26 \mu m in length, while the trailing flagellum, thin, measuring 10-26 \mu m in length; sub-blepharoplastic and parabasal bodies absent.

Host: Hemidactylus prashadi Smith; site of infection: gut.

Distribution: India: Andhra Pradesh (Srikakulam district).

31. Proteromonas hemidactyli Krishnamurthy, 1968
(Figs. 22 & 23)

Diagnosis: Body slender, elongated and fusiform, measuring 12.85-25.19 (17.42) \mu m x 2.06-5.66 (3.61) \mu m excluding the posterior spike 1.03-3.09 (1.89) \mu m; anterior end slightly tapering while posterior end attenuated and often terminating in a spike-like structure; with a pair of flagella, almost equal to distinctly unequal, measuring 16.45-32.39 (25.49) \mu m and 22.62-33.93 (28.20) \mu m, arising from two blepharoplasts situated at the anterior end of the body; sub-blepharoplastic mass fairly large and kidney-shaped; nucleus small, round, vesicular with a central endosome and situated about 1.5-2.0 \mu m away from the anterior end; paranuclear body long, narrow, ribbon-like, appearing S or 8 shaped or an irregular body, extremely characteristic in this species; ‘parabasal body’ absent.

Host: Hemidactylus brooki; site of infection: large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Kulda and Nohynkova (1978) treated this species as a synonym of Proteromonas lacertae-viridis (Grassi, 1879) even though there are morphological differences between them. However, this species is retained herein as a valid species until further taxonomic review of the proteromonids from reptiles and amphibians based on type materials / specimens.

(Figs. 24 & 25)

Diagnosis: Body long, slender, 10.0-14.09 (12.04) \mu m x 2.72-3.86 (3.29) \mu m; posterior end slightly narrowed in a typically spatulate form, sometimes tapering into a caudal spine; nucleus spherical or dumble or oval and sometimes sausage-shaped, 1.36-2.72 (2.01) \mu m in
length, situated at the anterior third of the body, with 3-4 darkly stained chromatin granules; paranuclear body ribbon or rod-like, sometimes spherical, located in the middle or slightly towards the posterior end, rarely seen just below the nucleus; a single blepharoplast situated at the anterior end, giving rise to two dissimilar flagella; both the flagella longer than the body length, thicker one 15.0-22.72 (18.86) μm in length and the thinner 12.95-19.09 (16.02) μm in length; thread-like rhizoplast extending from blepharoplast to nuclear membrane present; sub-blepharoplastic mass, rhizoplastic ring or parabasal body absent.

Host: Hemidactylus sp.; site of infection: rectum.

Distribution: India: Andhra Pradesh (Warangal district).

33. Proteromonas krishnamurthyi Saratchandra and Babu, 1982 (Figs. 26 & 27)

Diagnosis: Body round, oval, pear or spindle-shaped, 8.0-18.0 μm x 2.5-9.0 μm; cytoplasm containing a few vacuoles; nucleus, 1.7-3.5 μm x 1.0-2.5 μm, situated at the anterior end; two flagella originating from two different blepharoplasts of anterior end; anteriorly directed flagellum longer (15-44 μm) and thicker than the trailing flagellum (12-25 μm); sub-blepharoplastic body crescent-shaped; a thin rhizoplast surrounded by a clear halo; paranuclear body round, crescentic or elongate, situated behind the nucleus; parabasal body absent.

Host: Calotes versicolor (Daudin); site of infection: rectum.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam district).

34. Proteromonas lacertae-viridis (Grassi, 1879)

Diagnosis: Body fusiform, 11-13 μm in length and 2-5 μm in width; two conspicuous but unequal flagella of uniform thickness, each originating from a basal granule lying at the apex of the body; coarser and longer one usually directed anteriorly, measuring 3-4 times the length of the body; trailing flagellum seldom longer than twice the body; sub-blepharoplastic cone present below the basal granules but without any physical connection; a pre-nuclear body or acroneme, paracentrosome or “Golgi apparatus” and “peri-rhizoplastic ring” or the ring-like parabasal body (Nie, 1950) present lying between the cone and the nucleus; cytoplasm vacuolated; nucleus oval or spherical with an endosome, partially obscured by the paranuclear body.

Host: Hemidactylus giganteus; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).
Remarks: Krishnamurthy (1968) observed this species along with an unnamed species of *Monocercomonas* in 3 out of 14 specimens of *Hemidactylus giganteus*. It is a common flagellate occurring in a number of lizards (Moskowitz, 1951).

35. *Proteromonas mabuiae* Saratchandra, Vijayananda and Venkataswari, 1984
(Fig. 28)

Diagnosis: Body round or slightly oval, 6.8-8.5 x 5.5-8.0 μm, or elongate forms, 10.0-16.0 μm x 2.5-5.0 μm, with rounded ends; cytoplasm containing a few small vacuoles; nucleus, 2-3 μm x 1-2 μm, situated at the anterior end; paranuclear body crescent-shaped; two flagella originated from two blepharoplasts situated at the anterior end; anteriorly directed flagellum, 15-41 μm, much thicker and longer than the trailing flagellum of 13-27 μm length; sub-blepharoplastic body small, kidney-shaped; rhizoplast present but parabasal body absent.

Host: *Mabuya beddomii* Jerdon, site of infection: rectum.

Distribution: India : Andhra Pradesh (Waltair, Visakhapatnam district).

36. *Proteromonas waltairensis* Saratchandra and Narasimhamurti, 1980
(Fig. 29)

Diagnosis: Body spindle-shaped or elongate, 6.5-23.0 μm x 2.5-4.0 μm; anterior end broader than posterior end, but both ends bluntly pointed; cell membrane thin; cytoplasm vacuolated; nucleus round or oval, 2.0-3.5 μm x 1.5-2.5 μm, central in small forms and anteriorly placed in larger forms; 2 flagella, equal in thickness, unequal in length, originating from two blepharoplasts lying close together at the anterior end, one flagellum directed anteriorly and the other directed posteriorly; a small sub-blepharoplastic body present below the blepharoplast, sometimes both appearing like a single mass; rhizoplast extending between the blepharoplasts and the nucleus; parabasal body crescent-shaped, lying close to the nucleus in some larger forms.

Host: *Hemidactylus prashadi* Smith; site of infection : rectum.

Distribution: India : Andhra Pradesh (Waltair, Visakhapatnam district).

(Figs. 30 & 31)

Diagnosis: Body round, pear-shaped or oval, 6.81-11.1 (8.5) \(\mu m \times 3.86-7.72 \) (5.94) \(\mu m \); nucleus spherical or ellipsoidal, 1.81-2.4 \(\mu m \times 1.36-2.49 \) \(\mu m \), situated at the anterior half of the body or sometimes towards the middle, with compact endosome in the centre, few individuals with 3 large granules; paranuclear body laterally compressed or oval, situated just below the nucleus or adhering to the nuclear membrane; a single blepharoplast situated at the extreme anterior end of the body; sub-blepharoplasmatic mass and blepharoplast fusing together to form a triangular mass; thread-like filamentous rhizoplast joining the blepharoplast and nuclear membrane; two unequal flagella arising from the blepharoplast, measuring 14.13-22.71 \(\mu m \), and 15.12-23.8 \(\mu m \) respectively; perirhizoplastic ring or parabasal body present.

Host: Mabuya carinata; site of infection: rectum.

Distribution: India: Andhra Pradesh (Warangal district).

38. Proteromonas sp.

Host: Chameleon zeylanicus; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Krishnamurthy (1967) recorded this unnamed species from this state.

Proteromonas in mammals

39. Proteromonas hystrixi Todd, 1963
(Figs. 32 & 33)

Diagnosis: Body fusiform, ovoid or rounded, 3.52-16.92 (11.64) \(\mu m \times 2.35-5.32 \) (4.62) \(\mu m \); anterior border broad and rounded while posteriorly tapering, bifurcated and forming a fork-like structure with the caudal prong separated a little or wide apart; periplast tough and rigid; cytoplasm vacuolated and denser at the periphery; anterior tip elevated knob-like; a blepharoplast, 0.93 \(\mu m \) in diameter situated in the anterior region, giving rise to a pair of flagella, 9.87-29.61 (20.36) \(\mu m \). one very long while the other short, even shorter than the length of the body; nucleus round or elongated, average dimensions 1.30 \(\mu m \times 0.73 \) \(\mu m \), surrounded by a 'halo', located in the anterior half of the body, with distinct nuclear membrane and uniformly scattered chromatin granules; rhizoplast rod-like, 2.32-2.82 (2.72) \(\mu m \) in length, extending from the blepharoplast to the nucleus; paranuclear body and perirhizoplastic ring present.

Host: Indian Porcupine, Hystrix leucura Sykes; site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).
40. *Proteromonas rattusi* Kalavathi, Saratchandra and Sambasivarao, 1983
(Figs. 33 & 35)

Material examined: Sev. exs., from Visakhapatnam

Diagnosis: Body elongate with a broadly pointed anterior end and a finely pointed posterior end, measuring 11-20 μm x 2-3 μm; nucleus 1.5-2.5 μm in diameter, containing irregular clumps of chromatin at the anterior end; two blepharoplasts bound together by a small sub-blepharoplastic mass and a thin rhizoplast extending between the blepharoplast and the nucleus; hemispherical paranuclear body present behind the nucleus; two flagella, 17-26 μm in length, equal in thickness, each originating from a blepharoplast, one anteriorly directed and the other posteriorly, posterior one slightly longer; parabasal body absent.

Host: *Rattus rattus*; site of infection: rectal content.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Order RETORTAMONADIDA

Family RETORTAMONADIDAE

Diagnosis: Uninucleate flagellates with a conspicuous cytostomal area situated ventrally in the anterior part of the cell; possessing two or four flagella, one recurrent and associated with the cytostome; mitochondria and Golgi apparatus absent; all parasitic.

Key to the genera

1(2) Two flagella present, a free anterior flagellum and a recurrent flagellum associated with the cytostome; four kinetosomes or basal bodies present in two orthogonal pairs, only two kinetosomes possessing flagella, the remaining two being barren
... *Retortamonas*

2(1) Four flagella and four kinetosomes present, each kinetosomes being equipped with a flagellum; three anterior flagella and a short recurrent flagellum confined to cytostomal groove ... *Chilomastix*

Genus Retortamonas Grassi, 1879

Diagnosis: Body plastic, usually pyriform or fusiform, drawn out posteriorly; a large cytostome toward anterior end; nucleus anterior; two flagella; cysts pyriform or ovoid; parasitic in the intestine of various animals.
Key to the species of Retortamonas

1(2) Parasitic in reptiles (chelonians), body oval measuring 4.2-11.5 (7.9) μm x 3.0-6.5 (4.4) μm and with a long caudal process .. R. cheloni

2(1) Parasitic in insects .. 3

3(4) Tail long, measuring 3.2-58.5 (23.3) μm; body dimensions 8-25 (18) μm x 4-15 (8.20 μm; occurring in Gryllotalpa africana (Order Orthoptera) R. wenrichi

4(3) Tail not so long

5(6) Tail moderate, measuring 3.5-18.5 (9.7) μm; body dimensions 9.5-15.0(12.7) μm x 7-11(8.2) μm; occurring in aquatic insects, Laccotrephes maculatus (Order Hemiptera) ... R. toddi

6(5) Tail short; body dimensions ranging from 3.5-18.5 (10.8) μm x 1.5-12.0 (5.7) μm; occurring in different terrestrial insects (Order Dictyoptera) R. blattae

A. Retortamonas in insects

41. Retortamonas blattae (Bishop, 1931)

Diagnosis: Body size much variable ranging from 3.5-18.5 (10.8) μm x 1.5-12.0 (5.7) μm; nucleus with scattered chromatin granules. According to Bishop (1931) R. blattae measuring 6-9 μm in length and quite slender, with rounded anterior end and and the posterior end terminating in a sharp spike in many individuals; nucleus rather poor in chromatin with a thin peripheral layer and a more or less well defined karyosome; flagella usually shorter than the body and their posterior end confined within the oral pouch.

Host: Periplaneta americana, Blatta orientalis, Corydia petiveriana, Cryptocercus sp., Leucophaea sinninamensis; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Bhaskar Rao (1968, cited from Sultana, 1976) reported this species from this state.

42. Retortamonas toddi Bhaskar Rao, 1968
(Figs. 36 & 37)

Diagnosis: Body size variable measuring 9.5-15.0 (12.7) μm x 7-11 (8.2) μm, with bulged anterior end giving oval shape of the body and moderate tail end, abruptly tapering into a spike measuring 3.5-18.5 (9.7) μm at the posterior end; nucleus spherical, 2.0-3.5 μm
in diameter, with scattered chromatin granules but lacking a definite endosome, located at the anterior end; two blepharoplasts located apart on either side of the nucleus near the anterior end of oral pouch, each giving rise to one flagellum of unequal size ending in acroneme; oral pouch almost extending up to two-thirds as long as trunk of the body, bordered by a chromophile margin of two fibrils of which left one longer and right one shorter;

Host: *Laccotrephes maculatus*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

43. *Retortamonas wenrichi* Stabler, 1944
(Figs. 38 & 39)

Diagnosis: Body dimensions 8.0-25.0 (18.0) μm x 4.0-15.0 (8.2) μm; nucleus anteriorly placed, containing a thickly granulated mass or a large endosome; two blepharoplasts placed near the nucleus at the anterior end of the body, each giving rise to an almost equal-sized, acronematic and anteriorly directed flagellum; tail-like projection very conspicuous, measuring 2.0-38.5 (21.3) μm; a definite periplast enclosing a granular cytoplasm, frequently with vacuoles containing bacteria and other inclusions present; cytostome prominent, anteriorly placed, bordered on one side by a longer distinctly stained cytostomal fiber and on the other by a short fibril.

Host: *Gryllotalpa africana*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district) and Maharashtra.

Remarks: Bhaskar Rao (1968, cited from Sultana, 1976) reported this species from this state. Sultana (1976) recorded this species from Maharashtra State.

B. *Retortamonas* in reptiles

44. *Retortamonas cheloni* Janakidevi, 1962

Diagnosis: Body oval, measuring 4.2-11.5 (7.9) μm x 3.0-6.5 (4.4) μm, with a long caudal process of 1.0-7.0 (4.0) μm in length; nucleus round, situated at the extreme anterior end with a thin ring of chromatin adjacent to the nuclear membrane and sometimes an endosome present in the centre; cytopyge deep, extending one-third to one-half of the body-length and bordered by two siderophilic threads; two blepharoplasts, situated close to nucleus, giving rise to two unequal flagella and the two siderophilic threads; periplast rigid.

Host: Tortoise, *Testudo elegans*; site of infection: large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).
45. **Retortamonas** sp.

Host: Varanus sp.; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Krishnamurthy (1968) reported this unnamed species from the aforesaid host.

46. **Retortamonas** sp.

Host: Zamenis mucosus; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Krishnamurthy (1968) reported this unnamed species from the aforesaid host.

Genus Chilomastix Alexeieff, 1912

Diagnosis: Pyriform, with a large cytostomal cleft at anterior end; nucleus anterior; three anteriorly directed flagella; short fourth flagellum recurrent and undulating within the cytostomal cleft; a rounded nucleus with several basophilic peripheral plaques situated anteriorly; cyst common; in intestine of vertebrates.

A. Key to the species of Chilomastix of amphibians

Body pear-shaped or ovoidal with a pointed spike-like posterior end; cytotome large, sac-like, extending about 1/3 to 1/2 the length of the body *C. qadrii*

B. Key to the species of Chilomastix of reptiles

1(4) Blepharoplasts less than four in number

2(3) Body oval, anterior end rounded, posterior end drawn into a short, straight or curved spike, 1 or 2 blepharoplasts, nucleus round or oval with chromatin materials uniformly distributed or irregular masses ... *C. kudoi*

3(2) Body round or oval, posterior end with a small spike, blepharoplasts 2 or 3 in number, nucleus round with distinct endosome at the centre *C. hemidactyli*

4(1) Blepharoplasts 4 in number, arranged in two sets with two in each set, body elongate-oval, anterior end slightly pointed and posterior end drawn out into a long spike-like tail, nucleus round with a chromatin plaque at its anterior pole *C. wenyoni*

C. Key to the species of Chilomastix of birds

1(2) Body oval or pyriform, blepharoplasts 3 in number, cytostome sac-like, nucleus round possessing a large irregular endosome with fine chromatin granules *C. graecae*
2(1) Body fusiform or oval, blepharoplasts 2 in number, cytostome ‘V’ or ‘U’ shaped, nucleus spherical or oval possessing 4-5 chromatin granules C. osmaniae

D. Key to the species of Chilomastix of mammals

1(2) Body fusiform, pear-shaped and round, blepharoplast 2 or 3 abutting or slightly above the nuclear membrane, parasitic in bandicoot rat... C. bandicooti

2(1) Body pyriform, elogate-oval or turnip-shaped

3(6) Blepharoplasts not clearly visible

4(5) Body turnip-shaped, cytostome 8-shaped and very large covering more than two-third the length of the body, parasitic in squirrels ... C. palmari

5(4) Body pyriform, spiral groove absent, cytostome large and extensive, parasitic in Indian hare.. C. nigricollisi

6(3) Blepharoplast distinct

7(10) Blepharoplasts 3 in number, peripheral portion of the body modified into spiral groove, parasitic in gerbils ... C. indica

8(9) Body pyriform, spiral groove U-shaped, blepharoplasts 4 in number, 3 in one row on anterior border of the body on the cytostomal side and the remaining one lying behind them, parasitic in horse.. C. equi

9(8) Body typically pyriform, spiral groove not U-shaped, blepharoplast 2 in number, parasitic in rats .. C. hyderabadensis

10(7) Blepharoplasts 4 in number, cytostome with lips supported by siderophilic fibrils originating from the fourth blepharoplast, parasitic in Guinea-pig C. megamorpha

A. Chilomastix in amphibians

47. Chilomastix qadrii Krishnamurthy, 1970

(Figs. 40 & 41)

Diagnosis : Body pear-shaped or ovoidal, measuring 7.71-13.37 (10.58) \(\mu \)m in length and 5.66-10.28 (8.63) \(\mu \)m in width, with a pointed spike-like posterior end; nucleus rounded or transversely elongated, located about \(\mu \)m behind the anterior tip of body, with one or two central or eccentric endosomes; blepharoplasts three, between the nucleus and anterior end; cytostome large, sac-like, about \(1/3 \) to \(1/2 \) body length and with one cytostomal fibril.

Host : Rana tigrina (Daud.); site of infection: large intestine and rectum.

Distribution : India : Andhra Pradesh (Hyderabad district).
Remarks: According to Kulda and Nohynkova (1978) *Chilomastix qadrii* Krishnamurthy, 1970 is similar to the species *Chilomastix bursa* Moskowitz, 1951 occurring in lizards. So, a taxonomic review of the species of the genus *Chilomastix* from amphibians and reptiles based on type materials/specimens is needed to determine the validity of species inhabiting herpetofauna.

B. *Chilomastix* in reptiles

Diagnosis: Body round or oval, measuring 7.0-15.6 µm x 4.3-8.6 µm; nucleus round with endosome at the centre; cytostome small, ¼ or ½ of the body length, with a distinct cytostomal fibril; five flagella, arising from 2-3 blepharoplasts, all unequal in length and much shorter than *C. kudoi*; with small posterior spike.

Host: *Hemidactylus* sp.; site of infection: rectum.

Distribution: India: Andhra Pradesh (Warangal district).

Remarks: Madre (1979) described *Chilomastix hemidactyli* as a new species from the rectal content of *Hemidactylus giganteus* from Aurangabad, Maharashtra without knowing about the species described by Bhaskar Rao et al. (1976) under the same name. Being preoccupied, the name of the species described by Madre (1979) is required to be changed while reviewing these parasites.

49. *Chilomastix kudoi* Saratchandra and Narasimhamurti, 1980

(Fig. 42)

Diagnosis: Body oval, measuring 10.4-14.8 µm x 5.6-10.0 µm; anterior end rounded and posterior end narrow and drawn into a short, straight or curved spike of 2-3 µm in length (spike absent in some); cytoplasm finely vacuolated, vacuole containing bacteria and other food particles; pellicle not clearly visible; nucleus rounded or oval, 2.4-3.2 µm x 1.6-3.2 µm, with a delicate nuclear membrane, chromatic materials uniformly distributed or irregular masses; 1 or 2 blepharoplasts situated in front of the nucleus, 4 or 5 flagella arising from them, one cytostomal flagellum and one free flagellum arising from one of the two blepharoplasts lying closer to the left cytostomal fibril; remaining flagella arising from the other blepharoplast; two free flagella equal in length, 6.0-12.4 µm and the remaining unequal of 5-22 µm in length; cytostomal flagellum adhering to the cytostomal fibril for a greater part and then free distally, 5-8 µm; cytostome extending half of the body, 6.0-8.5 µm x 1.5-3.5 µm, narrow anteriorly and broad posteriorly; left cytostomal fibril thicker, longer and recurved at the distal portion, while the right fibril thinner, shorter and slightly curved.
Host: *Henidactylus prashadi* Smith; site of infection: rectum.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam district).

50. *Chilomastix wenyoni* Janakidevi, 1961
(Fig. 43)

Diagnosis: Body elongated-oval, measuring 8.0-28.5 (18.0) μm in length and 2.5-10.5 (6.0) μm in width, with its anterior end slightly pointed and sharply pointed posterior end drawn out into a long spike-like tail; with 4 or 3 blepharoplasts; nucleus a round vesicle placed 2 μm below the anterior end and with a chromatin plaque at its anterior pole; four flagella, three anterior and one cytostomal, arising from four blepharoplasts arranged in two sets of two each, one set located in front of the nucleus and the other to its side; cytostome a narrow elongated pouch bordered by two siderophilic fibrils extending for ½ to 2/3 of the body length.

Host: *Calotes nemoricola* Jerdon; site of infection: large intestine and caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: According to Kulda and Nohynkova (1978) *Chilomastix wenyoni* Janakidevi, 1961 is a synonym of *Chilomastix bursa* Moskowitz, 1951. However, *C. wenyoni* is retained here as valid species until further review of the species of *Chilomastix* from reptiles based on type materials/specimens.

51. *Chilomastix* sp.

Host: *Varanus* sp.; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Krishnamurthy (1968) reported this unnamed species from the aforesaid host.

C. *Chilomastix* in birds

52. *Chilomastix graecae* Navarathnam, 1971
(Fig. 44)

Diagnosis: Body oval or pyriform, measuring 10.0-16.5(12.2) μm in length and 7.5-12.5(10.49) μm in breadth, posterior end of a few individuals drawn out into a short spine; nucleus usually round in shape situated about 1-2 μm away from anterior extremity, possessing a large irregular eccentric or centrally placed endosome with fine chromatin granules; blepharoplasts three in number situated at the anterior part of the body, two of them at the anterior extremity while the third one slightly posteriorly located in front of cytostome, two
anterior ones larger than the posterior one; flagella four in number, three anteriorly directed and one cytostomal, two arising from each of the anterior blepharoplast, two of three anterior flagella equal in length while the third one longer than two, cytostomal flagella shortest very rarely projecting beyond the cytostome; cytostome sac-like, large and conspicuous, lined by two fibrils bordering the right and left lips; cytoplasm is usually vacuolated and containing bacteria.

Host: *Alectoris graeca*; site of infection caecum and large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: According to Kulda and Nohynkova (1978) *Chilomastix graecae* Navarathnam, 1971 is a possible synonym of *Chilomastix gallinarum* Martin and Robertson, 1911.

53. *Chilomastix osmaniae* Navarathnam, 1971

(Fig. 45)

Diagnosis: Body fusiform or oval, measuring 8.5-20.0 (11.7) μm in length and 7.5-15.5 (9.98) μm in breadth, abruptly tapering into a spike at the posterior end in some assuming a turnip shape; nucleus spherical or oval, located at the anterior end or in the anterior third of the body, possessing 4-5 large chromatin granules; blepharoplasts distinct, two in number, located wide apart but above the nucleus; flagella four in number, two short unequal flagella originating from each blepharoplast, three anteriorly directed and the fourth one either extending into the cytostome or projecting outside; cytostome ‘V’ or ‘U’-shaped, supported by very cytoplasmic fibril on the right side and very delicate one on the left side; cytoplasm vacuolated and containing bacteria.

Host: *Gallus gallus domesticus*; site of infection: caecum and large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: According to Kulda and Nohynkova (1978) *Chilomastix osmaniae* Navarathnam, 1971 in chicken is also a possible synonym of *Chilomastix gallinarum* Martin and Robertson, 1911.

D. *Chilomastix* in mammals

54. *Chilomastix bandicooti* Todd, 1963

(Fig. 46 & 47)

Diagnosis: Body fusiform, pear-shaped or round in living condition, entire body measuring 10.75-21.91 (14.76) μm in length and 2.82-12.22 (7.76) μm at its widest region; anterior end broad and rounded while posterior end protruding as a caudal spike of 0.94-7.05 (3.65) μm
in length; nucleus large, prominent, rounded, oval or irregular in shape, lying close to the anterior extremity; two to three blepharoplasts abutting or slightly above the nuclear membrane, connected to each other by a small rod-like rhizoplast; three anterior flagella, two of which almost equal usually united at the base, measuring 5.17-13.6 (9.14) μm in length arising from a blepharoplast; cytostome 6.58 μm on average lying adjacent to the nucleus and running posterior to it, margins bounded by the right and left chromatic fibrils; right fibril thick, running down the outer lip and ascending the inner lip of the cytostome for some distance while the left fibril thin and running down the inner lip; cytoplasm granular, highly vacuolated and containing bacteria or other food particles; spiral groove running obliquely across the body.

Host: *Nesocia bandicota*; site of infection: caecum.

Distribution: India: Andhra Pradesh: (Hyderabad district).

55. *Chilomastix equi* Abraham, 1961

(Figs. 48 & 49)

Diagnosis: Body pyriform, measuring 15.7-31.5 (19.6) μm in total body length, 8.5-16.5 (13.6) μm length of body proper, 4-17 (6.5) μm length of spike and 6-15.5 (12) μm in breadth of body; with anterior end pointed and posterior end terminating in a spike; spiral groove U-shaped; nucleus ovoidal or spheroidal, containing an eccentric endosome with either peripheral chromatin or 2 rod-like plaques; 4 blepharoplasts, 3 in one row on the anterior border of the body on the cytostomal side, and one behind them; three anterior flagella arising from first three blepharoplasts and running backwards; broad cytostome narrowed and curved posteriorly occupying ½ to ⅔ of body proper; cytostomal flagellum originating from fourth blepharoplast; chromatic cloud present.

Host: Horse, *Equus caballus*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).

Remarks: The “chromatic cloud” begins near the nucleus and extends downwards for some distance. This is not a well-defined and constant structure and is not universally present in the genus *Chilomastix*, and is not homologous with the 'parabasal body' (Becker, 1926; Nie, 1948; Kirby and Honigberg, 1949).

56. *Chilomastix hyderabadensis* Todd, 1963

(Fig. 50)

Diagnosis: Body typically pyriform, entire flagellate 7.99-18.33 (15.73) μm in length and 3.76-13.63 (9.06) μm at its widest region; anterior end snout-like and posterior end drawn
into a short pointed caudal appendage of average 2.40 \(\mu m \) in length; spiral groove running across the body; cytostome prominent groove-like, average 6.44 \(\mu m \) in length with lips, marginal fibrils and posteriorly directed undulating cytostomal flagellum; cytoplasm finely granulated and vacuolated with ingested bacteria; nucleus rounded or oval with distinct nuclear membrane, situated close to the anterior margin of the body; three anterior flagella, 2.81-12.03 (8.38) \(\mu m \) in length, two generally long arising from one blepharoplast and the third from another.

Host: Indian rat, *Rattus rattus frugivorous*; site of infection: ilico-caecum, caecum and large intestine.

Distribution: India: Andhra Pradesh: (Hyderabad district).

57. *Chilomastix indica* Todd, 1963

(Fig. 51)

Diagnosis: Body normally elongated, pyriform, entire flagellate measuring 10.34-21.62 (14.94) \(\mu m \) in length and 6.11-10.81 (8.65) \(\mu m \) at its widest region, with a broad anterior end, sides more or less convex and posteriorly tapering abruptly into a caudal spike of 2.35-7.05 \(\mu m \) length; cytoplasm highly vacuolated with vacuoles of varying size; peripheral portion of the body modified into spiral groove; nucleus spherical, rarely ellipsoidal, with a distinct nuclear membrane, lying to the left of the cytostome, either appressed against the three anterior blepharoplasts or slightly withdrawn from the apex; nuclear rhizoplast, transverse rhizoplast and peristomial rhizoplast present; primary blepharoplast giving rise to two left anterior flagella, secondary blepharoplast giving rise to single right anterior flagellum and the tertiary blepharoplast connected to peristomial rhizoplast, secondary blepharoplast, undulating cytostomal flagellum and giving rise to curved right fibril; three anterior flagella free throughout their whole course and almost equal, measuring 5.64-15.04 (10.34) \(\mu m \) in length; cytostome small compared to the size of the body, measuring 4.23-8.93 \(\mu m \) in length.

Host: *Gerbillus indicus*; site of infection: alimentary canal.

Distribution: India: Andhra Pradesh (Hyderabad district)

58. *Chilomastrix megamorpha* Abraham, 1961

(Figs. 52 & 53)

Diagnosis: Body elongated oval, 24.0-42.6 (31.6) \(\mu m \times 10.0-20.5 (15.3) \mu m \), with a slightly pointed anterior end, and a spike at the posterior end; cytoplasm crowded with irregular vacuoles and bacterial inclusions; nucleus chestnut-shaped, containing endosomal substance, situated below the anterior border of the body at a distance of about 1/3 its own
diameter; cytostome oblong and its lips supported by two siderophilic fibrils; four blepharoplasts present, first three in a row arising from the first three blepharoplasts at the anterior margin of the body, the fourth one cytostomal flagellum and the cytostomal fibrils arising from the fourth blepharoplast close to anterior tip of the nucleus;

Host: Cavia cutleri; site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

59. **Chilomastix nigricollisi** Todd, 1963
(Figs. 54 & 55)

Diagnosis: Body pyriform, measuring 6.11-7.52 (6.75) μm in entire length and 3.76-6.58 (5.45) μm at its widest region, with or without spike; anterior end usually pointed or rounded possessing three anterior either equal or unequal flagella, 4.23-6.58 (5.43) μm in length, sometimes united at their base only; cytostome large and extensive, average 3.17 μm in length with two cytostomial fibrils, cytostomal flagellum extending to the entire length of cytostomal groove; cytoplasm granular with vacuoles of various sizes, spiral groove absent; nucleus invariably rounded in shape, situated at the extreme anterior end of the body greatly obscuring the blepharoplasts.

Host: Indian hare, *Lepus nigricollis*; site of infection: caecum downwards.

Distribution: India: Andhra Pradesh: (Hyderabad district).

60. **Chilomastix palmari** Todd, 1963
(Figs. 56 & 57)

Diagnosis: Body turnip-like, entire flagellate 6.58-10.81 (9.58) μm in length and 5.64-8.93 (7.40) μm at its widest region; anterior end round and dome-like and posteriorly with a caudal spike of average 2.03 μm in length; cytoplasm crowded with vacuoles of various sizes; nucleus more or less rounded or conical, located at the anterior extremity, with distinct nuclear membrane and peculiar disposition of chromatin in the form of horse-shoe shape or restricted to posterior half of the nucleus; cytostome '8'-shaped, very large covering more than two-third the length of the body bordered with prominent fibrils; blepharoplasts not clearly visible; three anterior flagella, 5.64-13.63 (8.54) μm in length, two of them arising together.

Host: Palm squirrel, *Sciurus palmarum*; site of infection: caecum.

Distribution: India: Andhra Pradesh: (Hyderabad district).
Order DIPLOMONADIDA
Suborder ENTEROMONADINA
Family ENTEROMONADIDAE

Diagnosis: One karyomastigont equipped with one to four flagella, and in case of several flagella, one recurrent and associated with a shallow cytostome; funis always present; mitochondria and Golgi apparatus absent.

Remarks: Kulda and Nohynkova (1978) erected this family Enteromonadidae with the type genus *Enteromonas* accommodating other two genera, *Trimitus* and *Caviomonas*. Members of this family are small flagellates which live as harmless commensals in the intestine of various animals, both vertebrates and invertebrates.

Key to the genera

1(2) With four flagella of which one recurrent; funis following the recurrent flagellum on the ventral side of the body .. *Enteromonas*

2(1) With one free flagellum; funis present along the dorsal side of the body

.. *Caviomonas*

Genus Enteromonas da Fonseca 1915

Diagnosis: Spherical or pyriform though plastic; three anterior flagella; the fourth flagellum running along the flattened body surface and extending a little freely at the posterior tip of the body; nucleus anterior; no cytostome; cyst ovoid and with four nuclei when mature; parasitic in mammals.

Remarks: da Fonseca (1915) originally observed only three flagella and no cysts. Wenyon and O'Connor (1917) noticed four flagella and encysted forms in *Tricercomonas*. In da Fonseca's original preparations, Dobell (1935) observed four flagella as well as cysts and concluded that *Enteromonas* and *Tricercomonas* are one and the same flagellate.

61. *Enteromonas ratti* Navarathnam, 1970

(Figs. 58 & 59)

Diagnosis: Parasite spherical or oval, measuring 2.25-6.50 μm in length and 2.0-6.0 μm in breadth; nucleus vesicular, spherical or oval, measuring 1.0-2.5 μm x 0.75-3.0 μm, situated at the anterior part of the body, containing dense mass of chromatin granules; blepharoplasts distinct, usually four, situated quite away from each other at the anterior part of the body; flagella four, each arising from a blepharoplast, three unequal flagella shorter or equal to the
body, 2.0-6.0 μm, directed anteriorly while the fourth one recurrent or trailing flagellum, 3.5-
12.0 μm, always longer than the body, running posteriorly along the body surface; a filament-
like funis extending posteriorly up to three fourths of the body length never associated with
the recurrent flagellum after arising from the blepharoplast.

Host: Indian rat, *Rattus rattus* frugivorous; site of infection: intestine.

Distribution: India: Andhra Pradesh: (Hyderabad district).

Genus Caviomonas Nie, 1950

Diagnosis: Body naked, without chromatophores and with a vesicular nucleus at the
anterior end; one flagellum arising from the nuclear membrane, directed freely either anteriorly
or posteriorly; a band-like peristyle running posteriorly along the periphery of the body
surface after arising from the nuclear membrane opposite to the origin of the flagellum;
cytostome and contractile vacuole absent.

62. *Caviomonas frugivori* Navarathnam, 1970
(Fig. 60)

Diagnosis: Body spherical, oval or irregular in shape, measuring 2.5-8.0 μm in length and
2.0-5.0 μm in breadth; cytoplasm granular and vacuolated, food vacuoles containing bacteria
and other particles; nucleus spherical, oval or transversely elongated, 1.0-2.0 μm in length
and 1.0-3.0 μm in breadth, containing 3-4 compact chromatin grains, situated at the anterior
end of the body; a small blepharoplast situated on one side of the nucleus; a long flagellum,
4.0-16.0 μm in length, three to four times as long as the body, extending backwards or side-
wise but occasionally forwards, always terminating in a fine acroneme but never adhering to
the body surface after originating from the blepharoplast; a fine thread-like funis arising from
the blepharoplast and adhering to the body surface; a filament-like peristyle, 1.0-4.0 μm,
running on the opposite side of the funis, passing along the peripheral surface of the body
up to the posterior end.

Host: Indian rat, *Rattus rattus* frugivorous; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Suborder DIPLOMONADINA

Family HEXAMITIDAE

Diagnosis: Two karyomastigonts, body with two-fold rotational symmetry or bilateral
symmetry, each mastigont with 4-flagella, one of them recurrent; accessory fibrillar structures
present; mitochondria and Golgi apparatus absent.
Subfamily HEXAMITINAE

Diagnosis: Trophozoites possessing two cytostomes, each accompanied with a microtubular band of funis and with lamellar, striated root fibril; one recurrent flagellum bounded by a cell membrane traversing each cytostome and emerging posteriorly; freeliving, saprozoic and parasitic.

Genus *Hexamita* Dujardin, 1841

Diagnosis: Pyriform; two nuclei near anterior end; six anterior and two posterior flagella; two axostyles; one to two contractile vacuoles in free-living forms; cytostome obscure; endoplasm with refractile granules; encystment; in stagnant water or parasitic.

Remarks: This genus has often been referred as *Hexamitus* but it is considered as *Hexamita* following Kulda and Nohynkova (1978).

Key to the species of *Hexamita* in insects

1(2) Body pyriform rod-like axial structures; without any thickenings at the posterior ends, long acronematic eight flagella *H. gryllotalpae*

2(1) Body round and dentated posterior end; axostyle tubular, uniform in diameter, or slightly dilated posteriorly; with typical caudal fissures; eight short flagella *H. hongbergi*

Key to the species of *Hexamita* in amphibians

Body inverted fig-shaped, 6.2-10.3 μm x 3.6-8.2 μm; two blepharoplasts, each giving rise to three anterior unequal flagella; two axostyles filamentous *H. hoarei*

Key to the species of *Hexamita* in reptiles

Body spherical, 8.0-8.5 μm in diameter; blepharoplast complex variable; axostyle continued beyond the body along with posterior flagella *H. kakatiyae*

Key to the species of *Hexamita* in birds

Body pyriform, 5.5-10.0 μm x 3.0-7.5 μm; blepharoplasts two in number; three pairs of anterior flagella, unequal in size .. *H. singhi*

Key to the species of *Hexamita* in mammals

1(2) Body pyriform or rounded, 3.96-8.93 μm x 3.29-4.70 μm in dimensions, cytoplasm, vacuolated and opaque, nuclei ellipsoidal, a chromatic ring or loop at posterior end, parasitic in Bandicoot-rat .. *H. nesocium*
2(1) Body pyriform, oval or round, cytoplasm not opaque, chromatic ring or loop as above lacking

3(4) Body rounded, 7.05-9.40 μm x 5.17-7.52 μm, cytoplasm containing few vacuoles and small, highly siderophilic and deep staining bodies, parasitic in house rat

... H. pigmentatus

4(3) Body usually oval or pyriform, 4.70-9.75 μm x 3.29-6.58 μm, periplast very thin and cytoplasm uniformly stained, two chromatin masses rounded or ellipsoidal in appearance, parasitic in Gerbils ... H. spinulus

A. Hexamita in insects

63. Hexamita gryllotalpae Bhaskar Rao, 1968
(Figs. 61 & 62)

Diagnosis: Body usually round or pyriform in some, measuring 6.0-10.0 (7.4) μm x 4.5-10.0 (6.6) μm; nuclei often closely associated with each other giving a bilobed shape, sometimes appearing as a single mass, containing a prominently large karyosome separated from the nuclear membrane by a clear zone; six anterior flagella, equal in size, 9-23 (12.9) μm, nearly twice the length of the body, mostly ending in fine acronemes; two caudal flagella also equal to the length of the anterior flagella and ending in fine acronemes; with two thin rod-like axial structures, slightly thicker than the flagella.

Host: Gryllotalpa africana; site of infection: rectum.

Distribution: India: Andhra Pradesh (probably Hyderabad district, exact locality not mentioned)

64. Hexamita honigbergi Bhaskar Rao, 1968
(Figs. 63 & 64)

Diagnosis: Body round, measuring 6.0-14.0 (9.6) μm x 6.0-14.0 (8.7) μm, with dentated anterior surface of the body in a few forms; two nuclei, very small 1.5 μm in diameter and having large endosomes, situated close to each other at the anterior end of the body; blepharoplasts not visible in many cases but a few individuals with three pairs of blepharoplasts adjoining the nuclear membrane giving rise to three pairs of very short non-acronematic flagella averaging 8-12 (8.4) μm in length, always directed side ways; caudal flagella not prominent, length of all the free flagella as long as the body; two axial structures, tubular, uniform in diameter (known as caudal fissures) or slightly dilated posteriorly, running parallel or divergent up to the posterior end of the body.
Host: Gryllotalpa africana; site of infection: rectum.

Distribution: India: Andhra Pradesh (probably Hyderabad district; exact locality not mentioned).

B. Hexamita in fishes

65. Hexamita sp.

Host: Gobius giuris; site of infection: intestine.

Distribution: India: Andhra Pradesh.

Remarks: Qadri (1962) reported this unnamed species from this state without mentioning the collection site.

C. Hexamita in amphibians

66. Hexamita hoarei Krishnamurthy, 1967

(Fig. 65)

Diagnosis: Body inverted fig-shaped, with a broad and rounded anterior end and a slightly conical posterior end, 6.2-10.3 (8.1) μm in length and 3.6-8.2 (5.4) μm in breadth; cytoplasm homogenous without any granules or bacteria; two blepharoplasts at the anterior end, each giving rise to three anterior subequal flagella, shortest measuring 7.2-13.4 (11.0) μm and longest 11.8-23.1 (14.7) μm; two axostyles filamentous, crossing each other while extending up to the posterior end of the body and beyond the body as posterior trailing flagella (av. 16 μm in length); a large chromatic ring encircling the axostyles near the posterior end of the body; two nuclei oval, appearing bilobed mass, with two endosomes inside a common nuclear membrane, situated just behind the blepharoplasts.

Host: Rana tigrina; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: According to Kulda and Nohynkova (1978) Hexamita (= Hexamitus) hoarei Krishnamurthy, 1967 is a possible synonym of Octolitus neglectus (Lavier, 1936) occurring as infrequent commensal of the cloaca of various anuran and urodelan amphibians. The broadly ovoid body of O. neglectus measures 8-12 μm x 6-8 μm. The columna attenuated in the second fourth of the body and conspicuously widened posteriorly, terminating in a broad and blunt caudal spike. The length of the flagella surpasses slightly that of the body. However, H. hoarei is retained herein until further review based on type materials / specimens.
D. Hexamita in reptiles

67. Hexamita kakatiyae Bhaskar Rao, 1975

Diagnosis: Body spherical, 8.0-8.5 μm in diameter; blepharoplast complex variable, either fused rod-like structure at the anterior region of the two nuclei with anterior subequal flagella, or in others anterior flagella ending in axoneme; axial structure rod-like, separated to a greater extent but in few forms crossed; axostyle continued beyond the body along with the posterior flagella running close to each other and ending in acroneme; two nuclei round mass-like, associating to form a single lobe, sometimes these nuclei possessing large chromatin granules; cysts very small, 3.5 μm in diameter, oval in shape.

Host: Calotes versicolor; site of infection: rectum.

Distribution: India: Andhra Pradesh (Kakatiya, Warangal district).

68. Hexamita sp.

Host: Chameleon zeylanicus; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Krishnamurthy (1968) reported this unnamed species from the aforesaid host.

69. Hexamita sp.

Host: Varanus sp.; site of infection: intestine

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Krishnamurthy (1968) reported this unnamed species from the aforesaid host.

E. Hexamita in birds

70. Hexamita singhi Navarathnam, 1970

Diagnosis: Body pyriform or oval, 5.5-10.0 (6.7) μm x 3.0-7.5 (5.0) μm, greatest width at anterior third of the body; with two oval nuclei containing spherical endosomes with chromatin granules around, nuclei often fused together and appearing as a bilobed mass, even as a single mass in some; blepharoplasts two in number; three pairs of anterior flagella, directed anteriorly or laterally, unequal in size, 1st pair measuring 8.2 (5.5-14.0) μm, shorter than the other two pairs of 10 (7.0-16.0) μm; two axostyles 4.8 (3-7) μm, filamentous, crossing each other in the middle; caudal flagella very short, 6.6 (3-12) μm, as continuation of posterior ends of axostyles; cytoplasm granular containing some inclusions; periplast thin.
Host: *Anas* sp.; site of infection: alimentary canal.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: This species is treated as a synonym of *Spironucleus meleagris* (McNeil, Hinshaw and Kofoid, 1941) by Kulda and Nohynkova (1978). The trophozoites of genus *Spironucleus* Lavier, 1936 have an elongate body tapering posteriorly and possesses two relatively narrow cytostomes from which recurrent flagella protruding caudally in a long trailing portion and with two sausage-shaped slightly spiral nuclei closely adjacent at their apical ends forming a horseshoe-shaped complex in the anterior part of the cell. *S. meleagris* is a pathogenic species of cosmopolitan distribution causing catarrhal enteritis (hexamititis) in turkey poults. Its characterized by an elongate body, tapering in the posterior fifth, measuring 6-12 µm x 2-5 µm for specimens from turkeys, nuclei relatively short and extending to one-fifth of the body length and cytostomes opening in the posterior one-fifth of the body. There are some resemblances as well as differences between *S. meleagris* and the present species, *H. singhi* Navarathnam, 1970. Therefore, the latter is retained until further taxonomic review of the family Hexamitidae from birds based on type materials / specimens.

F. Hexamita in mammals

71. *Hexamita nesocium* Todd, 1963
(Figs. 66 & 67)

Diagnosis: Body pyriform or rounded and sometimes oval, measuring 3.96-8.93 (5.58) µm x 3.29-4.70 (3.91) µm in dimension; cytoplasm somewhat vacuolated and opaque; nuclei ellipsoidal, situated at the rounded anterior surface of the body and opposed to each other with their anterior ends in contact and their axes diverging obliquely posterior-ward; a relatively large, spherical blepharoplast at the posterior end of each nucleus; six anterior flagella unequal, ranging from 3.76-8.93 µm in length, first pair shortest and the third pair longest; two axostyles wide apart, arising anteriorly and passing backward between the nuclei to converge posteriorly into a projection but never protruding outside the body; a chromatic ring or loop at the posterior end; a basal granule on each side at the junction of the chromatic ring with the axial filaments; a third granule at the converged tip of the axial filaments from which the caudal spine extending posteriorly.

Host: *Nesicia* (= *Nesokia*) *bandicota*; site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: *Hexamita nesocium* (= *Hexamitus nesocium* Todd, 1963) is considered to be a synonym of *Octolnitus intestinalis* Prowazek, 1904 by Kulda and Nohynkova (1978). The species, *Octolnitus intestinalis* is a common commensal living in the caecum of laboratory and wild rodents. It has a teardrop-shaped body, measuring 6-10 µm x 3-5 µm, with a broadly

State Fauna Series 5: Fauna of Andhra Pradesh

106
rounded anterior end, and having the length of flagella equals approximately that of the body. The columna is of uniform thickness throughout the body extending posteriorly in an elongate sharp spike. However, the species *H. nesocium* is retained herein until further review based on type materials/specimens.

72. Hexamita pigmentatus Todd, 1963
(Fig. 68)

Diagnosis: Body rounded but variable when alive, measuring 7.05-9.40 (7.52) μm x 5.17-7.52 (6.48) μm in dimensions; anterior end rounded while tapering to a slight extent posteriorly; cytoplasm thin containing a few vacuoles and small, highly siderophilic and deep staining bodies; two ellipsoidal nuclei sometimes forming a girdle at the anterior extremity; two to four dark bodies in the anterior region of the nucleus; blepharoplasts large, rounded and situated in close contact and posterior to either of the nuclei; six anterior flagella, 6.58-13.16 (10.81) μm in length, third pair usually long, directed posteriorly or anteriorly arising from these blepharoplasts; axial structures consisting of two axial fibrils, arising close to the blepharoplasts, running posteriorly parallel to each other and converging into a pointed end after being connected by the chromatic loop, thus resulting in the formation of a spear-head; lateral and apical basal granules as in *H. nesocium*; caudal spine very delicate or obscure; posterior flagella 5.64-12.22 (9.76) μm, arising from the lateral granules.

Host: *Rattus rattus* frugivorous; site of infection: caecum and upper part of large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: *Hexamita pigmentatus* (= *Hexamitus pigmentatus* Todd, 1963) is considered to be a synonym of *Octomitus intestinalis* Prowazek, 1904 by Kulda and Nohynkova (1978). However, this species *H. pigmentatus* is retained herein until further review based on type materials/specimens.

73. Hexamita spinulus Todd, 1963
(Fig. 69)

Diagnosis: Body oval or pyriform, rounded in some, measuring 4.70-9.75 (7.99) μm x 3.29-6.58 (5.17) μm; periplast very thin and cytoplasm uniform stained; two chromatin masses, rounded or ellipsoidal in shape, lying on each side at the anterior end, projecting as a single mass or disc giving a cap-like appearance; two round blepharoplasts, each posterior to each of the nuclei; six anterior flagella arranged in two lateral sets of three each, arising from the blepharoplast of each side, anterior-most pair directed forward and the others backward, second pair long, intermediate and the first pair short, measuring 3.76-9.93 (7.52) μm in
length; two axostyles, each arising from the blepharoplast of that side, extending posteriorly into a caudal spear-head projection being connected to each other at this region; a chromatic ring, one apical and two lateral basal granules present at this region, caudal spine projecting from the apical granule while a posterior flagellum trailing from each of the lateral granules.

Host: Indian Gerbille, *Gerbillus indicus*; site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: *Hexamita spinulus* (= *Hexamitus spinulus* Todd, 1963) is considered to be a synonym of *Octomitus intestinalis* Prowazek, 1904 by Kulda and Nohynkova (1978). However, the species *H. spinulus* is retained herein until further review based on type materials/specimens.

Subfamily GIARDIINAE

Diagnosis: Cytostome absent; flagella possessing intracytoplasmic portions of naked axonemes entering the cell membrane sheaths at the site of emergence; parasitic.

Key to the genera

1(2) Eight flagella in four pairs, two anterior and two posterior, with a sucking disc in anterior half; parasitic in the intestine of various vertebrates *Giardia*

2(1) Parasites having eight flagella but without any sucking disc; harmless commensals of vertebrates .. *Octomitus*

Genus Giardia Kuntsler, 1882

Diagnosis: Body pyriform to ellipsoid with anterior end broadly round and posterior end drawn out, bilaterally symmetrical, ventral side with a sucking disc in anterior half, 2 anterior nuclei, 2 slender axostyle and 8 flagella in 4 pairs present.

Remarks: Since diagnosis / description of *Giardia qadrii* is not available, it has not been included in the key to the species of the genus *Giardia* dealt with here.

Key to the species of Giardia of mammals

1(4) Trophozoites broadly pyriform

2(3) Dimensions 9-20 μm x 5-10 μm; nuclei vesicular and located near anterior margin; parasitic in man, monkeys and other mammals .. *L. intestinalis*

3(2) Dimensions 11.8-20.0 μm x 5.0-12.5 μm, length/breadth ratio 2:1, nucleus located near
the posterior margins of sucking discs, chromatin granules present in the form of a ring in the centre of the nucleus, parasitic in palm civet... *G. dasi*

4(1) Trophozoites slenderly pyriform

5(6) Dimensions 9-16 μm x 6-11 μm; L/B ratio 1.4; nuclei teardrop-shaped, located at the centre of the sucking discs, containing a clear endosome, parasitic in rats

.. *L. indica*

6(5) Dimensions 12.0-20 μm x 5.5-11.5 μm, length/breadth ratio 1.7, nuclei located near the posterior margins of sucking discs, chromatin granules distributed along the periphery of nucleus, parasitic in the Slender Loris ... *G. wenyoni*

A. *Giardia* of mammals

74. *Giardia dasi* Abraham, 1962

Diagnosis: Body 11.8-20.0 (15.5) μm in length and 5.0-12.5 (7.2) μm in breadth; L/B ratio 2.1; distance from anterior end to centre of nucleus 4.7 μm, centre of nucleus to ends of lateral shields 6.0 μm, ends of lateral shields to posterior end 5.4 μm; breadth across the centre of nucleus 6.6 μm and across ends of lateral shields 3.5 μm; length of sucker 6.0 μm and ratio of body length to sucker length 2.5; high L/B ratio (2.1) due to great length of tail (5.4 μm); sucking disc (6.0 μm) small in proportion to the length of the body; nucleus located near the posterior margins of the sucking discs, poor in chromatin, chromatin granules present in the form of a ring in the centre of the nucleus; cytoplasm with certain characteristic large granules, lying in front of the nucleus in the form of a cap.

Host: Common Palm Civet, *Paradoxurus hermaphroditus hermaphroditus* (Schreber); site of infection: duodenum.

Distribution: India: Andhra Pradesh (Hyderabad district).

75. *Giardia indica* Saratchandra, Sambasivarao and Kalavati, 1982

(Fig. 70)

Material examined: Sev. exs. on slides obtained from the House rat of the residential buildings in Waltair by B. Saratchandra.

Diagnosis: Body pear-shaped, bilaterally symmetrical, measuring 9-16 (11.5) μm x 6-11 (8.5) μm; cell membrane thin; cytoplasm hyaline and homogenously stained; nuclei teardrop-shaped, 2-3 μm x 1-2 μm, containing a clear endosome; adhesive disc 6.0-10.5 (7.56) μm x 6.0-10.5 (7.50) μm; length of cell body / length of the disc 1.43-1.80 (1.53); four flagella
originating from the kinetosomal complex situated on the median line in between the nuclei; antero-lateral flagella 11-24 \(\mu m \), posterolateral flagella 11-17 \(\mu m \), ventral flagella 12-20 \(\mu m \) and the caudal flagella 16-27 \(\mu m \) in length; median bodies elongate, located in the centre and lying parallel to the longitudinal axis of the body.

Host: *Rattus rattus*; site of infection: small intestine.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam district).

76. *Giardia intestinalis* (Lambl, 1859)

(Figs. 71 & 72)

Diagnosis: Trophozoite broadly pyriform, 9-20 \(\mu m \times 5-10 \mu m \); axostyle needle-like; two nuclei oval and vesicular and located near anterior margin; eight flagella originating in the kinetosomal complex situated on the midline between the nuclei, two emerging ventrally to be located in the ventrocaudal groove, two anterolaterally, two posterolaterally, and two caudally; a pair of fang-shaped median bodies situated transversely across the body and dorsally to the posterior end of the adhesive disk; length of the adhesive disk less than half the body length.

Host: *Homo sapiens*; site of infection: duodenum, jejunum and upper part of small intestine.

Distribution: India: Andhra Pradesh (in all districts).

Remarks: It is a pathogenic species occurring in man, domesticated mammals, rodents other mammals, birds and reptiles. Hussain *et al.* (1994) reported on the increased risks of giardiasis in persons with haptoglobin in 2-1 phenotypes.

77. *Giardia qadrii*, Navarathnam, 1969

Diagnosis: Not available.

Host: *Capra hircus*; site of infection.

Distribution: India: Andhra Pradesh (Hyderabad district)

Remarks: According to Kulda and Nohynkova (1978) *Giardia qadrii* Navarathnam, 1969 may be considered to be a synonym of *Giardia caprae* Nieschulz, 1923, a species defined by host having no description or insufficient description. So, this species *G. qadrii* is retained in the present paper until further review based on type materials / specimens.
78. *Giardia wenyoni* Abraham, 1962

Diagnosis: Body 12.0-20.0 (15.6) μm in length and 5.5-11.5 (8.8) μm in breadth; L/B ratio 1.7; distance from anterior end to centre of nucleus 4.5 μm, centre of nucleus to ends of lateral shields 7.0 μm, ends of lateral shields to posterior end 3.6 μm; breadth across the centre of nucleus 7.7 μm and across ends of lateral shields 4.6 μm; length of sucker 6.2 μm and ratio of body length to sucker length 2.5; peculiar shape due to great distance (7.0 μm) between centre of nucleus to the ends of lateral shields; comparatively short tail (3.6 μm); sucking disc small compared to size of the body; nuclei situated close to the posterior edge of the sucking discs, containing chromatin granules along the periphery, somewhat pointed at the anterior end and not lying parallel to the axostyles.

Host: Slender Loris, *Loris tardigradus lydekkerianus* Cabrera; site of infection: duodenum.

Distribution: India: Eastern Ghats which includes Andhra Pradesh; exact locality not mentioned.

Remarks: The host was purchased from a dealer in Bangalore, Karnataka State (Abraham, 1962). The geographic distribution of this subspecies of the Slender Loris is within the Eastern Ghats. The Eastern Ghats in Andhra Pradesh pass through the districts of Srikakulam, Vizianagaram, Visakhapatnam, East and West Godavari, and parts of Khammam, Krishna, Guntur, Prakasam, Nellore, Kurnool, Anantapur, Chittoor and Cuddapah.

Octomitus Prowazek, 1904

Diagnosis: Eight flagella, six anteriorly directed and two posteriorly directed; nucleus bean-shaped; adhesive disk absent; parasitic in vertebrate hosts.

Remarks: Though this genus is considered to be a synonym of the genus *Hexamita* (= *Hexamitus*) by some investigators (Wenyon, 1926; Kudo, 1966), it is treated herein as a valid genus following Kulda and Nohynkova (1978).

79. *Octomitus rattusi* Saratchandra, Sambasivarao and Kalavati, 1982

(Fig. 73 & 74)

Material examined: Sev. exs. on slides deposited in the Zoology Department, Andhra University, Waltair.

Diagnosis: Body round or oval, 8-11 (8.5) μm x 6-10 (8.0) μm, possessing two karyomastigonts arranged in binary axial symmetry; cytoplasm with a few vacuoles; two nuclei bean-shaped, averaging 1.7 μm x 1.4 μm in diameter, contained a small centrally...
placed endosome; each mastigont with 4 flagella arising from a kinetosomal complex; flagella unequal in length, measuring 6-14 (10) μm; recurrent flagella 9-16 (11.7) μm, continued as free flagella after separation from the columna at the posterior end; columna 5-10 μm in length, uniformly thick, and not extending beyond the cell body.

Host: Rattus rattus; site of infection: rectum.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam district).

Remarks: The species is treated herein under the genus Octomitus of the family Hexamitidae and subfamily Giardinae following Kulda and Nohynkova (1978).

Order OXYMONADIDA
Family POLYMASTIGIDAE
(Syn. Monocercomonididae Honigberg, 1963)

Diagnosis: Trophozoites possessing four flagella arranged in two separated pairs; a simple and slender axostyle and an anteriorly located large pelta present; nucleus round vesicular with a large spherical endosome capped anteriorly with a preaxostyle; rostellum, mitochondria and Golgi apparatus absent; all parasitic.

Remarks: The family Polymastigidae includes primitive oxymonads belonging to the genera Polymastix and Monocercomonoides as reviewed by Kulda and Nohynkova (1978).

Key to the genera

1(2) Body pyriform, axostyle inconspicuous, parasitic in insects Polymastix
2(1) Body round or ovoid, axostyle typically of uniform thickness throughout its length, parasitic in insects as well as vertebrates Monocercomonoides

Genus Polymastix Butschli, 1884

Diagnosis: Pyriform; four flagella arising from two blepharoplasts located at anterior end; cytostome and axostyle inconspicuous; body often covered by protophytan; commensals in insects.

80. Polymastix periplanetae Qadri and Bhaskar Rao, 1963 (Fig. 75 & 76)

Diagnosis: Body pyriform, elongated and somewhat spindle-shaped, measuring 12.0-24.0 (19.18) μm x 5.5-9.5 (7.5) μm, with rounded anterior end, narrower and tapering posterior
end; possessing four flagella arising from two blepharoplasts located at the anterior end and connected behind with the nucleus by thin rhizoplasts; nucleus spherical, ovoid or pyriform with a distinct nuclear membrane and karyosome, situated close to anterior end of the body; all four flagella typically end in fine acronemes about 2-3 μm long; second pair of flagella unequal and the axostyle with long spike, projecting freely at the posterior end to a length of 5-7 μm, arising from the other blepharoplast; cytostome and parabasal body absent.

Host: Periplaneta americana; site of infection: lumen of the hind gut.

Distribution: India: Andhra Pradesh (Hyderabad district).

Genus Monocercomonoides Travis, 1932

Diagnosis: Small, round or ovoid body; four flagella of the acroneme type terminated by a thin filament, inserted in pairs in two places; two directed anteriorly and the other two posteriorly, one or more flagella recurrent adhering to the body for some distance and the continuing in a free trailing portion; each recurrent flagellum accompanied by a ribbon of funis; axostyle filamentous; parasitic of various animals.

Remarks: Members of the genus Monocercomonoides are predominantly parasites living in insects and also inhabit the intestine of vertebrates. None of them is pathogenic.

A. Key to the species of Monocercomonoides in insects

1(2) Body round or pyriform with a tail-like cytoplasmic projection, axostyle thick in the middle and thread-like at the posterior end; a clear unstained zone around the nucleus present ... M. qadrii

2(1) Body spherical, round, oval or irregular, without any tail-like cytoplasmic projection as above

3(4) Body round or oval, axostyle uniformly thick projecting outside as an axostylar ring, a definite funis (an accessory filament) present running along the surface of the body or at the base of trailing flagellum or occasionally from either of them, parasitic in mole cricket, Gryllotalpa africana ... M. ganapatii

4(3) Body spherical or irregular, axostyle not projecting outside the body as above, funis present attaching the trailing flagellum of the body, parasitic in cockroach, Periplaneta americana .. M. garhami

B. Key to the species of Monocercomonoides in reptiles

1(2) Body pear-shaped or elongated, a very thin filamentous axostyle normally not projecting beyond the posterior end of cytoplasm, a cap-like pelta present bordered by two fibrils, parasitic in turtles, Testudo elegans ... M. filamentum.
2(1) Body ovoid, round, sometimes irregular, axostyle filamentous or thread-like and characteristically J or L-shaped, pelta absent, parasitic in chameleon \textit{M. singhi}

C. Key to the species of \textit{Monocercomonoides} in mammals

1(6) Body usually pyriform or egg-shaped

2(3) Body usually pyriform, nucleus with a large endosome, axostyle filamentous never projecting outside the posterior end of the body, funis and pelta absent, parasitic in house rat ... \textit{M. shortti}

3(2) Body oval, pyriform or egg-shaped, nucleus with or without karyosome, axostyle filamentous and sometimes projecting outside the posterior end of the body

4(5) Body oval or pyriform, nucleus spherical in shape, without any karyosome but with uniformly scattered chromatin granules, pelta broad proximally and gradually narrowed into a sharp point, parasitic in Black-naped hare, \textit{Lepus nigricollis} \textit{M. lepusi}

5(4) Body egg-shaped, nucleus irregular and containing a central karyosome and extra-karyosomal granules, a cytostome present with an opening to the exterior, parasitic in goat, \textit{Capra hircus} ... \textit{M. sayeedi}

6(1) Body spherical, nucleus small with endosome, axostyle filamentous, extending from the blepharoplast to the posterior end, having J-shaped curve in some individuals \textit{M. indica}

A. \textit{Monocercomonoides} in insects

81. \textit{Monocercomonoides ganapatii} Bhaskar Rao, 1969

(Fig. 77)

\textit{Diagnosis}: Body round or oval measuring 6.0-9.0 (7.4) \(\mu\text{m}\) in length and 4.5-8.5 (6.63) \(\mu\text{m}\) in width; two blepharoplasts present just above the nucleus at the extreme anterior end of the body, close to each other and connected by a thin rhizoplast; flagella four in number, a pair from each blepharoplast, 3 anterior flagella equal measuring 6.0-13.5 (9.73) \(\mu\text{m}\) in length and the fourth trailing one much longer than the rest measuring 10.0-22.0 (13.95) \(\mu\text{m}\) in length; axostyle uniformly thick, projecting outside with an axostylar ring originating from a blepharoplast responsible for giving rise to one anterior and one long trailing flagellum; nucleus round 1.5-3 (2.33) \(\mu\text{m}\) in diameter, situated near the anterior end of the body, cytoplasm granular with or without vacuoles.

\textit{Host}: \textit{Gryllotalpa africana}; site of infection; rectum.

\textit{Distribution}: India: Andhra Pradesh (exact locality not mentioned).
Remarks: Sultana (1975) redescribed this species from the type host from Maharashtra. She reported the presence of a definite funis running along the surface of the body or along the base of trailing flagellum or in some cases reported from either of them. Besides this structure, she observed that the posterior tip of axostyle is thickened into a knob-like structure, a feature that was interpreted by Bhaskar Rao (1969) as a periaxostylar chromatic ring.

82. *Monocercomonoides garnhami* Bhaskar Rao, 1969
(Figs. 78 & 79)

Diagnosis: Spherical or irregular organism, measuring 5.0-12.5 (9.12) μm in length and 4.5-14.5 (8.28) μm in width; a pair of blepharoplast present at the anterior end just above the nucleus, separated from each other but connected by means of a thin rhizoplast; a pair of flagella, unequal in length, possessing acronemes arising from each of the two blepharoplasts; recurrent flagellum longest and directed backwards an accessory filament called funis present attaching the recurrent flagellum to the body; axostyle and trailing flagellum arising from the same blepharoplast; nucleus kidney-shaped, round or irregular; some individuals having pelta-like semi-circular structures below the nucleus.

Host: *Periplaneta americana*, site of infection: rectum.

Distribution: India: Andhra Pradesh (exact locality not mentioned).

83. *Monocercomonoides qadrii* Bhaskar Rao, 1969
(Fig. 80)

Diagnosis: Body round or pyriform with a tail-like cytoplasmic projection; body dimension 4.5-16.5 (11.13) μm x 4.5-17.5 (10.86) μm; nucleus large, round 1.5-5.5 (3.5) μm in diameter or oval, situated at the anterior end; two blepharoplasts situated at the anterior end of the nucleus lying either horizontal or perpendicular, having connected by a semi-circular thread-like rhizoplast just above the nucleus; a pair of flagella arising from each blepharoplast, 3 of 4 flagella equal in length measuring 9.5-18.0 (12.50) μm and the fourth trailing flagellum slightly longer measuring 9.0-24.5 (18.50) μm; axostyle thick in the middle and thread-like at the posterior end; a clear unstained zone around the nuclei present.

Host: Dung beetle, *Oryctes rhinoceros*; site of infection: rectum.

Distribution: India: Andhra Pradesh (exact locality not mentioned), Maharashtra.

Remarks: Krishnamurthy and Sultana (1977) redescribed this species from the gut of the larvae of the same species of dung beetle, *Oryctes rhinoceros* from Maharashtra and recorded funis which was not described by Bhaskar Rao (1969), while they could not detect the cytostome described by the original author.
B. Monocercomonoides in reptiles

84. Monocercomonoides filamentum Janakidevi, 1962

Diagnosis: Body pear-shaped or elongated, measuring 7.0-12.5 (9.0) μm in length and 3.0-13.5 (5.6) μm in breadth; organelles consisting of a nucleus, two blepharoplasts, four flagella, a slender axostyle and a pelta; nucleus close to anterior border of the body, containing a central endosome surrounded by a clear halo and with no chromatin granules in the periendoosomal area; two blepharoplasts, the ventral giving rise to three flagella and the dorsal to the fourth flagellum, axostyle and pelta; four flagella unequal in length and normally two directed forwards and two backwards of which one acting as a trailing flagellum, adhering to the body for some distance; axostyle remarkably thin and normally not projecting beyond the posterior end of the cytoplasm; pelta cap-like and bordered by two fibrils; cytoplasm often with granules and vacuoles containing ingested bacteria.

Host: Testudo elegans Schoepff; site of infection: large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Monocercomonoides filamentum Janakidevi, 1962 is considered to be a synonym of Monocercomonoides lacertae (Tanabe, 1933) by Kulda and Nohynkova (1978). However, this species M. filamentum is retained herein until further review based on type materials/specimens.

(Figs. 81 & 82)

Diagnosis: Body ovoid or round, or irregular in some cases, measuring 6.68-11.31(8.72) μm x 4.11-10.28 (7.25) μm; two blepharoplasts, dorsal and ventral, situated near the anterior end of the body, dorsal one giving rise to two anterior flagella while the third flagellum, the posterior flagellum and the axostyle originating from the ventral blepharoplast; three anterior flagellum slightly unequal measuring 6.68-14.40 (11.74) μm, 8.74-19.02 (14.42) μm and 8.23-16.97(12.67) μm respectively; posterior flagellum longer ranging from 13.3-30.33(22.52) μm in length; the proximal portion of posterior flagellum attached to the body surface possessing a thick straight or slightly curved rod-like structure corresponding to the funis described by Nie (1950); axostyle filamentous or thread-like typically J or L shaped and peculiar in this species; nucleus round or oval 2.43 μm x 2.56 μm, with a distinct nuclear membrane and a large and conspicuous endosome, and a a clear space in between, cytoplasm vacuolated and with rod-like or granular bacteria; pelta and cytostome absent.

Host: Chameleon, Chameleon zeylanicus; site of infection: large intestine.
Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Monocercomonoides singhi Krishnamurthy, 1967 is considered to be a synonym of Monocercomonoides lacertae (Tanabe, 1933) by Kulda and Nohynkova (1978). However, the species M. singhi is retained herein until further review based on type materials/specimens as stated above.

C. Monocercomonoides in mammals

86. Monocercomonoides indica Navarathnam, 1970
(Figs. 83 & 84)

Diagnosis: Body spherical or oval, 5.5-11.0 (8.4) μm x 4.0-11.0 (7.4) μm; nucleus small, spherical, 1.5-3.0 μm x 1.5 x 3.5 μm, possessing a small round endosome with granules around it, situated at the anterior end of the body; two blepharoplasts situated at the extreme anterior end of the body, connected by a thin rhizoplast; one blepharoplast giving rise to two anterior flagella and the other the third flagellum, the recurrent flagellum, and the axostyle; three anterior flagella unequal in length, measuring 5.0-11.5 (8.1 μm), 5.5-13.0 μm, and 6.0-16.5 (10.9) μm respectively; fourth flagellum very long, 6.5-20.0 (15.3) μm, running posteriorly along margin of the body; all flagella ending in acronemes; funis and pelta absent; axostyle filamentous, 5.0-9.5 μm, extending from the blepharoplast to the posterior end of the body, curved in the form of J-shape in some individuals; axostylar ring absent.

Host: Indian gerbil, Gerbillus indicus; site of infection: caecum and large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

87. Monocercomonoides lepusi Todd, 1963
(Fig. 85)

Diagnosis: Body oval, pyriform or rounded measuring 4.23-9.46 (7.10) μm in length and 3.76-7.52 (4.65) μm in breadth; four flagella 4.70-17.39 (13.08) μm, one of them constantly recurrent, usually applied to the body surface in its anterior portion and longer than the rest of the flagella; three anterior flagella, two equal but shorter than the third one, all uniform in thickness, entirely separated from one another extending in different directions and connected with two blepharoplasts situated on the anterior surface of the nucleus, no terminal filament in any one of the flagella; blepharoplast connected by a transverse filament, one of which giving rise to two anterior flagella while the other to the third one, the recurrent flagellum and the axostyle; costa-like structure known as funis (Nie, 1950) originating from the blepharoplast, running parallel to the recurrent flagellum but separated from it in the posterior part; axostyle filamentous 2.35-7.52 (5.93) μm in a few specimens projecting a little beyond
the posterior end of the body; pelta broad proximally and gradually narrowed into a sharp
point; nucleus spherical 0.47-1.88 (0.98) μm in diameter, without any karyosome but with
uniformly scattered chromatin granules situated in the anterior part of the body.

Host: Black-naped hare *Lepus nigricollis*; site of infection caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

88. *Monocercomonoides sayeedi* Abraham, 1961

Diagnosis: Body egg-shaped, measuring 4.8-10.0 (7.0) μm in length and 3.5-8.7 (6.3) μm
in breadth; nucleus irregular in shape and containing a central karyosome and extra-karyosomal
granules; two blepharoplasts present connected by a rhizoplast; dorsal blepharoplast with
three basal granules from which arising the posterior flagella and axostyle; ventral blepharoplast
with two basal granules giving rise to two anterior flagella; all four flagella short and ending
in acronemes; a filamentous axostyle present, sometimes protruding beyond the body-wall;
a cytostome with an opening to the exterior present in between the blepharoplasts and under
the nucleus.

Host: *Capra hircus* Linn.: site of infection: rumen.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: According to Kulda and Nohynkova (1978) *Monocercomonoides sayeedi*
Abraham, 1961 is a synonym of *Monocercomonoides caprae* (Das Gupta, 1935) occurring
in the rumen of goats in India, which is, even according to them, an insufficiently described
species measuring 5-12 μm x 3.5-8 μm and has relatively short flagella, slightly longer than
body and thin axostyle with or without a very short caudal projection. As such, until further
review, *M. sayeedi* is considered, herein, as *species inquirenda*.

89. *Monocercomonoides shortti* Navaratham, 1970

(Figs. 86-88)

Diagnosis: Body usually round or pyriform, 5.0-10.5 (6.96) μm x 4.5-9.0 (6.73) μm in
dimension; cytoplasm granular and always containing food vacuoles; nucleus with large
endosome situated at the anterior end of the body; two blepharoplasts connected by a thin
rhizoplast; four flagella, a pair arising from each blepharoplast, three flagella equal in length
(3.0-12.0 μm) directed anteriorly, fourth flagellum 6.0-17.0 μm in length, slightly longer than
the three and directed backwards, all flagella uniform in thickness but not terminating in
knobs or acronemes; accessory filament and pelta absent; axostyle filamentous, uniform in
thickness, with an axostylar ring but never protruding outside the body.
Host: Indian rat, Rattus rattus frugivorous; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Supraorder PARABASALIDEA
Order TRICHOMONADIDA
Family MASTIGAMOEIDAE

Diagnosis: With one to three or rarely four flagella and axopodia or lobopodia; uninucleate; flagellum arising from a basal granule connected with the nucleus by a rhizoplast; binary fission in both trophic and encysted stages; holozoic or saprozoic; majority free-living and a few parasitic.

Genus Dientamoeba Jepps and Dobell, 1918

1918. Dientamoeba Jepps and Dobell, Parasitology, 10: p. 352.

Diagnosis: Small amoeba; number of binucleate trophozoites often greater than that of uninucleate forms; nuclear membrane delicate; endosome consisting of several chromatin granules embedded in plasmomomic substances and connected with the membrane by delicate strands.

Remarks: Members of the genus Dientamoeba was earlier classified under Amoebida and Family Endamoebidae (Kudo, 1966). Levine et al. (1980) placed this genus under Order Trichomonadida.

90. Dientamoeba dobelli Bhaskar Rao, 1970
(Figs. 89-90)

Diagnosis: Round (av. 12.59 μm in diameter) or elongated body, measuring 8.5-33.5 (13.53) μm in length and 8.5-16.0 (11.96) μm in width; clear ectoplasm, thickly granular endoplasm with few vacuoles; few organism with a slightly blunt pseudopodium on one side of the body; usually with two nuclei (av. 4.53 μm in diameter), having large round central or eccentric endosomes; endosome a compact mass (av. 2.30 μm in diameter), with a ring of small chromatin granules arranged in between the nuclear membrane and the endosome; very few with a single nucleus.

Host: Larva of dung beetle, Oryctes rhinoceros; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).
Family MONOCERCOMONADIDAE

Diagnosis: Three to five anterior flagella; recurrent flagellum free for its entire length or with proximal part adhering for a greater or less distance to dorsal body surface along accessory filament of diameter about equal to that of flagellum; in some genera low undulating membrane with few undulations extending between recurrent flagellum with accessory filament and body surface; costa absent; capitulum of axostyle usually extending anteriorly into distinct pelta; trunk of axostyle often relatively slender, occasionally quite stout, with or without periaxostylar rings; parabasal apparatus with rod-, or V-shaped body.

Subfamily MONOCERCOMONADINAE Kirby, 1944

Diagnosis: Generally with characters of family; no undulating membrane; body ellipsoidal or ovoidal; terminal segment of axostyle projecting beyond posterior body surface.

Key to the genera

1(2) Three anterior flagella; recurrent flagellum equal to or longer than anterior flagella
... Monocercomonas

2(1) Five anterior flagella; recurrent flagellum nearly equals anterior flagella in length
... Hexamastix

Genus Monocercomonas Grassi, 1879

Diagnosis: Three anterior flagella; recurrent flagellum equal to or longer than anterior flagella (not over 2x longer), free for its entire length or with proximal part adherent for some distance to dorsal body surface along accessory filament; capitulum of axostyle typically continuing into pelta; trunk of axostyle often relatively slender, occasionally quite stout, without or less frequently with well-defined peri-axostylar ring(s); parabasal body rod-, disc-, or V-shaped.

Remarks: Krishnamurthy (1968) classified the genus Monocercomonas into different subgenera such as Alimonas, Monocercomonas and Qadrimonas based on size differences as well as presence or absence of certain characters which include accessory filament, axostyle, pelta, etc. But the subgeneric treatment is not taken into consideration in conformity with entire text of the present document. Key to all the species of the genus Monocercomonas reported from Andhra Pradesh is given excepting M. kakatiyae and M. cutleri from reptilian and mammalian hosts respectively since description / diagnosis of these species could not be consulted due to lack of concerned literature.

A. Key to the species of Monocercomonas of insects

1(4) Accessory filament present
2(3) Anterior flagella almost equal in length, cytostome present, nucleus with central endosome and scattered granules ... \textit{M. corydiae}

3(2) Anterior flagella unequal, cytostome absent, nucleus with dense chromatin
... \textit{M. osmaniae}

4(1) Accessory filament absent

5(6) Axostyle with a long posterior spike, trailing flagellum very long about two and a half times body length .. \textit{M. laccotrephis}

6(5) Axostyle with a short spike, trailing flagellum short, almost as long as anterior flagella .. \textit{M. leucophaeae}

B. Key to the species of \textit{Monocercomonas} of reptiles

1(14) Accessory filament present

2(9) Accessory filament very short, periaxostylar chromatic rings absent

3(6) Pelta cone-like

4(5) Body pyriform or oval, usually 12-14 \textmu m in length including free projection of the axostyle .. \textit{M. colubrorum}

5(4) Body oval with a rounded anterior anterior end and round or bluntly pointed posterior end, 6.5-15.0 \textmu m in length .. \textit{M. waltairensis}

6(3) Pelta crescentic

7(8) Body pyriform or rounded, nucleus large and ovoidal \textit{M. garnhani}

8(7) Body pear-shaped, nucleus horseshoe-shaped .. \textit{M. rayi}

9(2) Accessory filament long, periaxostylar chromatic rings present

10(11) Parasitic in snake (\textit{Eryx johni}); body fusiform, 8.2-14.9 \textmu m in length excluding the posterior axostylar spike; ... \textit{M. eryxi}

11(10) Parasitic in lizards

12(13) Body pyriform, round oval or even irregular in shape, 6.7-10.8 \textmu m in length excluding the posterior axostylar spike; nucleus rounded, ovoidal or kidney-shaped, with a central endosome, parasitic in \textit{Varanus} sp. ... \textit{M. varani}

13(12) Body oval or pear-shaped, 8-14 \textmu m in length, nucleus oval, containing several deep-stained, irregular chromatin masses, parasitic in \textit{Calotes versicolor}............................
... \textit{M. srikakulamensis}

14(1) Accessory filament absent
15(16) Parasitic in snake (*Dryophis mycterizans*); body ovoid, pyriform, occasionally rounded or irregular, 6.1-12.8 μm in length excluding spike *M.gopali*

16(15) Parasitic in lizards

17(18) Capitulum present; body oval with rounded ends, 8-11 μm in length; nucleus elongate; parasitic in *Hemidactylus prashadi* .. *M. prashadi*

18(17) Capitulum absent

19(20) Body round or oval, 9-16.5 μm in length; nucleus oval; axostyle highly curved; parasitic in *Calotes versicolor* .. *M. calotesi*

20(19) Body elongate with rounded ends, 8-13 μm in length; nucleus round or oval with chromatin materials in the form of irregular clumps; axostyle straight or slightly curved; parasitic in *Hemidactylus prashadi* .. *M. ganapati*

C. Key to the species of Monocercomonas of birds

1(2) Body spherical or pyriform, nucleus spherical without endosome, axostyle not projecting outside the body ... *M. anasae*

2(1) Body elongated or pear-shaped with snout-like anterior end, axostyle sharply tapering and projecting outside the body ... *M. qadrii*

D. Key to the species of Monocercomonas of mammals

1(2) Axostyle projecting beyond the body forming a short spike *M. andhrae*

2(1) Axostyle filamentous, either projecting or not projecting beyond the body

3(4) Blepharoplasts one, axostyles filamentous and never projecting outside the body *M. hoarei*

4(3) Blepharoplasts one or two, filamentous axostyle projecting outside the body

5(6) Body round, oval or pyriform, anterior end round and posterior end converging into a cone, blepharoplast large and single, nucleus oval, elongated or triangular without any chromatin plaques ... *M. gerbili*

6(5) Body oval, blepharoplasts two in number, nucleus oval or ellipsoidal with four chromatin plaques ... *M. lori.*

A. Monocercomonas in insects

(Fig. 91)

Diagnosis: Body typically oval or pear-shaped, measuring 6.5-12.0 (8.5) \(\mu m\) x 5.0-9.5 (8.5) \(\mu m\); anterior end drawn out into a projection that demarcated from rest of the body by a notch; blepharoplast at the vicinity of the notch; three anterior flagella almost equal in length, uniform in thickness, not ending in acroneme; fourth flagellum directed backwards, attached to the body to some extent, attached portion (3.0-8.0 \(\mu m\)) thick due to accessory filament present along the base of the trailing flagellum; trailing flagellum ending in acroneme of 2.0-6.5 \(\mu m\) in length; nucleus round, situated below the blepharoplast, consisting of a central endosome with scattered granules at the periphery of the nucleus; axostyle stout, tapering posteriorly, generally curved, measuring 4.0-10.0 (6.5) \(\mu m\); cytostome present.

Host: Corydia petiveriana; site of infection: rectum.

Distribution: India: Andhra Pradesh (exact locality not mentioned).

92. Monocercomonas laccotrephis Bhaskar Rao, 1970
(Fig. 92)

Diagnosis: Body round or oval, measuring 5.5-9.0 (7.5) \(\mu m\) x 4.0-7.5 (5.9) \(\mu m\); accessory filament absent; blepharoplast very small of single granule; axostyle hyaline rod-like, well developed with a calyx, stem and with a long posterior spike (6.7 \(\mu m\)) as long as the body, calyx well developed; nucleus at the anterior third of the body on the calyx of axostyle, usually oval or elongated, with a small endosome and irregularly scattered chromatin granules; four flagella unequal, originating from the blepharoplast, three anterior flagella, 8.9, 11.8 and 13.4 \(\mu m\) respectively, uniformly thick and not ending in acronemes or knobs and one trailing flagellum, two anterior flagella nearly equal attached at the base; trailing flagellum very long (17.6 \(\mu m\)) about 2 \(\frac{1}{2}\) times body length and with a very long acroneme 4.0-8.0 \(\mu m\).

Host: Laccotrephes maculatus; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

(Fig. 93)

Diagnosis: Body round or oval, 5.5-9.5 (7.3) \(\mu m\) x 4.0-7.0 (5.3) \(\mu m\); blepharoplast very small of single granule, situated at the extreme anterior end of the body; axostyle arising from the blepharoplast, measuring 3.0-7.3 (4.8) \(\mu m\), slightly thick at the anterior end, posteriorly tapering and projecting as a short spike, 1.0-2.0 \(\mu m\) outside the body; four approximately equal flagella (5.8-10.5 \(\mu m\) av. 8.8 \(\mu m\)), three anteriorly directed, trailing flagellum short, almost as long as anterior flagella; nucleus oval or reniform, located at the anterior end of the body a little behind the blepharoplast; cytoplasm coarsely granular; accessory filament absent.
Host: *Leucophaea sinninamensis*; site of infection: rectum.

Distribution: India: Andhra Pradesh (exact locality not mentioned).

(Fig. 94)

Diagnosis: Body pear-shaped or round or oval, 6.5 -10.0 (8.2) μm x 3.5 – 8.0 (5.2) μm; accessory filament present; four unequal flagella from a single blepharoplast, 7.5, 10.4, 12,6 and 16.7 μm respectively, three flagella anteriorly directed, fourth one longer, trailing and directed backwards, trailing flagellum attached to the body by accessory filament in a few individuals and some with terminal acroneme; cytostome absent; nucleus at the anterior third of the body, usually oval or round, with dark and densely scattered chromatin granules; mastigont element originating from blepharoplast situated in front of nucleus; axostyle hyaline and stout, wide at the anterior end and gradually tapering to a point emerging outside the body for a considerable distance (4.5-10.5 μm).

Host: *Cryptocercus* sp.; site of infection: rectum.

Distribution: India: Andhra Pradesh (exact locality not mentioned).

B. *Monocercomonas* in reptiles

95. *Monocercomonas calotesi* Saratchandra, 1979
(Figs. 95 & 96)

Diagnosis: Body round or oval, 9.0-16.5 μm x 12.5-15.0 μm; cytoplasm vacuolated, vacuoles containing bacteria; nucleus nearer to the anterior end, oval, 4.5 μm x 2.4 μm; blepharoplast small in front of nucleus; flagella four in number, unequal, one trailing flagellum 18.0-36.0 μm, other three anterior flagella, 10.0-28.0 μm; a slender curved axostyle, extending from nucleus to the posterior end; capitulum, spike, pelta, accessory filament, periaxostylar chromatic rings and endoaaxostylar granules absent.

Host: *Calotes versicolor*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Andhra University Campus, Waltair, Visakhapatnam district).

Remarks: This species is placed under the subgenus *Alimonas* because it lacks pelta, accessory filament, periaxostylar chromatic rings and endoaaxostylar granules (Krishnamurthy, 1968).
96. *Monocercomonas colubrorum* (Hammerschmidt, 1844)
(Fig. 97 & 98)

Diagnosis: Body pyriform or oval, 9-20 µm (mostly 12-14 µm) in length including free projection of the axostyle, 5-10 µm in width; possessing organelles like flagella, blepharoplast, axostyle, pelta, parabasal body, nucleus and cytostome; blepharoplast spheroidal located at the anterior part of the body; flagella 4 in number, all arising from the blepharoplast, 3 anteriorly directed and the 4th one trailing posteriorly; 3 anterior ones closely associated at their bases, one conspicuously shorter than the other two; axostyle usually hyaline tube-like structure without any chromatic ring, but with a spoon-like structure called calyx near the nuclear region; pelta at the most anterior portion of the body; nuleus ellipsoidal, lying dorsal to the axostyle; cytoplasm granular or vacuolated; cytostome lying ventral to the nucleus.

Host: *Zamenis mucosus*; site of infection: rectum.

Remarks: *Monocercomonas colubrorum* inhabits the large intestine and cloaca of squamate reptiles (Moskowitz, 1951; Honigberg, 1963). Krishnamurthy (1968) reports this species from the above-mentioned Indian host. But it is a common flagellate of a large number of snakes and lizards (Moskowitz, 1951). According to Krishnamurthy (1968) Indian forms are similar to that described by Moskowitz (1951) except for minor differences, particularly in the structure of the pelta and the axostyle. The pelta is generally short, thick and triangular as compared with conical pelta described by Moskowitz (1951). The axostyle projects outside the body for a distance and tapers sharply to a point while it is short with rounded tip in the original description.

(Fig. 99)

Diagnosis: Body fusiform, measuring 8.2-14.9(11.0) µm in length excluding the posterior axostylar spike and 5.7-12.9(8.5) µm in breadth; blepharoplast small lying at the anterior end, giving rise to three anterior flagella, a trailing flagellum with its accessory filament, the axostyle and the pelta; three anterior flagella closely associated at their basal portions, one of them conspicuously short, measuring 9.8-16.4(12.5) µm, other two slightly unequal measuring 10.8-20.6(16.6) µm and 13.4-21.6(17.7) µm in length, all uniform in their thickness; posterior flagellum much longer than the anterior flagella measuring 17.5-33.9(25.9) µm, basal portion attached to the body for some distance, the attached portion showing the
presence of an accessory filament of same thickness as the flagellum; axostyle hyaline tubular structure slightly broad anteriorly but a distinct capitulum lacking, with a small bulb-like structure at the point of its emergence from the posterior end then suddenly tapering into a fine spine of 1.0-6.7(3.5) \(\mu m \) in length, no endoaxostyial granules but periaxostyial chromatic granules present around the swelling in the form of one or two rings; pelta half-sickle shaped short and thick lying over the blepharoplast; nucleus large spherical or elliptical, 2.1 \(\mu m \) in diameter with a central endosome, lying behind the blepharoplast.

Host: *Eryx johni*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

98. Monocercomonas ganapatii Saratchandra and Narasimhamurti, 1982
(Figs. 100 & 101)

Diagnosis: Body elongate with rounded ends, 8.0-13.0 \(\mu m \times 2.6-5.3 \mu m \); cytoplasm containing vacuoles; nucleus round or oval, 2.5-3.5 \(\mu m \times 1.0-2.6 \mu m \), situated near the anterior end; four unequal flagella, measuring 10-20 \(\mu m \), originated from a single basal body situated near the anterior end; trailing flagellum posteriorly directed; axostyle slender, straight or slightly curved, situated along the central axis, narrow at the anterior region, broad at the posterior end and not extending beyond the cell body; capitulum, spike, peri-axostyial chromatic rings, endoaxostyial granules, pelta and accessory filament absent.

Host: *Hemidactylus prashadi*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam district).

(Figs. 102 & 103)

Diagnosis: Body typically pyriform in living condition but tending to become rounded on fixation; cytoplasm with no cytoplasmic granules or bacteria and no cytostome; 3 anterior flagella unequal in length, shortest one 9.8-8.5(14.5) \(\mu m \) and the other two longer but subequal measuring 14.9-22.6 (17.6) \(\mu m \) and 16.5-22.6(18.7) \(\mu m \) respectively; trailing flagellum quite long, 19.5-37.0 (30.4) \(\mu m \) in length, a short accessory filament associated with its proximal portion, distal end of the flagellum with an acroneme of 1.0-5.7 \(\mu m \) in length; axostyle slender and tubular, with no distinct capitulum at posterior end projecting out of the body to a thin filament or fine point, with no endoaxostyial granules or periaxostyial chromatic rings; pelta slender long and crescent-shaped; nucleus large and ovoidal measuring 1.5-3.6 (2.6) \(\mu m \times 1.0-3.6 (2.2) \mu m \), situated behind the blepharoplast.
Host: *Lycodon aulicus*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district) and Maharashtra.

100. *Monocercomonas gopali*, Krishnamurthy, 1967
(Fig. 104)

Diagnosis: Body usually ovoid or pyriform, occasionally rounded or irregular, measuring 6.1-12.8 (9.9) μm in length excluding spike and 3.1-9.2 (6.0) μm in width; cytoplasm uniformly stained devoid of any bacteria or other inclusion; no cytostome; blepharoplast situated near the anterior end giving rise to the three anterior flagella, the posterior flagella and the axostyle; three anterior flagella unequal, measuring 10.3-16.4 (12.4) μm, 12.3-18.5 (12.6) μm and 13.9-20.6 (17.3) μm respectively; posterior flagellum longer, 20.6-35.5 (28.1) μm, free from the body surface throughout its length, with a terminal acroneme of 3.4 μm in length, accessory filament absent; axostyle slender slightly broad at the anterior end but a distinct calyx absent, posterior end sharply tapering and projecting out of the body as free spike of 3.1-10.5 (6.1) μm in length, no endoaxostylar granules and periaxostylar chromatric rings; pelta small and sickle-shaped lying over the blepharoplast; nucleus large and ovoidal situated a little anterior to the middle of the body.

Host: *Dryophis mycterizans*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Diagnosis: Not available.

Host: *Varanus indica*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Warangal district).

(Figs. 105 & 106)

Diagnosis: Body oval with rounded ends, 8-11 x 5-8 μm, with thin cell membrane; cytoplasm containing vacuoles; nucleus elongate, situated at anterior end, slightly curved round the capitulum of the axostyle, measuring 3.0-5.0 μm x 1.5-2.5 μm; axostyle and four flagella originating from the basal body situated at the anterior end; trailing flagellum,
19-31 μm, posteriorly directed; other three anteriorly directed flagella, unequal in length, 10-19 μm; axostyle 10-17 μm long, slightly curved and extended beyond the cell body at the posterior end to form a short pointed spike measuring 1-3 μm, anterior end of axostyle in the form of an ovate capitulum, bending on the nucleus; pelta, accessory filament, periaxostylar chromatic rings and endoaxostylar granules absent.

Host: Hemidactylus prashadi; site of infection: rectum.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam district).

103. Monocercomonas rayi Saratchandra and Narasimhamurti, 1982
(Figs. 107 & 108)

Diagnosis: Body pear-shaped, with rounded anterior end and pointed posterior end, measuring 7-12 μm in length excluding spike and 2.4 μm in breadth; cytoplasm non-vacuolated; cell membrane thin; nucleus horseshoe-shaped with two limbs measuring 3-5 μm, chromatin materials concentrated at its anterior part; four flagella of unequal length originated from a single blepharoplast situated at the anterior end of the nucleus; trailing flagellum 17-23 μm in length, supported by an accessory filament of 1.5-1.8 μm in length; anterior flagella 8-16 μm, 9-18 μm and 12-19 μm respectively; pelta slender, curved, 1.5-2.0 μm; axostyle slender, with a bulb-like capitulum; posterior end projected to form a sharp pointed spike of 2.0-4.5 μm; periaxostylar chromatic rings and endoaxostylar granules present.

Host: Hemidactylus prashadi; site of infection: rectum.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam district).

Remarks: This species is placed under the subgenus *Monocercomonas* by Krishnamurthy (1968).

104. Monocercomonas srikakulamensis Saratchandra and Narasimhamurti, 1979
(Figs. 109 & 110)

Diagnosis: Body oval or pear-shaped, 8-14 μm x 5-8 μm; anterior end broadly rounded and posterior end either rounded or bluntly pointed; cytoplasm with a few vacuoles containing bacteria; nucleus oval, 2-4 μm x 1.3-2.0 μm, situated at the anterior end containing several deep stained irregular chromatic masses; four unequal flagella ranging from 9 to 29 μm, arising from a single kinetoplast, one of them trailing flagellum directed posteriorly and supported by an accessory filament of 2-3 μm, remaining 3 flagella directed anteriorly, supported by a short curved pelta of 2.5-4 μm in length; a slender curved axostyle extending
from the nucleus to the posterior end; capitulum, spike, periaxostylar chromatic rings and endoaxostylar granules absent

Host: *Calotes versicolor*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Srikakulam district).

Remarks: This species is placed under the subgenus *Qadrimonas* by Krishnamurthy, (1968) because the accessory filament is relatively long and the ratio of accessory filament/trailing flagellum is 0.03-0.22.

(Figs. 111 & 112)

Diagnosis: Body pyriform or round or oval or even irregular in shape, measuring 6.7-10.8 (8.9) μm in length excluding the axostylar spike and 4.1-8.2 (5.8) μm in width; nucleus rounded, ovoidal or kidney-shaped, 1.5-3.1 (2.9) μm x 1.5-2.6 (2.0) μm, with a central endosome and situated just behind the blepharoplast at anterior end of the body; blepharoplast giving rise to three unequal anterior flagella, 10.3-14.9 (13.1) μm, 10.8-18.5 (16.5) μm and 14.9-20.1 (18.1) μm respectively, and a trailing flagellum of 20.1-36.5 (25.2) μm in length having an accessory filament of same thickness as the flagellum at its basal part; axostyle hyaline, tubular and apparently robust, anterior two-thirds of uniform thickness, posterior third first bulb-like and having distinct periaxostylar granules in the form of two rings surrounding the bulb and then suddenly tapering to a fine spine, projecting outside the body; pelta inverted semi-crescentic structure.

Host: Varanus sp.; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

106. *Monocercomonas waltairensis* Narasimhamurti and Saratchandra, 1980
(Figs. 113 & 114)

Diagnosis: Body oval, 6.5-15.0 μm x 4.8—9.5 μm, with a rounded anterior end and round or bluntly pointed posterior end; cell membrane thin; cytoplasm with vacuoles containing bacteria and food materials; nucleus 2.0-4.5 x 2.0-3.5 μm, homogenously deep, situated at anterior end; four unequal flagella originated from blepharoplast situated at anterior end of the nucleus; trailing flagellum 12-31 μm, longer than the others, supported by an accessory filament of 1-4 μm, ratio of accessory filament/trailing flagellum 0.06-0.2; remaining three flagella 7-21 μm, 10-22 μm and 11-24 μm respectively; pelta broad at the base and pointed at the tip; axostyle slightly curved and extended posteriorly beyond the cell body to form a
short pointed spike, anterior part of axostyle expanded in the form of a calyx; periaxostyly chromatic rings and endoaxostyly granules absent.

Host: *Hemidactylus prashadi*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam district).

Remarks: This species is placed under the subgenus *Monocercomonas* by Krishnamurthy (1968).

107. *Monocercomonas* sp.

Host: *Hemidactylus giganteus*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Krishnamurthy (1968) reported this unnamed species from the aforesaid host.

108. *Monocercomonas* sp.

Host: *Varanus* sp.; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Krishnamurthy (1968) reported this unnamed species from the aforesaid host.

C. *Monocercomonas* in birds

(Fig. 115)

Diagnosis: Body spherical or pyriform, measuring 4.5-10.0 (7.45) μm in length and 2.5-7.5 (4.5) μm in breadth; cytopasm finely granulated; nucleus spherical, 1.0-4.0 (2.3) μm in diameter, with no definite endosome, situated at the anterior end below the blepharoplast; blepharoplast small, giving rise to three anterior unequal flagella and a longer trailing flagellum, all of uniform thickness; axostyle tubular, originating from the blepharoplast, characterised by bulbous capitulum, uniform trunk and the pointed tip, not projecting outside the body and not having chromatic ring at the posterior region; pelta and cytostome absent.

Host: *Anas* sp.; site of infection: intestine.

Distribution: India: Andhra Pradesh (exact locality not mentioned).

110. *Monocercomonas qadrii* Navarathnam, 1971

(Fig. 116)

Diagnosis: Body elongated and pear-shaped with snout-like anterior end, 3.5-9.5 (6.66) μm x 3.0-9.0 (4.72) μm; nucleus oval or elongated, 1.5-4.0 (2.3) μm x 1.0-3.0 (1.4) μm, situated at the anterior part of the body, possessing a small central endosome; blepharoplast situated at the extreme anterior end of the body or a little distance away, giving rise to four flagella and an axostyle; three anterior unequal flagella usually directed backward in the form of a bundle measuring 10.0-8.5 μm, 10.0-21.0 μm, 9.0-18.5 μm, trailing flagellum independent varying from 10.5-24.5 μm in length; axostyle tubular slender and almost uniform in diameter measuring 4.5-11.0 μm in length, anterior part slightly expanded but no definite caputulum, posteriorly end sharply tapering and projecting outside the body, axostylar ring absent; cytoplasm finely granular.

Host: Gallus gallus domesticus; site of infection: intestine.

Distribution: India: Andhra Pradesh (exact locality not mentioned).

D. Monocercomonas in mammals

111. *Monocercomonas andhrae* Kalavati, Saratchandra and Sambasivarao, 1983

Material examined: Sev. exs., from Visakhapatnam.

Diagnosis: Body oval, 6-11 μm x 3-8 μm, with thin body wall, rounded anterior end and usually pointed posterior end; axostyle expanded and curved at the anterior end while narrow and pointed at posterior end, projecting beyond the cell body forming a short spike of 0.5 μm; pelta sickle-shaped, measuring 2.0-3.5 μm; accessory filament, periaxostylar chromatic rings, endoaxostylar granules and siderophilic bodies absent.

Host: Rattus rattus; site of infection: rectal content.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

112. *Monocercomonas cutleri* Navarathnam, 1971

Diagnosis: Not available.

Host: Cavia cutleri; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

113. *Monocercomonas gerbilli* Todd, 1963

(Fig. 117)

Diagnosis: Body round, oval or pyriform, measuring 4.23-10.36 (7.38) μm in length and 2.82-7.62 μm in width; anterior end round and posterior end converging into a cone from which axostyle, a filamentous rod-shaped structure, gaining prominence from the cytoplasm beyond the posterior end of the nucleus and projecting about 0.94-3.76 μm outside the body; 4 flagella arising from a large spherical blepharoplast, 0.23-0.94 (0.53) μm in diameter, situated at the anterior end of the body; 3 anterior flagella, 5.17-8.93 (7.33) μm, usually free from one another; fourth flagellum, 10.34-17.39 (12.69) μm, recurrent, longer than the anterior three; cytoplasm granular with a few vacuoles; nucleus oval, elongated or triangular, averaging 1.79 μm x 0.94 μm, situated posterior to blepharoplast.

Host: Indian Gerbille, Gerbillus indicus (Hardw.): site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

114. Monocercomonas hoarei Navarathnam, 1970
(Fig. 118)

Diagnosis: Body spherical, irregular or oval, measuring 5.0-8.5 μm in length and 4.0-7.5 μm in breadth; cytoplasm filled with many granules; nucleus bean-shaped or oval, 1.0-3.5 μm x 1.0-5.0 μm, containing large and fine chromatin granules; two blepharoplasts, three equal anterior flagella and a long trailing flagellum present; flagella neither terminating in knobs nor in acronemes; axostyle, slightly broad at the anterior region and tapering towards the posterior end, never projecting outside the body, usually curving inside the cytoplasm.

Host: Rattus rattus frugivorous; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: This species differs from M. gerbilli Todd, 1963 in having two blepharoplasts and conspicuous axostyle never projecting outside the body. Unlike this species M. gerbilli has a single blepharoplast and the axostyle is filamentous. It also differs from M. lori Abraham, 1962 in the absence of four plaques in the nucleus, the trailing flagellum not terminating in acroneme and the axostyle not projecting beyond the body.

115. Monocercomonas lori Abraham, 1961
(Figs. 119-121)

Diagnosis: Body oval in shape in typical form measuring 6.2-10.0 (8.4) μm x 5.2-9.0(6.8) μm; blepharoplasts two in number without any connection between them; flagella four in number, three anterior flagella originating from anterior or secondary blepharoplasts and one posterior flagellum (av. 21.5 μm), 2.5 times the length of the body arising from the posterior or primary blepharoplast, two of 3 anterior flagella equal in length (av. 10.7 μm) and tending
to adhere together the third anterior flagellum shorter (av. 8.2 µm) and solitary; nucleus oval or ellipsoidal with four chromatic plaques; axostyle single, hyaline and rod-shaped divisible into capitulum, stem and conical tip-projecting beyond the body.

Host: Indian slender loris, *Loris tardigradus lydekkerianus* Cobbera, 1908; site of infection: intestine (in 4 out of 6 hosts).

Distribution: India: Eastern Ghats, probably from Andhra Pradesh (exact locality not mentioned).

Remarks: The geographic distribution of this subspecies of mammalian host is within Eastern Ghats, which pass through several districts of Andhra Pradesh.

Genus Hexamastix Alexeieff, 1912

Diagnosis: Five anterior flagella in fully developed organisms (in some species a few young individuals with three and in larger numbers with four such flagella); recurrent flagellum nearly equal to anterior flagella in length and diameter; capitulum of axostyle continuing into pelta in many species; trunk of axostyle varying from very slender to quite stout; parabasal apparatus with rod- or disc- or V-shaped body, with long filament in some species.

Remarks: As stated earlier, key to the species of the genus *Hexamastix* is given for those species only whose descriptions are a vailable. Accordingly, *H. hyderabadensis* from a mammalian host is not included in the key.

A. Hexamastix in insects

A. Key to the species of Hexamastix in insects

1(2) Body round or pyriform, axostyle hyaline and ribbon-like with broad spoon-like calyx, twisted middle portion and tapering posterior part, ultimately projecting outside the body, pelta and cytostome present ... *M. singhi*

2(1) Body pyriform or oval, axostyle stout rod-like and projecting outside the body, pelta and cytostome absent ... *M. periplanetae*

B. Key to the species of Hexamastix in mammals

1(2) Body ovoid, pyriform or in various shape, axostyle filamentous, a crescentic or sickle-shaped pelta present ... *H. sciuri*

2(1) Body shape more or less as above, axostyle thick rod-like

3(4) Axostyle crescent-shaped with spoon-shaped capitulum, cytostome ‘V’-shaped pelta absent ... *H. gopali*

4(3) Axostyle typically rod-like, its anterior portion broad
5(6) Axostyle tapering posteriorly to a thin filament, pelta obscure... \ldots\ldots H. spheroides
6(5) Terminal tip of axostyle projecting outside the body, pelta distinct \ldots\ldots H. gerbilli

A. Hexamastix in insects

(Figs. 122 & 123)

Diagnosis: Body pyriform or oval, measuring 4.0-13.0 (11.69) μm in length and 3.5-8.5 (7.25) μm in width; single blepharoplast situated at the anterior end, giving rise to six flagella and an axostyle; nucleus round, oval or bean-shaped, containing granules of uniform size, located behind the blepharoplast; axostyle stout, rod-like, 7.5-15.0 (12.58) μm in length, gradually tapering posteriorly, usually projecting outside the body; flagella (av. 12.32 μm) usually as long as the body and normally directed forwards; parabasal body, pelta and cytostome absent.

Host: Periplaneta americana, site of infection; faecal content.

Distribution: India: Andhra Pradesh (exact locality not mentioned).

117. Hexamastix singhi Bhaskar Rao, 1970
(Figs. 124 & 125)

Diagnosis: Body generally round or pyriform, measuring 6-13.5 μm x 5-11.5 μm; a fairly large blepharoplast situated at the extreme end of the body, giving rise to six flagella of more or less equal length of 7.5-17.0 (12.62) μm; axostyle hyaline and ribbon-like, 8.0-15.5 (11.58) μm in length, divisible into three parts, viz., broad spoon-like calyx encircling the nucleus, uniformly wide and spirally twisted middle portion and tapering posterior part projecting outside the body; pelta, a transverse crescent-shaped membrane present anterior to the nucleus, appearing to be continuous with the axostyle; nucleus round, 2.5 μm in diameter, containing a massive central or eccentric endosome, situated on the calyx of the axostyle; cytostome extending as a long cleft-like structure from the anterior end to posterior border of the nucleus.

Host: Gryllotalpa africana; site of infection: faecal content.

Distribution: India: Andhra Pradesh (exact locality not mentioned).

B. Hexamastix in reptiles

118. Hexamastix dobelli Janakidevi, 1961
(Figs. 126 & 127)

Diagnosis: Body usually oval, sometimes pyriform and round, 6.0-16.5 (9.4) μm x 2.0-10.3 (5.8) μm; nucleus oval, 2.5 μm in diameter, situated in the anterior third of the body, not having endosome or peripheral chromatin; a fairly large blepharoplast complex, situated in front of the nucleus, giving rise to six flagella, a thin filamentous axostyle and a curved rod-like parabasal body in a few cases; anterior flagella five, three short, two long, and one trailing or recurrent flagellum of about the same length as the anterior short flagella; pelta crescent-shaped situated at the anterior end of the body; forms without axostyle larger in size, spheroidal in shape, loaded with granules and with variable number (5-2) of anterior flagella.

Host: Starred Tortoise, *Testudo elegans* Schoepff; site of infection: large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

C. Hexamastix in. mammals

119. *Hexamastix gerbilli* Navarathnam, 1970

(Figs. 128 & 129)

Diagnosis: Body pyriform, measuring 3.5-8.5 (6.1) μm x 3.5-8.0 (5.5) μm; nucleus large, spherical 2-4 (2.6) μm x 2.0-3.5 (2.4) μm, with a large endosome, situated on the capitulum at the anterior part of the body or in the middle of the body in a few forms; a conspicuous blepharoplast situated very close to nucleus, giving rise to six flagella of which five anterior flagella of equal in size, 5.0-11.5 (8.7) μm and usually united at their base forming a bundle or remaining separate; trailing flagellum, 6-14 (10.1) μm, longer than the anterior ones; all flagella neither terminating in knobs nor in acronemes; axostyle very long 5-12 (7.7) μm, with broad and bulbous capitulum trunk and terminal tip projecting outside the body up to a length of 6.5 μm, originating from the blepharoplast, broad at the anterior end and posteriorly terminating to a point; pelta broad at the proximal end and pointed distally, present an an extension of the axostyle; cytostome long slit-like, extending up to 3 μm, situated at the anterior-lateral side of the body.

Host: *Gerbillus indicus*; site of infection: caecum and large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

120. *Hexamastix gopali* Navarathnam, 1970

(Figs. 130-132)

Diagnosis: Body round, angular or pyriform, measuring 6.75-14.0 (9.58) μm in length and 3.0-12.5 (8.33) μm; anterior end broader than the posterior end; cytoplasm granular containing many food particle; nucleus spherical or elongated, 1.5-5.0 μm x 1.5-4.0 μm, situated at the anterior end close to the capitulum; two large blepharoplasts, five equal
anterior flagella, one trailing flagellum (6.0-14.0 μm), a crescent-shaped axostyle and a ‘V’
shaped cytostome present; five anterior flagella originating from one blepharoplast while the
trailing flagellum arising from the other; all anterior flagella (4.0-14.0 μm) equal or shorter
than the length of the body; axostyle with three distinct regions such as spoon-shaped capitulum,
uniform trunk and terminal tip ending in a fine point; pelta absent.

Host: Rattus rattus frugivorous; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

121. Hexamastix hyderabadensis Navarathnam, 1971

Diagnosis: Not available.

Host: Cavia cutleri; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

122. Hexamastix sciuri Todd, 1963

Diagnosis: Body ovoid, pyriform or in various shape, 6.11-9.40 (7.99) μm x 3.76-4.70
(4.34) μm; cytoplasm vacuolated; nucleus hemispherical or conical, averaging 1.65 μm x
1.35 μm, with uniformly distributed chromatin granules; one blepharoplast, 0.56 μm in diameter,
giving rise to all the flagella, the axostyle and a crescentic or sickle-shaped pelta; axostyle
very delicate and filamentous, 5.17-8.46 (6.58) μm in length, projecting 0.47-1.88 μm outside
the body as a pointed structure; anterior flagella 3-5 in number, 3.76-10.86 (7.64) μm, i.e.,
as long as or longer than the body; posterior recurrent flagellum 4.23-12.80 (8.80) μm in
length, always longer than the body.

Host: Palm Squirrel, Sciurus palmarum; site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

123. Hexamastix spheroidis Todd, 1963
(Figs. 133 & 134)

Diagnosis: Body mostly ovoid or elongated in a few cases, measuring 5.17-11.98 (9.37)
μm x 5.17-11.75 (7.63) μm; cytoplasm dense with a few large vacuoles; nucleus normally
spherical or elongated, without karyosome,1.88-3.05 (2.44) μm x 1.88-2.93 (2.20) μm, situated
posterior to blepharoplast; anterior flagella 2-4 or 5 in some, nearly equal, .58-15.27 (10.95)
μm, usually united proximally in columnar groups of two or three separated at their origin;
recurrent flagellum 9.40-15.51 (11.60) μm in length; blepharoplast round 0.94 μm in average diameter, situated on one side at the anterior end of the body; axostyle thick rod-like, 3.76-9.87 (6.71) μm in length, jutting from the posterior-lateral surface of the nucleus, usually limited to the posterior end of the body, projecting 2.35-3.29 μm in some, anterior portion broad and tapering off into a thin filament, a few lacking an axostyle; pelta obscured by the darkly stained proximal part of the flagella.

Host: Bandicoot, *Nesokia bandicota* (Bechst. 1880); site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district)

Subfamily HYPOTRICHOMONADINAE Honigberg, 1963

Diagnosis: Three anterior flagella; proximal part of, or entire recurrent flagellum incorporated along accessory filament into margin of shallow undulating membrane; membrane typically shorter than body; costa absent; trunk of axostyle slender to quite stout, not surrounded by rings in any known species, with terminal segment projecting for some distance beyond posterior body surface.

Genus Hypotrichomonas Lee, 1960

Diagnosis: Three anterior flagella; undulating membrane shallow, typically shorter than body; free posterior flagellum present; costa absent; capitulum of axostyle with ventro-lateral extensions, continuing anteriorly into well-developed pelta; trunk of axostyle relatively stout, often more or less twisted; parabasal apparatus studied in one species where it consisting of rod-or often V-shaped body and filament or filaments.

Remarks: The species, *Hypotrichomonas venkataramiahii* is not included in the following key since its diagnosis is not available.

Key to the species of the genus Hypotrichomonas

1(4) Parasitic in lizards

2(3) Body pear-shaped or fusiform, dimensions 7.20-13.88 μm x 4.11-12.85 μm, attached portion of posterior flagellum covering ½ to ⅔ the body length thrown in 1 or 2 undulatory folds, axostyle tubular and straight projecting outside from posterior end of the body ... H. osmaniae.

3(2) Body almost round, 5.9-10.9 μm in diameter, posterior flagellum running attached to the body surface as shallow undulating membrane, axostyle tubular and curved and
posterior part with distinct periaxostylar granules, tapering abruptly to a conical projection

... H. hemidactyli

4(1) Parasitic in birds, body spherical or pear-shaped, 4.5-9.5 μm x 3.5-7.5 μm in dimensions
.. H. avium

A. Hypotrichomonas in reptiles

(Figs. 135 & 136)

Diagnosis: Body almost round, measuring 5.9-10.9 (8.2) μm in diameter; blepharoplast at the anterior end giving rise to four flagella, three anterior subequal flagella measuring 5.0-15.4 (10.0) μm, 5.0-12.9 (9.6) μm and 5.0-12.3(9.1) μm respectively and one posterior flagellum running attached to the body surface as shallow undulating membrane, trailing flagellum measuring 5.0-18.1 (12.0) μm in length; nucleus spherical at the anterior end of the body, measuring 1.0-3.1(2.0) μm in diameter and containing conspicuous central endosome; axostyle tubular and curved, anterior part obscured and the posterior part equipped with distinct periaxostylar granules and abruptly tapering to a conical projection; pelta inverted comma-shaped; parabsal body bilobed extending on either side of the nucleus.

Host: Hemidactylyus sp; site of infection: not mentioned.

Distribution: India: Andhra Pradesh (Warangal district).

125. Hypotrichomonas osmaniae Krishnamurthy, 1967
(Figs. 137 & 138)

Diagnosis: Body pear-shaped, spherical or fusiform, measuring 7.20 – 13.88 (9.94) μm x 4.11–12.85 (6.65) μm; nucleus large ellipsoidal, 2.03 μm x 1.94 μm; possessing organelles, viz., a blepharoplast, 3 anterior flagella, a trailing flagellum with a poorly developed undulating membrane, an axostyle, pelta and a nucleus; three anterior flagella unequal, measuring 9.25–16.97 (13.41) μm, 12.85–22.11 (17.76) μm and 14.40–24.1 (19.95) μm respectively; the attached portion of the posterior flagellum, covering ½ to 2/3 the body length, thrown in 1 or 2 undulatory folds and supported by a thin membrane, free part ranging from 12.85-30.85 (20.63) μm in length; axostyle tabular and straight, almost of uniform thickness excepting the spine-like posterior part outside the body, nucleus ellipsoidal, 2.03 μm x 1.94 μm; cytoplasm containing granules and bacteria; pelta curved and comma-shaped; costa and cytostome absent.

Host: Varanus sp. ; site of infection : rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Diagnosis: Not available.

Host: Varanus sp.; site of infection: rectum.

Distribution: India: Andhra Pradesh (Warangal district).

B. Hypotrichomonas of birds

127. *Hypotrichomonas avium* Navarathnam, 1970

(Fig. 139)

Diagnosis: Body spherical or pear-shaped, 4.5-9.5 (6.4) μm x 3.5-7.5 (5.5) μm; nucleus ellipsoidal or spherical, 1.5-3.5 (2.5) μm, with a large endosome and a distinct nuclear membrane, situated at the anterior part of the body; blepharoplast giving rise to three anterior and one posterior flagellum also situated at the anterior part of the body near the nucleus; three anterior flagella without acronemes or knobs, unequal in length and longer than the body, 7-14 (10.8) μm, 7-17 (13.7) μm, and 7-20.5 (16.2) μm respectively; trailing flagellum attached to the surface of the body for ½ or ¾ of the body by a shallow undulating membrane with one or two folds, free portion 2.5-10.0 μm in length; axostyle curved crescent-shaped, 3-7 μm in length, tapering type and slightly projecting out at the posterior end into a fine point; distinct capitulum and pelta absent; cytostome V-shaped, slightly curved at the posterior tip, extending upto the anterior third of the body and situated lateral to the nucleus.

Host: Cryptoplectron erythrorhynchum; site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Family TRICHOMEONADIDAE Chalmers & Pekkola, 1918

Diagnosis: Four to six flagella of which one is recurrent; proximal part of or entire recurrent flagellum incorporated into margin of undulating membrane along one or more accessory filaments; undulating membrane supported by costa; axostyle of varying structure; parabasal apparatus consisting of body associated with one or more filaments.

Subfamily TRICHOMEONADINAE Chalmers & Pekkola, 1918

Diagnosis: Three to five anterior flagella; full flagellar complement usually restored in late in division, occasionally after cytokinesis; proximal part of, or entire recurrent flagellum
incorporated along accessory filament into margin of undulating membrane; membrane varying in length and degree of development; costa usually rather slender; capitulum of axostyle of varying complexity, continuing anteriorly into typical pelta; trunk of axostyle hyaline rod usually slender or of moderate diameter, not tube-like in appearance, without axostylar granules and typically without periaxostylar rings, projecting for some distance from posterior body surface, with terminal segment of projecting part tapering to a point; parabasal apparatus with body of varying structure and filament or filaments.

Key to the genera

1(2) Three anterior flagella; undulating membrane of varying in length, height and number of undulation; with free posterior flagella .. *Trichomitus*

2(1) More than three anterior flagella; undulating membrane well developed or shorter than the length of body; with or without free posterior flagella

3(4) Four anterior flagella; undulating membrane typically shorter than the body; no free posterior flagellum .. *Trichomonas*

4(3) Four or five anterior flagella; undulating membrane well developed; free posterior flagella present

5(6) Four anterior flagella; costa of varying width; parabasal body typically disc-shaped .. *Tetratrichomonas*

6(5) Five anterior flagella; costa relatively well developed; parabasal body elliptic or circular area .. *Pentatrichomonas*

Genus Trichomonas Donne, 1836

Diagnosis: Four anterior flagella; in fully grown organisms undulating membrane typically shorter than body; no free posterior flagellum; costa relatively slender; capitulum of axostyle spatulate of moderate width, continuing anteriorly into slender pelta; trunk of axostyle typically slender; parabasal body rod-or V-shaped, associated with filament or filaments.

A. Key to the species of Trichomonas in birds

1(2) Body pyriform, 7-15 μm x 5-11 μm in dimensions, parabasal body absent *T. bramae*

2(1) Body pyriform or round-shaped, 6-19 μm x 2-4 μm in dimensions, parabasal body sausage-shaped .. *T. gallinae*
B. Key to the species of *Trichomonas* in mammals

1(4) Axostyle with conspicuous capitulum, stem and the conical tip

2(3) Body pear-shaped or lozenge-shaped, posterior end generally bilobed with the axostyle projecting between them, axostyle hyaline and rod-shaped, parasitic in Indian porcupine

3(2) Body pyriform or oval, posterior end not bilobed, axostyle with a band-like chromatic ring at the junction of its stem and conical tip, parasitic in house rat.... *H. frugivori*

4(1) Axostyle delicate hyaline and rod-like, its origin near blepharoplast not distinct

5(6) Body very small (7.05-8.64 μm in length); parasitic in Indian Gerbil *T. singhi*

6(5) Body size variable, smaller ones 6.5 μm x 3.0 μm and larger ones 15 μm x 12 μm; parasitic in Indian horse.......................... *T. caballi*

A. *Trichomonas* in birds

128. *Trichomonas bramae* Sambasivarao and Narasimhamurti, 1982
(Fig. 140)

Diagnosis: Body pyriform, measuring 7-15 μm x 5-11 μm, with rounded anterior end and pointed posterior end; cytoplasm alveolated, containing a few food vacuoles; nucleus rounded or oval, 2-4 μm x 1.5-3.0 μm, surrounded by thin nuclear membrane; cytostome absent; a large blepharoplast giving rise to five flagella and a costa, situated in front of the nucleus; four anterior flagella unequal in length, ranging from 6 to 15 μm; trailing flagellum thicker, attached to the body wall by an undulating membrane, no free posterior flagellum; costa thick and 4-10 μm in length, paracostal granules absent; axostyle rigid, 5-10 μm, extending beyond the cell body as a pointed spike of about 1-2 μm; parabasal body absent.

Distribution: India : Andhra Pradesh (Visakhapatnam district).

129. *Trichomonas gallinae* (Rivolta, 1878)
(Fig. 141)

Diagnosis: Body pear-shaped or round-shaped measuring 6-19 μm x 2-9 μm; parabasal body sausage-shaped, 4 μm long; nucleus ovoid, located at anterior part; axostyle protruding a little out of the body.
Host: Love bird (Budgerigars); site of infection: oesophagus.

Distribution: India: Andhra Pradesh (Hyderabad district); cosmopolitan.

Remarks: Sampurnanand et al. (2002) reported this species in two love birds from this state, which had died with symptoms of obstruction in oesophagus. On post mortem examination they found that the mucous membrane of oesophagus had ulcers and the lumen was occluded at crop region.

130. *Trichomonas* sp.

Diagnosis: Pyriform, measuring 9-13.5 µm x 6.75-11.25 µm; nucleus single at the anterior part; a blepharoplast composed of one or two rounded mass, giving rise to four anterior flagella of 6.5-7.2 µm long and a posterior flagellum; undulating membrane extending up to $\frac{2}{3}$ to $\frac{3}{4}$ of the body, exhibiting 2-3 folds; no free flagellum extending beyond its posterior end; an accessory filament present in some specimens; axostyle slender without any capitulum and chromatinic ring; parabasal body 6.75-7.5 µm long and filamentous; cytoplasm inconspicuous.

Host: Love bird, Budgerigars; site of infection: necrotic lesions in the oesophagus.

Distribution: India: Andhra Pradesh (possibly Hyderabad district, exact locality not mentioned).

Remarks: Mukherjea et al. (1970) reported this undetermined trichomonad species based on stained smears sent to the Department of Protozoology, School of Tropical Medicine, Calcutta, by the Deputy Director, Veterinary Biological and Research Institute, Hyderabad for specific identification. The species description bears close morphologic resemblance with *T. gallinae* but differs from the latter in the absence of sausage-shaped component in the parabasal body.

B. *Trichomonas* in mammals

131. *Trichomonas caballi* Abraham, 1961
(Fig. 142)

Diagnosis: Body pyriform, 6.5-15.0 (9.4) µm x 3.0-12.0 (6.0) µm, with blunt anterior end and pointed posterior end; greatest width at the anterior third region; cytoplasm crowded with fairly large granules and bacterial inclusions; two blepharoplasts present; primary blepharoplast giving rise to a rod-like hyaline axostyle, and the undulating membrane with its associated filaments as well as the posterior flagellum of a little more than double the body length; a robust oblong rod-like cresta and an oblong pelta present; secondary blepharoplast giving rise to two occasionally three anterior flagella; parabasal body made up of a single ramus ending in a loop-like structure, and a fibril; nucleus irregular containing diffused chromatin granules.

Distribution: India: Andhra Pradesh (Hyderabad district).

132. *Trichomonas frugivori* Todd, 1963
(Fig. 143)

Diagnosis: Body pyriform or oval, 11.75-21.15 (16.60) μm x 7.05-18.80 (12.50) μm; two blepharoplasts, one giving rise to three anterior flagella and from the other originating the undulating flagellum and the costa of 10.34-17.39 (14.64) μm; three anterior flagella, almost equal in length, smaller than the body, measuring 4.70-9.87 (7.39) μm, arising as a bundle and free eventually; undulating flagellum, thick with an accessory filament and a well developed undulating membrane usually thrown into 4-6 folds, arising posterior to free flagellar bundle, running along the margin, free at the out-projecting region of axostyle and trailing behind a few microns only or as long as the body; axostyle with conspicuous capitulum, stem and the conical tip; a broad, band-like chromatic ring located at the junction of the stem and the conical tip; nucleus oval or conical, 3.29-10.81 (7.08) μm x 1.88-3.52 (2.68) μm, situated practically embedded in the capitulum; cytostome claw-like.

Host: *Rattus rattus frugivorous*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

133. *Trichomonas leucuri* Todd, 1963
(Fig. 144)

Diagnosis: Body pear-shaped or oval or lozenge-shaped, size variable from a small tiny one to huge giant form, measuring 8.10-36.24 (30.42) μm in length and 4.05-16.45 (12.32) μm at its widest region; anterior end broader than posterior end; posterior end generally bilobed with the axostyle projecting between them; blepharoplast situated a little distance from the anterior end, giving rise to four flagella, 13.60-49.69 (37.24) μm in length, nearly twice the length of the body, all of them posteriorly directed, following the course of undulating membrane, one of these flagella acting as relatively thick trailing flagellum; undulating membrane conspicuous, thrown into 2-10 distinct sub-equal folds; costa prominent, rod-like, 14.73-32.90 (27.58) μm in length, situated at the base of the undulating membrane arising from the blepharoplast; axostyle hyaline and rod-shaped, 8.11-30.55 (21.71) μm in length, arising slightly anterior to or in juxtaposition to the blepharoplast, divisible into three distinct regions, capitulum, stem and conical tip.

Host: Indian Porcupine, *Hystrix leucura* Sykes; site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).
134. *Trichomonas singhi* Todd, 1963
(Fig. 145)

Diagnosis: Body very small, measuring 7.05-9.87 (8.64) \(\mu m\) in length; cytostome periodically opened and closed slit-like structure, extending from the anterior end to one-third the length of the body; single, comparatively large, usually rounded or rod-shaped blepharoplast giving rise to four unequal anterior flagella of 5.17-8.93 \(\mu m\) in length, one short, two intermediate and one relatively long of 8.46-8.93 \(\mu m\) in length; undulating membrane along with its flagellum arising from the blepharoplast thrown into 2-6 distinct humps; costa filamentous, resembling the flagella, usually terminates a short distance beyond the undulating membrane after arising from the blepharoplast; axostyle delicate and rod-like, 4.23-7.99 (5.89) \(\mu m\) in length, origin not distinct, with a chromatic ring at the posterior tip of the body and posteriorly projecting beyond the body as a spike.

Host: Indian Gerbille, *Gerbillus indicus*; site of infection: caecum and intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Trichomitus Swezy, 1915
(Syn. *Tritrichomonous*)

Diagnosis: Three anterior flagella; undulating membrane of varying in length, height, and number of undulations among and within species; free posterior flagellum; costa relatively slender in most, very weakly developed in some species; capitulum of axostyle spatulate or spoon-shaped often with conspicuous ventro-lateral extensions, continuing anteriorly into well developed pelta; trunk of axostyle variable, but usually moderate diameter; parabasal body in most species predominantly V-shaped with arms varying from nearly straight rods to broad almost discoid structures, associated with parabasal filaments.

Key to the species of *Trichomitus* in amphibians and reptiles

1(2) Body, spherical, ovoidal or pyriform, 8-16 \(\mu m\) x 5-12 \(\mu m\) in dimensions; occurring in wide range of hosts (both amphibians and reptiles) *T. batrachorum*

2(1) Body fusiform, 12-22 \(\mu m\) x 5-13 \(\mu m\) in dimensions; occurring in frogs, *Rana tigerina*
.. *T. hyderabadensis*

A. *Trichomitus* of insects

(Fig. 146 & 147)

Diagnosis: Body round or pyriform, 8-14 (10.2) μm x 7.5-12.5 (9.6) μm; nucleus round or bean-shaped, 3.0-5.5 μm in diameter, located at the anterior end of the body, possessing a central endosome with extra-endosomal chromatin grains; a large and conspicuous single blepharoplast situated at the extreme anterior end of the body; blepharoplast giving rise to three unequal anterior flagella (9.4 μm, 12.5 μm and 14.8 μm respectively), a trailing flagellum (having a short free portion measuring 5.9 μm in average) and the prominent costa (4-10 μm in length); undulating membrane feebly developed and extending to half the length of the body; axostyle well developed and rod-shaped, 7-13 (9.4) μm in length, with broad calyx, uniform middle part and the abruptly tapering spike usually extending beyond the posterior extremity of the body or curving upwards in some forms; cytostome distinct and claw-shaped.

Host: Corydia petiveriana; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

B. Trichomitus of amphibians and reptiles

136. Trichomitus batrachorum (Perty, 1852)
(Figs. 148 & 149)

Diagnosis: Body spherical, ovoidal or pyriform, measuring 8.74-16.45 (12.22) μm x 5.4-11.82(8.47)μm in the strain from Eryx johni; blepharoplast large and conspicuous granule, situated very near the anterior end, giving rise to various mastigont elements; three anterior flagella unequal measuring, on the average, 11.25 μm, 14.40 μm and 16.30 μm in the strain from Eryx; posterior flagellum running along outer border of the undulating membrane and free posteriorly; undulating membrane extending almost up to the posterior end of the body and thrown into 3-5 folds; costa thin, thread-like and running below the base of the undulating membrane for its whole length; axostyle well developed, possessing a spoon-shaped capitulum, free spike-like part 4.67 μm in length and very conspicuous; nucleus oval or spherical, 2:28 μm x 2.57 μm, lateral to capitulum and having a small eccentric endosome; rhizoplast well developed running forward from the nuclear membrane to the blepharoplast; peri-axostylar chromatic rings, pelta and cytostome absent.

Indian Host: Eryx johni and Varanus sp.; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district) and Maharashtra.

Remarks: Trichomitus batrachorum (Perty, 1852) is a common rectal parasite of numerous species of amphibian and reptiles. Honigberg (1953) gave a comprehensive account of its structure, synonymy and host list, under the name Tritrichomonas batrachorum. Later,
Honigberg (1963) distinguished the ‘batrachorum’ type from ‘augusta’ type of trichomonads and placed the former in the genus *Trichomitus* Swezy, 1915. In India, Krishnamurthy (1967) recorded this parasite from two squamate reptiles, *Eryx johni* and *Varanus* sp. from Hyderabad region. The organisms described by him agree with the description of Honigberg (1953), except for the absence of the pelta and minor variation in the body dimension. Krishnamurthy and Madre (1975) recorded this species from Maharashtra State.

137. *Trichomitus hyderabadensis* Krishnamurthy, 1968
(Figs. 150-151)

Diagnosis: Body fusiform, having a broad and round anterior end and a somewhat narrower tapering posterior end, measuring 12.85-22.11 (16.45) μm in length excluding spike and 5.14-13.88 (8.56) μm in maximum width; blepharoplast, a large and conspicuous granules, about 1-2 μm behind the anterior extremity, giving rise to the mastigont elements comprising of three unequal anterior flagella, a posterior flagellum, two accessory filaments, a costa and an axostyle; an additional filament running between the costa and the accessory filament in some; undulating membrane extending almost up to the posterior end of the body, thrown into 4-7 folds; costa thicker than flagellum running a somewhat curved course; axostyle well developed with its anterior portion expanded to form a spoon-shaped capitulum; nucleus large and ovoidal (av. 3.13 μm x 2.44 μm), lateral to spoon-shaped capitulum, having a central endosome; longest flagellum (av. 20.81 μm) a little more than the body length; pelta and cytostome absent.

Host: *Rana tigrina* (Daud); site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Krishnamurthy (1969) recorded an acostate strain of interesting trichomonad forms without the secondary accessory filament from the rectal content of the same host with similar general features, shape and dimensions, co-existing with *Trichomitus hyderabadensis*. Pending further studies he considered the acostate form as a strain of *T. hyderabadensis*.

138. *Trichomitus* sp.

Host: *Chameleon zeylanicus*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Krishnamurthy (1968) reported this unnamed species from the aforesaid host.

C. *Trichomitus* of mammals

139. *Trichomitus honigbergi* Navarathnam, 1971

Diagnosis: Not available.

Host: Cavia cutleri; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Tetratrichomonas Parisi, 1910

Diagnosis: Four anterior flagella (in fully developed organisms); undulating membrane well developed, extending for about entire length of body; free posterior flagellum; costa of varying width, but more often rather slender; capitulum of axostyle spatulate, of moderate width, without conspicuous ventro-lateral extensions, continuing anteriorly into usually narrow pelta; trunk of axostyle more often quite slender, relatively stout in some species; parabasal body typically disc-shaped with well-defined constant central granule (V-shaped in at least one and granule-shaped in another known species), associated with one or two filaments.

140. Tetratrichomonas garnhami Navarathnam, 1971

Diagnosis: Body fusiform or oval, 7.5-14.0 (10.5) μm x 3.0-12.0 (8.5) μm; nucleus large oval or elongated, at the anterior part of the body, 2.5-5.0 (3.3) μm x 1.5-3.5 (2.0) μm, containing a small central endosome with fine chromatin granules around it; two distinct blepharoplasts at the anterior extremity of the body, equal in size, located away from the nucleus, one of which giving rise to four anterior flagella of equal size, 5-9 (7.2) μm, united at the base, while the other giving rise to the costa, the marginal and the accessory filaments of the undulating membrane; undulating membrane, with 3-6 folds, extending up to the posterior end of the body bordered by a thick marginal filament continuing as a short free flagellum of 2-6 (4) μm in length; costa very thick as thick as axostyle, conspicuous, 9-16 (11) μm in length; axostyle slender with no distinct capitulum, uniform in thickness throughout, only slightly pointed at the posterior tip; cytostome conspicuous, ‘V’-shaped, at the anterior part of the body, extending ½ the length of the body.

Host: Coturnix coturnix; site of infection: intestine and caecum.

Distribution: India: Andhra Pradesh (exact locality not mentioned).

Pentatrichomonas Mesnil, 1914

Diagnosis: Five anterior flagella in normal fully developed organisms; flagella of two types; four grouped together in their basal portion and exhibiting synchronous movement, one originating and moving independently of others; well-developed undulating membrane
NANDI et al.: Parasitic Protozoa

extending for entire length of body; free posterior flagellum; costa relatively well developed; capitulum of axostyle spatulate, of moderate width, with some ventro-lateral extensions and large pelta; trunk of axostyle generally of moderate diameter, parabasal apparatus composed of filament and one or more granules, which may be surrounded by clear, rather faintly outlined, elliptic or circular area.

A. Key to the species of Pentatrichomonas in birds

1(2) Body spherical or pear-shaped, 8.5-13.5 \(\mu \text{m} \times 4.0-9.0 \ \mu \text{m} \); nucleus spherical or slightly oval, 1.5-2.5 \(\mu \text{m} \) in diameter; axostyle massive with spoon-shaped capitulum; cytostome V-shaped cleft-like ... P. capellae

2(1) Body generally pear-shaped or irregular, 7-13.5 \(\mu \text{m} \times 5-11.5 \ \mu \text{m} \); nucleus spherical or oval, averaging 3.4 \(\times \) 2.7 \(\mu \text{m} \); axostyle with bulbous capitulum, extending from anterior to posterior end of the body; cytostome narrow slit-like P. centropi

B. Key to the species of Pentatrichomonas in mammals

1(2) Cytostome absent, body usually spherical or ovoid, 8-12 \(\mu \text{m} \times 7-11 \ \mu \text{m} \); nucleus spherical or oval, 2-4 \(\mu \text{m} \times 2-3 \ \mu \text{m} \); axostyle long, with broad spatulate capitulum ... P. smithii

2(1) Cytostome present

3(4) Cytostome comma-shaped, body pyriform, sometimes oval or rounded, 7-12 \(\mu \text{m} \); nucleus usually spherical, occasionally spherical or oval, averaging 2.2 \(\mu \text{m} \times 1.7 \ \mu \text{m} \); axostyle filamentous or rod-like, projecting beyond the body as axostylar spike P. vulpi

4(3) Cytostome V-shaped, body spherical or pyriform, 6-11 \(\mu \text{m} \times 5-12 \ \mu \text{m} \); nucleus spherical or transversely elongated 2-4 \(\mu \text{m} \times 2-3.5 \ \mu \text{m} \); axostyle very short, narrow tube-like ... P. tardigardi

141. Pentatrichomonas capellae Navarathnam, 1970
(Fig. 152)

Diagnosis: Body spherical or pear-shaped, 8.5-13.5 (11.1) \(\mu \text{m} \times 4.0-9.0 \ (6.5) \ \mu \text{m} \); nucleus spherical or slightly oval, 1.5-2.5 \(\mu \text{m} \) in diameter, with a small endosome surrounded by chromatin granules, lying on the spoon-shaped capitulum just behind the single blepharoplast situated at the extreme end of the body; five flagella, as long as or longer than the body, four remaining grouped together and the other isolated, all originating from the blepharoplast, unequal, ranging from 4-21 \(\mu \text{m} \) in length; costa rod-like, 7.0-11.5 \(\mu \text{m} \), arising from the blepharoplast, extending along the base of the undulating membrane; axostyle massive, hyaline, tubular in structure, 10-15 \(\mu \text{m} \) in length, extending up to the posterior end or projecting a
short distance beyond the body, without any endoaxostylar granules or periaxostylar chromatic ring; cytostome crescentic or slightly curved V-shaped cleft-like structure, located at the side of the nucleus.

Host: *Capella gallinago*; site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

142. *Pentatrichomonas centropi* Navarathnam, 1970

(Figs. 153 & 154)

Diagnosis: Body generally pear-shaped or occasionally irregular, 7.5-13.5 (11.0) \(\mu\)m x 5.5-11.5 (9.1) \(\mu\)m; nucleus spherical or oval, averaging 3.4 \(\mu\)m x 2.7 \(\mu\)m, containing a large irregular, spherical or eccentric endosome, situated at the anterior part of the body; a single large blepharoplast also situated at the anterior part of the body, giving rise to all the mastigont elements; five anterior flagella, four in a group and equal in size (6-14 \(\mu\)m), fifth one short (5-11 \(\mu\)m) and isolated, undulating membrane well developed with 2-5 broad, subequal folds, followed by a marginal filament terminating as a free flagellum (averaging 4.6 \(\mu\)m) at the posterior end of the body; a well developed costa, broad at its origin and gradually tapering to a fine point, arising from the blepharoplast, extending along the undulating membrane up to the posterior end; axostyle with distinct bulbous capitulum, tubular trunk and terminal fine tip, extending from the anterior to the posterior end of the body; cytostome very small, forming a narrow slit.

Host: *Centropus sinensis*; site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Pentatrichomonas in mammals

143. *Pentatrichomonas smithi* Navarathnam, 1970

(Fig. 155)

Diagnosis: Body usually spherical, sometimes ovoid, 8-12 (10) \(\mu\)m x 7-11 (8.9) \(\mu\)m; nucleus spherical or oval, 2-4 \(\mu\)m x 2-3 \(\mu\)m, situated at the anterior end of the body, containing a central endosome; two blepharoplasts, equal in size, close to each other and located at the anterior end of the body, one giving rise to four short and unequal (6.5-12.0 \(\mu\)m) anterior flagella, undulating membrane and costa, while the fifth flagellum also very short (6-12 \(\mu\)m), arising from the other; flagella without acronemes or terminal thickenings; undulating membrane with 3-5 folds, extending up to the posterior end of the body and continued as free flagellum; costa running beneath the undulating membrane; axostyle hyaline and broad, with spatulate capitulum two or three times as broad as trunk; cytostome absent.
Host: *Herpestes smithi*; site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

144. *Pentatrichomonas tardigardi* Navarathnam, 1970
(Figs. 156 & 157)

Diagnosis: Body spherical or pyriform, 6-11 (8.8) μm x 5-12 (7.8) μm; nucleus spherical or transversely elongated, 2-4 μm x 2-3.5 μm, situated at the anterior part of the body, with a small endosome in the centre surrounded by fine granules; two blepharoplasts located at the extreme anterior end of the body, equal in size, situated away from each other, one giving rise to four anterior flagella, while the independent flagellum, the marginal filament and the costa arising from the other; all flagella without acronemes, out of four anterior flagella, two long and two short, fifth anterior flagellum equal to the short flagella; undulating membrane poorly developed, extending up to half or three fourths of the body length, bordered by marginal filament up to its posterior end and then continued as short free flagellum (1.5-8.0 μm); costa filamentous and inconspicuous, running below the undulating membrane; axostyle very short and narrow tube-like, projecting out only 0.5-1.0 μm in a few individuals; cytostome V-shaped, broad cleft-like structure, situated on the antero-lateral side of the body, originating near the blepharoplasts and extending up to the posterior end of the nucleus.

Host: *Loris tardigradus*: site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

145. *Pentatrichomonas vulpi* Todd, 1963
(Figs. 158 & 159)

Diagnosis: Body pyriform, conch shell-like, round or oval, measuring 7.52-12.28 (9.87) μm in length and 4.23-4.93 (4.37) μm at its widest region; posteriorly tapering while anteriorly slightly asymmetrically tapering; five anterior flagella forming two units—one comprising a cluster of four while the other consisting of a single independent flagella, measuring 9.40-13.16 (10.99) μm in length, as long as the length of the body; cytoplasm containing vacuoles and bacteria; nucleus usually spherical or oval or triangular, located in the anterior region at a distance from the blepharoplasts; cytostome short and comma-shaped and never extending beyond 3-5 μm; curved rod-like or filamentous costa and short independent flagellum arising from a blepharoplast while four anterior longer flagella unequal in some individuals originating from a second blepharoplast; axostyle filamentous or rod-like, 6.99-10.10 (8.66) μm in length, projecting as a blunt point beyond the posterior extremity of the body.

Host: *Vulpes bengalensis*: site of infection: caecum and alimentary canal.

Distribution: India: Andhra Pradesh (Hyderabad district).
Subfamily TRITRICHOMONADINAE Honigberg, 1963

Diagnosis: Three or four typically equal or subequal flagella; full flagellar complement restored relatively early in division (usually before formation of daughter nuclei); proximal part of, or entire recurrent flagellum incorporated along usually two accessory filaments into margin of well developed undulating membrane, extending for entire length of body; costa from relatively slender to very stout; capitulum of axostyle spatulate, often with one or more ventro-lateral and or anterior extensions, but not continuing anteriorly into typical pelta; trunk of axostyle typically of large diameter, tube-like in appearance; terminal segment of trunk tapering abruptly to a point immediately after leaving body or enlarging into pointed bulbous expansion (of moderate diameter, non tube-like, and with very slight posterior projection in one genus); parabasal apparatus consisting of rod-, sausage-, or band-shaped body (branched in some species) and of filament.

Geuns Tritrichomonas Kofoid, 1920

Diagnosis: Typically three anterior flagella (four in one species); recurrent flagellum equalling or exceeding anterior flagella in diameter, continuing beyond end of well developed undulating membrane as free posterior flagellum; costa relatively slender or stout; capitulum of axostyle often with ventro-lateral and/or anterior extensions; trunk of axostyle stout, tube-like in appearance, tapering abruptly to a point forming conical projection upon emerging from posterior body surface, surrounded by one or more periaxostlar rings near site of emergence; parabasal body rod- or sausage-shaped, associated with filament.

Remarks: Key to the species is not given as the two species occur in widely separated hosts, aquatic reptiles and birds.

A. Tritrichomonas in reptiles

146. Tritrichomonas lissemysi Janakidevi, 1961

Diagnosis: Body elongate-oval or fusiform, 16.0-23.5 (20.8) μm in length including axostyal projection of 3.5-8.5 (7.0 μm; length and breadth of cell body proper 10-17 (14.4) μm x 6-14 (10.3) μm; nucleus oval, situated in the anterior third of the body, possessing a distinct nuclear membrane and usually central but sometimes eccentrically located endosome; mastigont elements consisting of the anterior flagella, posterior flagellum, accessory filament, thin costa, stout hyaline rod-like axostyle, small crescent-shaped pelta and the parabasal apparatus, arising from a blepharoplast plastic complex situated near the anterior tip of the body; anterior flagella three in number, unequal in length, two long (av. 20 μm and 17 μm) and one short (av. 13.8 μm); undulating membrane well developed and extending along almost the
entire length of the body; paracostal granules often arranged in a zigzag manner; axostyle with a spoon-shaped calyx, uniform stem and axostylylar projection but without achromatic ring and endoxostylylar granules; parabasal apparatus sac-like or rod-shaped; cytostome long, conical, cleft-like, situated on the ventral side of the body.

Host: Lissemys punctata granosa; site of infection: large intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

B. *Tritrichomonas* in birds

147. *Tritrichomonas gigantica* Navarathnam, 1970

(Figs. 160 & 161)

Diagnosis: Body variable, pyriform or elongated, 7.5-21.5 (12.1) μm x 3.5-9.5 (6.6) μm; nucleus spindle-shaped, oval or pyriform, 3-7 (3.9) μm x 1.5-2.5 (2.0) μm, with distinct nuclear membrane, situated at the anterior third or in the middle of the body, containing large as well as fine granules; single large blepharoplast at the extreme anterior end of the body; three anterior flagella, equal in length 20-38.5 (26.0) μm, originating from the blepharoplast, following the course of undulating membrane in the form of a bundle; posterior flagellum running backwards as an extension of the marginal filament, free portion (1.5-10.5 μm) of it shorter than the anterior flagella; undulating membrane with 4-8 folds, measuring 17.5-29.0 μm in length; a well developed costa, uniform in thickness, measuring 12-29.6 μm; axostyle tube-like, 14.5-27.0 μm, with spatulate capitulum, typically large tube-like trunk and terminal bulbous expansion ending into a fine point, having no anterior extensions or pelta but with axostylylar rings and posterior bulbous axostylylar portion always projecting beyond the body.

Host: Coturnix coturnix: site of infection: caecum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Incertae sedis to class Zoomastigophorea

Genus *Rhizomastix* Alexeieff,1911

Diagnosis: Body amoeboid; nucleus central; blepharoplast located between nucleus and posterior end; a long fibre running from it to anterior end and continued into the flagellum; without contractile vacuole; division in spherical cyst.

Key to the species of the genus *Rhizomastix*

1(4) Parasitic in insects
2(3) Body typically oval or round, periplast well developed with many cytoplasmic granules, flagellum thick but short (average 7.78 \(\mu m \)) and continued backward with a rhizostyle, parasitic in mole cricket .. R. gryllotalpae

3(2) Dimorphic elongated and ovoid or irregular and amoeboid, a thick rhizostyle occasionally forming a loop around nucleus, free flagellum 4 times as long as body, average (31.5 \(\mu m \)) parasitic in cockroach .. R. periplanetae

4(1) Parasitic in amphibia, body elongated, anterior end rounded, posterior end somewhat conical, a well defined rhizostyle arising from blepharoplast measuring \(\frac{1}{2} \) to \(\frac{3}{4} \) length of the body (average 16.81 \(\mu m \)) .. R. ranae.

A. Rhizomastix in insects

(Figs. 162-165)

Diagnosis: Body typically oval or round, measuring 5.0-11.0 (7.58) \(\mu m \) x 4.5-8.0(6.75) \(\mu m \); periplast well developed with many cytoplasmic granules; nucleus large and almost round-shaped with a large or small endosome; a blepharoplast, a flagellum and a rhizostyle present; flagellum thick but short (av. 7.78 \(\mu m \)) and continued backward with a rhizostyle (av. 7.5 \(\mu m \)).

Host: Gryllotalpa africana; site of infection; intestine.

Distribution: India : Andhra Pradesh (Hyderabad district).

149. Rhizomastix periplanetae Bhaskar Rao, 1963
(Figs. 166 & 167)

Diagnosis: Dimorphic, elongated and ovoid or irregular and amoeboid, measuring 5.5-13.5 (9.6) \(\mu m \) x 5.0-7.5 (7.3) \(\mu m \); a well defined flagellum continuous with a long rhizostyle occasionally forming a loop around the nucleus; free flagellum measuring 20.0-40.5 (31.5) \(\mu m \), three times as long as body; nucleus large (2.5-4.5 \(\mu m \) x 1.5-3.0 \(\mu m \)) and varying in shape (oval, bean-shaped or round) and position (lying at either side of the anterior end or in the centre of the body in a few forms) with a distinct nuclear membrane and a large karyosome.

Host: Periplaneta americana; site of infection: intestine.

Distribution: India : Andhra Pradesh (Hyderabad district).
A. Rhizomastix in amphibians

150. Rhizomastix ranae Krishnamurthy, 1969
(Fig. 168)

Diagnosis: Body elongated, measuring 7.20-20.05 (11.67) μm in length and 4.11-11.82 (6.89) μm in width; anterior end rounded while posterior end somewhat conical; nucleus fairly large, spherical or ovoid, 1.54-4.3 (2.47) μm, situated near the middle of the body, having a thin nuclear membrane enclosing a conspicuously large endosome, about 1 μm in diameter; cytoplasm uniformly stained without any bacteria or granules; blepharoplast single situated a little behind the nucleus; a well defined rhizostyle arising from the blepharoplast, measuring about ½ to ¾ of the body length; free flagellum, measuring 10.28-25.71 (16.81) μm, *i.e.*, less than twice the body length.

Host: *Rana tigrina*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Hyderabad district).

Genus *Sphaeromonas* Liebetanz, 1910

Diagnosis: Uniflagellate and spherical organisms; flagellum long, springing from its narrow anterior end.

Remarks: This genus is a synonym of *Oikomonas* Kent (see Wenyon, 1926).

151. *Sphaeromonas anteronucleatus* Todd, 1963
(Figs. 169 & 170)

Diagnosis: Body small round, oval or pyriform, measuring 3.76-5.17 (4.05) μm in diameter; periplast well developed; cytoplasm granular, containing a few large vacuoles with bacteria; nucleus round, situated at the anterior end; flagellum single, thick, generally twice the diameter of the body, measuring 7.05-14.57 (10.24) μm in length, arising from a small blepharoplast situated just in front of the nucleus.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: According Orpin (1976) *Spheromonas communis* Liebetanz, 1910 is actually the zoospore stage of aquatic phycomycetous fungi and as such the species, *S. anteronucleatus* needs taxonomic review.
Subphylum OPALINATA
Class OPALINATEA
Order OPALINIDA
Family OPALINIDAE

Diagnosis: Numerous cilia in oblique longitudinal ciliary rows over entire body surface; cytostome absent; nucleus of one kind ranging from one to many.

Genus *Cepedea* Metcalf, 1920

Diagnosis: Body cylindrical or pyriform; multinucleate; circular in cross section.

152. *Cepedea hylae* Khan, 1962

Diagnosis: Body elongated and fusiform, visible with the unaided eye but varying considerably in size; anterior end broad and somewhat round but a little compressed; posteriorly the body gradually tapering and ending bluntly; ectoplasm or pellicle thin and somewhat hyaline, endoplasm alveolar; cyttoplasmic inclusions absent; nuclei numerous, 2.3-5.1 μm in diameter, spherical or slightly oval and appearing compact with evenly distributed chromatin; cilia 15-17 μm long, ciliary lines quite uniformly 1 μm apart over the whole body.

Host: *Hyla arborea*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Medak district).

Subphylum SARCODINA
Superclass RHIZOPODA
Class LOBOSEA
Subclass GYMNAMOEBA
Order AMOEBA
Suborder TUBULINA
Family ENDAMOEBA

Diagnosis: Parasitic amoebae; trophozoites usually relatively small; occurring in the alimentary canal of various host animals; multiplication by binary fission; encystment common.

Genus *Entamoeba* Casagrandi and Barbagallo (1895)

Diagnosis: Nucleus vesicular, with a comparatively small endosome, located in or near the centre and with varying number of peripheral nonchromatic granules attached to nuclear membrane; chromatin in the endosome and in periendosomal region.

153. *Entamoeba histolytica* Schaudinn, 1903
(Figs. 171-173)

Diagnosis: Trophozoites of pathogenic race large, 22-30 μm in diameter and those of small race 12-15 μm in diameter, with clear ectoplasm and granular endoplasm; nucleus with a small central endosome, a ring of small peripheral granules and a few scattered chromatin granules in between; mature cysts of both races 10-12 μm in diameter and with 4 nuclei.

Host: Man, *Homo sapiens*; site of infection: large intestine, sometimes liver and rarely brain, etc. Khan *et al.* (1983) encountered *E. histolytica* cysts in faeces of the following species of primates such as Mandrill monkey (*Mandrillus sphins*), Mona monkey (*Cynocephalus mona*), Olive baboon (*Chaeropithecus* sp.), Yellow baboon (*Papio cynocephalus*), Mangaby monkey (*Cercocebus torquatus*), Spider-monkey (*Ailes geoffroyi*) and Chimpanzee (*Pan trogoldytes*) at Zoological Park, Hyderabad.

Distribution: India: Andhra Pradesh (all districts), cosmopolitan.

Remarks: This species is pathogenic to man, causing amoebic dysentry, and may occur in primates and domestic pets.

Suborder FLABELLINA
Family ?
Genus *Rosculus* Hawes, 1963

Diagnosis: Trophozoites small, flattened broad to discoid, more or less fan-shaped, granular mass at the posterior or region, margin clear, formed eruptive along edge of the body, changing shape; nucleus with conspicuous nucleolus and hyaline ectoplasmic pseudopodia.

Key to the species

1(2) Trophozoites large 40-50 μm in size, parasitic in prawn larvae *R. macrobrachii*

2(1) Trophozoites small, 9.6-12.6 μm x 3.8-5.4 μm in size, parasitic in fresh water snake ... *R. tropidonoti*

Material examined: Sev. exs. on slides from Gambeergedda estuary, Andhra Pradesh.

Diagnosis: Trophonts irregular, 40-50 μm in size; ectoplasm hyaline and endoplasm granular; typical limax type of pseudopodia, one or two, blunt eruptive, ectoplasmic; nucleus spherical, endosome central, extraendosomic chromatin material near periphery; cysts spherical, small, smooth, 8-10 μm in size, covering a thick membrane, with nuclear structure same as in trophozoite.

Host: *Macrobrachium rosenbergii* post larvae; site of infection: muscle tissue.

Distribution: India: Andhra Pradesh (Gambeergedda estuary, Visakhapatnam district).

(Figs. 174 & 175)

Material examined: Sev exs. on slides from Krishna district, Andhra Pradesh.

Diagnosis: Trophozoites irregular in outline, measuring 9.6-12.6 μm x 3.8-5.4 μm; protoplasm divisible into an outer hyaline area and an inner granular portion containing the nucleus and numerous food vacuoles; movement typically “limax type”, by putting forth a single ectoplasmic pseudopodium, fully extended form with granular endoplasm appearing as a spherical body at the time of locomotion reaching a maximum of 28.0 μm; nucleus spherical, 1.0-1.5 μm in diameter and containing a single nucleolus; binary fission by spherical forms measuring 8-10 μm with finely alveolated endoplasm devoid of food vacuoles; cysts spherical, 6-8 μm in diameter, with an outer thick refringent cyst wall.

Host: Fresh water snake, *Tropidonotus piscator*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Krishna district).

Incertae sedis to *Subphylum Sarcodina*

Genus *Malamoeba* Taylor and King, 1937

Diagnosis: Amoebae showing more than two nuclei presumably due to binary fission; endosome disintegrated before chromosomes and fibril formation.
(Figs. 176-182)

Diagnosis: Trophozoites reaching a maximum size of 13.5 μm x 7.0 μm (range 4.2-13.5 μm x 4.0-8.0 μm; average 9.27 μm x 5.78 μm), with a single large pseudopodium and a few other pseudopodia present; cytoplasm alveolated and sometimes containing a few refringent granules scattered all over the cytoplasm; nucleus rounded, with a well-defined nuclear membrane and a single large deeply-stained centrally-placed endosome; division by binary fission through breaking down of the endosome into chromatin masses; cysts ellipsoid, measuring 14.5 μm x 8.6 μm in fresh condition and 13.5 μm x 7.5 μm in the fixed and stained condition, with an outer thin refractile wall.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

- Phylum: APICOMPLEXA
- Class: SPOROZOA
- Subclass: GREGARINIA
- Order: EUGREGARINIDA
- Suborder: ASEPTATINA

Key to the families

1(2) Gamonts sphaeroidal to cylindrical and solitary, anterior end not differentiated, oocysts biconical with out spines, octozoic ... MONOCYSTIDAE

2(1) Gamonts solitary or associated early in pairs, oocysts round or oval, octozoic
 ... DIPLOCYSTIDAE

Family MONOCYSTIDAE Butschli, 1882

Diagnosis: As in the key.

Subfamily MONOCYSTINAE Bhatia, 1930

Diagnosis: Gamonts nematoid, cylindrical, ovoid or spherical without mucron or with an inconspicuous one, syzyzy late, ends of oocysts thickened.
Genus *Monocystis* Stein, 1848

Diagnosis: Gamonts variable, motile, sporulation not completed in the cyst, oocysts biconical and symmetrical, parasites in the coelome or seminal vesicle of oligochaetes.

Key to the species

1(2) Trophozoites spherical or oval, mucron deeply stained *M. odontotermitis*

2(1) Trophozoites elongate, mucron crescent-shaped .. *M. pontodrili*

*(Syn. *Monocystis odontotermi* Kalavati, 1979)*

(Figs. 183 & 184)

Diagnosis: Trophozoites solitary, spherical or oval, 45-750 μm, mucron deeply stained, cysts spherical, 1008-1178 μm, gametes oval with round ends, 8.0 μm x 4.2 μm. oocysts boat-shaped with button-shaped enlargement at poles, 10.2 μm x 4.8 μm in size

Host: *Odontotermes obesus* (Rambur) : site of infection: haemocoel.

Distribution: India : Andhra Pradesh, (Visakhapatnam, Visakhapatnam district).

(Figs. 185-187)

Diagnosis: Fully grown trophozoites, solitary, elongate 350.0 μm x 150.0 μm in dimension, both ends rounded, mucron crescent-shaped, deeply stained, cysts oval, 350.0 μm x 160.0 μm, ectocyst 10-12 μm, gametes isogamous, spherical, 4.0-4.5 μm in diameter, oocysts typically boat-shaped, 8.0-3.2 μm.

Host: *Pontodrilus bermudensis* (Beddard); site of infection : coelomic fluid and between the body muscles.

Distribution: India : Andhra Pradesh, (Visakhapatnam, Visakhapatnam district).
Subfamily STOMATOPHORINAE Bhatia, 1930

Diagnosis: Gamonts highly variable in shape, solitary, mucon transformed into a sucker, myocyte complex, oocysts navicular with truncated ends.

Genus Chakravartiella Misra and Raychaudhury, 1973

Diagnosis: Gamonts solitary, elongated and circular with an anterior immobile circular, sucker-like organelle bearing tooth-like structure, sucker on short neck, myonemes present.

159. *Chakravartiella krishnamurthyi* Sailaja, 1995, emend (Figs. 188-190)

Diagnosis: Trophozoites of different sizes; smallest trophozoites elongated, 100 µm x 32 µm, widest about 1/3rd the distance from the anterior end, gradually tapering bluntly at the posterior end; younger forms with dense coarsely alveolar cytoplasm containing large disc-like refringent bodies of the nature of carbohydrate food reserve scattered throughout the cytoplasm; spherical anterior portion of the parasite, probably acting like a "sucker" for attachment with the host, separated from rest of the body, the central part of anterior portion elevated and disc-like having 20-25 papillae-like elevations; nucleus situated at the anterior 1/5th part of the body, containing a single deeply stained centrally placed endosome, extra-endosomal chromatin material absent; fully grown forms, 416 µm x 50 µm, with oval sucker, 16 µm x 24 µm; cytoplasm and nuclear characters of fully grown forms same as in younger forms; sporadins solitary; stages leading to formation of cysts not detected, fully formed cysts, present in the faecal matter of the infected hosts, oval, 200-275 µm in diameter, with a thin mucus ectocyst about 18 µm thick around the cyst; cysts at early stage of development with one nucleus in each of the two associated gametocytes passed out along with the faces of the host; gametes isogamous, without locomotor organelle, formed in about 72 hours after passing out of the cysts from host; gametes spherical 6.5 µm in diameter, with alveolar cytoplasm and deeply stained nucleus without a clear nuclear membrane located towards one side of the gamete; oocysts boat-shaped, 16 µm x 8 µm; sporulation completed in about 24 hours after the formation of gametes *i.e.*, 96 hours after the formation of cysts; spores with 2, 4 and 8 nuclei at different stages of development and on completion 8 nuclei arranged in two groups of 4 each at each pole; sporozoites spindle-shaped.

Host: *Thyropagus* sp., (Myriopoda); site of infection: intestine.

Distribution: India: Andhra Pradesh, (Visakhapatnam, Visakhapatnam district).

Remarks: Sailaja (1995) described this species without any illustration and its name *Chakravartiella krishnamurthyi* appears to be proposed in honour of late Prof. R. Krishnamurthy,
a renowned protozoologist from Marathwada University, Aurangabad. This name is emended here as *C. krishnamurthyi* as per International Code of Zoological Nomenclature. This species is also redescribed here with illustration. It is compared with *C. sugereiformes*, the type species and the only species of the genus *Chakravartiella* described by Misra and Raychaudhury (1973). *C. sugereiformes* is characterised in having cylindrical body, ranging in size from 315.4 \(\mu m \times 90.5 \mu m \)–365.2 \(\mu m \times 125 \mu m \), indicating relatively smaller and broader species in comparison to *C. krishnamurthyi*. The present species *C. krishnamurthyi* can be differentiated from the type species *C. sugereiformes* in having a spindle-shaped body, broadest in the center, much larger in size and having a sucker which has 20-25 papillae scattered irregularly.

Family DIPLOCYSTIDAE, Bhatia, 1930

Diagnosis: As in the key.

Genus *Diplocystis* Kunstler, 1887

Diagnosis: Gamonts spherical to oval, association beginning early in spherical forms, oocysts round or oval, parasitic in the intestine and coelom of insects.

160. *Diplocystis horni* Kalavati, 1977

(Figs. 191-193)

Diagnosis: Trophozoites oval, 120.0 \(\mu m \) × 80.0 \(\mu m \) in size, sporadins bioassociative, 400.0-580.0 \(\mu m \) × 176.0-250.0 \(\mu m \), cysts elongated, 540.0-580.0 \(\mu m \) × 320.0-360.0 \(\mu m \), gametes spherical, 3.6-4.0 \(\mu m \) in diameter, oocysts arranged in chains, ovoidal, tapering towards poles and measuring 8.2 \(\mu m \) × 4.0 \(\mu m \).

Host: *Odontotermes horni*; site of infection: adipose tissue.

Distribution: India. Andhra Pradesh, (Visakhapatnam, Visakhapatnam district, Gajapathinagaram, Vizianagaram district, Rajhamundry, East Godavari district).

Suborder SEPTATINA Lankester, 1885

Superfamily GREGARINICAE Chakravarty, 1960

Diagnosis: Homoxenous, syzyzy early.
Key to the families

1. Early development intracellular, mucron present, syzyzy caudofrontal, primite different from satellite, gametes anisogamous, anisogamy marked, dehiscence by simple rupture, oocyst ovoid or spherical with protruding equatorial ridge ... CEPHALOIDOPHORIDAE

2. Trophozoites septate, protomerite dialated as a sucker forming lobes, syzyzy precocious, composed of 1-2 satellites with lateral association CEPHALOLOBIDAE

3. Early development extracellular, mucron simple and cylindrical or composed of head and neck, syzyzy caudofrontal, protomerite of satellite compressing deutomerite of primite, gametes anisogamous, dehiscence simple rupture URADIOPHORIDAE

4. Early development intracellular, epimerite simple, syzyzy early, caudofrontal, gametocysts with sporoducts, oocysts clearly elongate or cylindrical, symmetrical ... GREGARINIDAE

5. Gamonts with secondary segmentation of protomerite and deutomerite .. METAMERIDAE

6. During syzyzy septum of satellite is reabsorbed more or less slowly, gametocysts spherical or somewhat elongate, oocyst with loose epispore discharged initially into pockets enveloped by their membranes, dehiscence by single sporoduct .. DIDYMOPHYIDAE

7. Epimerite papilla-like or simple knob-like, gametocysts without sporoducts, dehiscence by simple rupture, oocysts ellipsoidal ... HIRMOCYSTIDAE

Family CEPHALOIDOPHORIDAE Kamm, 1922

Diagnosis: As in the key.

Genus *Caridohabitans* Ball, 1959

Diagnosis: Epimerite functional, transparent, crescent-shaped.

161. *Caridohabitans macrobrachii* Kalavati and Aravindan, 1998 (Figs. 194-196)

Diagnosis: Intracellular stages spherical, 10-15 μm in diameter, non-septate; young cephalonts 25.0-30.0 μm, septate; epimerite crescent-shaped, hyaline; protomerite indistinct,
often sunk in deutomerite; deutomerite long and cylindrical, with 8-10 epicytic striations; mature cephalonts 65.0-180.0 μm x 25.0-60.0 μm; syzyzy motile, linear with 1 or 2 satellites; gametocyst spherical or oval, 100-150 μm x 80-120 μm, gametes isogamous; spores biconical with thickened corners, 12-16 μm in size.

Host: *Macrobrachium rosenbergi*; site of infection: midgut.

Distribution: India: Andhra Pradesh (Visakhapatnam and East Godavari districts).

Remarks: The first observation on the gametocysts and oocysts of the genus *Caridohabitans* was made by Kalavati and Aravindan (1998).

Family CEPHALOLOBIDAE Theodorides and Desportes, 1975

Diagnosis: As in the key.

Genus Cephalolobus Kruse, 1959

Diagnosis: Early development extracellular, true epimerite absent, anterior end of protomerite modified into a holdfast, a subcylindrical cone with irregular lobe-like processes at the anterior edge, syzyzy caudofrontal, while attached to gut epithelium, 1-3 satellites smaller than primite.

162. *Cephalolobus andhrae* Kalavati and Aravindan, 1998

(Figs. 197-199)

Diagnosis: Trophozoites ovocylindrical or elongated, 50-80 μm x 15-25 μm; protoepimerite expanded, hyaline with a wavy rim, true epimerite absent; protomerite is rectangular with a convex septum; deutomerite elongated; sporonts bioassociative, robust, 80-140 μm x 25-56.5 μm; cysts spherical, 78-102.6 μm, found attached to rectal wall, containing rosettes of cells, free gymnospores not described.

Host: *Penaeus indicus*; site of infection: pyloric stomach.

Distribution: India, Andhra Pradesh (East Godavari district).

Family URADIOPHORIDAE Grasse, 1953

Diagnosis: As in the key.
Genus *Heliospora* Goodrich, 1949

Diagnosis: Syzyzy caudofrontal, gametocysts oval, oocysts with 6 radiating processes formed by epispore.

163. *Heliospora* sp.
 (Figs. 200-203)

Diagnosis: Cephalonts 19.0-108 µm x 4.0-10.0 µm; epimerite tongue-like; sporonts 44-250 µm x 8.0-12.0 µm; association caudo-frontal, satellite usually smaller than primitve; cysts oval, 45 x 95 µm; gametes anisogamous, microgamete 4.0 µm x 3.5 µm with a flagellum, macrogamete oval, 5.0 µm x 4.5 µm; spores round, 8.0-9.0 µm in diameter with epispore folding into 6 rays, 12.0 µm long.

Host: *Caridina laevis* (Helle); site of infection: intestine.

Distribution: India: Andhra Pradesh (Stream near Dairy farm Visakhapatnam, Visakhapatnam district).

Remarks: Narasimhamurti and Sailaja (1981) reported a species of *Heliospora* as new to science from the above host. Sailaja (1978) earlier in the unpublished thesis recorded a new species of *Heliospora* from the same host. Both the species are morphologically alike but these are treated herein, being unpublished, as unnamed species as per Internatinal Code of Zoological Nomenclature.

Family GREGARINIDAE Labbe, 1899
 (Syn. Clepsidrinidae Leger, 1892)

Diagnosis: As in the key.

Key to the genera

1. Epimerite conical, early development intracellular, syzyzy early caudofrontal, gametocyst with sporoducts, oocysts symmetrical clearly elongate or cylindrical *Gregarina*

2. Epimerite apparently absent, protomerite forming a strong sucker, syzyzy early, gametocysts ellipsoidal with thick wall. 6-8 sporoducts, oocysts doliform emitted in chains ... *Anisolobus*
Genus *Gregarina* Dufour, 1828

Diagnosis: As in the key.

Key to the species

1. Epimerite knob-like; oocysts doliform, 8.0 \(\mu m \) x 7.1 \(\mu m \) *G. crescentica*
2. Epimerite simple, knob-like; oocysts oval, 7.2 \(\mu m \) x 3.6 \(\mu m \) *G. macrotermis*
3. Epimerite simple, button-shaped surrounded by a hood and connected to protomerite by a short neck; oocysts barrel-shaped with truncated ends, 7.6 \(\mu m \) x 5.8 \(\mu m \)

.. *G. poecilocercum*

(Figs. 204-207)

Diagnosis: Early development intracellular; cephalonts 70–380.0 \(\mu m \), elongated; epimerite knob-like 7.5–10.0 \(\mu m \); protomerite subspherical; deutomerite long and straight; syzyzy caudofrontal, biassociative; gametocyst oval, 340–360 \(\mu m \) x 190–220 \(\mu m \) in size, gametes isogamous; oocysts doliform 8.0 \(\mu m \) x 7.1 \(\mu m \).

Host: *Raphidopalpa stevensi* and *Amblyrhinus* sp. (Coleoptera, Insecta); site of infection: midgut.

Distribution: India, Andhra Pradesh, (Visakhapatnam district) and West Bengal.

Remarks: Haldar and Chakraborty (1978) reported this species from *Amblyrhinus* sp. in West Bengal. *Raphidopalpa stevensi* is a new host parasite record.

(Figs. 208-210)

Diagnosis: Early cephalont 26 \(\mu m \) x 20 \(\mu m \); epimerite simple, knob-like; sporonts 200.0–220.0 \(\mu m \) x 85.0–95.0 \(\mu m \); sporadins bio-associative, primites and satellite of equal size; cysts spherical or slightly oval, 150.0–250.0 \(\mu m \) in size, ectocyst, 10.0 \(\mu m \) in thickness and gelatinous, gametes isogamous, spherical, 3.0–3.6 \(\mu m \) in diameter; oocysts oval, 7.2 x 3.6 \(\mu m \).

Host: *Macrotermes estherae*; site of infection: foregut of workers of this termite.

166. *Gregarina poeciloceri* Ganapati and Mrutyumjaya Devi, 1954
(Figs. 211-214)

Diagnosis: Early development intracellular; epimerite simple, button-shaped surrounded by a hood and connected to protomerite by a short neck; sporadins elongated, 350.0–400.0 μm x 80.0–120.0 μm; protomerite hyaline, dome shaped; deutomerite cylindrical; sporadins bio-associative, syzyzy caudofrontal; gametocysts spherical, 383.0–750.0 μm in size, ectocyst thick, gametes isogamous; oocysts barrel-shaped with truncated ends, 7.6 μm x 5.8 μm.

Host: *Poecilocerus pictus*; site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam and Guntur districts).

Remarks: Narasimhamurti and Ganapati (1961) described the sporogony and chromosome cycle of this parasite. Pampapathi Rao (1958) observed the behaviour of the parasite under heterosmotic conditions. Levine (1988) emended this species *Gregarina poecilocerum* as *G. poeciloceri*.

Genus Anisolobus Vincent, 1924

Diagnosis: As in the key.

167. *Anisolobus triboli* n. sp
(Figs. 215-218)

Type material: Holotype *anisolobus* 1; Paratypes *anisolobus* 2, 3 & 4, deposited in the Protozoology laboratory, Andhra University.

Diagnosis: Development extracellular; epimerite absent; young cephalonts elliptical, obese, 11.0 μm x 2.5 μm in size; protomerite broad, subspherical, hyaline; anterior end of the protomerite modified into a strong sucker-like adhesive organelle with deeply stained elevated rim with 4 incipient lobes; sporadins large, elliptical or obese, broad, subspherical, hyaline,
11.3–70.9 (29.81) μm x 2.5–24.7 (11.2) μm; LP : TL 1 : 4.6; LD : TL 1 : 1.27; syzyzy caudofrontal, primite larger than satellite; gametocyst opaque white, ovoid with a thick ectocyst, 65.0–95.0 μm x 75.0–120.0 μm, gametes isogamous; oocysts oval with rounded corners. 4.8–6.4 μm x 8.0–9.4 μm.

Host: Tribolium ferruginum Larvae; site of infection: mid gut.

Distribution: India: Andhra Pradesh, (Visakhapatnam district).

Remarks: Genus *Anisolobus* Vincent, 1924 is characterized by the absence of true epimerite and a broadly hemispherical sucker-like epimerite with variable number of lobes. Only eight species of *Anisolobus*, viz., *A. dacnecola* Vincent, 1924 from *Dacne rufifrons*, *A. bulliardi* Theodorides and Jolivet 1959 from *Autispyris planicollis*, *A. aleocharae* Geus 1969 from *Aleochara intricata*, *A. gymnopholi* Theodorides et al. 1972 from *Gymnopholus marquarti*, *A. desportis* Theodorides and Jolivet, 1981 from *Cratopus frapplieri*, *A. theodoridesi* Levine, 1984 (syn. *Anisolobus* sp. Theodorides and Desportes, 1966) from *Cryphaeus gazella* (cited from Levine, 1988), *A. indicus* Haldar, Ray and Bose, 1988 from *Coccinella septempunctata* and *A. rayii* (Roy, 1989) Das et al., 1993 from *Brassica compestris* have been described so far. Among them, two species *Anisobolus indicus* Haldar, Ray and Bose, 1988 and *Anisobolus rayi* Roy (1989, *J. Protozool.*, 36(1), p.20) were described from India. Since both the species were described under the same name *Anisobolus indicus*, Das *et al.* (1993) proposed a new name for it as *Anisobolus rayi* comb. nov. according to International Code of Zoological Nomenclature. Theodorides and Jolivet, 1981 differentiated the species *Anisolobus* described till then based on the number of lobes seen in the protomerite. For examples there were 4-10 lobes in *A. bulliardi*, about 15 in *A. gymnopholi* and several in *A. dacnecola* and circular, cushion-like with 8 lobes in *A. desportis*. Lobes were not described in *A. indicus* and *A. rayi*. The present species appears distinct in having a rim-like adhesive organ with 4 lobes. Morphometrically the trophozoite of *A. rayi* is much broader (21-30 μm x 38-64 μm) than the present species (29.81 μm x 11.2 μm). In *Anisobolus indicus* described from a beetle *Coccinella septempunctata* the size of the sporont is 117.5 μm x 37.4 μm and hence not comparable. Besides, this is the first report of the species of *Anisolobus* from *Tribolium ferruginum* collected from Visakhapatnam. In view of the above mentioned reasons it is proposed herein to name the undetermined species described by Prasada Rao (1991) as *Anisobolus triboli* n.sp after the generic name of the host.

Family METAMERIDAE Levine, 1979

Diagnosis: As in the key.

Genus Gopalilella Ganapati, Kalavati and Sundaram, 1974

Diagnosis: Trophozoites single, multi-segmented (usually 8, occasionally 11), young cephalonts non-septate with a mucron at the tip, mature trophozoites with 8–11 segments, umbrella-like epimerite with central deeply stained rod, gametes isogamous oval, oocysts biconical, dehiscence simple.

168. *Gopaliella marphysae* Ganapati, Kalavati and Sundaram, 1974
(Figs. 219-233)

Material examined: Sev. exs., July–August 1952, P. S. Sundaram; August 1973, C. Kalavati, Southern lighter channel, Visakhapatnam harbour, Visakhapatnam, Visakhapatnam district.

Diagnosis: Early trophozoites elongate, non-septate, 70.0 μm x 20.0 μm; epimerite simple, represented by small dot-like structure; mature trophozoites multi-segmented with 8-11 segments, 840 μm x 120 μm in size; epimerite differentiated into a complex inverted umbrella-shaped structure, base of the epimerite flask-shaped, distal end expands into an inverted umbrella with protoplasmic extensions; the deeply stained dot in the early stages getting elongated with blunt, round disc-like organ, nucleus always located in penultimate segment; sporadins solitary, cysts spherical, 200-300 μm, ectocyst 8-10 μm in thickness; gametes isogamous, spherical, 4.0-5.0 μm; oocysts spherical, 8.0-10 μm in diameter.

Host: *Marphysa grivelyi*; site of infection: gut.

Distribution: India, Andhra Pradesh (Visakhapatnam district).

Remarks: *G. marphysae* is a monotypic species.

Family *DIDYMOHYIDAE* Leger, 1892

Diagnosis: As in the key.

Key to the genera

1. Epimerite cylindro-conical, very degenerate small pointed papillae, gametocyst spherical, oocysts grouped in spherical pockets in gametocysts *Didymophyes*

2. Epimerite spherical, hyaline with 14-16 ridges at the anterior end, syzyzy biassociative, gametocyst spherical, dehiscence by simple rupture, oocysts spindle-shaped *Leposcelisus*

**Genus* Didymophyes* Stein, 1848

Diagnosis: As in the key.
(Figs. 224-226)

Diagnosis: Cephalonts long, slender, 170.0-200.0 \(\mu\text{m}\) x 15.0-25.0 \(\mu\text{m}\); epimerite simple, small, triangular and papilla-like; protomerite indistinct marked by a break in cytoplasm, no distinct septum; deutomerite elongate; syzyzy linear, generally with 2-3 satellites, primite retaining epimerite, satellite without protomerite; gametocyst spherical, 120-150 \(\mu\text{m}\); oocysts ellipsoidal, 15.0 \(\mu\text{m}\) x 8.0 \(\mu\text{m}\), enclosed in a thin triangular exospore, dehiscence by simple rupture.

Host: *Penaeus monodon*; site of infection: midgut.

Distribution: India, Andhra Pradesh (Visakhapatnam district).

Genus *Liposcelisus* Sarkar and Haldar, 1980

Diagnosis: As in the key.

170. *Liposcelisus dytiscusi* Kalavati and Prasada Rao
(Figs. 227 & 228)

Diagnosis: Early development intracellular; trophozoites spherical, 6.4 \(\mu\text{m}\) in diameter; young cephalonts 25.4 \(\mu\text{m}\) x 9.0 \(\mu\text{m}\), attached to gut epithelium; cephalonts rotund or obese with a characteristic spherical disc-like depression with 16–20 peripheral ridges; protomerite rectangular or oval; deutomerite hemispherical; sporadins 22.0–59.6 \(\mu\text{m}\) x 24.0–81.4 \(\mu\text{m}\), biassociative, syzyzy caudofrontal; gametocysts opaque white, spherical 200–380 \(\mu\text{m}\) in size, gametes isogamous; oocysts spindle-shaped with rounded corners.

Host: *Dytiscus* sp. (Coleoptera, Insecta); site of infection: mid gut.

Distribution: India: Andhra Pradesh; (Visakhapatnam district).

Family HIRMOCYSTIDAE Grasse, 1953

Diagnosis: As in the key.
Genus *Retractocephalus* Haldar and Chakraborty, 1976

Diagnosis: Epimerite globular retractile into protomerite, early development intra-cellular, syzyzy caudofrontal, dehiscence by simple rupture, oocyst barrel-shaped, extruded in chains.

Key to the species

1. Epimerite simple, globular and button-like with a narrow stalk and retracted into a cup-like depression in the protomerite, oocysts barrel-shaped with thin wall. $5.0 \mu m \times 8.4 \mu m$ in size ... *R. corcyrae* n.sp.

2. Epimerite simple, globular and button-like with a small depression in the center, spores barrel-shaped with thin wall, $12.8 \mu m \times 5.6 \mu m$ in size *R. melanopli*

3. Epimerite small, knob-like, retracted into a depression in the rectangular protomerite, deutomerite long, cylindrical or oval .. *R. waltairensis*

171. *Retractocephalus corcyrae* n.sp.

(Figs. 229 & 230)

Diagnosis: Early stages of the development of the parasite intracellular; trophozoites oval, $8.0 \mu m \times 12.0 \mu m$, aseptate; young cephalonts attached to the epithelial cells of the midgut, elongate or ellipsoidal, $14.5–18.6 \mu m \times 4.2–6.2 \mu m$; epimerite simple, globular and button-like with a narrow stalk; protomerite subspherical or rectangular; mature cephalonts $15.9–70.9 \mu m \times 28.0–40.8 \mu m$, in mature cephalonts epimerite retracted into a cup-like depression in the protomerite, protomerite sub-spherical; deutomerite oblong, elongated or cylindrical; sporadins large and rotund with thick nonstriated epicyte and promerite sometimes sinks into a depression in the deutomerite; LP : TL 1 : 6.84; syzyzy caudofrontal, biassociative, primitae smaller than the satellite; gametocysts spherical, $100.0–120.0 \mu m$ in diameter, gametes isogamous, oval, $5.0 \mu m \times 3.2 \mu m$; oocysts barrel-shaped with thin wall, $5.0 \mu m \times 8.4 \mu m$ in size, dehiscence by simple rupture.

Host: *Corcyra cephalanica* (Lepidoptera, Insecta); site of infection: mid-gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: Eight species of *Retractocephalus* have so far been described from insect hosts by Haldar and Chakraborty (1976), Haldar et al. (1982), Rajakumari and Narsimhamurthi
(1984) and Kalavati and Krishnamurthy (1989). These species are reported from orthopteran and coleopteran hosts, while the present species is recorded from a lepidopteran insect. Morphometrically this species is much smaller in size (15.9–70.9 μm x 28.0–40.8 μm) than all the other described species and is not comparable. It appears distinct in having a globular epimerite with a narrow stalk-like base, rotund sporadins with retractable protomerite. Prasada Rao (1991) described this species and refrained from naming it since he could not observe the gametocysts and oocysts. Since the description is completed now, it is proposed to name the species as Retractocephalus corcyrae n.sp. after the generic name of the host.

172. Retractocephalus melanopli Kalavati and Krishnamurty, 1989
(Figs. 231-234)

Diagnosis : Early stages of the development of the parasite intracellular; young cephalonts attached to the epithelial cells of the midgut; epimerite simple, globular and button-like with a small depression in the centre; 10.0-12.0 μm x 12.0-24.0 μm in size, retractable into a cup-like depression in the protomerite, mature cephalonts 60.5-160 μm; deutomerite sub-spherical, oblong, elongated or cylindrical; protomerite sub-spherical; sporadins elongate, biassociative; gametocysts spherical, 208.0-310.0 μm in diameter, gametes isogamous, oval, 8.0 μm x 4.0 μm; oocysts barrel-shaped with thin wall, 12.8 μm x 5.6 μm in size, dehiscence by simple rupture.

Host : Melanoplus sp.; site of infection : mid-gut

Distribution : India : Andhra Pradesh (Visakhapatnam district).

173. Retractocephalus waltairensis Rajakumari and Narasimhamurti, 1984
(Figs. 235-237)

Diagnosis : Early stages intracellular, spherical, 13.5 μm in diameter; young cephalonts 71.0 μm x 31.0 μm in size; epimerite small, knob-like, retractable into a depression in the rectangular protomerite; deutomerite long, cylindrical or oval; sporonts 88.0-137.0 μm x 53.0-60.0 μm, bi-associative; gametocysts and oocysts not described.

Host : Raphidopalpa stevensi; site of infection : malphigian tubules, haemocoel.

Distribution : India : Andhra Pradesh (Visakhapatnam district).
Superfamily STENOPHORICAE Levine, 1970
(Synonym Solitericae Chakravarty, 1960)

Diagnosis: Gamonts solitary, early development intra or extracellular, epimerite simple or complex, gametocysts with or without sporoducts.

Key to the families

1. Early development intracellular, syzyzy caudofrontal, late, gametes anisogamous, anisogamy accentuated, dehiscence by simple rupture, oocysts ovoid or ellipsoidal .. STENOPHORIDAE

2. Early development intracellular; epimerite vesicular and retractile with prongs; with deep myocyte composed of 2 axial bundles, the anterior retracting epimerite and contained in protomerite, gametocyst with single sporoduct, oocyst truncate................................. MONODUCTIDAE

3. Epimerite thick horizontal disc with milled border or absent, protomerite atrophied in adults, dehiscence by simple rupture, oocysts ovoid or biconical ... SPHAEROCYSTIDAE

4. Epimerite complex, digitate without a long neck, nucleus in protomerite, syzyzy late, frontal, gametes anisogamous, anisogamy accentuated, gametocysts with single residuum ... DACTYLOPHORIDAE

5. Epimerite elongated with or without appendages, early development extracellular, syzyzy frontal, gametocyst residuum present, oocysts hat-shaped emitted in chains

6. Epimerite symmetrical with or without appendage, syzyzy late frontal, gametocyst without sporoducts, dehiscence by simple rupture, oocysts simple, biconical or cylindroconical or irregular or spiny ... ACTINOCEPHALIDAE

Family STENOPHORIDAE Leger and Duboscq, 1904

Diagnosis: As in the key.

Key to the genera

1. Epimerite small, tongue-shaped, bordered by a collar at its base, oocysts covered by a hyaline membrane .. Hyalosporina

2. Epimerite lacking or rudimentary, oocysts ovoid with equatorial line Stenophora
Genus *Hyalosporina* Chakraborty, 1935

Diagnosis: As in the key.

(Figs. 238 & 239)

Diagnosis: Gamonts elongated, 250-300 μm x 15-38 μm; epimerite rounded; protomerite small triangular in shape, second nucleus often seen in protomerite; deutomerite broader anteriorly, tapering posteriorly, nucleus spherical, tethered to pellicle by myonemes; gametocyst spherical 77 –116.5 μm in diameter; oocysts elongately oval.

Host: *Chondromorpha keelarti* (Diplopoda, Arthropoda); site of infection: gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: Sailaja (1978) recorded this species for the first time from this state.

Genus *Stenophora* Labbe, 1899

Diagnosis: Early development intracellular. Oocyst ovoid with prominent equatorial suture.

Key to the species

1. Epimerite small and rudimentary, protomerite broadly oval, produced anteriorly into a short stalk with a shallow depression covered by epicyte, gametocysts spherical, oocyst cylindrical with rounded corners ... *S. thyrogluti*

2. Epimerite small, knob-like, sporonts solitary, gametocysts spherical, gametes anisogamous, oocysts oval 4.0 x 3.0 μm .. *S. xenoboli*

175. *Stenophora thyrogluti* Ganapati and Narasimhamurti, 1962
(Figs. 240-243)

Diagnosis: Early development stage intracellular, oval; epimerite small and rudimentary; trophozoite elongate, 1196 μm x 247 μm; protomerite broadly ovoidal, produced anteriorly into a short stalk with a shallow depression covered over by epicyte, a flask-shaped area at
the anterior end of the protomerite filled with hyaline protoplasm; gametocysts spherical, 260-300 μm, with gelatinous ectocyst; oocysts cylindrical with rounded corners, 10.5 μm x 4.5 μm, a hyaline episporal coat seen in close contact with sporoblast wall.

Host: *Thyroglutus* sp.; site of infection: intestine.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

176. *Stenophora xenoboli* Ganapati and Narasimhamurti, 1956
(Figs. 244-246)

Material examined: Sev. exs., C.C. Narasimhamurti, Visakhapatnam, Visakhapatnam District.

Diagnosis: Early development intracellular; trophozites 37.0-450.0 μm, anterior half of the body broader than posterior; epimerite small, knob-like; sporonts solitary; gametocysts spherical, 200.0-225.0 μm in diameter, gametes anisogamous, microgamete oval with one end drawn out into a conical projection with a short blunt flagellum, macrogamete oval, 3.25 μm x 3.0 μm; oocysts oval 4.0 μm x 3.0 μm with a hyaline episporal coat.

Host: *Xenobolus* sp.; site of infection: Intestine.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

177. *Stenophora* sp. 1
(Figs. 247-251)

Material examined: Sev. exs., Visakhapatnam, November, 1976, N. Sailaja.

Diagnosis: Early development intracellular; cephalonts 192-160 μm; epimerite small, deeply stained spine-like; sporadins long, narrow, attenuated, 228 μm x 48 μm; gametocysts oval or spherical, 200-225 μm in size, gametes isogamous, dehiscense simple rupture; oocysts oval 8.0 μm x 4.1 μm.

Host: *Strongyllosoma contortipes* (Myriapoda); site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: Sailaja (1978) recorded this species as new to science in the unpublished thesis which is treated herein as unnamed species, being unpublished, as per International Code of Zoological Nomenclature.

178. *Stenophora* sp. 2
(Figs. 252-254)

Material examined: Sev. exs., Visakhapatnam, October, 1977, N. Sailaja.
Diagnosis: Early development intracellular; cephalonts 26-745 µm; epimerite simple, hyaline, triangular; protomerite with numerous deeply stained chromatin bodies; deutomerite elongated with blunt posterior end; gametocysts spherical 300-425 µm in size, gametes isogamous, dehiscence simple rupture; oocysts cylindrical 8.5 µm x 6.4 µm.

Host: *Strongylosoma contortipes* (Myriapoda); site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: As for preceding species.

179. *Stenophora* sp. 3
 (Figs. 255-257)

Material examined: Sev. exs., Visakhapatnam, November, 1976, N. Sailaja.

Diagnosis: Early development intracellular; cephalonts 192-160 µm; epimerite broadly conical, bilobed and nipple-like; sporadins 184 µm x 140 µm, round and oval; gametocysts spherical 90-200 µm in size, gametes isogamous, dehiscence simple rupture; oocysts oval 6.5 µm x 5.0 µm.

Host: *Strongylosoma contortipes* (Myriapoda); site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: As for preceding species.

Family **MONODUCTIDAE** Ray and Chakravarty, 1933

Diagnosis: As in the key.

Genus Monoductus Ray and Chakravarty, 1933

Diagnosis: Syzyzy late, anisogamy present.

180. *Monoductus lunatus* Ray and Chakravarty, 1933
 (Figs. 258 & 259)

Material examined: Sev. exs., April-May 1977, N. Sailaja, Visakhapatnam, Visakhapatnam District.

Diagnosis: Trophozoite elongated, 225-445 µm x 33-49 µm; epimerite knob-like with 12-16 stiff radiating processes at its neck; protomerite small more or less conical; deutomerite
Figs. 247-257. Gregarine parasites of Andhra Pradesh: 247-251. *Stenophora* sp. 1; 252-254. *Stenophora* sp. 2; 255-257. *Stenophora* sp. 3.
elongated, cylindrical; sporonts solitary or associative; gametocyst spherical; 225.0–230.0 \(\mu m \) in diameter, oocysts compressed, truncated at one pole, single sporoduct releasing spores in long chains

Host: Strongylosoma contortipes (Diplopoda, Arthropoda); site of infection: gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: Sailaja (1978) recorded this species from this state.

Family SPHAEROCYSTIDAE Chakravarty, 1960

Diagnosis: As in the key.

Genus *Sphaerocystis* Leger, 1892

Diagnosis: Epimerite labile, gamonts apparently with single segment, solitary, oocysts ellipsoidal with adherent endospore and epispore.

181. *Sphaerocystis odontotermitis* Kalavati and Narasimhamurti, 1979

(Syn. *S. odontotermi* Kalavati and Narasimhamurti, 1979) (Figs. 260-262)

Material examined: Sev. exs., August to December, 1968, C. Kalavati, Visakhapatnam, Visakhapatnam (District); July-August 1978, K. Rajakumari, Tuni, East Godavari (District), and July–August 1976, G. Krishnamurti, Vizianagaram, Vizianagaram (District).

Diagnosis: Cephalonts attached to gut epithelium, 25 \(\mu m \) x 125 \(\mu m \) in size; epimerite dome-shaped, 8.5 \(\mu m \) x 12.5 \(\mu m \) in size; deutomerite elongate; protomerite indistinct; sporonts sub-spherical, solitary; gametocysts spherical, 200.0-220.0 \(\mu m \) in diameter, ectocyst 10.0-20.0 \(\mu m \) thick, gametes isogamous, spherical, 3.2 \(\mu m \) in diameter; oocysts ovocylindrical, 10.0 \(\mu m \) x 6.0 \(\mu m \), arranged in the form of 7-8 balls inside the cyst, each surrounded by thin membrane, dehiscence by simple rupture.

Host: Odontotermes sp.; site of infection: mid and hindguts.

Distribution: India: Andhra Pradesh (Visakhapatnam, Vizianagaram and East Godavari districts).

Family DACTYLOPHORIDAE Leger, 1892

Diagnosis: As in the key.
Key to the genera

1. Protomerite spread out transversely with numerous delicate rhizoids of 2 long horizontal narrow, peripheral portion with many teeth from which long filaments project
 .. *Grebneckiella*

2. Epimerite with sucker-like border of ramified lobes, transverse fibrils conspicuous, gametocyst ellipsoidal, oocyst biconical .. *Dendrorhynchus*

3. Epimerite cup-shaped with numerous intracellular filaments, gamont with septum between protomerite and deutomerite, gametes anisogamous, oocyst simple *Mecistophora*

Genus *Grebneckiella* Bhatia, 1938

Diagnosis : As in the key.

182. *Grebneckiella pixellae* Misra, 1942
 (Figs. 263 & 264)

Diagnosis : Gamonts solitary, 1050-4050 μm long; PL:TL = 1:15-25; epimerite caduceus with digitiform protruberances and thread-like proximal filaments, long arm with a vesicular nucleus at its distal end, short arm with bifid distal extremity; gametocysts spherical, 208.0-672.0 μm, oocysts cylindrical or long ovoidal, 10.0-13.0 μm x 4.0-5.0 μm, released in oblique chains.

Host : *Scolopendra morsitans* (Myriapoda, Arthropoda); site of infection : mid gut.

Distribution : India : Andhra Pradesh (Visakhapatnam district).

Remarks : Ganapati and Narasimhamurti (1955) reported the species from the same host in Visakhapatnam and described the distribution of paraglycogen in different stages of the life cycle.

Genus *Dendrorhynchus* Keilin, 1920

Diagnosis : As in the key.

183. *Dendrorhynchus keilini* Nazeer Ahmed and Narasimhamurti, 1979
 (Figs. 265-268)

Diagnosis: Trophozoites reaching a maximum size of 400.0 \(\mu m \times 300.0 \mu m \); epimerite expanded with a disc-like structure, the margin of which produced into 13-16 bifid papillae; gametocysts spherical, reaching a diameter of 225 \(\mu m \), ectocyst 30 \(\mu m \) thick, gametes isogamous, 7.5 \(\mu m \times 4.5 \mu m \) in size; oocyst oval, 7.0 \(\mu m \times 3.0 \mu m \) in size, dehiscence simple.

Host: Ceriagrion coromandelianum (Fabr); site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Genus Mecistophora Ganapati and Narasimhamurti, 1960

Diagnosis: As in the key.

184. Mecistophora legeri Ganapati and Narasimhamurti, 1960 (Figs. 269-271)

Material examined: Sev. exs., C.C. Narasimhamurti, Visakhapatnam.

Diagnosis: Mature trophozoite 595.0 \(\mu m \times 148.0 \mu m \), elongated and cylindrical with a bluntly pointed posterior end; epimerite in the form of a shallow cup-like structure with raised margins that frayed out into numerous filamentous processes; protomerite ovoid, posterior surface concave; sporonts associate in pairs by their sides with protomerites in opposite direction; gametocysts covered by a thick gelatinous ectocyst, 10.0-12.0 \(\mu m \) in thickness, gametes anisogamous, macrogametes ovoidal, 4.5 \(\mu m \) x 3.75 \(\mu m \) in size, microgametes comma-shaped, 3.5-4.0 \(\mu m \) in length; oocyst cylindrical with rounded ends 6.5 \(\mu m \times 3.5 \mu m \) in length, dehiscence by pseudocyst formation.

Host: Mecistoccephalus punctifrons; site of infection: midgut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: This is a monotypic species.

Family STYLOCEPHALIDAE Ellis, 1912
(Syn: Stylorhynchidae, Scheneider, 1886)

Diagnosis: As in the key.
Key to the genera

1. Epimerite broad at the base swollen as bulb with olive-shaped prolongation, oocysts hat-shaped.. *Cystocephalus*

2. Epimerite elongated as neck, swollen posteriorly at free end, gametocyst covered with papillae, oocysts hat-like, usually emerging in chains *Stylocephalus*

3. Epimerite very long with sharp or blunt point on a filiform neck, oocyst hat-shaped. .. *Xiphocephalus*

Genus *Cystocephalus* Schneider, 1886

Diagnosis: As in the key.

185. *Cystocephalus gonocephali* n. sp.
(Figs. 272-276)

Type material: Holotype Cys. Gon. 1 and paratypes Cys. Gon. 2, 3 & 4 deposited in Protozoology laboratory, Andhra University.

Diagnosis: Body elongated, 205-400 μm x 36-34 μm, with greatest width from anterior ⅓ region; young cephalonts found free in the lumen of the gut; epimerite disproportionately large, swollen, bulb-like in shape with a blunt conical tip based on a collar; protomerite at this stage not clearly demarcated, appearing like a collar between epimerite and deutomerite, no clear septum between proto and deutomerite; in mature cephalonts epimerite broad spatula-like, relatively smaller in size, septum between proto and deutomerites well marked; nucleus oval, 16 μm x 48 μm, with two masses of chromatin; collar distinct; gametocysts oval or spherical, 202-235.0 μm x 152.0-206.0 μm, gametes anisogamous, anisogamy well marked; oocysts hat-shaped, 13.0 μm x 10.3 μm with thickened black ends and released in chains.

Host: *Gonocephalum arenarium* (Coleoptera; Insecta); site of infection : midgut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: So far ten species of the genus *Cystocephalus* are reported from coleopteran insect hosts (Levine, 1988) and in comparison the gamonts in the present species are found smaller than *C. algerianus*, *C. albrechti*, *C. aethiopicus*, *C. gabei* and *C. devdhari* and larger than *C. hollendei*. Besides these species, *Cystocephalus harpalus* and *C. trapezus* are reported by Nelson (1970) and *C. rhytinotus* by Patil and Amoji (1980). Theodorides (1954) emended *Leidyana leidy* Kamm, 1917 as *Cystocephalus leidy* (Kamm, 1917). The present species
differs from all these species in having a bulb-like large epimerite that reduces in size and appears like a spatula in mature cephalonts. Nucleus is oval, 16 \(\mu \text{m} \times 48 \mu \text{m} \), with two masses of chromatin. Oocysts are relatively large in comparison to \(C. \ gabei, \ C. \ rhynotitus \) and \(C. \ devdhari \) and hat-shaped with black thickened ends. According to Corbel (1971) \(C. \ aethiopicus \) and \(C. \ gabei \) are synonymous, while the complete life cycle is known only for a few species viz., \(C. \ aethiopicus, \ C. \ algerianus, \ C. \ devdhari \) and \(C. \ rhytinotus \). Among these species the spores of new gregarine are larger (13.0 \(\mu \text{m} \times 10.3 \mu \text{m} \)) than the others [\(C. \ algerianus, \ 10 \mu \text{m} \times 10.5 \mu \text{m} ; \ C. \ aethiopicus (= C. gabei), \ 8 \mu \text{m} ; \ C. \ devdperi, \ 10 \mu \text{m} \times 7.5 \mu \text{m} ; \) and \(C. \ rhytinotus, \ 11.25 \mu \text{m} \times 8.75 \mu \text{m} \)]. In view of the above differences in epimerite, oocysts and spores supposedly having stable characters and its occurrence in a new host, \(Gonocephalum \ arenarium \). it is considered new to science for which the name \(Cystocephalus \ gonocephali \) n. sp. is proposed after the host. Rajakumari (1983) initially studied this species and identified as \(Cystocephalus \) sp.

Genus \textit{Stylocephalus} Ellis, 1912

\textit{Diagnosis} : As in the key.

\textbf{Key to the species.}

1. Epimerite elongated with slightly dialated tip appearing like a raised cup with central papilla-like extension .. \(S. \ gonocephali \)

2. Epimerite with long neck and saucer-shaped structure, cephalont elongated serpent like .. \(S. \ serpentula \)

(Figs. 277-279)

\textit{Material examined} : Sev. exs., N. Sailaja, September–December, 1976, Visakhapatnam, Visakhapatnam District.

\textit{Diagnosis} : Gamonts solitary; epimerite elongated with slightly dialated tip appearing like a raised cup with central papilla-like extension; gamonts elongated and cylindrical, 1300 \(\mu \text{m} \times 110 \mu \text{m} \) in size; gametocysts spherical, 340.0 \(\mu \text{m} \) in diameter, gametes anisogamous; oocysts hat-shaped and released in chains.

\textit{Host} : \textit{Gonocephalum brachyelytra} and \textit{G. arenarium} (Coleoptera, Insecta); site of infection : mid gut.

\textit{Distribution} : India : Andhra Pradesh (Visakhapatnam district).

\textit{Remarks} : Sailaja (1978) described the chromosome cycle of this species.
187. *Stylocephalus serpentula* Devdhar and Amoji, 1977
(Figs. 280 & 281)

Material examined: Sev, exs., N. Sailaja, December 1977, Visakhapatnam, Visakhapatnam District.

Diagnosis: Cephalonts elongated, serpent-like; LP : TL = 1 : 37; epimerite long with a narrow neck 3–3½ times longer than protomerite, distal end saucer-shaped expanded; protomerite dome-shaped; gametocyst spherical, 230–285 μm; oocysts hat-shaped 9.8 μm x 7.0 μm.

Host: *Gonocephalum hoffmannsegni* and *G. arenarium*; site of infection: mid gut.

Distribution: India: Andhra Pradesh, (Visakhapatnam district), Karnataka (Gulburga).

Remarks: Sailaja (1978) recorded this species from *G. arenarium* from this state. Corbel (1971) transpositioned this species *S. serpentula* to the genus *Xiphocephalus* as *X. serpentula*. A review of the diagnostic characteristics reveals that the epimerite of the present species is elongated with a narrow neck and has an expanded, broad, saucer-like distal end. In the original description of *S. serpentula*, Devdhar and Amoji (1877) described epimerite as broad, lancet-shaped at the tip of a neck. Both these descriptions justify assigning this species to the genus *Stylocephalus* which has a "mucron elongated into a narrow neck swollen posteriorly at the free end" (Levine, 1988) rather than the genus *Xiphocephalus* which is characterized by "mucron very long with sharp or blunt point on a filiform neck" (Levine, 1988). It is, therefore, contended to retain the original status of this species in the genus *Stylocephalus* as *S. serpentula* until the type material is studied or family level revision is made to the family Stylocephalidae.

188. *Stylocephalus* sp.
(Figs. 282-287)

Diagnosis: Cephalonts 88-624 μm x 20-56 μm; epimerite with a pointed distal and broad bulbous proximal ends; sporadins 280-592 μm x 40-80 μm; gametocysts spherical 200-300 μm; gametes anisogamous; oocysts oval, 11.2 μm x 8.8 μm, expelled in chains.

Host: *Gonocephalum arenarium* (Coleoptera : Insecta); site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: Sailaja (1978) recorded this species as new to science in the unpublished thesis which is treated herein as unnamed species, being unpublished, as per International Code of Zoological Nomenclature.
Genus *Xiphocephalus* Corbel, 1971

Diagnosis: As in the key.

189. Xiphocephalus rhytinotus n. sp.

(Figs. 288-290)

Type slides: Holotype Xi. rh 1; paratypes Xi. rh 2, 3 & 4, deposited in Protozoology laboratory, Andhra University.

Diagnosis: Sporadins solitary, thin, elongated and worm-like, posterior region with a spine-like ectoplasmic thickening; young cephalonts oval, 2.0 μm x 8.0 μm, free in the lumen of the gut; epimerite lancet-shaped with short neck in young cephalont and in mature form epimerite lancet-shaped, very long, 14.5-23.3 μm, with sharp point on a filiform neck; protomerite dome-like; deutomerite oval or elongated, 41.8–132.5 μm x 5.5-20 μm; LD : TL = 1 : 1.15, LP : TL = 1 : 24.4; sporonts long and thin with epicytic striations; gametocysts spherical, 200 –250.0 μm in diameter, cyst wall papillated, gametes anisogamous; oocysts barrel-shaped with peripheral thickenings and expelled in chains.

Host: *Rhytinota* sp. (Coleoptera, Insecta); site of infection: midgut and haemocoel.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: The present species does not resemble any of the eight species of *Xiphocephalus* viz., *X. africanus* (Syn. *Stylocephalus africanus*), *X. gladiator*, *X. gonocephali*, *X. karnatakaensis* (Syn. *Stylocephalus (X.) karnatakaensis*), *X. latipes*, *X. phalesiae* (Syn. *Stylocephalus phaleriae*) *X. reitteri* (Syn. *X. reitterae*) and *X. serpentula* (Syn. *Stylocephalus (X.) serpentula*) described so far from insects (Levine, 1988) and is not comparable with them in size and some other morphological characteristics as tabulated in the comparative chart on the next page. Further, the lancet-shaped epimerite with a sharp point on a filiform neck and the barrel-shaped sporocyst appeared unique for this species. Beside, it is the first record of *Xiphocephalus* from *Rhytinota* sp. Prasada Rao (1991) who observed the species earlier refrained from naming the species since he did not find the stages of gametogony and sporogony. Therefore, name of the species *Xiphocephalus rhytinotus* n. sp. is proposed after the host.
Comparative chart of *Xiphocephalus* species (figures indicate measurement in μm)

<table>
<thead>
<tr>
<th>Species (Host)</th>
<th>Morphometric features of Xiphocephalus species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epimerite</td>
<td>Sporadins</td>
</tr>
<tr>
<td>Xiphocephalus ellisi (Host: Eleodes spacus)</td>
<td>Elongated, xiphoid, ensiform.</td>
</tr>
<tr>
<td>Xiphocephalus gladiator (Host: Helenophorus collaris)</td>
<td>Xiphoid to lanceolate, very long, on a distinct filiform neck</td>
</tr>
<tr>
<td>Xiphocephalus gonoccephali (Host: Gonocephalus depressum)</td>
<td>Cone-shaped in young; lancet-shaped with a round collar in mature forms.</td>
</tr>
<tr>
<td>Xiphocephalus karnatakensis (Host: Gonocephalum hoffmannseggi)</td>
<td>Lancet-shaped with long neck 100-120</td>
</tr>
<tr>
<td>Xiphocephalus latipes (Host: Scleron latipes)</td>
<td>Lancet-shaped with long neck, 100</td>
</tr>
<tr>
<td>Xiphocephalus reitereae (Host: Scleron reitteri)</td>
<td>Tubular with pointed apex,</td>
</tr>
<tr>
<td>Xiphocephalus serpentula (Hosts: Gonocephalum hoffmannseggi)</td>
<td>Lancet-shaped with long neck, 135</td>
</tr>
<tr>
<td>Xiphocephalus rhytinotus n. sp. (Host: Rhytinota sp.)</td>
<td>Lancet-shaped with long, filiform, 14.5-23.3</td>
</tr>
</tbody>
</table>

Note: The species *Xiphocephalus serpentula* (Syn. *Stylocephalus serpentula*) is included for comparison as it is transpositioned to the genus *Xiphocephalus* by Corbel (1971), even though the original specific status is retained in this communication for reasons stated under remarks of this species (please vide supra in page 199).
Family ACTINOCEPHALIDAE Leger, 1892

Diagnosis: As in the key.

Subfamily ACTINOCEPHALINAE Leger, 1899

Diagnosis: Oocysts without spines or thickenings at the poles.

Key to the genera

1. Epimerite with short neck having 8-10 simple digitiform processes at apex, neck persisting more or less in gamonts, dehiscence of gametocyst by formation of a hole, oocysts biconical or lemon-shaped ... Actinocephalus

2. Epimerite large flattened, fluted disc, oocysts biconical or ovoid, released in lateral chains ... Anthorhynchus

3. Epimerite in the form a disc with small stalk and 14 indentations arranged in 2 whorls of 7 each ... Acanthogregarina

4. Epimerite highly complex, bowl-like having a bulb-like round base, narrow elongated neck and truncated apex beset with 4 short slender symmetrical filaments or spines, spherical gametocysts, ellipsoidal oocysts released in lateral chains Harendraia

5. Epimerite a short motile digitiform process that becoming a flattened structure later, oocysts biconical, swollen ... Steinina

Genus Actinocephalus Stein, 1848

Diagnosis: As in the key.

190. Actinocephalus bradinopygi Narasimhamurti and Nazeer Ahmed, 1980
(Figs. 291-294)

Diagnosis: Cephalonts large, reaching a maximum size of 825.0 μm x 168.0 μm; epimerite complex, broad at base and is drawn out into a long tubular neck, tip of the neck expanded into a shallow cup, margin of which produced into 9-11 petaloid lobes, when contracted it appeared bulb-like; deutomerite long, 540.0 μm x 125.0 μm in size, with
conspicuous epicyteal striations; sporonts solitary, 1300.0 μm x 225.0 μm; gametocysts spherical, 800.0 μm in diameter, ectocyst 150.0 μm thick, gametes isogamous, spherical, 10.0 μm in diameter; oocysts oval, 17.0 μm x 5.0 μm.

Host: Bradinopyga geminata (Rambur); site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Genus Anthorhynchus Labbe, 1887
(Syn. Anthocepalus Scheneider, 1887)

Diagnosis: As in the key.

191. Anthorhynchus hanumanthi Kalavati and Narasimhamurti, 1978
(Figs. 295-297)

Material examined: Sev. exs., C. Kalavati, August, 1976, S. Kota and Visakhapatnam, Visakhapatnam district.

Diagnosis: Trophozoites elongate, 150.0-250.0 μm x 60.0-80.0 μm; epimerite large, flattened, fluted disc with transparent edges; protomerite small and deutomerite long; sporadins solitary, 300.0-600.0 μm; gametocysts oval, 350.0-500.0 μm x 600.0-800.0 μm; spores biconical with polar thickenings, 10.0-12.0 μm x 5.0-5.6 μm in size.

Host: Odontotermes sp.; site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Genus Acanthogregarina Kalavati, Narasimhamurti and Vidyullatha Devi, 1988

Diagnosis: As in the key.

192. Acanthogregarina hoshidei Kalavati, Narasimhamurti and Vidyullatha Devi, 1988
(Figs. 298-302)

Diagnosis: Early development was intraepithelial; epimerite complex in the form of a disc with a small stalk and 14 peripheral indentations arranged in 2 whorls of 7 each; cephalonts 150-298 μm x 70-120 μm; protomerite typically dome-shaped; sporonts 169-323 μm x 45-169 μm in size, bioassociative, association caudo-frontal; gametocysts spherical, transparent, gametes isogamous, 4.0 μm in diameter, dehiscence by rupture at specific areas; spore ducts absent; oocysts cylindrical with thickened poles, 24 μm x 16.0 μm.

Host: Leiogryllus sp.; site of infection: gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Genus Harendraia Sarkar, 1984

Diagnosis: As in the key.

193. Harendraia murtii n. sp. (Figs. 303 & 304)
(Syn. Harendraia sp. Prasada Rao, 1991)

Type slides: Holotype Har. 1; Paratype Har 2&3, Protozoology laboratory, Andhra University.

Diagnosis: Gamonts solitary; trophozoites 100–120 μm x 20–28.6 μm in size; epimerite highly complex, bowl-like having a bulb-like round base, narrow elongated neck and truncated apex beset with 8–10 fine, short, slender symmetrical filaments arranged in 2 groups on either side; protomerite dome-shaped, a distinct short hyaline neck between epimerite and protomerite; deutomerite long cylindrical with a tapering posterior end; sporadins elongated. 180.0–200.0 μm x 28.0–36.0 μm; gametocysts oval, 120–150 μm x 90–110 μm; oocyst ellipsoidal, 9.0 μm x 5.6 μm in size.

Host: Gallerucida bicolor (Coleoptera, Insecta); site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: This is the second species under the genus Harendraia. It differs from the only described species H. intricata Sarkar, 1984 in the size of the trophozoites (100–120 μm x 20–28.6 μm) and sporadins (180.0–200.0 μm x 28.0–36.0 μm) being much smaller than
H. intricata (trophozoites 87.3–246.3 μm x 20.0–83.5; sporadins, 31.2–334.0 μm x 12.5–104.4 μm) and larger (120–50 μm x 90–110 μm) than H. intricata in the size of the gametocyst (90-108 μm). Besides, the epimerite had 8–10 filaments arranged in 2 groups and appears distinct. It is therefore considered different and new to science for which the name Harendraia murtii n. sp. is suggested in honour of Late Professor C.C. Narasimhamurti, Protozoologist from Andhra University.

Genus Steinina Leger and Duboscq, 1904

Diagnosis: As in the key.

Key to the species

1. Epimerite small, knob-like at the tip of neck in the early stages, variable, flattened with wavy margins in mature forms ... S. coptotermitis

2. Epimerite small, digitiform always embedded in an extension of epicyle........ S. rodgii

194. Steinina coptotermitis Kalavati and Narasimhamurti, 1978
(Syn. S. coptotermi Kalavati and Narasimhamurti, 1978)
(Figs. 305-307)

Diagnosis: Cephalonts 150 μm x 70 μm; epimerite small, knob-like at the tip of neck in the early stages, variable, flattened with wavy margins in mature forms; sporadins solitary, 350-450 μm x 50-150 μm; deutomerite long; gametocysts spherical, 600-800 μm in diameter, ectocyst thin and gelatinous, gametes anisogamous, macrogametes spherical and microgametes elongate; oocysts hat-shaped, 8.0 μm x 3.2 μm in size.

Host: Coptotermes heimi; site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

195. Steinina rodgii Patil and Amoji, 1986
(Figs. 308-312)

Diagnosis: Cephalants 150 μm × 70 μm; epimerite small, digitiform always embedded in an extension of epicYTE; protomerite hemispherical, LP : TL = 1 : 3.0 – 3.8 WP : WD = 1 : 1.2; sporadians solitary; deutomerite long; gametocysts spherical, 130.0 μm – 150.0 μm in diameter, gametes anisogamous; oocysts biconical, dehiscence by simple rupture.

Host: Heliochoris sp. (Coleoptera, Insecta); site of infection: mid gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district); Karnataka (Gulburga).

Remarks: Patil and Amoji (1986) originally described this species from Scleron retteri. Heliochoris sp. is a new host record.

Subfamily ACANTHOSPORINAE Leger, 1982

Diagnosis: Oocysts with spines or thickenings at poles sometimes at equator and along edges.

Genus Ancyrophora Leger, 1892

Diagnosis: Epimerite as a head having flexible or rigid appendages forming hooks that may curve backwards, oocysts biconical with polar knobs and equatorial spines.

196. Ancyrophora ceriagrioni Nazeer Ahmed and Narasimhamurti, 1979 (Figs. 313-316)

Diagnosis: Cephalants elongate, cylindrical, measuring 900.0 μm x 200.0 μm; epimetric complex in the form of a shallow cup, the margin of which produced into 17-22 digitiform process folding inwards when contracted; sporonts solitary; gametocysts spherical, 225-350 μm in diameter, ectocyst thick, dehiscence simple; oocysts biconical, 5.4-6.5 μm x 5.0-5.4 μm in size, with 4 polar spines, two at each pole and 4 equatorial spines two on each side.

Host: Ceriagrion coromadelianum (Fabr.); site of infection: mid gut.

Remarks: While describing a new genus and a new species of gregarine, \textit{Tetrameridionospora kamataki} from damselfly, \textit{Agriocnemis} sp. Kori and Amoji (1985) transposed the present species, \textit{Ancyrophora ceriagrioni} to the genus \textit{Tetrameridionospora} Kori and Amoji 1985; which is characterised by oocysts with rows of meridional spines, as also listed by Levine (1988). However, this species \textit{A. ceriagrioni} is retained herein until the type species, \textit{T. kamataki} / type material is studied / reviewed.

\textbf{Subclass COCCIDIA}
\textbf{Order EUCOCCIDA}
\textbf{Suborder ADELINA}
\textbf{Family ADELEIDAE}

\textbf{Diagnosis:} Oocyst producing sporoblasts, each of which developing into a spore with two or four sporozoites; occurring typically in the gut epithelium of invertebrates.

\textbf{Key to the genera}

1(6) Oocysts with more than three sporocysts

2(3) Oocysts ovoid, with one side flattened; possessing 15-20 spherical sporocysts

\hspace{1cm} ... \textit{Ganapatiella}

3(2) Oocysts spherical, subspherical, ellipsoidal or ovoid; possessing 3-20 or 6-48 sporocysts

\hspace{1cm} ... 4

4(5) Oocysts thin-walled with numerous flattened spores, each with two sporozoites

\hspace{1cm} ... \textit{Adelea}

5(4) Oocysts thick-walled, spores spherical, comparatively small in number, occurring in the gut or coelom of arthropods and oligochaetes ... \textit{Adelina}

6(1) Oocysts with three sporocysts, each with four or six (or more) sporozoites, occurring in insects .. \textit{Chagasella}

\textbf{Genus Adelea} Schneider, 1875

\textbf{Diagnosis:} Oocysts ellipsoidal or ovoid, thin-walled with 6-48 flattened sporocysts, each with two sporozoites; in chilopods and molluscs.

197. \textit{Adelea hylospora} Narasimhamurti, 1960

\hspace{1cm} (Figs. 317-321)

Diagnosis: Schizonts of two kinds, both producing merozoites, developing into male and female gametocyte respectively; one type of schizonts producing 18-20 elongate and vermiform merozoites of 10.5-12 μm x 2.0 μm in dimension, having nucleus with central karyosome, developing into macrogametocyte measuring 16 μm x 13.5 μm; 2nd type of schizonts lacking central karyosome in its nucleus, producing 14-16 merozoites, measuring 11-12 μm x 1.5-2.0 μm; female gametocyte ovoidal, 7 μm x 5 μm, in early stage, growing rapidly reaching a size of 30 μm x 14 μm, mature macrogametocyte ovoidal, 34 μm x 24 μm; male gametocyte elongated and vermiform, 10 μm x 25 μm, when fully grown microgametocyte either rounded or oval, 9 μm x 4 μm; unsegmented oocysts in faeces; oocysts bean-shaped, 36 μm x 21 μm, double walled, polysporocystid, germinating in 4 days at room temperature into 36-42 (exceptionally 48) sporoblasts; sporoblasts oval, disc-like, 7.5 μm x 5.25 μm, with outer hyaline epispore, lying in close contact with sporoblast wall; sporulation completed in about 8-10 days under laboratory conditions, each sporoblast developing into two sporozoites; sporozoites sausage-shaped, 11 μm x 2.5 μm, with hyaline cytoplasm.

Host: Centipede, *Rhysida longipes* site of infection: gut content.

Distribution: India: Andhra Pradesh (Waltair, Visapatnam district).

Genus Adelina Hesse, 1911

Diagnosis: Oocysts spherical or subspherical with thick wall, containing 3-20 spherical or ellipsoidal sporocysts, each with two sporozoites; in the gut or coelom of arthropods and oligochaetes.

Key to the species

1(2) Oocysts ovoid, 20-22 μm x 18-20 μm in dimensions; octosporous *A. rayi*

2(1) Oocysts variable in size depending on the number of sporocysts (3-17) *A. dimidiata*

198. *Adelina dimidiata* (Schneider, 1885)

Diagnosis: Oocyst variable in size depending on the number (3-17) of sporocysts, giving rise to a number of sporoblasts by a budding process, leaving a large residual body; sporoblasts secreting spherical sporocysts (15 μm in diameter) containing two sporozoites without formation of a residual body; sporulation time about seven days; asexual reproduction by schizogony; schizonts producing 4-30 merozoites of varying in length from 3-21 μm x 1.8-2.5 μm; macrogametocyte with a finger-like process and with nucleus retaining its karyosome throughout; microgametocyte also producing finger-like process.
Host: Centipede, *Rhysida longipes*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: Narasimhamurti (1960) reported this species on subsequent examination from the same host in which he recorded *Adelea hyalospora* from this state. However, this species is known to occur in the gut of *Scolopendra cingulata* and other myriapods (Wenyon, 1926).

199. *Adelina rayi* Narasimhamurti, 1977
(Figs. 322-325)

Diagnosis: Oocyst ovoid, 20.0-22.0 \(\mu m \) x 18.0-20.0 \(\mu m \), octosporous, dizoic with no oocyst residuum; two types of schizogony; macroschizonts developing with 80-100 macrozoites; microschizonts developing in the middle of the epithelium below the level of the host cell nuclei and producing 16 merozoites.

Host: Centipede, *Rhysida longipes*; site of infection: gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Genus *Chagasella* Machado, 1911

Diagnosis: Oocyst with three sporocysts, each with four or six or more sporozoites; in intestine of insects.

(Figs. 326-328)

Material examined: Sev exs. Andhra University campus, Waltair, Visakhapatnam.

Diagnosis: Oocysts bean-shaped, thick-walled, measuring 22-25 \(\mu m \) x 10-13 \(\mu m \); usually with three and occasionally with four sporoblasts, each containing four sporozoites; sporoblasts rounded or oval, measuring 8.0-8.5 \(\mu m \) x 7.0-7.5 \(\mu m \); oocyst and sporocyst residuum absent; sporozoites measuring 9.5 \(\mu m \) x 2.5 \(\mu m \); schizonts of two types, large (13 \(\mu m \) x 11 \(\mu m \)) and small (8 \(\mu m \) x 7 \(\mu m \)), with 14 and 6 nuclei respectively; large schizonts, 16.5 \(\mu m \) x 14.0 \(\mu m \), producing 16 elongated merozoites; female gametocyte round or oval of 5-3.5 \(\mu m \) in size; male gametocyte smaller of 3.0-2.5 \(\mu m \) in size; in the fully grown association stage male and female gametocytes measuring 9 \(\mu m \) x 3.5 \(\mu m \) and 18 x 4 \(\mu m \) respectively.

Host: Termite, *Odontotermes obesus* Rambur; site of infection: gut

Distribution: India: Andhra Pradesh (Visakhapatnam district).
Genus *Ganapatiella* Kalavati, 1977

Diagnosis: Gamonts associated from an early stage, developing close association; microgamonts producing 8 comma-shaped microgametes; oocysts ovoid, with one side flattened, forming 15-20 sporoblasts, each of which becoming a spherical sporocyst containing 2 elongate sporozoites.

201. *Ganapatiella odontotermitis* Kalavati, 1977
(Syn. *Ganapiatiella odontotermi*)
(Figs. 329-332)

Materials examined: Sev. exs., C. Kalavati, Visakhapatnam

Diagnosis: Gametocytes associated from an early state, developing in close association, microgametocytes 9 μm, oval or pear-shaped, producing 8 “comma” shaped microgametes; oocysts oval with one side flattened, measuring 38.0-45.0 μm, with a thin tough transparent outer membrane; oocysts developing 15-20 sporoblasts, each containing 2 sporozoites; oocysts and sporocyst residuum present; female gametocyte measuring 27.0-34.2 μm x 18.0-21.0 μm; sporulation time 21 days; sporozoite elongated 4.8 μm x 1.2 μm; schizont 18.0 μm x 7.2 μm, with 24 nuclei; merozoites pear-shaped 3.5 μm x 2.5 μm.

Host: Termite, *Odontotermes obesus*; site of infection: adipose tissue.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Family *HAEMOGREGARINIDAE*

Diagnosis: Oocyst producing sporoblasts, each of which developing into a spore with two or four sporozoites; occurring in two hosts, circulatory system of vertebrates and digestive system of invertebrates.

Key to the genera

1(2) Oocysts with 8 or more naked sporozoites, infection of vertebrate host by bite of invertebrate, schizogony in erythrocytes of vertebrates *Haemogregarina*

2(1) Oocysts enormous with many sporocysts, each with 4-16 or more sporozoites, infection of vertebrate host by ingestion of invertebrate host, schizogony occurring in cells of liver, spleen and other organs of vertebrate .. *Hepatozoon*

Genus *Haemogregarina* Danilewsky, 1885

Diagnosis: Oocysts small, with 8 or more naked sporozoites without sporocysts formed from a single germinal centre; infection of vertebrate host by the bite of an invertebrate; schizogony occurring in erythrocytes of vertebrates; merogony ordinarily in internal organs of cold blooded vertebrate; sporogony in invertebrates; no sporokinetes.

Remarks: Members of this genus are parasites of aquatic vertebrates, including fishes, reptiles, and possibly amphibians. Thus far, only leeches have been identified as intermediate hosts and vectors. Life cycles and vectors of the great majority of haemogregarine species are unknown. So in most cases their assignment to one or another of the four genera *viz.* *Haemogregarina, Karyolysus, Hepatozoon* and *Cyrillia* belonging to the family Haemogregarinidae cannot be considered more than tentative (Levine, 1982). As a practical matter, unless they are piroplasmids, malaria parasites, or related forms, most blood cell parasites of vertebrates are almost automatically called *Haemogregarina*.

Key to the species

1(2) Gametocytes relatively small, 11.5 μm x 4.5 μm, parasitic in turtles *H. ganapatii*

2(1) Gametocytes relatively large, parasitic in squamate reptiles ... 3

3(4) Gametocytes 14-15 μm x 4-5 μm in size, parasitic in snake *H. mirabilis*

4(3) Gametocytes 14.5 μm x 5.0 μm, parasitic in lizards *H. waltairensis*

(Figs. 333 & 334)

Diagnosis: Smallest trophozoite in the erythrocyte pear-shaped, 7 μm x 3 μm, with thin cell membrane and a few vacuoles in the cytoplasm; parasite measuring 8 μm x 3.8 μm showed first nuclear division, two nucleate schizont measuring 9.5 μm x 5.5 μm, largest erythrocytic schizont 11.5 μm x 6.5 μm containing 7 nuclei; schizogonic stages also occurring in lungs and liver; largest schizont measuring 11.0 μm x 9.5 μm in lungs and that of liver measuring 7.0 μm x 6.5 μm, both containing 24 nuclei; smallest gametocyte 6 μm x 3 μm, similar to trophozoite excepting that the cytoplasm non-vacuolated and nucleus much diffused, occupying 2/3 of the cytoplasm; larger form 10.5 μm x 4 μm; fully grown form sausage-shaped, 11.5 μm x 4.5 μm, with finely vacuolated cytoplasm; capsule absent.

Host: *Lissensyl punctata granosa* (Sheopff); site of infection: blood, liver and lungs.

Distribution: India : Andhra Pradesh (Waltair, Visakhapatnam district).

203. *Haemogregarina mirabilis* Castellani and Willey, 1904

Diagnosis : Gametocytes sausage-shaped, 14-15 μm x 4-5 μm; cytoplasm non-vacuolated; nucleus 4.5-7.5 μm x 3.5-4.5 μm, with closely connected chromatin clumps enclosed in a thin nuclear membrane; macrogametocyte 12 μm in length, gregarine-like, elongated, slightly crescentic or reniform in shape, thick and bent; cytoplasm staining uniformly blue, leaving no clear pole; nucleus reddish blue, near the anterior pole; hypertrophy of host corpuscles; early schizonts 5-8 μm x 4-6 μm, containing 10-40 nuclei.

Host : Rat snakes, *Ptyas mucosus*; site of infection: blood.

Distribution : India: Andhra Pradesh (Gudivada, Krishna district).

Remarks : Saratchandra (1979, 1981) recorded this species from the above cited host from this state.

204. *Haemogregarina waltairensis* Saratchandra, 1981
(Figs. 335 & 336)

Diagnosis : Smallest gametocytes sausage-shaped, 8.0 μm x 4.0 μm; cytoplasm vacuolated with pink-stained granules aggregated at one or both poles; nucleus 2.5 μm x 1.6 μm; later stages of parasite cigar-shaped with broader end containing vacuolated cytoplasm and the other narrower end with non-vacuolated cytoplasm; largest form 14.5 μm x 5.0 μm, sausage-shaped, with nucleus 4.8 μm x 4.5 μm; capsule absent; schizogony in liver, lungs and bone marrow; largest schizont 14.0 μm x 11.0 μm in liver.

Host : Lizard, *Calotes versicolor* (Daudin); site of infection: blood, liver, lungs and bone marrow.

Distribution : India: Andhra Pradesh (Waltair, Visakhapatnam district).

Genus Hepatozoon Miller, 1908

Diagnosis : Large oocysts containing many sporocysts, each with 4-16 or more sporozoites; infection of vertebrate host by ingestion of invertebrate host; vertebrate hosts amphibians, reptiles, birds and mammals; invertebrate hosts mites, ticks, insects and leeches; gamonts in erythrocytes or leucocytes; merogony in vertebrate internal organs; sporogony in invertebrate host; no sporokinetes.

205. *Hepatozoon canis* (James, 1905)

Diagnosis: Large oocysts about 100 μm in longest diameter, containing 30-50 sporocysts of 15-16 μm in length; each sporocyst with about 16 sporozoites and a residual body; sporozoites 14-15 μm in length; schizonts occurring in spleen, liver, and bone marrow; small merozoites in leucocytes.

Host: Dog, *Canis familiaris*; site of infection: blood, spleen etc.

Distribution: India: Andhra Pradesh.

Elsewhere: Malaya, Indochina, Singapore, Central Africa, North Africa, Middle East, Italy.

Remarks: Rao *et al.* (1986) reported this species from this state. It may cause serious disease and affected dogs may die in 4 to 8 weeks (Levine, 1967).

Suborder EIMERINA
Family SELENOCOCCIDIIDAE

Diagnosis: Meronts develop as vermicules in host intestinal lumen; meronts with myonemes and a row of nuclei; gametic differentiation on the borderline between Coccidida and Gregarinida.

Genus Selenococcidium Leger and Duboscq, 1910

Diagnosis: With the characters of the family, parasitic in lobsters; nucleus of vermiform trophozoites producing eight nuclei.

206. *Selenococcidium indicus* Aravindan, Kalavati and Sheeja, 2002

Materials examined: Sev. exs., C. Kalavati, Kakinda Bay, East Godavari.

Diagnosis: Motile, vermiform trophozoites with 6-8 nuclei, measuring 60-70 μm x 5-8 μm, occurring in the lumen of the gut; schizonts 35.0-42.8 μm x 30-38 μm in size, with varying number of nuclei, inhabiting in epithelial cells; merozoites eight, slender, long, 50-60 μm x 3.8-5.4 μm in size; macrogametocytes large, oval, 35.8 x 42.6 μm, with cytoplasm filled with numerous vesicles and a distinct, vesicular nucleus containing central endosome; microgametocytes oval, 20 μm x 24.6 μm, with several dot-like irregularly distributed nuclei.

Host: Prawn, *Penaeus indicus*; site of infection: gut.

Distribution: India: Andhra Pradesh (Kakinada Bay, East Godavari district).

Remarks: The generic name of this parasite appeared in the original paper as *Solenococcidium* instead of *Selenococcidium*.
Family AGGREGATIDAE

Diagnosis: Anisogamy resulting in production of zygotes which transforming into many spores, each with two to thirty sporozoites; in schizogony cytomeres first appeared and then merozoites; alternation of generations and of marine annelid, mollusc and crustacean hosts.

Genus Aggregata Frenzel, 1885

Diagnosis: Oocysts large, with many sporocysts, each with 3-28 sporozoites; heteroxenous, with merogony in decapod crustacean and gamogony in a cephalopod host.

207. Aggregata kudoi Narasimhamurti, 1979
(Figs. 337-339)

Diagnosis: Oocysts large, measuring 0.5-1.0 µm in diameter, with a thin wall; number of sporoblasts very large, each sporoblast measuring 9.4-10.8 µm in diameter; sporocysts giving rise to 6 sporozoites; a few abnormal sporocysts measuring 13.2-14.5 µm and producing 12 sporozoites occasionally; female gametocytes 12.0 µm x 6.0 µm having coarsely alveolated cytoplasm, largest female parasite measuring 260 x 180 µm and oval in shape; largest male gametocytes 120 µm x 80 µm, varying greatly in size; microgamete long, 30-40 µm in length, and filamentous, having two flagella and an elongated nucleus.

Host: Cephalopod, Sepia elliptica; site of infection: proximal gut epithelium.

Distribution: India: Andhra Pradesh (Offshore fishery station, Visakhapatnam district).

Family EIMERIIDAE

Diagnosis: Monoxenous; schizogony and gametogony within host cells, and sporogony ordinarily occurring outside the host’s body; oocysts and schizonts lack attachment organ; oocysts containing 0, 1, 2, 4, or many sporocysts, each containing one or more sporozoites.

Key to the genera

1(2) Monosporoblastic, tetrazoic oocysts .. Mantonella
2(1) Disporoblastic, dizoic or tetrazoic oocysts .. 3
3(4) Two sporocysts, each with two sporozoites .. Eimeria
4(3) Two sporocysts, each with four sporozoites .. Isospora
Genus *Eimeria* Schneider, 1875

Diagnosis: Each oocyst with 4 sporocysts, each sporocyst with two sporozoites; merogony intracellular; parasitic in vertebrates and only in a few invertebrates.

Key to the species of *Eimeria* of centipedes

Oocysts spherical, 30-32 μm in diameter; sporoblasts 14 μm x 10 μm
... *E. meciestophori*

Key to the species of *Eimeria* of reptiles

Oocysts spherical or oval, 16.5-20.5 μm x 14.5-18.5 μm; sporocysts ovoid, 9-11 μm x 7.5-8.5 μm ... *E. knowlesi*

Key to the species of *Eimeria* of birds

1(2) Oocyst wall striated, micropyle present .. *E. tenella*
2(1) Oocyst wall smooth
3(8) Oocyst double-walled
4(5) Oocystic residuum present ... *E. columbae*
5(4) Oocystic residuum absent
6(7) Oocyst nearly spherical or ovoid, micropyle prominent, sporocystic residuum present ... *E. anatis*
7(6) Oocyst broad ovoid, micropyle absent ... *E. necatrix*
8(3) Oocyst single walled, micropyle and oocystic residuum absent, sporocystic residuum present ... *E. brunetti*

Key to the species of *Eimeria* of mammals

1(12) Oocyst double layered
2(7) Micropyle present
3(6) Micropyle with micropylar cap
4(5) Oocyst elongate ellipsoidal, oocyst wall transparent, micropyle with a crescent-shaped micropylar cap ... *E. arloingi*
5(4) Oocyst elongate ovoid, sometimes ellipsoid, oocyst wall with a smooth pinkish outer layer, micropylar cap mound-shaped .. *E. tirupatiensis*
6(3) Micropyle without micropylar cap, oocyst broadly ovoid, smooth walled, polar granule, oocystic residuum absent .. E. bovis

7(2) Micropyle absent

8(9) Oocyst spherical to ovoidal, sporozoite 9 \(\mu m \times 3 \mu m \) with a refractile granule E. zuernii

9(8) Oocyst ovoid to ellipsoidal or ellipsoidal to ovoidal, sporozoite without any refractile granule

10(11) Sporocyst ellipsoidal or ovoid, 14-18 \(\mu m \times 6-8 \mu m \), sporozoite elongated with two clear globules .. E. debliecki

11(10) Sporocyst ovoid, 4-11 \(\mu m \times 4-6 \mu m \), sporozoite with one end slender and pointed and the other end thick and rounded ... E. ninakohlyakimovae

12(1) Oocyst not double layered

13(14) Oocyst spherical to ovoid, 19-23 \(\mu m \times 17-22 \mu m \), micropyle with a micropylar cap present ... E. crandalis

14(13) Oocyst ovoid, 25-35 \(\mu m \times 18-24 \mu m \), micropyle at the narrower end without any cap .. E. faurei

A. Eimeria of centipedes

208. Eimeria mecistophori Narasimhamurti, 1976
(Figs. 340-344)

Diagnosis: Oocysts perfectly spherical, 30.0-32.0 \(\mu m \), containing 4 sporoblasts measuring 14.0 \(\mu m \times 10.0 \mu m \) in diameter, each containing 2 sporozoites measuring 10.0-12.0 \(\mu m \times 2.25-3.0 \mu m \); merozoites large, elongated or oval, females larger than males; macrogametocytes rounded measuring 30.0-32.0 \(\mu m \) in diameter, cytoplasm alveolated with a large quantity of reserved food materials; microgametocytes oval or rounded, 26.0-28.0 \(\mu m \) in diameter, giving rise to a large number of biflagellate, comma-shaped microgametes.

Host: Centipede, Mecistophora punctifrons Newp.; site of infection: gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

B. Eimeria of reptiles

209. Eimeria knowlesi Bhatia, 1936
(Figs. 345-349)

Diagnosis: Oocysts spherical or oval, double-layered, without any micropyle and residuum, 16.5-20.5 (18.5) μm x 14.5-18.5 (16.5) μm; sporocysts ovoid, 9.00-11.00 (10.0) μm x 7.5-8.5 (7.9) μm; sporocystic residual mass in between the sporozoites; sporozoite elongated, 7.2 μm in length.

Host: House Lizard, Hemidactylus flaviviridis (Ruppell) and Hemidactylus prashadi; site of infection: intestine.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: Saratchandra and Narasimhamurti (1981) studied the life cycle of this species occurring in the small intestine of a different host, Hemidactylus prashadi from Visakhapatnam, Andhra Pradesh. The oocysts observed by them were oval and much larger (28.6-30.8 μm x 28.4-29.7 μm) than those of E. knowlesi described by Bhatia (1936) from Hemidactylus flaviviridis.

C. Eimeria of birds

210. Eimeria anatis Scholtyseck, 1955

Material examined: Sev. exs., Nalgonda, 29.i.03, R. Nandi.

Diagnosis: Oocyst nearly spherical or ovoid with a truncated end and a smooth double contoured wall of 1 μm thick, measuring 15-19 (16.9) μm x 11-15 (14.3) μm, outer layer colourless and thick, inner layer straw coloured; with a prominent micropyle, measuring 4 μm wide, oocystic residuum absent, with one or two polar granules; sporocyst ovoid with one pointed end, measuring 8-10 μm in length and 5-6.6 μm in width, stieda body absent, sporocystic residuum present; sporozoite elongated-pyriform, measuring 6-7 μm in length and 2.7 μm in width with one narrower end and the other end broadly rounded, with two refractile globules.

Host: Domestic duck, Anas platyrhynchos; site of infection: intestine.

Distribution: India: Andhra Pradesh (Nalgonda district).

211. Eimeria brunetti Levine, 1942

Material examined: Sev. exs., Mulug, Warangal district, 8.ii.03, R. Nandi.
Diagnosis: Oocyst oval, smooth, thin-walled, measuring 20.7-30.3 (26.8) μm x 18.1-24.2 (21.7) μm; with polar granule; micropyle and oocystic residuum absent; sporocyst elongate ovoid, 11-16 μm x 5-10 μm, with a stieda body, sporocystic residuum present.

Host: Domestic fowl, Gallus sp.; site of infection: intestine.

Distribution: India: Andhra Pradesh (Warangal district), Uttar Pradesh, Madhya Pradesh.

Remarks: This species is pathogenic, but its effects depend upon the degree of infection. This species is also reported to occur in and around Hyderabad city along with E. necatrix and E. tenella in poultry birds.

212. *Eimeria columbae* Mitra and Das gupta, 1937

Material examined: Sev. exs., Shantinagar, Hyderabad district, 10.ii.03, R. Nandi.

Diagnosis: Oocyst subspherical, double walled, outer wall thinner and membranous, 14.5-17.5 (16.5) μm x 13.5-15.5 (14.5) μm, shape index 1.14; micropyle absent, oocystic residuum present; sporocyst ellipsoidal without any knob, 6.5-8.5(7.3) μm x 3.5-5.8(4.6) μm, shape index 1.6, sporocystic residuum present as scattered mass; sporozoites curved with one end pointed and the other end rounded; schizont 4.1 μm in diameter; macrogamete 6.1 μm in diameter.

Host: Domestic Pigeon, *Columba livia intermedia* Strickland; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district). *E. columbae* in pigeons is common in occurrence in and around Hyderabad city (pers. com.).

213. *Eimeria necatrix* Johnson, 1930

Material examined: Sev. exs., Suriapet, Nalgonda district, 28.i.03, R. Nandi; sev. exs., Huzurnagar, Nalgonda district, 30.i.03, R. Nandi.

Diagnosis: Oocyst broad ovoid in shape, one end less pointed, measuring 15.3-23.3 (20.5) μm x 13.6-20.2 (16.8) μm; shape index 1.0-1.6 (1.26); oocyst wall smooth and double contoured; micropyle and oocystic residuum absent; sporocysts elongated, each measuring 10 μm in length and 6 μm in width; a polar body present.

Host: Domestic Fowl, *Gallus domesticus*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Nalgonda district).
214. *Eimeria tenella* (Railliet and Lucet, 1891)

Material examined: Sev. exs., Khammam, Khammam district, 31.i.03, R. Nandi.

Diagnosis: Oocyst broad-oviod, 19.2-26 μm x 16-22 μm, oocystic wall striated, micropyle present; sporocyst measuring 11 μm x 7 μm, stieda body present; sporozoites elongated banana-shaped, 5-8 μm in length; mature schizont 42.5 μm x 37.5 μm, merozoite 6.5 μm in length.

Host: Domestic Fowl, *Gallus domesticus*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Khammam district), Uttar Pradesh, Madhya Pradesh, Tamil Nadu, West Bengal.

Elsewhere: Cosmopolitan.

Remarks: This is the most pathogenic of the chicken coccidia and is responsible for heavy losses in poultry farms. Padmavathi and Muralidharan (1987) and Padmavathi *et al.* (1988) made experimental studies regarding clinico-pathological and some histochemical features as well as immunological responses due to *E. tenella* from the College of Veterinary Sciences, Hyderabad.

D. *Eimeria of mammals*

215. *Eimeria arloingi* (Marotel, 1905)

(Fig. 350)

Material examined: Sev. exs., Nalgonda, 29.i.03, R. Nandi; sev. exs. Kottagudem, Khammam district, 3.ii.03, R. Nandi; sev. exs., Warangal, 5.ii.03, R. Nandi; sev. exs., Hyderabad, 12.ii.03, R. Nandi.

Diagnosis: Oocyst elongate ellipsoidal, asymmetrical or slightly ovoid, 17-42 (27) μm x 13-27 (18) μm, oocyst wall transparent, double layered, micropyle with a crescent-shaped micropylar cap present, a polar granule present, oocyst residuum absent; sporocyst elongate ovoid, 11-17 μm x 6-10 μm, stieda body absent or vestigial, sporocyst residuum present; sporozoite elongated.

Host: Domestic goat, *Capra hircus*; site of infection: intestine.
Distribution: India: Andhra Pradesh (Nalgonda, Warangal, Khammam and Hyderabad districts), Haryana, Uttar Pradesh, Maharashtra, Bihar.

Elsewhere: Cosmopolitan.

Remarks: This species is slightly pathogenic.

216. *Eimeria bovis* (Zublin, 1908)

(Fig. 351)

Material examined: Sev. exs., Nalgonda, 29.i.03, R. Nandi; sev. exs., Madhira, Khammam district, 1.i.03, R. Nandi; sev. exs., Mulug, Warangal, 5.ii.03, R. Nandi; sev. exs., Hyderabad, 10.ii.03, R. Nandi.

Diagnosis: Oocyst broadly ovoid, smooth walled, double layered, with a narrower micropylar end, measuring 23-33 (28) \(\mu m\) \(\times\) 15-26 (21) \(\mu m\) in dimension; micropylar cap, polar granule and oocystic residuum absent; sporocyst elongate ovoid, 15-17 \(\mu m\) \(\times\) 6-7 \(\mu m\), stieda body and sporocystic residuum present; sporozoite elongated, banana-shaped, measuring 13 \(\mu m\) \(\times\) 3 \(\mu m\), with two refractile granules.

Host: Buffalo, *Bubalus bubalis* Linna.; site of infection: intestine.

Distribution: India: Andhra Pradesh (Nalgonda, Khammam, Warangal and Hyderabad districts), Haryana, Uttar Pradesh, Maharashtra, Bihar.

Elsewhere: Cosmopolitan.

217. *Eimeria crandallis* Honess, 1942

(Fig. 352)

Material examined: Sev. exs., Huzurnagar, Nalgonda, 30.i.03, R. Nandi; sev. exs. Madhira, Khammam district, 1.ii.03, R. Nandi; sev. exs., Mulug, Warangal, 5.ii.03, R. Nandi; sev. exs., Hyderabad, 12.ii.03, R. Nandi.

Diagnosis: Oocyst spherical to broadly ellipsoidal to ovoid, 17-23 (21.9) \(\mu m\) \(\times\) 17-22 (19.4) \(\mu m\), a micropyle and micropylar cap present, oocyst residuum absent; sporocyst ovoid, 8-11 \(\mu m\) \(\times\) 5-8 \(\mu m\), with no stieda body, sporocyst residuum usually present; sporozoite with one or two clear globules.

Host: Domestic sheep, *Ovis aries*; site of infection: intestine.
Distribution: India: Andhra Pradesh (Nalgonda, Khammam and Hyderabad districts), Kashmir, Haryana, Uttar Pradesh, Madhya Pradesh, Maharashtra, Tamil Nadu, Bihar, Orissa, West Bengal.

Elsewhere: Syria, Turkey, Poland, U.K., U.S.A.

Remarks: Besides *Eimeria crandallis* and *E. faurei* encountered in sheep in the present investigation, there are a few more species of *Eimeria* viz., *E. ahasta*, *E. arloingi*, *E. intricata*, *E. ninakohlyakimovae* and *E. parva* recorded in sheep from this state. The ovine coccidiosis causes thickening and oedema of the small intestine (pers. comm.) These species are observed by veterinary parasitologists but not communicated.

218. *Eimeria debliecki* Douwes, 1921

Material examined: Sev. exs., Nalgonda, 29.i.03, R. Nandi; sev. exs. Kottagudem, Khammam district, 3.ii.03, R. Nandi; sev. exs., Warangal, 5.i.03, R. Nandi; sev. exs., Hyderabad, 12.ii.03, R. Nandi.

Diagnosis: Oocyst ovoid to ellipsoidal or spherical, smooth walled, double layered, 13-29 μm x 13-19 μm; micropyle, polar granule and oocyst residuum absent; sporocyst ellipsoidal or ovoid, 14-18 μm x 6-8 μm, stieda body and sporocyst residuum present; sporozoite elongated with two clear globules.

Host: Domestic pig, *Sus scrofa*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Nalgonda, Khammam, Warangal and Hyderabad districts), Haryana, Madhya Pradesh and Uttar Pradesh.

Remarks: this species is slightly pathogenic, but it may cause diarrhoea and even death of young pigs.

219. *Eimeria faurei* (Moussu and Marotel, 1902)
(Fig. 353)

Material examined: Sev. exs., Khammam, 31.i.03, R. Nandi;

Diagnosis: Oocyst ovoid, 25-35 (28.9) μm x 18-24 (21.0) μm, conspicuous micropyle at the narrower end with no cap, oocyst residuum absent, polar granule present; sporocyst
ellipsoidal, 15-17 μm x 8-10 μm, sporocyst residuum scattered, stieda body absent; sporozoite elongated.

Host: Domestic sheep, *Ovis aries*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Khammam district), Punjab, Haryana Maharashtra, Madhya Pradesh, Uttar Pradesh, Orissa, West Bengal.

Remarks: This species is only mildly pathogenic.

220. *Eimeria ninakohlyakimovae* Yakimoff and Rastegaieff, 1930
(Fig. 354)

Material examined: Sev. exs., Khammam, 31.i.03, R. Nandi; sev. exs., Hyderabad, 12.ii.03, R. Nandi.

Diagnosis: Oocyst ellipsoidal, spherical or ovoid, 16-27 (23.1) μm x 13-22 (18.3) μm; oocyst wall thick, transparent and double layered; micropyle, micropylar cap, polar granule and oocyst residuum absent; sporocyst ovoid, 4-11 μm x 4-6 μm, with sporocyst residuum; sporozoite 4-5 μm x 2 μm, with one end slender and pointed and the other end thick and rounded; lying head-to-tail in the sporocyst.

Host: Domestic goat, *Capra hircus*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Khammam and Hyderabad districts); Punjab, Haryana, Madhya Pradesh, Uttar Pradesh, Orissa, West Bengal.

Elsewhere: Kazakhstan, Tunisia, Germany, United States.

Remarks: This is one of the most pathogenic species of coccidium in sheep.

221. *Eimeria tirupatiensis* Sivanarayan and Venkataratnam, 1969

Diagnosis: Oocyst usually elongated ovoid, sometimes ellipsoid measuring 37-44 (40.1) μm x 25-31 (28.5) μm; oocyst wall bilayered, with a smooth pinkish outer layer of about 1 μm thick and a brownish inner layer about 0.9 μm; micropylar cap mound-shaped, 1.5-4 (2.2) μm high and 8.5-11 (9.4) μm wide; oocyst possessing one to three polar granules, but no residuum; ellipsoid or ovoid sporocyst, 11-16 (14.1) μm x 9-11 (9.6) μm, with a stieda body; sporozoites measuring 11-16 (13.7) μm x 4.5-7 (5) μm with a granular sporocystic residuum present between the sporozoites.
Host: Domestic goat, *Capra hircus*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Tirupati, Chittoor district).

222. *Eimeria zuernii* (Rivolta, 1878)

(Fig. 355)

Material examined: Sev. exs., Suriapet, Nalgonda, 28.i.03, R. Nandi; sev. exs., Kottagudem, Khammam district, 3.i.03, R. Nandi; sev. exs., Warangal, 5.ii.03, R. Nandi; sev. exs., Hyderabad, 10.ii.03, R. Nandi.

Diagnosis: Oocyst spherical, subspherical, bluntly ellipsoidal or ovoidal, smooth walled, double layered, 14-22 (17) μm x 13-19 (16) μm; micropyle, micropylar cap, polar granule and oocystic residuum absent; sporocyst elongate ovoid, 8.0-10.5 μm x 5.0-7.0 μm, stieda body and sporocystic residuum present; sporozoite 9 μm x 3 μm, with a refractile granule.

Host: Cattle, *Bos indicus*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Nalgonda, Khammam, Warangal and Hyderabad districts), Orissa, Uttar Pradesh, Haryana.

Elsewhere: cosmopolitan.

Genus *Isospora* Schneider, 1881

Diagnosis: Oocysts with two sporocysts, each sporocyst with four sporozoites; usually parasitic in vertebrates.

Key to the species of *Isospora* of birds

1(2) Oocyst spherical or subspherical, sporocyst ovoid to pyriform with a button-shaped plug at narrower end, sporozoite bean-shaped .. *I. lacazei*

2(1) Oocyst spherical to broadly ovoidal, sporocyst oval with a small plug-like stieda body situated at the narrower end, sporozoite slender, slightly curved with refractile granules on either side of nucleus ... *I. rajuli*

Key to the species of *Isospora* of mammals

1(2) Oocyst spherical or ellipsoidal, of two sizes, larger ones 18-20 μm x 14-16 μm, smaller ones 10-14 μm x 7-9 μm, sporocyst ellipsoidal, 7.5-9.0 μm x 5-7 μm *I. bigemina*
2(1) Oocyst ovoid, large, 32-53 μm x 26-43 μm, sporocyst ellipsoid, 20-27 μm x 18-21 μm.

A. *Isospora* of birds

223. *Isospora lacazei* (Labbe, 1893)

Diagnosis: Oocyst spherical or subspherical, double walled, 24-32 (26.8) μm x 20-30 (27.4) μm, micropyle and oocystic residuum absent; sporocyst ovoid to pyriform with a button-shaped plug at the narrow anterior end, 14-22 (17.2) μm x 10-11 (10.3) μm, sporocyst residuum present; sporozoite bean-shaped, 8.5 μm x 2.3 μm in size.

Distribution: India : Andhra Pradesh, West Bengal : cosmopolitan in distribution.

Remarks: Satyanarayancharulu *et al.* (1971) reported this species as *Isospora lacazei* var. *indicus* in a sparrow. The new variety 'indicus' is not accepted as valid due to worldwide distribution of the species (Mandal, 1987).

224. *Isospora rajuli* Satyanarayancharulu, Subba Rao and Christopher, 1969

Diagnosis: Oocysts spherical to broadly ovoidal, 19.2-34.4 (26.24) μm x 17.4-26.6 (21.84) μm, with both ends rounded; oocyst wall smooth, double-layered and colourless; micropyle inconspicuous or absent; oocystic residuum absent; sporocyst oval, 14.8-20.2 (174) μm x 11.2-13.4 (12.2) μm, with a small plug-like stieda body situated at the narrower end; sporocystic residuum present; sporozoites slender, slightly curved, measuring 10-14 (12.2) μm in length and 3-5 (4.2) μm in width, with a compact centrally located nucleus and refractile globules on either side of the nucleus.

Distribution: India : Andhra Pradesh (Tirupati, Chittoor district).

Remarks: Satyanaranacharullu, Subba Rao and Christopher (1969) reported this species from the above-cited host from this state.
B. *Isospora* of mammals

225. *Isospora bigemina* (Stiles, 1891)

Diagnosis: Oocyst spherical or ellipsoidal, thin walled, single layered, colourless, of two sizes: larger ones 18-20 μm x 14-16 μm, and the smaller, more common ones 10-14 μm x 7-9 μm, micropyle, oocyst polar granule and oocyst residuum absent; sporocyst ellipsoidal, 7.5-9.0 μm x 5-7 μm, without a stieda body, sporocyst residuum present.

Host: White Alsatian pup; site of infection: intestine (faeces).

Distribution: India: Andhra Pradesh (Kakinada, East Godavari district), Tamil Nadu, Uttar Pradesh.

Remarks: Rao (1968) recorded this species as a case report from the District Veterinary Clinical Laboratory, Kakinada, Andhra Pradesh. This species is markedly pathogenic for both cats and dogs (Levine, 1967).

226. *Isospora felis* (Wenyon, 1923)

(Fig. 356)

Diagnosis: Oocyst ovoid, measuring 32-53 (43) μm x 26-43 (33) μm in dimension, smooth walled, colourless, without a micropyle, polar granule and oocyst residuum; sporocyst ellipsoidal, 20-27 μm x 18-21 μm, sporocyst residuum present; sporozoite 10-15 μm long.

Host: White Alsatian pup; site of infection: intestine (faeces).

Distribution: India: Andhra Pradesh (Kakinada, East Godavari district).

Remarks: Rao (1968) recorded this species as a case report from the District Veterinary Clinical Laboratory, Kakinada, Andhra Pradesh. This species is slightly to moderately pathogenic, depending on the host species, age, degree of infection, etc. It is less serious in cats than dogs (Levine, 1967).

Genus *Montonella* Vincent, 1936

Diagnosis: Oocysts with one sporocyst, each containing four sporozoites.
227. **Montonella macrobrachii** Aravindan, Kalavati and Sheeja, 2002

Material examined: Sev. exs. on slides from Gambheeragedda estuary, Andhra Pradesh.

Diagnosis: Schizonts oval, 8-13 μm; merozoites large, spindle-shaped, 10-14 in number; merozoites small, oval, 4 in number; microgametocyte oval, 10-15 x 3.5-7.5 μm; oocysts elliptical, 20-25 μm x 10-18 μm, thin-walled; sporocyst single, sporocystic residuum large and conspicuous; sporozoites elongate, banany-shaped, 15 μm x 4 μm, with blunt anterior end and tapered posterior end.

Host: *Macrobrachium rosenbergii*; site of infection: intestine and pyloric stomach.

Distribution: India: Andhra Pradesh (Gambheergedda estuary, Visakhapatnam district).

Suborder HAEMOSPORINA
Family PLASMODIIDAE

Diagnosis: Pigmented gametocytes in mature erythrocytes; asexual cycles in blood cells and tissues of vertebrate host; sexual phase in mosquito.

Genus *Plasmodium* Marchiafava and Celli, 1885

Diagnosis: Asexual stages (trophozoites, schizonts, etc.) and gametocytes, round or elongated, forming haemozoin pigment; exoerythrocytic schizogony in various internal organs; sexual reproduction in Culicidae.

Remarks: In all 23 species including 6 undetermined species of the genus *Plasmodium* have been recorded so far from Andhra Pradesh. Out of these one unnamed species is reported from reptilian host and several unidentified species from avian hosts. So far, 10 named species are known from birds as well as four named species from non-human primates and 3 species from man. Host-wise key to the species of *Plasmodium* is given below for identification purpose.

Key to the species of Plasmodium from birds

1(15) Elongate gametocytes

2(4) Schizogony in primitive blood forming cells present

3(2) Stenoxenous parasite with elongatum type of exoerythrocytic schizogony and insusceptible to canaries, turkeys, ducks, pigeons and chicks *P. huffi*

4(3) Schizogony in primitive blood forming cells absent

5(12) Large erythrocytic schizonts with plentiful cytoplasm

6(7) Mature schizont in the form of a beautiful rosette *P. formosanum*
7(6) Mature schizont not in the form of a rosette
8 (9) Mature schizont has linear arrangement of merozoites .. $P. \text{fallax}$
9(8) Mature schizont has no linear arrangement of merozoites
10(11) Mature schizont has a fan-shaped arrangement of 6-18 merozoites $P. \text{pinottii}$
11(10) Mature schizont containing 8 merozoites peripherally arranged $P. \text{garnhami}$
12(5) Small erythrocytic schizonts with scanty cytoplasm
13(14) Gametocyte adhering to host cell nucleus and has no crinkled inner border $P. \text{nucleophili}$
14(13) Gametocyte with inner border much crinkled, lying alongside the host cell nucleus .. $P. \text{vaughanii}$
15(1) Round gametocytes
16(17) Schizogonic cycle 24 hours, with characteristic vacuoles in all stages $P. \text{matuitinum}$
17(16) Schizogonic cycle 30-36 hours, without such characteristic vacuoles $P. \text{relictum}$

Key to the species of Plasmodium from non-human primates

1(4) Blood cycle in 72 hours
2(3) Amoeboidicity marked in young stages, merozoites 12-14 in number, pigment rather inconspicuous, stippling like Schuffner's but smaller dots $P. \text{shortti}$
3(2) Amoeboidicity slight, merozoites 8-16 in number, pigment fine, stippling heavier than Ziemann's.. $P. \text{inui}$
4(1) Blood cycle 48 hours
5(6) Marked amoeboidicity, moderate enlargement of infected RBC and presence of Schuffner's stippling, 15-16 merozoites and dark brown pigment $P. \text{cynomolgi}$
6(5) Moderate amoeboidicity, distortion of infected RBC and presence of flush and faint stippling, 16 merozoites and pigment as large unstable lumps $P. \text{fragile}$

Key to the species of Plasmodium from man

1(2) Full grown schizonts rounded, nearly filling erythrocytes, 6-12 merozoites, typically arranged in circle, schizogony in 72 hours $P. \text{malariae}$
2(1) Full grown schizonts irregular in form, filling half to two-third the erythrocyte and irregularly arranged, schizogony in about 48 hours 3
3(4) Gametocytes crescent-shaped, infected erythrocytes normal or atrophied
 ... _ P. falciparum

4(3) Gametocytes rounded or oval, infected erythrocytes hypertrophied _ P. vivax

A. \textit{Plasmodium} in reptiles

228. \textit{Plasmodium} sp.

\textit{Diagnosis} : Schizogonic stages and the gametocytes in the red blood corpuscles of the
 circulating blood; development not synchronous; schizonts measuring 5.5 \(\mu m\) x 4.0 \(\mu m\),
 containing 4 nuclei arranged along the periphery in a single row, pigment dark brown,
 scattered or clumped up at the pole opposite to the nuclei; largest microgametocyte measuring
 10.5 \(\mu m\) x 9.5 \(\mu m\); macrogametocyte 14.0 \(\mu m\) x 8.0 \(\mu m\) in maximum size, containing a large
 vacuole and a few small vacuoles; host cell hypertrophied with the displacement of host cell
 nucleus; multiple invasions present; exo-erythrocytic stages in the lungs, liver and brain;
 largest schizont in the brain measuring 7.0 \(\mu m\) in diameter and contained 35 nuclei or reached
 maximum size of 10.0 \(\mu m\) x 6 \(\mu m\) and contained 30 nuclei; schizogony stages in the lung
 rare and reaching a maximum size of 7.0 \(\mu m\) x 5.0 \(\mu m\) containing 7 nuclei.

\text{Host} : \textit{Hemidactylus prashadi}; site of infection: blood, lungs, liver and brain.

\text{Distribution} : India : Andhra Pradesh (locality not mentioned).

\text{Remarks} : Narasimhamurti and Saratchandra (1980) recorded this unamed species
 presumably from Andhra Pradesh.

B. \textit{Plasmodium} in birds

229. \textit{Plasmodium fallax} Schwetz, 1930

\textit{Diagnosis} : Youngest forms small solid bodies, often oval, rarely ring form with large
 nucleus and amoeboid cytoplasm; trophozoite with one or two circular vacuoles, sometimes
 extruding filiform pseudopodia, becoming elongate, nucleus stretching out before dividing,
 pigment localized in a small patch consisting of little yellowish-brown granules; schizont
 producing 12-18 merozoites, erythrocyte remaining unchanged without any displacement of
 the nucleus; gametocyte elongate with one extremity hooked round the host cell nucleus;
 macrogametocyte much vacuolated with 12-14 scattered, much larger pigment granules.

\text{Host} : Baya, \textit{Ploceus philippinus}; site of infection: blood, liver and bone marrow.

\text{Distribution} : India : Andhra Pradesh.

\text{Elsewhere} : Eastern Congo, Southern Sudan.
Remarks: The natural hosts of *P. fallax* are *Syrinium nuchale* in eastern Congo and *Numida meleagris* in the Sudan. It can be adapted to chicks and pigeons, and after five blood passages the birds die of the disease. Bhaskar Rao and Bhaskar Rao (1980) recorded this species in baya from Andhra Pradesh.

Diagnosis: Youngest forms small rings with large nucleus, becoming amoeboid with growth, pigment usually dark, abundant and conspicuous, forming early; schizont small, round, occupying only a small portion of the corpuscle, scarcely displacing the host cell nucleus, producing 6-16 merozoites, usually 8-10, arranged in a neat rosette or occasionally as a fan; gametocytes elongate and very broad, much larger than the asexual forms, not encircling the nucleus but displacing to some extent the host cell nucleus; macrogametocyte appearing large spherical vacuole with round, coarse, 15-25 pigment granules.

Host: *House Crow, Corvus splendens*; site of infection: blood and liver.

Distribution: India: Andhra Pradesh.

Elsewhere: Formosa.

Remarks: This species commonly inhabits the Formosan hill partridge, *Arboriphila crudigularis* but it was noticed in the crow in Andhra Pradesh, India by Bhaskar Rao and Bhaskar Rao (1980).

231. *Plasmodium garnhami* Guindy, Hoogstral and Mohamed, 1965

Diagnosis: Youngest forms small rings, occupying any part of the corpuscle but usually growing at one end displacing the nucleus towards the other end and not exhibiting the 'stranded' appearance, so characteristic of *P. polare*; trophozoite and young schizont vacuolated, producing 2 and then 4 large nuclei, yellowish-black pigment relatively small in amount, clumped into a single small mass; mature schizont predominantly round or ovoid, containing 8 merozoites, sometimes peripherally arranged; gametocytes plump elongate bodies, producing a well-marked lateral displacement of the host cell nucleus; macrogametocyte sausage-shaped body with vacuolated cytoplasm and a central compact nucleus, either spherical or a band across the width of the parasite, pigment scattered, often only about 6 round granules.

Host: *Rain Quail, Coturnix coromandelica*; site of infection: blood and liver.

Distribution: India: Andhra Pradesh.

Elsewhere: Egypt.
Remarks: According to Garnham (1966) *P. garnhami* appears to be confined to the Egyptian form of the European subspecies of hoopoe, *Upupa epops major* and infections may be restricted to the vicinity of Cairo. Canaries and young chicks proved to be insusceptible to infection. Bhaskar Rao and Bhaskar Rao (1980) recorded this species in Rain Quail from Andhra Pradesh, which needs further study.

232. *Plasmodium huffi* Muniz, Soares and Batista, 1951

Diagnosis: Youngest trophozoites usually irregular sometimes ring-like in shape, frequently multiple invasion in acute cases; schizonts round or elongate, sometimes invading host cell nucleus displacing it laterally, 6-8 merozoites in early stages and later, the number increased to 30 or more; gametocytes large irregularly elongate bodies, lying beside the nucleus, occupying most of the erythrocyte without appreciably curving around the poles of the nucleus but usually pushing the host cell nucleus to one side; pigment granules quite heavy and conspicuous.

Host: Baya, *Ploceus philippinus*; site of infection: blood, liver and bone marrow.

Distribution: India: Andhra Pradesh.

Elsewhere: Brazil.

Remarks: Bhaskar Rao and Bhaskar Rao (1980) recorded this species in baya *Ploceus philippinus* from Andhra Pradesh. According to Garnham (1966) this species appears to be strictly restricted to the toucan, *Rhamphastos toco* and no other species of bird has proved to be capable of harbouring the infection as it is a typically stenoxenous parasite.

233. *Plasmodium matuitinum* (Huff, 1937)

Diagnosis: Youngest parasites not in ring form but solid oval bodies about 1 μm in diameter; trophozoites with small vacuoles, displaced host cell nucleus and pigment clumping into several dark brown masses; schizont spherical, with unusually large nucleus producing 10-30 (average 18) merozoites; gametocytes round or oval with displaced host cell nucleus; macrogametocytes about 8 μm in diameter with a nucleus consisting of a deeply staining karyosome and a lighter areolar zone and with approximately 14 round black grains of pigment granules.

Distribution: India: Andhra Pradesh.

Elsewhere: Europe, United States, Mexico.

Remarks: It is a cosmopolitan species and occurs in a wide range of smaller birds. Bhaskar Rao and Bhaskar Rao (1980) recorded this species in House Crow and House Sparrow from Andhra Pradesh.

234. Plasmodium nucleophilum Manwell, 1935

Diagnosis: Parasite in the early stages lying at one pole of the erythrocyte or localized anywhere, becoming elongate and attracted to the nucleus with growth and appearance of one or two pigment granules in the cytoplasm; immature schizont with non-conspicuous and non-refractile pigment characteristically clinging to the side of the nucleus; mature schizont spherical or irregular in form, comparatively small in size, uncommon in the peripheral blood, with clumped pigment granules, producing 4-9 (average 6) merozoites, sometimes up to 12 merozoites in Brazilian strains; gametocytes elongate bodies, closely attached to the side of the nucleus but not showing any tendency to curve round its extremities, having pigment granules grouped together at one pole of the parasite.

Host: House Crow, Corvus splendens and House Sparrow, Passer domesticus; site of infection: blood, liver and bone marrow.

Distribution: India: Andhra Pradesh.

Elsewhere: Cosmopolitan in distribution.

235. Plasmodium pinotti Muniz and Soares, 1954

Diagnosis: Younger trophozoite small fusiform object in adult pigeons (Cloumba livia domestica), which, with growth, throwing out little spiky pseudopodia; schizont 6-8 μm in size with large nuclei and clumped pigment in early stage, finally producing 6-18 merozoites in a fan-like arrangement, at the base of which lying the coarse black pigment; gametocytes elongate, only curving at the extremities, without encircling or slightly encircling the host cell nucleus in the toucan (Rhamphastos toco); macrogametocytes having compact nucleus and about 12 pigment granules of smaller grains.

Host: Jungle Bush Quail, Perdicula asiatica; site of infection: blood and liver.

Distribution: India: Andhra Pradesh.

Elsewhere: Brazil.
Remarks: It is an oligoxenous parasite of the Brazilian toucan, *Rhamphastos toco*. The infection usually pursues a mild course but it is fatal in pigeons and chicks. Bhaskar Rao and Bhaskar Rao (1980) recorded this species in Jungle Bush Quail from Andhra Pradesh.

236. *Plasmodium relictum* (Grassi and Felletti, 1891)
(Figs. 357-366)

Diagnosis: Youngest parasite oval in shape remaining solid without changing into a ‘ring’; early trophozoite slightly amoeboid, developing a small vacuole and a grain of black pigment quite early; schizont spherical or even retaining its oval shape alongside the host cell nucleus which becoming more and more displaced and finally expelled from the red blood cell, pigment grains clumped into one or two foci, parasite nucleus undergoing divisions to produce 8-32 merozoites; gametocytes round or oval, with relatively fine dot-like pigment granules, mature forms markedly displaced or expelled the host cell nucleus.

Host: House Crow, *Corvus splendens* and Black-headed Munia, *Lonchura malacca*; site of infection: blood, liver and bone marrow.

Distribution: India: Andhra Pradesh; outside India: cosmopolitan species occurring throughout the globe.

Remarks: It is a cosmopolitan parasite and occurs in a wide range of hosts. Bhaskar Rao and Bhaskar Rao (1980) recorded this species along with *Plasmodium splendense*, a synonym of *P. relictum*, in House Crow and noticed *P. relictum lutzi* in Black-headed Munia from Andhra Pradesh.

237. *Plasmodium vaughani* Novy and MacNeal, 1904

Diagnosis: Early trophozoites very small, amoeboid, with finely drawn out pseudopodia, no typical ring forms, soon a pigment granule arising at the periphery and later, two or even three granules; schizont irregular with 4-8 merozoites, lying in any part of the erythrocyte without displacing the host cell nucleus in most cases; gametocytes elongate bodies even from an early stage, having an irregular outline and much crinkled inner border, and with a much vacuolated cytoplasm, lying alongside the nucleus of the host cell, and often stretching from one end to the other without curving round the nucleus to any appreciable extent, pigment granules varying from strain to strain.

Distribution: India: Andhra Pradesh.
Elsewhere: A cosmopolitan species occurring in Europe, Africa, South America, Panama, Malaya, Sri Lanka.

Remarks: It is a cosmopolitan parasite and occurs in a large number of hosts. Bhaskar Rao and Bhaskar Rao (1980) recorded this species in Common Sand Grouse and Spotted Dove from Andhra Pradesh.

Diagnosis: Not available.

Host: *Corvus splendens*; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: This species is a *nomen nudum*.

239. *Plasmodium* sp.

Host: *Passer domesticus*; site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Qadri (1973) recorded this unnamed species in House Sparrow of Hyderabad, Andhra Pradesh.

240. *Plasmodium* sp.

Host: Common Sand Piper, *Tringa hypoleucos*; site of infection: blood.

Distribution: India: Andhra Pradesh.

241. *Plasmodium* sp.

Distribution: India: Andhra Pradesh.

242. *Plasmodium* sp.

Host: Black Drongo, *Dicrurus adsimilis*; site of infection: blood.

Distribution: India: Andhra Pradesh.

243. *Plasmodium* sp.

Host: *Cisticola juncidis*; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: Qadri (1962) recorded this unnamed species from Andhra Pradesh.

C. *Plasmodium* in non-human primates

244. *Plasmodium cynomolgi* Mayer, 1907

Diagnosis: Erythrocytic cycle 48 hours with considerable synchronicity and frequent multiple invasion of the corpuscle; ring forms with a large vacuole and a spherical nucleus practically lying in the circumference of the ring, eventually occupying two-thirds of the erythrocyte with the appearance of Schuffner’s dots, much amoeboidicity obvious, slight enlargement of infected cell, production of coarse pseudopodia and quite dark granules of pigment; trophozoite now losing its vacuole with noticeable increment in size of the nucleus; immature schizonts nearly filling the corpuscle with the distortion, severe lesions from the stippling and slight enlargement of the host cell; schizont with pigment agglomerated into several clumps and Schuffner’s dots intensified into a dark red rim around the schizont, producing 4-24 usually about 15-16 merozoites; gametocytes round causing greater enlargement and abundant stippling of the erythrocyte.

Distribution: India: Andhra Pradesh (Hyderabad district), Tamil Nadu and Kerala.

Elsewhere: Malaya, Bangladesh and Cambodia (Garnham, 1966)

Remarks: Anantaraman (1980) reported this species in Bonnet Monkey from Hyderabad. Man is slightly susceptible to *P. cynomolgi*. The human *P. vivax* malaria seems to possess closest affinity to *P. cynomolgi* in the blood phase of the two parasites. The asexual cycle, however, provides slight differences, such as: the erythrocyte is less subject to enlargement in infections with *P. cynomolgi* than *P. vivax* and the simian parasite is less amoeboid (Garnham, 1966).

Diagnosis: Erythrocytic cycle 48 hours; youngest forms hair-like rings, an accessory dot present in addition to the main nucleus, with growth tenuiform processes sometimes seen; enlarging ring characterized by the accumulation of heavy and numerous spherical, golden black pigment granules scattered throughout the cytoplasm; stippling of infected erythrocyte at first a pinkish flush or pallor, then a faint, but regular stippling, often erythrocyte becoming distorted or shrunk but not enlarged; schizonts usually filling the erythrocyte, lying on one side and budding off 16 merozoites from the residual mass, pigment at first bulky and unstable in composition, fragmented into dust-like particles or disappeared completely or sometimes accumulating on the edge in a black lump or in large golden-black masses; macrogametocyte spherical or oval with eccentrically placed nucleus and pigment sometimes in a curious form, becoming disintegrated with age.

Host: Bonnet monkey, *Macaca radiata*; site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district) and Tamil Nadu.

Elsewhere: Sri Lanka.

Remarks: Anantaraman (1980) reported this species in Bonnet Monkey from Hyderabad.

246. *Plasmodium inui* Halberstadter and von Prowazek, 1907

Diagnosis: Earliest ring stage with exceptionally large spherical nucleus and a vacuole, and with a small cap of cytoplasm; trophozoite feebly amoeboid and projecting an irregular lobose process outwards, becoming quite large later and occupying about half of the corpuscle, and at this stage very fine pigment granules appeared; schizonts practically filling the erythrocyte at 4-8 nucleated stage, when fully mature after 72 hours’ development it usually ruptured in the early afternoon producing 8-16 merozoites; macrogametocytes 8 μm in diameter, filling the erythrocyte, while in microgametocyte a small portion of the corpuscle left visible; infected erythrocyte, only slightly enlarged, pale and stippled, with granulation more evident, constant and heavier than the Ziemann’s dots of *P. malariae*.

Host: Bonnet monkey, *Macaca radiata*; site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district).

Elsewhere: Malayan peninsula and surrounding countries.

Remarks: Anantaraman (1980) reported this species in Bonnet Monkey from Hyderabad. *P. inui* is the most widely distributed species in monkeys of the old world. For host records and distribution Garnham (1966) may be consulted.
247. *Plasmodium shortti* Bray, 1963

(Figs. 367-377)

Diagnosis: Youngest parasite without vacuole, consisting largely of nucleus with a small portion of cytoplasm, and measuring slightly over 1 μm, later a small vacuole developed, become highly amoeboid with long filamentous extrusions and fine, very light brown pigment granules, difficult to see until their final clumping in the mature schizont, producing 12-14 merozoites at midday, not entirely filling the corpuscle; infected erythrocyte undergone slight hypertrophic changes causing a fine stippling consisting of numerous, even-sized and regularly placed tiny discrete dots, like Schuffner's but in smaller dots; periodicity of asexual schizogony 72 hours in the blood; younger gametocytes characterized by a peculiar thickening at the periphery, partly due to accumulation of pigment granules; mature gametocytes spherical, larger than the erythrocyte which finally disappearing or invisible.

Host: Bonnet monkey, *Macaca radiata*; site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district); elsewhere: Sri Lanka, but its distribution outside India is doubtful (Garnham, 1966).

Remarks: Anantaraman (1980) reported this species in Bonnet Monkey from Hyderabad. Shortt, Rao, Qadri and Abraham (1961) provisionally named this parasite of *Macaca radiata* trapped in the adjacent forests of Osmania, Hyderabad as *Plasmodium osmaniae*. This name became a *nomen nudum* as per Article 15 of the International Code of Zoological Nomenclature, which states that after 1960 a 'conditional' name is invalid and accordingly Bray (1963) gave the organism the replacement name of *P. shortti*, and redescribed the blood stages.

D. *Plasmodium in man*

248. *Plasmodium falciparum* (Welch, 1897)

(Figs. 378-382)

Diagnosis: Relatively small ring forms with double dots of chromatin, some apparently on edge (accole forms); usually with crescentic gametocytes, macrogametocyte 12-14 μm long; trophozoite compact, rarely seen in peripheral blood; schizont irregular in form, 5 μm in diameter, 8-32 merozoites, irregularly arranged filling half to two-third the erythrocyte, with early clumping of coarse dark pigments, rarely occur in peripheral circulation; host
erythrocyte not hypertrophied, but accompanied by reddish clefts known as Maurer’s clefts; erythrocytic schizogony at 48 hours interval; paroxysms of chills and fever occurring every other day.

Host: *Homo sapiens*; site of infection: blood.

Distribution: India: Andhra Pradesh (possibly all districts) and in almost all over India (Knowles, Senior White and Das Gupta, 1930; Bhatia, 1938). This species is mainly distributed in tropics and subtropics (Garnham, 1966).

Remarks: This species causes malignant tertian malaria and is known as the greatest killer of human race over most parts of Africa and elsewhere in the tropics (Garnham, 1966).

249. *Plasmodium malariae* (Grassi and Feletti, 1892)

(Figs. 383-387)

Diagnosis: ‘Ring’ form about one-third diameter of erythrocyte, one in each red cells; trophozoite compact, often band-like, schizont rounded, 7 µm in diameter, nearly filling the erythrocyte, 6-12 merozoites, typically arranged in circle; schizogony in 72 hours; gametocyte round or ovoid, 9 µm in diameter, with brown-black pigments; host erythrocyte not enlarged, very faint stippling (Ziemann’s) after prolonged staining only paroxysms occurring every 3 days.

Host: *Homo sapiens*; site of infection: blood.

Distribution: India: Andhra Pradesh (possibly all districts) and all over India (Bhatia, 1938); worldwide occurring in tropical, subtropical and warmer temperate regions (Garnham, 1966).

Remarks: This species causes quartan malaria in man. It is not very pathogenic, but chronic infection may lead to a lethal kidney condition.

250. *Plasmodium vivax* (Grassi and Feletti, 1890)

(Figs. 388-392)

Diagnosis: Relatively large ring froms about one-third diameter of erythrocyte, round or oval, usually one in each red cells, a round chromatin dot in thin part of ring; trophozoite
amoeboid; schizont irregular, filling half to two-third the erythrocyte; schizogony usually at interval of 48 hours, 12-24 merozoites in irregular grape-like cluster, with small brown pigment granules usually collected in a single mass; gametocyte large, round or ovoid, 10 μm in diameter; host erythrocyte enlarged, stippled with red dots known as Schuffner’s dots; all erythrocytic stages occurring in peripheral blood, multiple infection in R.B.C. not uncommon; paroxysms at every other day as in falciparum malaria.

Host: *Homo sapiens*; site of infection: blood.

Distribution: India: Andhra Pradesh (all districts) and all over India. This species is worldwide in distribution, occurring mainly in tropics, subtropics and warmer temperate regions (Knowles *et al.*, 1930; Garnham, 1966).

Remarks: This species causes benign tertian malaria in man and is the commonest and the most widely distributed species.

Family HAEMOPROTEIDAE

Diagnosis: Pigmented gametocytes in erythrocytes of the circulating blood, asexual cycle in tissue cells of the vertebrate host; sexual phase in insects other than mosquitos.

Genus Haemoproteus Kruse, 1890

Diagnosis: Pigmented gametocytes in erythrocytes, usually halter-shaped, partly encircling the host cell nucleus; schizogony in the internal organs, lung, liver, kidney capillary endothelium *etc.*; sporogony in Hippoboscidae and Ceratopogonidae; oocysts either large with more than 500 short sporozoites or small with less than 50 relatively large sporozoites; usually in birds and also in other vertebrates.

Key to the species of Haemoproteus in reptiles

Macrogametocyte bladder-like or bean-shaped, but rarely halteridial, 15 μm long; with scattered pigments in fine lines ... *H. simondi*

1(16) Parasites normally circumnuclear or halteridial

2(3) Parasites circumnuclear, with outline entire and 16-34 pigment granules, occurring in the avian family Picidae ... *H. velans*

3(2) Parasites not circumnuclear, but halteridial

4(7) Halteridial parasites, with marked displacement of host cell nucleus
5(6) Pigment granules 10-15 in number, parasites occupying about 70% of the host cell-parasite complex ...H. orizivorae

6(5) Pigment granules 6-9 in number, parasites occupying about 50% of the host cell-parasite complex ...H. pastoris

7(4) Halteridial parasites, without marked displacement of host cell nucleus

8(13) Parasites with outline entire

9(10) Halteridial or broadly sausage-shaped parasites, occupying more than 80% of the host cell-parasite complex ... H. borgesii

10(9) Parasites not broadly sausage-shaped, occupying less than 80% of the host cell-parasite complex

11(12) Parasites occupying 65-70% of the host cell parasite complex, averaging 13 pigment granules per parasite ... H. passeris

12(11) Parasites occupying about 60% of the host cell parasite complex, about 30 pigment granules per parasite, parasitic in the avian family Columbidae H. columbae

13(8) Parasites with amoeboid or entire outline

14(15) Immature parasite amoeboid, mature entire, about 8 pigment granules per parasite, parasitic in the avian family Coraciidae H. coraciae

15(14) Parasites usually entire, sometimes amoeboid, averaging 14 pigment granules per parasite, parasitic in the avian family Meropidae H. meropis

16(1) Parasites microhalteridial, bilobed .. H. fringillae

A. Haemoproteus in reptiles

251. Haemoproteus simondi (Castellani and Willey, 1904)

Diagnosis: Smallest gametocytes amoeboid, less than 2 μm in size, with no vacuole and pigment; macrogametocyte conspicuous, bladder-like or bean-shaped, but rarely halteridial, 15 μm long, slightly larger and more oval than that of the microgametocyte, cytoplasm with scattered pigments in fine lines and a large oval vacuole; nucleus of macrogametocyte oval or elongated, consisting of a pale halo on the periphery and a round karyosome; hypertrophy of corpuscle; exoerythrocytic schizogony in liver or in the reticulo-endothelial cells of the lungs.
Host: Indian gecko, *Hemidactylus* sp., probably *Hemidactylus brooki*; site of infection: blood, liver.

Distribution: India: Andhra Pradesh (Hyderabad district), Goa, Tamil Nadu (Shortt, 1962; de Mello, 1934).

Elsewhere: Sri Lanka (Castellani and Willey, 1904; Robertson, 1908; Dobell, 1910) and Australia (Mackerras, 1961).

Remarks: Shortt (1962) studied this haemoproteid parasites previously in Madras (now Chennai) and also as unnamed haemoproteid species from this state. Garnham (1966) had examined this material and stated it as a saurian haemoproteid, namely, *Haemocystidium simondi* Castellani and Willey, 1904. Levine (1988) indicated the subgeneric status.

B. Haemoproteus in birds

252. *Haemoproteus borgesi* Tendeiro, 1947

Diagnosis: Macrogametocyte broadly sausage-shaped to slightly halteridial; margin entire, not amoeboid; parasite lateral to erythrocyte nucleus, measuring 13.2 μm x 4.0 μm and 51.5 μm² in area, occupying more than 80% of the host cell-parasite complex; pigment granules discrete, yellow-brown, scattered, and averaging 12 granules per parasite; volutin granules present; parasite nucleus submedian, oval to round, 3.0 μm x 2.3 μm and 5.1 μm² in area; erythrocyte nucleus displaced laterally; Nuclear Displacement Ratio (NDR) = 0.04; host cell hypertrophied slightly in length (4.2%) and in area (8.8%), but slightly atrophied in width (5.9%); and host cell nucleus atrophied (18.3%).

Host: *Dendrocopos mahrattensis mahrattensis* (Family Picidae); site of infection: blood.

Distribution: India: Andhra Pradesh (Adilabad district), Assam, Maharashtra and Jammu & Kashmir.

Elsewhere: Portuguese Guinea and Malaysia.

Remarks: Nandi and Mandal (1984) reported this species from this state.

253. *Haemoproteus columbae* Kruse, 1890

(Figs. 393-396)

Diagnosis: Macrogametocyte halteridial, inner and polar margin amoeboid, outer margin entire, 12.6 μm x 3.4 μm and 34.3 μm² in area, occupying about 60% of the host cell-parasite
complex; pigment yellowish-black, discrete, round, scattered, about 30 granules per parasite; nucleus round-oval, median to submedian, 2.5 \(\mu \text{m} \times 1.8 \mu \text{m} \) and 3.2 \(\mu \text{m}^2 \) in area; host cell relatively unchanged, host cell nucleus atrophied 25.8% in area.

Host: *Columba livia*; site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district), Delhi, Maharashtra—a cosmopolitan species with worldwide distribution.

254. *Haemoproteus coraciae* de Mello and Afonso, 1935
(Figs. 397-401)

Diagnosis: Macrogametocyte moderate in size, measuring 15.0 \(\mu \text{m} \times 2.6 \mu \text{m} \) and 48.5 \(\mu \text{m}^2 \) in area, occupying more than 50% of the erythrocyte–parasite complex; usually halteridial but sometimes dumbbell-shaped; margins usually entire but occasionally amoeboid; pigment granules large deep brown-yellow and usually scattered randomly throughout the cytoplasm but occasionally grouped in one or more clumps; parasite nucleus small, dense, round or ovoid and situated centrally.

Host: *Coracias benghalensis* (Family Coraciidae); site of infection: blood.

Distribution: India: Andhra Pradesh (Warangal district), Goa and Maharashtra.

Elsewhere: Africa, Asia east to the Philippine Islands.

Remarks: Nandi and Mandal (1984) reported this species from this state.

255. *Haemoproteus fringillae* Labbe, 1894
(Fig. 402-405)

Diagnosis: Macrogametocyte small, 11.0-14.0 \(\times \) 2.2-2.6 \(\mu \text{m} \), halteridia-shaped, margins entire, bilobed, with a marked constriction at the middle of the convex margin, occupying about 50% of the host cell-parasite complex; nucleus mostly round, 2.1 \(\mu \text{m} \) in diameter, central or sub-centrally located at the periphery; pigments dark-yellowish and scattered granules; host cell nucleus rarely displaced to the periphery.
Host: *Copsychus saularis* (Linnaeus); site of infection: blood.

Distribution: India: Andhra Pradesh (Warangal district); cosmopolitan in distribution.

Remarks: Nandi and Mandal (1984) identified this species in *Copsychus saularis* (Family Turdidae, Subfamily Turdinae) from Warangal district, Andhra Pradesh based on the key to the haemoproteids of the avian Family Turdidae given by Bennett and Campbell (1972). According to this key *H. fringillae* is a small parasite with a marked constriction centrally, occupying about 50% of erythrocyte cytoplasm and erythrocyte nucleus not displaced to periphery. For a long time 'H. fringillae/ *H. orizivorae* complex (Peirce, 1984) was used to identify the haemoproteids of many passerine families because of frequent occurrence of both small halteridial parasite ('fringillae-like) and larger, broader parasites similar to *H. orizivorae* of the family Estrildidae. Recent taxonomic review of the haemoproteids of the avian family Fringillidae, Burry-Caines and Bennett (1992) states that assigning *H. fringillae* to such a broad range of hosts is in error, and it should be limited to the Fringillidae until experimental evidence clearly indicates a wider host spectrum. Thus it is possible that this present species is, in fact, *Haemoproteus fallisi* of the avian subfamily Turdinae. However, in the absence of detailed taxonomic review of passerine families, this species is at present considered as *H. fringillae* based on Bennett and Campbell (1972).

256. *Haemoproteus meropis* (Zargar, 1945)

(Figs. 406-409)

Diagnosis: Macrogametocytes broadly sausage-shaped to halteridial, measuring 13.9 μm x 3.2 μm and 44.5 μm² in area, constituting 65% or more of the host cell-parasite complex; outline usually entire, somewhat amoeboid; pigment granules prominent, randomly distributed throughout parasite, averaging 14 granules per parasite; parasite occasionally with large, deep purple-staining volutin granules; parasite nucleus median, round to broadly ovoid, occupying about 3.3 μm² in area; host cell hypertrophied 15% in length, 3% in width, and 18% in area; host cell nucleus slightly displaced laterally; Nuclear Displacement Ratio (NDR) = 0.7.

Host: *Merops orientalis* (Family Meropidae); site of infection: blood.

Distribution: India: Andhra Pradesh (Warangal district), Maharashtra, Orissa and Goa.

Elsewhere: Malaysia, Philippines, Thailand and Africa.

Remarks: Nandi and Mandal (1984) reported this species from this state.
257. *Haemoproteus orizzorae* Anschutz, 1909
(Figs. 410-413)

Diagnosis: Macrogametocyte halteridial, sometimes sausage-shaped, 12.0-15.0 \(\mu m \times 3.5-4.0 \mu m \), margins entire, occupying about 70% of the host cell-parasite complex; nucleus round or ovoid, central to subterminal, located on the outer margin of the parasite; pigment granules small, scattered, 10-15 yellow to dark-yellow brown granules; host cell hypertrophy more than 30% in area; host cell nuclear atrophy about 10% in area with marked displacement to the periphery.

Host: *Copsychus saularis* (Linnaeus) and *Ploceus philippinus* (Linnaeus); site of infection: blood.

Distribution: India: Andhra Pradesh (Warangal and Adilabad districts); cosmopolitan in distribution.

Remarks: As stated in *Haemoproteus fringillae* above.

258. *Haemoproteus passeris* Kruse, 1890

Diagnosis: Macrogametocyte of medium size, usually halteridial and occasionally broadly sausage-shaped, measuring 13.6 \(\mu m \times 3.2 \mu m \) and 48.2 \(\mu m^2 \) in area, occupying 65-70% of the area of the host erythrocyte-parasite complex; margins entire; pigment granules yellow to yellow-brown, rod-shaped and scattered randomly throughout the cytoplasm, averaging 13 granules per parasite; parasite nucleus round to ovoid or triangular, terminal to sub-terminal in location; host cell hypertrophied 5-10% in length and breadth and 15% in area; host cell nucleus hypertrophied 15% and displaced laterally towards the margin; volutin granules of common occurrence and, when present, effectively concealed the true pigment granules.

Host: *Passer domesticus*: site of infection: blood.

Distribution: India: Andhra Pradesh (Warangal district), Orissa and Goa.

Elsewhere: Throughout the natural distributional range of the family Passeridae.

Remarks: In 1936, de Mello described *Haemoproteus gymnorhidis* from *Gymnorhis (=Petronia) xanthocollis* shot in Goa. In their taxonomic review Bennett and Peirce (1991)
considered *Haemoproteus gymnorrhis* a synonym of *Haemoproteus passeris*. Nandi and Mandal (1984) reported this species from this state.

259. *Haemoproteus pastoris* de Mello, 1935

(Figs. 414-417)

Material examined: Sev. exs., Warangal, 13.ii.1979, N. C. Nandi

Diagnosis: Macrogametocyte halteridial, medium-sized, 11.0-12.5 μm x 2.4-3.0 μm, margins usually entire, sometimes amoeboid occupying about 50% of the host cell-parasite complex; nucleus round to ovoid, sub-median; pigment granules small, scattered, 6-9 yellowish-brown granules; host cell hypertrophy less than 15% in area; host cell nuclear atrophy about 5% in area without marked displacement to the periphery.

Host: *Acridotheres tristis* (Linnaeus) and *Sturnus pagodarum* (Gmelin); site of infection: blood.

Distribution: India: Andhra Pradesh (Warangal district), Goa, Maharashtra and West Bengal.

Elsewhere: Africa, Indonesia, Thailand and Philippine Islands.

Remarks: Nandi and Mandal (1984) reported this species from this state.

260. *Haemoproteus velans* Coatney and Roudabush, 1937

Diagnosis: Macrogametocyte completely encircling host cell nucleus, measuring 24.4 μm x 2.9 μm and 66.5 μm² in area, occupying 75-80% of the host cell parasite complex; pigment variable, yellow-brown, averaging 18 granules per parasite; volutin granules present, scattered; parasite nucleus median, oval to round, 3.0 μm x 2.3 μm and 5.8 μm² in area; erythrocyte nucleus partially displaced laterally; NDR = 0.68; host cell hypertrophied in length (10.8%) and in area (21.0%); host cell nucleus atrophied (19.1%) in area.

Host: *Dendrocopos mahrattensis mahrattensis* (Family Picidae); site of infection: blood.

Distribution: India: Andhra Pradesh (Adilabad district), Assam, Maharashtra and Rajasthan.

Elsewhere: Nearctic and Oriental.

Remarks: Nandi and Mandal (1984) reported this species from this state.
261. *Haemoproteus* sp

Host: *Spizaetus cirrhatus cirrhatus* (Gmelin); site of infection: blood.

Distribution: India: Andhra Pradesh (Adilabad district).

Remarks: Nandi and Mandal (1984) reported this unnamed species from this state.

262. *Haemoproteus* sp.

Host: *Nettapus coromandelianus* (Gmelin); site of infection: blood.

Distribution: India: Andhra Pradesh (Adilabad district).

Remarks: Nandi and Mandal (1984) reported this unnamed species from this state.

Family **LEUCOCYTOZOIDAE**

Diagnosis: Unpigmented gametocytes in the peripheral blood, schizogony in tissue cells of a vertebrate host, sporogony in insects other than mosquitoes.

Genus Leucocytozoon Sambon, 1908

Diagnosis: Unpigmented parasites in erythroblasts, erythrocytes, and (rarely) leucocytes of birds; host cell grossly hypertrophied, fusiform in some species, nucleus of the host cell always distorted and displaced peripherally (the form of distortion frequently of diagnostic value); first schizogonic cycle hepatic, subsequently in other tissues; schizonts with cytomeres; prepatent period short; sporogony in Simulidae and Ceratopogonidae; oocysts small, unpigmented, usually containing fewer than 100 merozoites, 9-13 μm in length, one end more pointed than the other.

Key to the species of *Leucocytozoon* in birds

1(2) Macrogametocytes dimorphic, with both round and elongate fusiform morphs, elongate morphs occupying 71% of the area of the host cell-parasite complex, parasitic in the avian order Falconiformes ... *L. toddi*

2(1) Macrogametocyte dimorphic and morphologically similar to *L. toddi*, elongate morphs occupying 91% of the area of the host cell-parasite complex, parasitic in the avian family Strigidae, order Strigiformes ... *L. ziemanni*

263. *Leucocytozoon toddi* Sambon, 1908

Diagnosis: Macrogametocyte with both round (12.1-14.0 μm x 9.3-10.0 μm) and elongate (20.5 μm x 8.2 μm and 133.2 μm² in area); cytoplasm with a single large or numerous small vacuoles; nucleus variable, oval to round or elongate, without definite position; host cell nucleus 21.0 μm² in area, usually applied laterally to gametocyte, occasionally encircled by gametocyte and normally shorter than gametocyte length; infected host cell spindle-shaped with host cell cytoplasm forming wings of variable size, measuring 38.4 μm x 10.7 μm and 187.2 μm² in area; host nuclear index 1.7; parasite index 2.0 and host-parasite index 2.7.

Host: Elanus caeruleus vociferus Latham and Spizaetus cirrhatus cirrhatus (Gmelin) of the avian family Accipitridae: site of infection: blood.

Distribution: India: Andhra Pradesh (Adilabad district) and Goa.

Elsewhere: Throughout the range of the avian order Falconiformes (Greiner and Kocan, 1977).

Remarks: Nandi and Mandal (1984) reported this species from this state.

264. Leucocytozoon ziemanni (Laveran, 1902) Wenyon, 1926

Diagnosis: Macrogametocyte with both round and fusiform morphs; round morph: parasite small, round to broadly ovoid, occupying 91% of the area of the host cell parasite complex with little evidence of host cell cytoplasm; parasite nucleus round to ovoid, usually with marked karyosome; host cell nucleus short band-like, covering 28% of the periphery of the parasite and occupying 16% of the area of the host cell parasite complex; fusiform morph: parasite narrowly elliptical to ovoid, medium size, occupying 75% of the host cell parasite complex; host cell nucleus as a band on one side, each end terminating in small bulbs and covering 50% of the periphery of the parasite; cytoplasmic horns long, slender and sharply pointed.

Host: Athene brama (Temminck) (Family Strigidae); site of infection: blood.

Distribution: India: Andhra Pradesh (Adilabad district).

Elsewhere: cosmopolitan in distribution and occurring throughout the range of the Strigidae (Bennett, Earle and Peirce, 1993).

Remarks: Nandi and Mandal (1984) recorded this parasite as Leucocytozoon danilewskyi in Athene brama from Adilabad, Andhra Pradesh. The name, Leucocytozoon danilewskyi Ziemann was considered valid by Fallis et al. (1974). However, Bennett et al. (1975, 1993) reviewed the status of the genus Leucocytozoon and the terminology concerning the
leucocytozoids of the Strigidae and stated that the specific connotation, *L. danilewskyi* was invalid as Ziemann had not described it. As a result, Laveran’s designation of *Leucocytozoon ziemanni* for the leucocytozoid of the Strigidae is valid.

Subclass PIROPLASMIA
Order PIROPLASMIDA
Family BABESIIDAE

Diagnosis: Parasites not forming any pigment granules; schizogony in the red blood corpuscles of vertebrates, with division into two or four; size and shape of the parasites variable, but having a tendency to arrangement in couples of pear-shaped individuals.

Genus Babesia Starcovici, 1893

Diagnosis: Apical complex reduced to a polar ring, rhoptries and subpellicular microtubules, filaments not present on parasitized erythrocytes.

Remarks: Key to the species of this genus is not given as the identification of the species depends on morphology, biology as well as host specificity of the parasites. Besides the species dealt hereunder, Shortt *et al.* (1961) found a *Babesia* parasite in the blood of an Indian gerbil, *Gerbillus indicus* and tested its pathogenecity in monkeys at Osmania University, Hyderabad.

265. *Babesia argentina* Lignieres, 1901

Diagnosis: Parasite small, round, pear-shaped or irregular, in pairs with an obtuse angle, measuring 1-1.5 μm in diameter; with vacuoles; situated at the centre of erythrocytes; nucleus red dot-like.

Host: Crossbred cow, *Bos* sp. site of infection: blood.

Distribution: India: Andhra Pradesh (Tirupati, Chittoor district).

266. *Babesia bigemina* (Smith and Kilborne, 1893)

(Figs. 418-421)

Diagnosis: Parasite large intraerythrocytic, round, oval, irregular, or pyriform, occurring in pairs, individuals of each pair lying closely together forming acute angle; round forms 2-3 µm in diameter, pear-shaped forms 2-4 µm x 1.5-2.0 µm, occasionally 5-6 µm in length, extending across the R. B. C.; multiplication by characteristic budding process, buds remaining attached to their pointed ends.

Distribution: India: Andhra Pradesh (Hyderabad district; pers. comm.), Tamil Nadu, Uttar Pradesh and West Bengal.

Elsewhere: Central and South America, Europe, Africa and Australia.

Remarks: This species is highly pathogenic and causing a disease known as ‘Red-water fever’

267. *Babesia* sp.

Host: *Bos* sp; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: Rao *et al.* (1986) reported this unnamed species from this state.

268. *Babesia* sp.

Host: *Manis* sp; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: Qadri (1962) reported this unnamed species from this state.

269. *Babesia* sp.

Host: Buffalo, *Bubalus bubalis*; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: Rao *et al.* (1986) reported this unnamed species from this state.

270. *Babesia* sp.

Distribution: India: Andhra Pradesh.

Remarks: Rao *et al.* (1986) reported this unnamed species from this state. However, ovine
babesiosis in Andhra Pradesh is caused by *Babesia motasi* and *B. ovis*. The disease is characterised by fever, jaundice, haemoglobinurea and progressive anemia (pers. comm.).

271. *Babesia* sp.

Host: Dog, *Canis* sp; site of infection: blood.

Distribution: India: Andhra Pradesh.

Remarks: Rao *et al.* (1986) reported this unnamed species from this state.

272. *Babesia* sp.

Host: Puma, *Puma concolor*; site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Rao *et al.* (1986) reported this unnamed species from this state.

Family THEILERIIDAE

Diagnosis: Parasites without any pigment granules; schizogony in the endothelial cells of blood vessels of vertebrates; finally invading red corpuscles and occurring in various forms, showing no tendency towards paired arrangement.

Genus Theileria Bettencourt, Franca and Borgess, 1907

Diagnosis: Elements of apical complex much reduced, always including only rhoptries; polar ring or conoid lacking, usually without subpellicular microtubules, vector ixodid ticks, parasitic in mammals.

Remarks: Theileriosis is a tick-borne disease caused by *Theileria* spp. in domestic animals. Besides, the species recorded hereunder, Khan (1981) diagnosed this disease in a four-month-old female gaur (*Bos gaurus*) at Zoological Park, Hyderabad. The animal initially developed eye opacity, followed by diarrhoea, champing of jaws, pyrexia (105°F) and off feed.

273. *Theileria hirici* Dschunkovsky and Urodschevich, 1924

Diagnosis: Parasite small, variable in shape such as ring-shaped, bacillary, nail-like, oval or pyriform; occurring singly, in twos or in triples, even in cross-like forms, in the centre of red blood corpuscle; chromatin granules of varying size and shape; schizogony in the internal organs.
Host: Goat, *Capra hircus*; site of infection: blood.

Distribution: India: Andhra Pradesh (Hyderabad district), Uttar Pradesh, Punjab.

Remarks: Raghavachari and Reddy (1959) reported acute theileriasis in sheep infected with this species from this state.

274. *Theileria* sp.

Host: Cattle; site of infection: blood.

Distribution: India: Andhra Pradesh

Remarks: Rao *et al.* (1986) reported this unnamed species from this state.

275. *Theileria* sp.

Host: Sheep; site of infection: blood.

Distribution: India: Andhra Pradesh

Remarks: Rao *et al.* (1986) reported this unnamed species from this state.

276. *Theileria* sp.

Host: Buffalo; site of infection: blood.

Distribution: India: Andhra Pradesh

Remarks: Rao *et al.* (1986) reported this unnamed species from this state.

Incertae sedis to Order Piroplasmida

Genus *Anaplasma* Theiler, 1910

Diagnosis: Spherical body of chromatin, less than 0.5 μm in diameter, occurring in erythrocytes, ticks acting as vectors, parasitic in mammals.

277. *Anaplasma marginale* Theiler, 1910

Diagnosis: Spherical chromatin granular, measuring 0.2-40 μm in diameter, apparently with no cytoplasm, parasitophorous vacuole present, usually formed at the margin of the red cells.

Host: Sheep, Spotted deer and Cattle; site of infection: blood.

Distribution: India: Andhra Pradesh (Ranga Reddy district).
Remarks: Sundaran and Bhaskara Rao (1989) recorded two cases of anaplasmosis in sheep infected with this species in blood for the first time from this state. Heart, spleen, lung, and liver impression smear also revealed the presence of this species with basophilic stippling and macrocytic anemia.

278. *Anaplasma* sp.

Diagnosis: Exotic cattle; site of infection blood.

Distribution: India: Andhra Pradesh.

Remarks: Rao et al. (1986) reported this unnamed species from this state.

Phylum: MICROSPORA Sprague 1969
(Classification based on Sprague, Becnel and Hazard, 1992)

Class: DIHAPLOPHASEA
Order: MEIODIHAPLOPHASIDA
Superfamily: THELOHANOIDEA

Diagnosis: With spores of one morphological type (homosporous), parasite host cell relations various, spore morphology variable, not uninucleate.

Key to the families

1(2) Interfacial envelop present during sporulation, elaborated by sporont, subpersistent as an octosporous vesicle, sporogonal plasmodium variable, spore morphology variable..

..........................THELOHANIIDAE

2(1) Interfacial envelop produced precociously, enclosing more than one sporont, sporophorous vesicle containing usually 8 sometimes multiples of 8 spores...... DUBOSQUIIDAE

Family THELOHANIIDAE Hazard and Oldacre, 1975

Diagnosis: As in the key.

Key to the genera

1(2) Only one sporulation sequence; pansporoblast subspherical, sporogony by endogenous budding accompanied by secretion of granules; 8 sporoblasts produced within a subpersistent pansporoblastic membrane; spores oval or pyriform without tails, with distinct posterior vacuole..........................*Thelohania*
2(1) Octosporus; spores more or less rod-shaped and bent in one plane to form 'C' shaped or in two planes to form spirals ... *Toxoglugea*

Genus *Thelohania* Henneguy, 1892
(Syn. *Orthothelohania* Codreanu and Balcescu, 1974)

Diagnosis: As in the key.

Key to the species

1(2) Spores oval or cylindrical, 5.0–5.4 μm x 2.0–2.5 μm, polar granule crescent-shaped ... *T. orchestii*

2(1) Spores oval 7.2 μm x 3.6 μm; polar granule small and spherical *T. limbata*

(Figs. 422-426)

Diagnosis: Pansporoblast octosporic, 14.4 μm x 13.2 μm, spores oval, 7.2 μm x 3.6 μm, anterior polaroblast and posterior vacuole clearly seen, polar granule small and spherical, polar filament 120–140 μm, sporoplasm binnucleate.

Host: *Tramea limbata* (Odonata, Insecta); site of infection: adipose tissue.

Distribution: India: Andhra Pradesh, Visakhapatnam (Visakhapatnam district).

280. *Thelohania orchestii* Kalavati, 1976
(Figs. 427-432)

Diagnosis: Meronts with variable number of nuclei, 10.0–12.6 μm x 5.6–7.0 μm, pansporoblast octosporic, spores oval or cylindrical, thick walled, 5.0–5.4 μm x 2.0–2.5 μm, anterior polaroplast and posterior vacuole clearly seen, polar granule crescent-shaped, polar filament 35–40 μm, sporoplasm binnucleate.

Host: *Orchestia platensis* (Amphipoda, Crustacea); site of infection: muscles.
Distribution: India: Andhra Pradesh, Visakhapatnam (Visakhapatnam district).

Genus *Toxoglugea* Leger and Hesse, 1924
Spirospora Kudo, 1925; *Spirillonema*, Wenyon, 1926)

Diagnosis: As in the key.

(Figs. 433-437)

Diagnosis: Stages of merogony in oenocytes, meronts with variable number of nuclei, 2.8-6.0 μm x 1.6-5.4 μm, pansporoblast octosporic, spores kidney or bean-shaped, thick walled, refractive, 3.5–4.0 μm x 1.0–1.6 μm, anterior polaroplast and posterior vacuole clearly seen, polar granule small, polar filament thin, 45–50 μm.

Host: Larvae of *Tholymis tillarga* (Odonata, Insecta); site of infection: oenocytes.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district).

Family DUBOSCQIIDAE Sprague, 1977

Diagnosis: As in the key.

Genus *Duboscquia* Perez, 1908

Diagnosis: Sporogony resulting in 16 sporoblasts that develop into 16 spores.

282. *Duboscquia coptotermi* Kalavati and Narasimhamurti, 1976
(Figs. 438-441)

Material examined: Sev. exs., C. Kalavati, December 1975, (Visakhapatnam, Visakhapatnam district)
Diagnosis: Vegetative stages with as many as 16 nuclei, sporogonial plasmodia irregular in outline 23 µm x 9.0 µm, producing 16 sporoblasts that transform into 16 spores, spores oval to ellipsoid, 5.6–6.6 µm x 2.5–3.5 µm, polar filament 45–55 µm.

Host: Coptotermes heimi (Isoptera, Insecta); site of infection: mid gut epithelium.

Distribution: India: Andhra Pradesh, Visakhapatnam (Visakhapatnam district).

Superfamily BURENELLOIDEA Jouvenaz and Hazard, 1978

Diagnosis: Spores of 2 morphological types. "meiospores" and binucleate spore.

Family BURENELLIDAE Jouvenaz and Hazard, 1978

Diagnosis: One sporulation sequence 'Thelohania-like' ending with 8 spores in a vesicle, other 'Nosema-like' ending with binucleate isolated spores.

Genus Burenella Jouvenaz and Hazard, 1978

Diagnosis: Merogonic stages in the hyaloplasm of host cell, disporous sporulation in hyaloplasm and octosporous sporulation in delicate envelop producing by sporont that becoming an ephemeral sporophorous vesicle.

283. Burenella sp.
(Figs. 442-447)

Diagnosis: Cysts milky white, 1.0-8.0 mm in diameter, two types of sporogonial sequences, disporous and octosporous, seen simultaneously, spores resulting from disporous development, pyriform, refractile, 3.0–3.2 µm x 2.2–2.4 µm, polar granules as two spherical dots, polar filament 40–60 µm. Spores developing in octosporous sporulation oval, thin walled, 4.8–5.2 µm x 2.8–3.0 µm, polar granule single with small cleft, polar filament 100.0–140.0 µm.

Host: Saurida umbil Bl. (Pisces); site of infection: visceral peritoneum.

Distribution: India: Andhra Pradesh, (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).
Remarks: Kalavati and Sandeep (1985) reported this unnamed species from this state.

Order DISSOCIODIHAPLOPHASEA

Diagnosis: Haplosis by nuclear dissociation resulting in unpaired nuclei, homo or heterosporous.

Superfamily NOSEMATOIDEA Labbe 1899.

Diagnosis: Homosporous, spores binucleate, dissociation occurring after the sporoplasm invading the new host cell; haplosis initiating a short haplophase consisting of gamete production and ending with plasmogamy and nuclear association; plasmogamy, sporogony and spore morphology variable.

Key to the families

1. All stages in host cell cytoplasm; conspicuous xenoma usually not formed, disporous, spores more or less reniform or ovoid ... NOSEMATIDAE

2. Interfacial envelop either present or absent in sporulation but very delicate and ephemeral, sporont producing 8 or 16 spores, exospore with or without ornamentation ... CAUDOSPORIDAE

3. Interfacial envelop present, presporogonic proliferation lacking, multisporous, spore ovoid ... PSEUDOPLEISTOPHORIDAE

4. Sporulation in host cell cytoplasm, conspicuous xenoma present, disporous, spore bacilliform, with or without cauda .. MRAZEKIIDAE

Family NOSEMATIDAE Labbe 1899

Diagnosis: As in the key.

Genus Nosema Naegeli 1857

Diagnosis: Sporogony by binary fission of sporont; parasites at all stages diffuse in cytoplasm of host cell; spores ovoidal or ovocylindrical.
Key to the species

1. Spores single, oval or pyriform 4.8-6.4 μm x 1.6-3.0 μm, polar granule crescent-shaped, polar filament 80.0-150.0 μm; parasites of odonates ... *N. limbata*

2. Spores pyriform, with a constriction at posterior end, 3.0-3.5 μm x 1.5-1.7 μm in size, polar granule small and spherical, polar filament 60.0 - 80.0 μm; parasites of fish ... *N. bengalis*

3. Spores isolated, pyriform, 3.5-4.0 μm x 1.6-2.0 μm, polar granule crescent-shaped, polar filament 60.0-80.0 μm; parasites of fish ... *N. priacanthi*

4. Spores pyriform, 5.4 -6.2 μm x 3.0-3.2 μm in size, polar granule small and spherical, polar filament wavy, thin, 80.0-100.0 μm; parasites of fish ... *N. valamugili*

5. Spores ellipsoid, slightly flattened anteriorly, nuclei 2, in diplokaryon form 7.9 ± 0.5 μm x 4.9 ± 0.3 μm, polar filament 190.0 μm, hyperparasite in adult trematodes ... *N. gigantica*

(Figs. 448-451)

Diagnosis: Cysts (xenoma) minute, 500-800 μm in size, thin-walled, sporonts kidney-shaped or broadly oval, binucleate, spores binucleate, pyriform, anterior end pointed, posterior bulbous, with a constriction at posterior end, 3.0-3.5 μm x 1.5-1.7 μm in size, no sign of a pansporoblastic membrane, polar granule small and spherical, polar filament 60.0-80.0 μm.

Host: *Nemipterus japonicus* (Pisces); site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).

285. *Nosema gigantica* Canning and Madhavi, 1977

Diagnosis: Sporoblasts ovoid uni- or bi-nucleate, 6.8 -10.8 μm x 5.3 - 9.8 μm, the latter giving rise to binucleate spores, arranged in diplokarya when 2 or 4 nuclei present; spores ellipsoid, slightly flattened anteriorly, nuclei 2, in diplokaryon form 7.9 ± 0.5 μm x 4.9 ± 0.3 μm, polar filament 190.0 μm.
Host: *Allocreadium fasciatusi* (Digenea, Trematoda); site of infection: parenchyma of the adult.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam, Visakhapatnam district).

(Figs. 452-454)

Material examined: Sev. exs., S. Nazeer Ahmed, July–August 1974, Waltair, Visakhapatnam (Visakhapatnam district).

Diagnosis: Spore single, oval or pyriform 4.8–6.4 μm x 1.6–3.0μm, diplokaryotic, polar granule crescent shaped, polar filament 80.0–150.0 μm.

Host: *Tramea limbata* (Odonata, Insecta); site of infection: adipose tissue.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district).

287. *Nosema priacanthi* Sandeep and Kalavati, 1985
(Figs. 455-458)

Material examined: Sev. exs., B.V. Sandeep, October-November 1980, off Visakhapatnam, Visakhapatnam district.

Diagnosis: Cysts (xenoma) minute, irregular, 0.5–1.0 mm in size, embedded in liver tissue, spores isolated, binucleate, refringent, pyriform, anterior end pointed, 3.5–4.0 μm x 1.6–2.0 μm, no sign of a pansporoblastic membrane; polar granule crescent-shaped, sporoplasm in the form of a girdle in the centre, polar filament 60.0–80.0 μm.

Host: *Priacanthus boops* (Pisces); site of infection: liver.

Distribution: India: Andhra Pradesh (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).

288. *Nosema valamugili* Kalavati and Lakshminarayana, 1982
(Figs. 459-463)

Material examined: Sev. exs., C. Kalavati, October-November 1981, Gosthani estuary, Bheemunipatnam (Visakhapatnam district).

Diagnosis: Xenoma (cysts) spherical or oval, white, minute 150–250 μm in size, thin-walled, sporonts bean-shaped or broadly oval bi- or tetranucleate, spores binucleate, pyriform.
anterior end pointed, 5.4–6.2 μm x 3.0–3.2 μm in size, no sign of a pansporoblastic membrane, polar granule small and spherical, polar filament wavy, thin 80.0–100.0 μm.

Host: Valamugil sp. (Pisces); site of infection: intestine.

Distribution: India: Andhra Pradesh, (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).

289. Nosema sp.

Host: Megalaspis cordyla; site of infection: gill filaments.

Distribution: India: Andhra Pradesh, (Visakhapatnam district).

Remarks: Narasimhamurti and Kalavati (1979) recorded this unnamed species from this state.

Family CAUDOSPORIDAE Weiser, 1958

Diagnosis: As in the key.

Genus Octosporea Flu, 1911

Diagnosis: Sporogony resulting in variable number of sporoblasts; spore diplokaryotic unornamented, short, straight or lightly bent rods.

Sprague and Vavra, 1977

(Syn. Octosporea porcelloloi Kalavati and Narasimhamurti, 1976)

(Figs. 464-468)

Diagnosis: Plasmodia without a pansporoblastic membrane, pansporoblast 12.0-14.0 μm, usually 8, sometimes variable number of spores formed, sporoblasts arranged in the form of
rosette, spores cylindrical, 9.0-10.0 μm x 3.6-4.0 μm, sporoplasm extending like a band, polar granule small, polar filament long, thin, 220.0-300.0 μm.

Host: *Porcellio laevus* Latr. (Isopoda, Crustacea); site of infection: hypodermal cells lining the body wall.

Distribution: India: Andhra Pradesh, (Visakhapatnam, Visakhapatnam district).

Remarks: Kalavati and Narasimhamurti (1976) described this species as *Octosporea porcelloloi*. Since the spelling *porcelloloi* derived from the generic name of the host is a *lapus calami* and is an incorrect spelling. Sprague and Vavra (1977) suggested an emendation (Articles 32 & 33 of the code). Hence the specific name is changed as *Octosporea porcelliolus*.

Family **PSEUDOPLEISTOPHORIDAE** Sprague, 1977

Diagnosis: As in the key.

Genus **Steinhausia** Sprague, Ormieres and Mainer, 1972

Diagnosis: Sporogonial plasmodia.

291. **Steinhausia spraguei** Kalavati and Narasimhamurti, 1977

(Figs. 469-472)

Diagnosis: Stages of sporogony intracellular, growing within an envelop, thin walled intracellular cysts oval, 40–45 μm x 20–25 μm seen, sporogony polysporic enclosing 40–50 spores, spores oval with pointed anterior end, 4.5–5.0 μm x 1.8–2.8 μm, binucleate sporoplasm extends like a band, polar granule small, dot-like, polar filament short, thick, 30.0–35.0 μm.

Host: *Sepia elliptica* Hoyle (Cephalopoda, Mollusca); site of infection: excretiory cells in the renal appendages.

Distribution: India: Andhra Pradesh, (Offshore fish landings, off Visakhapatnam, Visakhapatnam district).

Family **MRAZEKIIDAE** Leger and Hesse, 1922

Diagnosis: As in the key.
Genus *Mrazekia* Leger and Hesse, 1916

Diagnosis: Sporogony by binary fission, sporoblast with diplokaryon, spore cylindrical with manubrium.

292. *Mrazekia caudata* Naidu, 1959

(Figs. 473)

Diagnosis: Cysts without spores, colourless, immature cysts transluscent, greenish grey, spores 23-27 μm x 1.5 μm, caudal end pointed.

Host: *Pristina longiseta longiseta* and *Nais communis* (Oligochaeta); site of infection: coelome.

Distribution: India: Andhra Pradesh (Cuddapah, Cuddapah district).

Class HAPLOPHASEA

Diagnosis: Without diplokarya, nuclei unpaired in all stages, presumed haploid.

Order GLUGEIDA Issi, 1986

Diagnosis: Presporogonic proliferation present, spores usually more or less ovoid or pyriform, polaroblast well developed, parasite host cell relations and sporogony variable.

Key to the families

1. Delicate interfacial envelop present; produced by parasite, sometimes becoming a delicate sporophorous vesicle, sporogony polysporoblastic, conspicuous xenoma formed
 ... GLUGEIDAE

2. Interfacial envelop consisting mostly or entirely of host material present on meront; envelop close fitting and division during merogony, separating at onset of sporogony, persisting more or less as apolysporous vesicle, sporogony polysporoblastic, conspicuous xenoma not formed ... PLEISTOPHORIDAE

3. Interfacial envelop lacking, sporogony disporoblastic or with moniliform plasmodia
 ... UNIKARYONIDAE
Family GLUGEIDAE Thelohan, 1892

Diagnosis: As in the key.

Key to the genera

1. Xenomas with thick laminated wall, immature stages lying peripherally and oval spore lying centrally in the xenoma, vegetative reproduction by fragmentation of cylindrical plasmodia in polysporous sporophorous vesicle .. *Glugea*

2. Xenomas with fibrous cover, developmental stages mixed in the xenoma, vegetative reproduction by fragmentation of cylindrical plasmodia, spore oval in polysporous sporophorous vesicle, macrospores may be present ... *Loma*

Genus Glugea Thelohan, 1892

Diagnosis: Disporoblastic sporonts arising by plasmotomy during sporogony; parasite and host cell in a symbiotic relationship and producing a cell hypertrophy tumour.

Key to the species

1. Spores oval with blunt rounded ends 4.8-5.5 µm x 2.4-3.2 µm, polar granule small and spherical, polar filament 80.0-100.0 µm ... *G. malabaricii*

2. Spores broadly oval with blunt rounded ends, 5.5-6.0 µm x 4.5-5.0 µm, polar granule small and spherical, polar filament 40.0-60.0 µm .. *G. nemipteri*

293. *Glugea malabaricii* Narasimhamurti, Kalavati and Sandeep, 1985 (Figs. 474-479)

Material examined: Sev. exs., C. Kalavati, January to November 1978, off Visakhapatnam, Visakhapatnam district.

Diagnosis: Cyst (xenoma) 0.5–1.0 mm embedded in liver; sporoblasts oval in pairs or in large groups.; spores oval with blunt rounded ends, 4.8-5.5 µm x 2.4-3.2 µm. polar granule small and spherical, polar filament 80-100 µm.

Host: *Carangoides malabaricus* (Pisces); site of infection: liver, gonads and viscera.

Distribution: India: Andhra Pradesh, (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).
Remarks: Kalavati et al. (1985) studied seasonal variations in the prevalence of infection of this species and reported high prevalence during winter months (November –December).

294. Glugea nemipteri Weiser, Kalavati and Sandeep, 1981
(Figs. 480-483)

Material examined: Sev. exs., C. Kalavati, October-November 1980, off Visakhapatnam, Visakhapatnam district.

Diagnosis: Cyst (xenoma) grey, oval or spherical 8.0-12.0 mm in size, schizonts growing into elongate cylinders with a series of nuclei arranged in zig-zag rows, sporoblasts formed in an envelop remaining isolated; spores broadly oval with blunt rounded ends 5.5-6.0 μm x 4.5-5.0 μm, polar granule small and spherical, polar filament 40.0-60.0 μm.

Host: Nemipterus japonicus (Pisces); site of infection:

Distribution: India: Andhra Pradesh (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).

295. Glugea sp.

Host: Carangrides malabaricus; site of infection: liver and intestine.

Distribution: India: Andhra Pradesh (Visakhapatnam District).

Remarks: Kalavati and Narasimhamurti (1978) recorded the xenoma of this unnamed species from the state.

Genus Loma Morrison and Sprague, 1981

Diagnosis: As in the key.

Key to the species

1. Spores usually isolated, rarely in pairs, binucleate, refringent, pyriform, 2.8-3.2 μm x 1.8-2.4 μm, polar granule dot-like, polar filament 40.0-50.0 μm L. trichiuri
2. Spores pyriform, 4.8-6.84 μm x 3.6-5.6 μm, polar granule dot-like, polar filament uniformly thin, 85.0-100.0 μm .. Loma sp I
3. Spores oval, ends rounded, 3.8-5.6 μm x 2.8-4.2 μm, polar granule crescent-shaped, polar filament uniformly thin, 75.0-92.4 μm ... Loma sp II
296. **Loma trichiuri** Sandeep and Kalavati, 1985
(Figs. 484-487)

Material examined: Sev. exs., B.V. Sandeep, September-October 1983, off Visakhapatnam, Visakhapatnam district.

Diagnosis: Cysts (xenoma) small, spherical, yellowish, 0.25-0.5 mm in size, spores usually isolated, rarely in pairs, binucleate, refringent, pyriform, narrow anteriorly, broad posteriorly, 2.8-3.2 µm x 1.8-2.4 µm, polaroplast distinct, polar granule dot-like, polar filament 40.0-50.0 µm, sporoblasts developing in a parasitiphorous vacuole.

Host: *Trichiurus savala* (Pisces); site of infection: gills.

Distribution: India: Andhra Pradesh, (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).

297. **Loma sp I**
(Figs. 488-490)

Diagnosis: Cysts (xenoma) small, spherical, milky white, 0.25-0.5 mm in size, seen embedded in the intestinal muscles, spores pyriform, anterior end sharply pointed, posterior end rounded, 4.8-6.84 µm x 3.6-5.6 µm, polaroplast distinct, polar granule dot-like, polar filament uniformly thin 85.0-100.0 µm, sporoplasm oval in the posterior region.

Host: *Tricopterus* (Pisces); site of infection: intestine.

Distribution: India: Andhra Pradesh (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).

Remarks: Narasimhamurti *et al.* (1990) reported this unnamed species from this state.

298. **Loma sp II**
(Figs. 491-493)

Diagnosis: Cysts (xenoma) small, spherical, milky white, 0.5-2.0 mm in size, seen attached to the peritoneum of viscera, spores oval, ends rounded, 3.8-5.6 µm x 2.8-4.2 µm, polaroplast
distinct, polar granule crescent-shaped, subterminal, polar filament uniformly thin, 75.0-92.4 μm, sporoplasm band-like.

Host: Scianeid (unidentified) (Pisces); site of infection: visceral peritoneum.

Distribution: India: Andhra Pradesh (Bay of Bengal. off Masulipatnam, Krishna district).

Remarks: As for preceding unnamed species.

Family PLEISTOPHORIDAE Doflein 1901

Diagnosis: As in the key.

Genus Pleistophora Gurley, 1893

(Syn. Plistophora)

Diagnosis: Sporogony resulting in an inconstant but typically large number of sporoblasts, sporoblast uninucleate, pansporoblastic membrane subpersistant as polysporous vesicle, mostly parasites of fish and insects.

Key to the species

1. Pansporoblast always containing more than 16 spores; spores oval, 5.4-2.0 μm with a vacuole at either end, parasite of insects ... *P. waltaiensis*

2. Pansporoblast irregular enclosing 50-64 spores; spores oval, 7.2 μm x 3.2 μm, polar filament 35-45 μm, parasite of insects ... *P. eretesi*

3. Pansporoblast containing 32-48 spores; spores oval with rounded corners, 6.5-8.5 μm x 2.3 μm, polar filament 45-50 μm, parasite of insects ... *P. billtellae*

4. Pansporoblast spherical, 18-32.0 μm enclosing 16-48 spores; spores oval, 8.0-9.0 μm x 5.0-5.4 μm, polar filament 170.0-180.0 μm, parasite of insects ... *P. ganapatii*

5. Pansporoblast spherical, containing variable number of spores; spores elongately oval, 5.4-6.0 μm x 1.8-2.2 μm, polaroplast not clear, polar filament 70.0-80.0 μm, parasite of insects ... *P. weseri*

6. Xenoma large, pansporoblast irregular, enclosing several spores; spores oval, refractile, 3.6-4.2 μm x 2.0-2.2 μm, polar filament 50 μm; parasite of fish ... *P. sauridae*

7. Xenoma relatively small with a thick outer layer; pansporoblast irregular enclosing up to 360 spores ; spores oval, slightly tapering anteriorly, 4.8-5.4 μm x 1.8-2.5 μm, polar granule ‘^’ shaped; polar filament 20-25 μm; parasite of snake ... *P. atertii*
299. **Pleistophora atretii** Narasimhamurti, Kalavati and Nazeer Ahmed, 1982
(Figs. 494-498)

Diagnosis: Xenoma (cyst) opaque, white, 700-1250 μm with a thick outer layer; pansporoblast irregular enclosing variable number of (up to 360) spores; spores oval, slightly tapering anteriorly, 4.8-5.4 μm x 1.8-2.5 μm, refractive with rigid wall; PAS positive polar granule ‘Δ’ shaped, seen at the anterior end, polar filament 20-25 μm.

Host: *Atretium schistosum* (Ophidia, Reptilia); site of infection: visceral muscles adjacent to vertebral column.

Distribution: India: Andhra Pradesh, (Gudivada, Krishna district).

300. **Pleistophora blatellae** Narasimhamurti and Kalavati, 1978
(Figs. 499-503)

Material examined: Sev. exs., C. Kalavati, August 1976, Visakhapatnam, Visakhapatnam district.

Diagnosis: Pansporoblast irregular 20-28 μm x 16-20 μm with delicate membrane enclosing 32-48 spores; spores oval with rounded corners 6.5-8.5 μm x 2.3 μm, polaroplast large and clear; PAS positive polar granule seen at the anterior end; polar filament 45-50 μm.

Host: *Blatella germanica* (Dictypotera, Insecta); site of infection: epithelium of malpighian tubules.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district).

301. **Pleistophora carangoidi** Narasimhamurti and Sonabai, 1977

Host: *Carangoides malabaricus*; site of infection: body muscle.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: This species is treated herein as ‘*nomen nudum*’

302. **Pleistophora erelesi** Kalavati and Narasimhamurti, 1976
(Figs. 504-507)

Diagnosis: Pansporoblast irregular reaching a maximum of 35 μm with delicate membrane enclosing 50-64 spores; spores oval 7.2 μm x 3.2 μm, polaroplast large and clear; PAS positive polar granule seen at the anterior end, polar filament 35-45 μm.

Host: Eretes sticticus (Coleoptera, Insecta); site of infection: epithelium of mid gut.

Distribution: India: Andhra Pradesh, Visakhapatnam, Visakhapatnam district.

303. Pleistophora ganapatii Kalavati, 1976
(Figs. 508-511)

Diagnosis: Sporogonial plasmodia irregular with variable number of nuclei; pansporoblast spherical, 18-32.0 μm; with delicate membrane enclosing 16-48 spores; spores oval, 8.0-9.0 μm x 5.0-5.4 μm, polaroplast large and clear; PAS positive polar granule large bilobed seen at the anterior end; polar filament 170.0-180.0 μm.

Host: Odontotermes horni (Isoptera, Insecta); site of infection: epithelium foregut.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district).

304. Pleistophora sauridae Narasimhamurti and Kalavati, 1972
(Figs. 512-515)

Diagnosis: Xenoma (cyst) large, opaque, white, 1.0-2.0 mm, pansporoblast irregular with delicate membrane enclosing several spores; spores oval, refractile, 3.6-4.2 μm x 2.0-2.2 μm, polaroplast large and clear; PAS positive polar granule seen at the anterior end; polar filament 50 μm.

Host: Saurida tumbil (Pisces); site of infection: visceral muscles.

Distribution: India: Andhra Pradesh (off Visakhapatnam, Visakhapatnam district).

305. Pleistophora waltairensis Kalavati and Ganapati, 1971
(Figs 516-518)

Diagnosis: Pansporoblast 9.0-25.0 μm with thin membrane containing variable number of spores, always more than 16; spores oval, 5.4-2.0 μm, with a vacuole at either end.

Host: *Euborellia plebeja* (Dermoptera, Insecta); site of infection: epithelium of malpighian tubules.

Distribution: India: Andhra Pradesh, (Visakhapatnam, Visakhapatnam district).

(Figs. 519-522)

Material examined: Sev. exs., C. Kalavati, August 1971, Visakhapatnam, Visakhapatnam district.

Diagnosis: Sporogonial plasmodia irregular, 7.0-10.0 μm x 2.0-3.0 μm, with variable number of nuclei, pansporoblast spherical, containing variable number of spores; spores generally elongately oval, 5.4-6.0 μm x 1.8-2.2 μm, polaroplast not clear; PAS positive polar granule distinctly seen at the anterior end, polar filament 70.0-80.0 μm.

Host: *Coptotermes heimi* (Isoptera, Insecta); site of infection: epithelium of foregut.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district).

307. *Pleistophora* sp.

Host: *Dussuneria acuta*; site of infection: liver tissue.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: Narasimhamurti and Kalavati (1979) recorded this unnamed species from this state.

Family UNIKARYONIDAE Sprague, 1977

Diagnosis: As in the key.

Genus *Unikaryon* Canning, Lai and Lie, 1974

Diagnosis: Disporoblastic, nuclei unpaired throughout life cycle, cell hypertrophy tumour not formed.
308. **Unikaryon allocreadii** Canning and Madhavi, 1977

Material examined: Sev. exs., R. Madhavi, 1973, Waltair, Visakhapatnam, Visakhapatnam district.

Diagnosis: Early sporonts spindle-shaped, binucleate, mature sporonts dumbbell-shaped 5.2 ± 0.4 μm x 2.3 ± 0.2 μm, fresh spores oval, slightly asymmetrical, one side flatter than the other, uninucleate, 3.5 ± 0.2 μm x 2.7 ± 0.2 μm, polar filament 30 μm.

Host: *Allocreadium fasciatusi* (Digenea, Trematoda); site of infection: parenchyma of the adult.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam, Visakhapatnam district).

TAXA INCERTAE SEDIS

Family GURLEYIDAE

Genus Gurleya Doflein, 1898

Diagnosis: 4 spores produced in a transitory pansporoblast.

309. **Gurleya spraguei** Kalavati 1976

(Figs. 523-527)

Material examined: Sev. exs., C. Kalavati, January 1968–February 1969, Visakhapatnam, Visakhapatnam district.

Diagnosis: Sporogonial plasmodia irregular with variable number of nuclei; pansporoblast with 4 spores characteristically arranged, 18-32.0 μm, with delicate membrane; spores oval, refractive, 4.0-4.5 μm x 2.0-2.5 μm, polaroplast large and clear; PAS positive polar granule large trilobed seen at the anterior end; polar filament 75.0-85.0 μm.

Host: *Macrotermes estharae* (Isoptera, Insecta); site of infection: adipose tissue.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district).

Family INDETERMINABLE

Genus Stempellia Leger and Hesse, 1910

Diagnosis: Tetrasporous sporonts (producing pyriform spores) and octosporous sporonts (producing ovoid spores) occurring in about equal numbers; rarely monosporous (?).
310. *Stempellia odontotermi* Kalavati, 1976
(Figs. 528-532)

Material examined: Sev. exs., C. Kalavati, December 1969, Visakhapatnam, Visakhapatnam district.

Diagnosis: Meronts irregular 6.0-12.0 μm x 3.5-10.0 μm, pansporoblast with 2, 4 or 8 spores, spores oval with a slightly pointed anterior end, variable in size, small spore measuring 4.2 μm x 3.0 μm and large spores 12.6 μm x 4.0 μm; PAS positive polar granule small, spherical, seen at the anterior end; polar filament 300.0-380.0 μm.

Host: *Odontotermes* sp. (Isoptera, Insecta); site of infection: epithelial cells of foregut.

Distribution: India: Andhra Pradesh, (Visakhapatnam, Visakhapatnam district).

Genus Microsporidium

Remarks: The microsporidian spores for which no characters are available for a generic diagnosis of the parasite, are usually referred to the collective genus *Microsporidium*. As such it has no formal status in taxonomy (Sprague, 1977; Canning and Lom, 1986; Canning, 1993) and hence generic diagnosis is not given.

(Syn. *Nosema sauridae* Narasimhamurti and Kalavati, 1972)
(Figs. 533-536)

Material examined: Sev. exs., C. Kalavati, November 1970, fish landings at offshore fishing station, Visakhapatnam, Visakhapatnam district.

Diagnosis: Xenoma (cyst) large, opaque, white, 1.0-2.0 mm, sporoblast diplokaryotic, isolated, spores binucleate, pyriform, 2.3-3.8 μm x 1.8-2.0 μm, polaroplast large and clear; PAS positive polar granule small, dot-like, seen at the anterior end, polar filament 150.0-180.0 μm.

Host: *Saurida tumbil* (Pisces); site of infection: visceral muscles.

Distribution: India: Andhra Pradesh (off Visakhapatnam, Visakhapatnam district).

Remarks: Narasimhamurti and Kalavati (1972) described the species as *Nosema sauridae*. Sprague and Vavra (1977) while revising the classification and species descriptions erected a new genus *Microsporidium* to accommodate those species which did not fit into the taxonomic descriptions of the existing genera. Sprague and Vavra (op.cit) transferred *Nosema sauridae* Narasimhamurti and Kalavati to the genus *Microsporidium* renaming it as *Microsporidium sauridae*.
Phylum ASCETOSPORA
Class HAPLOSPOREA
Order MEIODIHAPLOPHASIDA
Family COELOSPORIDAE

Diagnosis: Simple uninucleate spore; parasite inhabiting body cavity.

Genus Coelosporidium Mesnil and Merchoux, 1897

Diagnosis: Small body, forming cysts; spores resembling microsporidian spores, but without a polar filament; inhabiting coelom of arthropods.

Key to the species

1(2) Cysts spherical, 25 \(\mu \text{m} \) in diameter; 70-80 ovoid spores C. schlackeriae
2(1) Cysts spherical, 16-27 \(\mu \text{m} \) in diameter, 40-60 ovoid spores C. oithonae

312. Coelosporidium schlackeriae Ganapati, Narasimhamurti and Santha Kumari, 1964
(Figs. 537-541)

Material examined: Sev. exs., Santhakumari, July-October 1962, Bay of Bengal, off Visakhapatnam, Visakhapatnam district.

Diagnosis: Development coelozoic; multinucleate plasmodia undergoing multiplication by repeated plasmotomy; spore formation by fragmentation into uninucleate bodies; cysts spherical, 25.0 \(\mu \text{m} \) in diameter, enclosing 70-80 spores; spores ovoid, 3.0 \(\mu \text{m} \times 2.5 \mu \text{m} \); with rigid double layered envelop

Host: Schmackeria serricaudata Kr. (Copepoda, Crustacea); site of infection: body cavity.

Distribution: India: Andhra Pradesh (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).

2. Coelosporidium oithonae Narasimhamurti and Kalavati, 1976
(Figs. 542-545)

Material examined: Sev. exs., C. Kalavati, November 1969, Bay of Bengal, off Visakhapatnam, Visakhapatnam district.
Diagnosis: Development coelozoic; plasmodia irregular, 25.4 μm x 12.5 μm, with as many as 200 nuclei undergoing multiplication by repeated plasmotomy; spore formation by fragmentation into uninucleate bodies; cysts spherical, 16.0-27.0 μm in diameter, enclosing 40-60 spores; spores ovoid, uninucleate 4.8 μm x 1.6 μm.

Host: Oithona rigida (Copepoda, Crustacea); site of infection: body cavity.

Distribution: India: Andhra Pradesh (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).

Family Nephridiophagidae

Diagnosis: Simple uninucleate spores; parasite inhabiting Malpighian tubules.

Genus Nephridiophaga Ivanic, 1937

Diagnosis: Typically intracellular parasite with simple spores; development part intracellular and part haemocoelomic; inhabiting epithelial tissue of Malpighian tubules.

314. Nephridiophaga xenoboli Ganapati and Narasimhamurti, 1960 (Figs. 546-549)

Diagnosis: Development intracellular, multinucleate plasmodia producing uninucleate gametes by endogenous budding in the center of the plasmodium, sporoblast formed as result of fusion of 2 such gametes, cysts mulberry-like formed within the epithelium, spores spherical, bivalved, 3.0 μm in diameter, two valves fusing longitudinally forming a suture.

Host: Xenobolus carnifex (Myripoda, Arthropoda); site of infection: gut epithelium.

Distribution: India: Andhra Pradesh, (Visakhapatnam, Visakhapatnam district).

Remarks: Although Purrini and Weiser (1990), resurrected the family Coelosporidae, the two genera Coelosporidium and Nephridiophaga were not considered as members of the phylum Haplosporea in the recent classifications of protists by Corliss, 1984; Lee et al., 1985; Perkins, 1990; Hausmann and Haulsmann, 1996 and Cavalier-Smith, 1998 since they do not have the distinct characters, namely, haplosporosomes and spore orifice. They were, however, not transferred to any other phyla. Lange (1993) established the protozoan nature of the genus Nephridiophaga but preferred to retain them as ‘protista of incertae sedis’ Patterson (1999) considered coelosporids and nephridiophagids as taxa with clear ultrastructural identity but without any agreement with other taxa. Hence, not included in any phyla.
Phylum MYXOZOA Grasse, 1960
(Classification according to Lom and Noble, 1984; Revised Lom and Dykova, 1992)
Class MYXOSPOREA Butschli, 1881
Order BIVALVULIDA Schulman, 1959.
Sub order VARIISPORINA Lom and Noble, 1984

Key to the Families

1. Spores with polar capsules located at either pole or widely separated.......................... 3
2. Spores with polar capsules located at the anterior pole ... 4
3.1 Spores spindle-shaped/sigmoid or crescentic; polar capsules located along the sutural plane in the opposite ends; sutural line longitudinal, straight or curved

... MYXIDIIDAE

4.1 Spores with 2 polar capsules ... 5
4.2 Spores with 2 or 4 polar capsules .. 6
4.3 Spores with 1 polar capsule... 7
5.1 Spores spherical to irregularly ellipsoidal, bilaterally symmetrical; sutural line straight; polar capsules wide apart in sutural plane, capsular foramina directed away from each other ... ORTHOLINEIDAE
5.2 Spores spherical or inversely pyramidal with or without caudal or lateral projections; polar capsules anterior, spherical or sub-spherical and perpendicular to sutural line; sutural line sinuous, often ‘8’ shaped ... SINUOLINEIDAE
5.3 Spores with shell valves elongated, drawn out in the plane perpendicular to sutural line; sutural line transverse, central and straight; shell valves symmetrical or asymmetrical; polar capsule spherical or sub-spherical, perpendicular to sutural line..........................
... CERATOMYXIDAE
5.4 Spores spherical or pyramidal with tapering anterior end or elongated often with appendages; polar capsules located at the anterior tip, perpendicular to straight sutural line... SPHAEROSPORIDAE
6.1 Spores spherical, sub-spherical or elongated with or without caudal appendages; sutural line straight, meridional, bisecting the spore; polar capsules 4, at the apex, either one pair in the level of the sutural line and second pair perpendicular or both pairs diagonally beyond the level of suture. .. CHLROMYXIDAE
6.2 Spores thin walled, asymmetrical, elongated in sutural plane; shell valves unequal; sutural
line curved; polar capsules 2 to 4, conspicuously small at the apex
.. PARVICAPSULIDAE

7.1 Spores with asymmetric, unequal, smooth shell valves and single elongated polar capsule with a few longitudinal coils of the filament AUERBACHIDAE

Family MYXIDIIDAE Thelohan, 1892

Diagnosis : As in the key.

Key to the genera

1. Spores fusiform, straight or slightly crescentic or sigmoid with more or less pointed ends; shell valves smooth or with ridges; sutural line straight, bisecting the spore; 2 pyriform polar capsules lying one at either end of the spore; capsular foramina lying in the sutural plane at or near the end of the spore and usually open in opposite directions; sporoplasm binucleate, located between the capsules, usually coelozoic, occasionally histozoic in marine and freshwater fishes, rarely in amphibians Genus *Myxidium*

2. Spores ellipsoidal in sutural view, slightly bent or semicircular in valvular view, with rounded or bluntly pointed ends; sutural line straight, curved or sinuous; polar capsules almost spherical, usually open slightly subterminally and both to one side; sporoplasm binucleate, coelozoic in marine and freshwater fishes Genus *Zschokkella*

3. Spore semicircular in valvular view and fusiform in sutural view; sutural ridge oblique slightly arched with raised edges; spore valves striated with lid-like structure at the opening of the polar capsules; polar capsules oval or spherical either divergent or convergent; parasites of amphibians Genus *Parazschokkella*

Genus *Myxidium* Bütschli 1882

(= *Cystodiscus* Lutz, 1889)

Diagnosis : As in the key.

Key to the species

1. Spores fusiform with flat ends; valves striated; 11.4–13.6 μm x 5.4–7.1 μm .. *M. aori*

2. Spores rectangular/dumbbell-shaped with rounded ends; 9.6-14.4 μm x 4.8-8.0 μm .. *M. papernae*
(Figs. 550-552)

Diagnosis: Spores fusiform with flat ends, slightly curved, with one side more convex than the other. 11.4-12.6 μm x 5.4-6.4 μm in size; valves uniformly thick, asymmetrical with 8-10 striations; sutural ridge wide and straight; sutural line fine; polar capsules 2, located one at each pole, oval or pyriform 3.6-4.1 μm x 2.1-2.7 μm; polar filament forming 4-5 oblique coils while inside the capsule, 73-118 (94.5) μm when extended; sporoplasm granular, homogenous, occupying the space between the capsules.

Host: *Macrones aor* (=*Aorichthys aor*); site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Hyderabad city; Hyderabad district and Warangal, Warangal district).

316. *Myxidium papernae* Padma Dorothy and Kalavati, 1992
(Figs. 553 & 554)

Material examined: Sev. exs., Gosthani estuary and backwaters of Visakhapatnam, Visakhapatnam district; May 1986, K. Padma Dorothy.

Diagnosis: Pansporoblast disporous; spores transparent, rectangular with rounded ends or dumbbell-shaped; lateral walls concave; 9.6-14.4 (11.04) μm x 4.8-8.0 (7.04) μm; valves equal, striated. 4-5 striations seen on each valve; polar capsules 2, spherical, terminal at either end of the spore; capsular foramina located at the tip of a beak-like projection. 3.2-4.8 (3.36) μm in diameter; polar filament 16.1- 2.7 (22.5) μm; sporoplasm hyaline, binucleate occupies the entire spore cavity.

Host: *Liza macrolepis*; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Gosthani Estuary, Bheemunipatnam and backwaters of Visakhapatnam, Bay of Bengal, Visakhapatnam district).

Genus Zschokkella Auerbach, 1910

Diagnosis: As in the key.

Key to the species

1(2). Polar capsules spherical without neck
1.1 Spores oval, transversely striated, 9-12 striae, 11.18-15.48 μm x 7.74-10.32 μm

.. Z. ganapatii

2(1). Polar capsules spherical with a neck

2.1 With short neck; spores hemispherical/gibbous; valves striated, 10-12 striae, 9.3-12.9 μm x 4.3-7.1 μm .. Z. labeonis

2.2 With prominent neck; spores ellipsoid/gibbous, 12.9-14.3 μm x 5.0-7.1 μm

.. Z. ophicephali

317. Zschokkella ganapatii Padma Dorothy and Kalavati, 1992
(Figs 555-557)

Diagnosis: Pansporoblast disporous; spores oval, 11.18-15.48 (12.84) μm x 7.74 - 10.32 (9.81) μm; valves thick, refringent, transversely striated. 9-12 striations seen; sutural ridge 'S' shaped; polar capsules spherical, one at either end, sub-terminal; capsular foramina diagonally opposite with thick cushion-like annuli. 2.58-4.3 (3.41) μm; polar filaments making 3-4 coils while inside the capsule, 28.0-40.0 (34.1) μm when extended; sporoplasm hyaline lightly stained, intercapsular.

Host: Liza macrolepis; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Gosthany Estuary, Bheemunipatnam and Bay of Bengal, Visakhapatnam, Visakhapatnam district).

318. Zschokkella labeonis Lalitha Kumari, 1969
(Figs. 558-560)

Diagnosis: Spores hemispherical or gibbous in valvular view and ellipsoidal in sutural view, 9.3–12.9 (10.3) μm x 4.3–7.1 (6.2) μm in size; valves uniformly thick, asymmetrical with 10–12 striae curved and running parallel to sutural line, converging at the poles; sutural line oblique, sinuous, elongated and ‘S’ shaped in sutural view; polar capsules 2, located one at each pole, spherical with short neck. 2.9–4.3 (3.7) μm x 2.1–3.6 (2.9) μm; polar filament forming 4–5 oblique coils while inside the capsule, 30-42 μm when extended; sporoplasm finely granular forming a compact mass below the capsules.

Host: Labeo nigripinnis; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).
319. Zschokkella ophicephali Lalitha Kumari, 1969
(Figs. 561-562)

Diagnosis: Pansporoblasts monosporous; spores gibbous-shaped in valvular view and ellipsoidal in sutural view, one side straight and the other curved; poles pointed; 12.9–14.3 \(\mu m \) x 5.0–7.1 \(\mu m \) in size; valves uniformly thick, asymmetrical with 10–12 striae; sutural line oblique, sinuous, elongated and ‘S’ shaped in sutural view; polar capsules 2, located one at each pole, spherical with prominent neck. 3.6–3.9 \(\mu m \) x 2.9–3.2 \(\mu m \); polar filament forming 6–7 coils while inside the capsule; sporoplasm finely granular, trapezoidal forming a compact mass between the capsules.

Host: Channa (=Ophicephalus) striatus; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district; Srungavarapukota, Visakhapatnam district).

320. Zschokkella sp.

Host: Heteropnustes (=Saccobranchus) fossilis; site of infection: gale bladder.

Distribution: India: Andra Pradesh (Hyderabad district).

Remarks: Qadri (1951) reported this species from the above said host.

Genus Parazschokkella, Kalavati and Narasimhamurti, 1987

Diagnosis: As in the key.

321. Parazschokkella melanosticti Kalavati and Narasimhamurti
(Figs. 563-566)

Diagnosis: Pansporoblast disporous; spores semicircular in valvular view; anterior end broad and flat, posterior rounded; fusiform with rounded ends in sutural view, 6.0-7.0 (6.5) \(\mu m \) x 9.6-10.5 (9.8) \(\mu m \) x 6.0-6.4 (6.2) \(\mu m \) in size; valves equal, striated. 8-12 transverse striations seen; corners at the anterior end thickened; sutural ridge, raised, arched or ‘S’
[Figs. 550-764. Myxozoan parasites of Andhra Pradesh showing spores with polar capsule (Pc/PC), polar filament (Pf), sporoplasm (Sp/SP), sutural line (Su.l), striations (Str), spore body (Spb), lateral appendage (Lat. appn), intercapsular appendix (INT. Cap. app, I Cap.), iodinophilous vacuole (Iv), sutural ridge (SR), sporoplasm nucleus (SN), caudal appendage (CA), nucleus (N), perietal fold (PF), mucous envelope (Mu, env), caudal process (CP).]

shaped; polar capsules 2, divergent, oval with a short neck at opposite poles, 2.0-2.5 (2.2) \(\mu m \) x 1.6-2.0 (1.8) \(\mu m \); polar filament showed 2-3 coils while inside the capsule; ribbon-like, flat, club-shaped distally and 26-30 (28.0) \(\mu m \) when extended; sporoplasm oval or bean-shaped in the posterior part of the spore.

Host: *Bufo melanostictus*, site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district; Vizianagaram, Vizianagaram district and Machilipatnam, Krishna district).

Family ORTHOLINEIDAE Lom and Noble, 1984

Diagnosis: As in the key.

Genus *Ortholinea* Schulman, 1962

Diagnosis: Spherical or sub-spherical spores slightly flattened in sutural plane; polar capsules sub-spherical to pyriform; sporoplasm binucleate; coelozoic in urinary tract of marine fishes, rarely histozoic; polar capsules spherical with a neck.

322. *Ortholinea visakhapatnamensis* Padma Dorothy and Kalavati, 1993

(Figs. 567-571)

Material examined: Sev. exs., Visakhapatnam backwaters, Bay of Bengal, Visakhapatnam district, December 1987, K. Padma Dorothy.

Diagnosis: Cysts elongate or oval 0.7-1.3 \(\mu m \) x 0.5-0.9 \(\mu m \); pansporoblasts disporous; spores spherical 5.16-6.0 (5.9) \(\mu m \) in diameter or broadly triangular (6.88 \(\mu m \) x 5.1 \(\mu m \)) with bluntly pointed posterior end; anterior end broad, corners round; valves equal, striated, 8 longitudinal striations seen; sutural line straight, prominent; polar capsules subspherical to pyriform, 2.6-3.5 (3.0) \(\mu m \) x 1.7-2.6 (2.2) \(\mu m \) parallel on either side of sutural line; capsular foramina widely separated with a deeply stained thickening in between; polar filaments making 5-6 coils while inside the capsule, 17.6-24.0 (19.9) \(\mu m \) when extended; no iodinophilous vacuole; sporoplasm hyaline extending into intercapsular region, occupying the entire spore cavity.

Host: *Liza macrolepis*; site of infection: visceral peritoneum.

Distribution: India: Andhra Pradesh (Visakhapatnam backwater region, Bay of Bengal, Visakhapatnam district).
Family SINUOLINEIDAE Schulman, 1959

Diagnosis: As in the key.

Key to the genera

1. Spores spherical or sub-spherical, sutural line straight or sinuous; shell valves bearing hollow lateral appendages, the cavity of which discontinuous with spore cavity; polar capsules anterior, sub-terminal, coelozoic ... Genus Davisia

2. Spores inversely pyramidal .. 3

3.1 Spores inversely pyramidal in sutural view, ellipsoidal in lateral view, ends pointed extending backwards; sutural line sinuous; anterior end of the shell valve drawn out into a wing-like projection containing valvogenic nucleus; polar capsules spherical

.. Genus Bipteria

3.2 Spores inversely pyramidal with anterior wing-like projection of shell valves; in addition a 'keel' like extension running meridionally along the sutural line; polar capsules spherical .. Genus Neobipteria

Genus Davisia Laird, 1953

Diagnosis: As in the key.

Key to the species

1. Spores oval .. 3

2. Spores crescent-shaped, spore body triangular or oval 4.8-11.2 μm x 19.8-36.2 μm; polar capsules spherical ... D. murtii

3.1 Spores flattened, oval; lateral appendages equal, hollow with broad end; 32.2-42.2 (37.01) μm x 11.4-15.8 (12.6) μm ... D. cynoglossii

3.2 Spores oval, lateral appendages hollow, unequal filaments, 120-176 μm x 13-14 μm ... D. filiformis

323. Davisia cynoglossi Narasimhamurti, Kalavati, Anuradha and Padma Dorothy (Figs. 572-574)

Diagnosis: Spores flattened, bent with hollow lateral appendages having distinct junction to spore body; proximal portion of appendage broad; distal end narrow and oval; spore body oval. 12.6-16.8 (14.24) μm x 11.4-15.8 (12.6) μm; lateral appendage 20.8-36.4 μm x 10.4-18.2 (14.5) μm; total width of the spore 32.2-42.2 (37.01) μm; valves thin; sutural line distinct, slightly wavy; polar capsules oval. 5.8-6.8 (6.2) μm x 2.8-4.2 (3.4) μm in size; polar filament 22.4-28.6 (24.8) μm in length; sporoplasm oval, granular, binucleate.

Host: Cynoglossus sp.; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Bay of Bengal, Lat. 15°58' N Long. 81°31°E, off Masulipatnam, Krishna district).

324. Davisia filiformis Padma Dorothy, Kalavati and Vaidehi, 1998 (Figs 575-576)

Diagnosis: Pan-sporoblast disporous; spore body oval with distinct joints of lateral appendages, demarcated by a deeply stained cushion-like-structure; total width 120-176 μm; spore body 16-20 μm x 13-14 μm; valves thin, smooth; sutural line thin, straight; lateral appendages unequal, long, hollow, filamentous; polar capsule pyriform, 8-10 μm x 6-8 μm; polar filament forming 2 to 3 coils while inside the capsule; sporoplasm hyaline filling the entire spore cavity.

Host: Thrissocles setirostris; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Bay of Bengal, off Visakhapatnam).

325. Davisia murtii Padma Dorothy and Kalavati, 1994 (Figs. 577-579)

Diagnosis: Trophozoites small, round or oval; pansporoblast disporous; spore crescent-shaped with a triangular or oval spore body; 11.2-17.6 (13.86) μm x 4.8-11.2 (7.31) μm; sutural line wavy; valves smooth; lateral appendages hollow, equal, 4.2-9.6 (6.6) μm, and distal end blunt; polar capsules spherical, overlapping, 3.2-4.8 (4.56) μm in diameter; polar filaments making 4-5 coils while inside the capsule, 15-30 μm when extended.
Host: *Liza macrolepis*; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (off Bheemunipatnam, Bay of Bengal, Visakhapatnam district).

Genus *Bipteria* Koveleva, Zubchenco and Krasin 1983

Diagnosis: As in the key.

326. *Bipteria indica* Kalavati and Anuradha, 1995
(Figs. 580-582)

Diagnosis: Pansporoblast disporous; spores inversely pyramidal; anterior end broad, corners rounded; posterior end narrow, blunt; two delicate wing-like appendages arising from the anterior region of spore and extending almost up to posterior end enclosing the spore body, 5.6-6.8 (5.8) μm x 5.4-6.8 (5.7) μm x 4.8-5.2 (5.0) μm in size; valves thin, smooth, refractive; sutural line curved at posterior end; polar capsules spherical, widely spaced; 1.8-2.6 (2.0) μm in diameter; polar filament forming 5-6 coils while inside the capsule, 16.0-20.0 (18.0) μm when extended; sporoplasm homogenous, hyaline occupying the entire extracapsular cavity; iodonophilous vacuole absent.

Hosts: *Mugil cephalus* and *Liza macrolepis*; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (off Bheemunipatnam, Visakhapatnam, Bay of Bengal, Visakhapatnam district); Chilka Lake, Orissa.

Genus *Neobipteria* Koveleva, Zubchenco and Krasin, 1983

Diagnosis: As in the key.

327. *Neobipteria coromandelensis* Narasimhamurti, Kalavati, Anuradha and Padma Dorothy, 1990
(Figs. 583-584)

Diagnosis: Triangular, posterior end pointed, anterior flattened with a small depression at the center 4.8-6.8 (5.9) μm x 7.2-10.4 (8.76) μm; sutural line thick, straight; a pair of median, keel-like membranes arising from the sutural line; valves smooth, symmetrical, with 2 ring-like appendages at the center; polar capsules spherical, 2.6-3.4 (3.18) μm in diameter; polar filament forming 6-7 coils while inside the capsule, 36.8-52.6 (43.75) μm when extended; sporoplasm homogenous, oval, binucleate; no iodinophilous vacuole.

Host: Nemipterus mesoprion; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Bay of Bengal, off Masulipatnam (Lat. 15°58' N Long. 81°31'E), Krishna district).

Family CERATOMYXIDAE Doflein, 1899

Diagnosis: As in the key.

Key to the genera

1(2) Spores oval, ellipsoidal, arcuate or elongated in the direction perpendicular to sutural plane; length of individual shell valve not exceeding the axial diameter of spore, but significantly more than one half of the diameter; capsular foramina near sutural plane; sporoplasm mostly one, binucleate, sometimes 2, uninucleate Genus Leptotheca

2(1) Spores elongated, crescent-shaped or arcuate; shell valves conical always exceeding in length the axial diameter of the spore; polar capsules sub-spherical, equal or unequal; sporoplasm binucleate, not filling the spore cavity completely Genus Ceratomyxa

Genus Leptotheca Thelohan, 1895

Diagnosis: As in the key.

328. Leptotheca asymmetrica Lalitha Kumari, 1969 (Figs. 585-587)

Diagnosis: Spores elliptical or oval, 5.7-7.9 (6.8) μm x 8.6-10.0 (9.4) μm in size, breadth being more than sutural diameter, ends rounded; valves usually thick, characteristically ornamented with three longitudinal striae converging towards the sutural ridge and a horizontal
tranverse striation; polar capsules unequal, pyriform, 4.3–5.4 (4.9) μm x 2.9–4.3 (3.1) μm and 3.6–4.3 (4.0) μm x 2.1–2.9 (2.8) μm opening through independently; polar filaments unequal, 32-41 (37.7) μm and 27-32 (29.8) μm in length; sporoplasm clear, finely granular, forming a compact mass and occupying little space behind the large polar capsule.

Host: Osteochilus neilli; site of infection: gills, gall bladder and intestine.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).

Genus Ceratomyxa Thelohan, 1892

Diagnosis: As in the key.

Key to the species

1. Spores transversely elongated, shell valves unequal 3
2. Spores transversely elongated, shell valves equal .. 4
3.1 Spores arcuate, asymmetrical, 9.2-11.8 (10.36) μm x 36.4-45.8 (41.6) μm; valves smooth, unequal; polar capsules spherical, unequal ... C. dissimilaris
4.1 Spores transversely elongated, flat, compressed, 2.75-4.0 (3.7) μm x 12.9-19.8 (16.7) μm; valves smooth; polar capsules large, sub-spherical.............................. C. kudoi
4.2 Spores hat-shaped, 14.2-18.4 (16.2) μm x 68.6-82.4 (74.2) μm; valves smooth; polar capsule spherical ... C. sagarsampadae
4.3 Spores transversely elongated, 8.6-10.32 (9.53) μm x 81.7-98.7 (88.58) μm; valves thick, smooth, drawn out laterally with pointed ends; polar capsules oval C. thrissoclesi

329. Ceratomyxa dissimilaris Narasimhamurti, Kalavati, Anuradha and Padma Dorothy, 1990 (Figs. 588-589)

Diagnosis: Pansporblast disporous; spores arcuate, asymmetrical, transversely elongated with slightly bent oval ends; 9.2-11.8 (10.36) μm x 36.4-45.8 (41.6) μm; spore valves smooth, unequal, 17.6-22.4 (19.2) μm and 20.8-26.8 (22.4) μm; sutural line straight; polar capsules spherical, unequal, 3.0-5.2 (4.82) μm and 2.4-3.8 (3.56) μm in diameter; polar filaments forming 3-4 coils while inside the capsule, 24.4-32.2 (28.6) μm and 34.8-38.4 (36.2) μm when extended; sporoplasm, irregular with numerous eosinophilic granules, extending into lateral arms, usually displaced towards larger valve.
Host: Nemipterus mesoprioll; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (off Kalingapatnam, Bay of Bengal Srikakulam district).

330. *Ceratomyxa kudoi* Kalavati and Anuradha, 1993
(Figs. 590-592)

Material examined: Sev. exs., Gosthani estuary and Visakhapatnam harbour, Visakhapatnam district, July- August 1987, I. Anuradha.

Diagnosis: Pansporoblasts disporous, oblong with filiform pseudopodia at either end; spores transversely elongated, compressed, flat, and ribbon-like with rounded lateral ends; anterior end pointed, posterior with small indentation; 2.75-4.0 (3.7) \(\mu m \times 12.9-19.8 \) (16.7) \(\mu m \); Length: Width ratio 1:5.0-5.6; valves smooth and equal; sutural line distinct and straight; polar capsules large, sub-spherical, terminal, 1.5-2.5 (2.0) \(\mu m \); polar filament forming 4-5 coils while inside the capsule and 10.0-15.5 (13.2) \(\mu m \) when extended; sporoplasm granular extending into valves; iodinophilous vacuole absent. 2 characteristic hallows (vacuole?) seen one each valve.

Host: Valamugil cunnesius; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Gosthani estuary and Visakhapatnam harbour, Visakhapatnam district).

331. *Ceratomyxa sagarsampadae* Narasimhamurti, Kalavati, Anuradha and Padma Dorothy, 1990
(Figs. 593-594)

Diagnosis: Pansporoblast disporous; spores transversely elongated and hat-shaped; 14.2-18.4 (16.2) \(\mu m \times 68.6-82.4 \) (74.2) \(\mu m \) in size; valves thick and smooth; sutural line wavy; polar capsules spherical, sub-terminal, 8.4-9.86 (8.52) \(\mu m \); polar filaments forming 6-7 coils while inside the capsule, 48-68.4 (59.76) \(\mu m \) when extended; both the filaments extruding through a common foramen forming a cross; sporoplasm hyaline extending below the capsules in the entire spore cavity; no iodinophilous vacuole.

Host: Cynoglossus sp.; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Bay of Bengal (Lat. 15°58' N Long. 81°31'E). off Masulipatnam, Krishna district).
332. *Ceratomyxa thrissoclesi* Padma Dorothy, Kalavati and Vaidehi, 1998
(Figs. 595-596)

Material examined: Sev. exs., Visakhapatnam, Visakhapatnam district, February, 1992, C. Kalavati.

Diagnosis: Pansporoblast disporous; spores transversely elongated, 8.6-10.32 (9.53) μm x 81.7-98.7 (88.58) μm; valves thick, smooth, drawn out laterally, ends pointed; sutural line straight; polar capsule oval, 3.44-5.16 (4.57) μm x 3.4-4 (3.58) μm; polar filament making 3-4 coils while inside the capsule, 30-45 (35.0) μm when extended; sporoplasm hyaline, binucleate, heart-shaped.

Host: *Thrissocles muystasc*; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).

Family *SPHAEROSPORIDAE*, Davis, 1917

Diagnosis: As in the key.

Key to the genera

1. Spores spherical or sub-spherical, valvular diameter not exceeding significantly the sutural diameter; sutural ridge often prominent; polar capsule sub-spherical or pyriform; two uninucleate sporoplasms; mono or disporous trophozoites... Genus *Sphaerospora*

2. Spores sub-spherical enclosed in a membranous veil which in immature spores twisted in 2 cords around the spore; sutural ridge prominent anteriorly; polar capsules pyriform; sporoplasm binucleate; trophozoite di or polysporous Genus *Palliatius*

3. Spores elongated with pointed anterior end; shell valves often ridged and extending posteriorly into a caudal appendage; polar capsule pyriform with or without an iodoniphilous vacuole; trophozoite di or polysporous............... Genus *Myxobilatus*

Genus *Sphaerospora* Thelohan, 1892

Diagnosis: As in the key.

333. *Sphaerospora mayi* Moser, Kent and Dennis, 1989
(Figs. 597-599)

Diagnosis: Pansporoblast disporous; spores spherical or subspherical, 4.0-5.4 (4.5) μm; valves with strong striations; sutural ridge straight, prominent, tapering to a fine point at the posterior end; polar capsule sub-spherical, parallel to sutural ridge, terminal, filling the entire anterior half, 2.0-2.5 (2.2) μm x 1.8-2.0 (1.9) μm; polar filament forming 5-6 coils while inside the capsule; intercapsular appendix prominent, deeply stained, rod-like; 2 uninucleate sporoplasms, one on either side of sutural ridge; polar filament 18-26 (23.0) μm in length; developmental stages in blood having pseudoplasmodia with variable number of nuclei.

Host: *Mugil cephalus*; site of infection: intestinal epithelium, visceral peritoneum, gill epithelium and blood.

Distribution: India: Andhra Pradesh (Visakhapatnam harbour, Visakhapatnam district) and Heron island, Australia.

Remarks: Kalavati and Anuradha (1992) recorded this species from this state.

Genus *Palliatus* Schulman, Koveleva and Dubina, 1979

Diagnosis: As in the key.

(Figs. 600-604)

Material examined: 2 exs., Bheemunipatnam, Bay of Bengal, Visakhapatnam district, February, 1987, K. Padma Dorothy.

Diagnosis: Development monosporous; spores oval; anterior end broad; posterior end bluntly tapering; a smooth membranous envelope arising at the anterior end extending to the posterior end encircling the spore; a pair of broad triangular 'keel' like appendage present along sutural ridge on either side of the spore enclosing the spore body like a parachute; 9.1-10.5 (9.84) μm x 7.0-7.7 (7.02) μm in size; valves thin, smooth and unequal; sutural ridge prominent, slightly curved, extending as small curved spine; polar capsules 2, pyriform, convergent, terminal, 3.5-4.2 (4.1) μm x 2.8-3.5 (3.05) μm; tip of the capsule deeply stained as a small plug-like structure; polar filament making 4-5 coils while inside the capsule, 14.4-22.5 (17.79) μm long; sporoplasm dumb-bell shaped, homogeneous, granular.
Host: *Liza macrolepis*; site of infection: pancreas.

Distribution: India: Andhra Pradesh (Bay of Bengal, off Bheemunipatnam, Visakhapatnam district).

Remarks: The parasite induced reduction in islets of langerhans with consequent impairment of glucose metabolism. Infected fish showed weight loss and appeared morbid.

Genus *Myxobilatus* Davis, 1917

Diagnosis: As in the key.

Key to the species

1(2) Spores variable; occur in 2 different types; 8.5-12.5 μm x 4.6-6.16 μm in size

.. *M. mastacembeli*

2(1) Spores elongate, oval, 11.2-14.4 μm x 4.8-3.2 μm in size *Myxobilatus* sp.

335. *Myxobilatus mastacembeli* Qadri and Lalitha Kumari, 1965

(Figs. 605-606)

Diagnosis: Trophozoites milky-white, spherical about 1 mm; development disporous; spores flat, 2 types; smaller spores pyriform, others elongated; anterior end blunt, narrow; posterior end round; valves thin, transparent, 8.5-12.5 (9.0) μm x 4.6-6.16 (4.8) μm; two filamentous caudal processes present, 15-28 (19.0) μm long; polar capsules 2, terminal, pyriform, 3.1-3.9 (3.7) μm x 1.5-1.9 (1.65) μm; sporoplasm granular, occupying the space behind the polar capsules; iodinophilous vacuole large, posterior.

Host: *Mastacembelus armatus*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Local fish market, Hyderabad city, Hyderabad district).

336. *Myxobilatus* sp.

(Figs. 667-609)

Diagnosis: Trophozoites opaque, small 750-950 μm; spores elongate, oval, 11.2-14.4 (13.08) μm x 4.8-3.2 (4.03) μm, bifurcated at the posterior end; spore valves smooth, thin; polar capsules unequal, pyriform, 3.2-4.8 μm x 0.8-1.2 μm and 2.4-4.0 μm x 1.6 μm.
at different levels; iodinophilous vacuole large, spherical, posterior; polar filament making 4 coils while inside the capsule; sporoplasm oval, binucleate.

Host: *Clarias batrachus*; site of infection: palate.

Distribution: India: Andhra Pradesh (Kakinada, Rajamundry, East Godavari district).

Remarks: Anuradha and Kalavati (1987) reported this species of protozoan parasite from the palate of the catfish *Clarias batrachas* and identified up to generic level. Specific identity of this taxon is yet to be ascertained.

Family CHLOROMYXIDAE, Thelohan, 1892

Diagnosis: As in the key.

Genus Chloromyxum Mingazzini, 1890

Diagnosis: As in the key.

Key to the species

1. Spores spherical ... 3

2. Spores inverted, pyriform, 18.0-22.0 μm x 16.5-21.0 μm; shell valves equal with fine striations; polar capsule elongated/pyriform, unequal .. *C. mitchelli*

3.1 Spores spherical, 5.7-7.1 μm; shell valves with 8-10 longitudinal striations; polar capsule unequal, pyriform or flask-shaped ... *C. hoarei*

3.2 Spores spherical, 10.8-12.0 μm; shell valves smooth; polar capsule equal, pyriform *C. tripathii*

337. *Chloromyxum hoarei* Lalitha Kumari, 1969

(Figs. 610-612))

Diagnosis: Spores spherical in valvular view and oval in sutural view, 5.7–7.1 (6.4) μm in diameter; spore valves equal and uniform, with 8-10 longitudinal striations; sutural ridge broad, thick, projecting out of the spore valves and appearing like a knob; polar capsules 4, unequal, pyriform or flask-shaped, 2.5–3.5 (2.9) μm x 1.4–2.1 (1.8) μm and 1.4–2.1 (1.8) μm x 1.0–1.8 (1.4) μm, subterminal and one of the capsules often curved; polar filaments unequal forming 4–5 coils within the capsule; sporoplasm granular and homogenous.
Host: *Labeo nigripinnis*; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district and Warangal, Warangal district).

338. *Chloromyxum mitchelli* Kalavati and Narasimhamurti, 1984

(Figs. 613-616)

Diagnosis: Spores inverted, pyriform, anterior end broad, posterior end round, 18.0-22.0 (21.0) μm x 16.5-21.0 (20.5) μm; valves equal, symmetrical with fine transluscent striations; sutural ridge thin, straight; polar capsules 4, terminal, unequal; 2 large capsules, elongated, 6.5-8.5 (8.0) μm x 2.0-2.5 (2.2) μm; polar filament showed 8 coils while inside the capsule, 75-80 (78.0) μm when extended; smaller capsules 2, pyriform, 4.5-5.5 μm x 1.2-2.0 μm; polar filament forming 5 coils while inside the capsule, 45-55 (50.0) μm in length when extended; sporoplasm irregular in the posterior point of the spore.

Host: *Therapon jarbua*; site of infection: kidney.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district).

339. *Chloromyxum tripathii* Kalavati and Narasimhamurti, 1984

(Figs. 617-621)

Diagnosis: Pansporoblasts disporous; spore spherical, 10.8-12.0 (11.2) μm in diameter; valves equal, smooth with 3-4 parietal folds at the capsular end; sutural ridge straight, prominent; polar capsules 4, pyriform, terminal 4.2-5.0 (4.8) μm x 2.1-2.6 (2.4) μm; polar filament forming 5-6 coils while inside the capsule, 23-34 (32.0) μm in length when extended; sporoplasm hat-shaped, located beneath the polar capsules, extending into intercapsular region; no iodinophilous vacuole.

Host: *Therapon jarbua*; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Elamanchili, East Godavari; Visakhapatnam, Visakhapatnam district and Srikakulam, Srikakulam district).
Family PARVICAPSULIDAE Schulman, 1953

Diagnosis : As in the key.

Genus Parvicapsula Schulman, 1953

Diagnosis : As in the key.

340. Parvicapsula hoffmanni Padma Dorothy and Kalavati, 1993
(Figs. 622-626)

Material examined : Sev. exs., Visakhapatnam harbour, Bay of Bengal, Visakhapatnam, Visakhapatnam district. 4.xii.1987, K. Padma Dorothy.

Diagnosis : Cysts small, opaque white, oval, 125-156 μm x 107-130 μm; spore broadly oval, anterior end flat, posterior narrow, 8.5-10.32 (9.4) μm x 5.6-6.46 (5.89) μm; valves thin, smooth, unequal and curved; large valve convex dorsally and concave ventrally, extending into a blunt lappet-like projection posteriorly; smaller valve fitting into the concavity of larger valve; sutural line thin, curved; polar capsule 2, small, pyriform, convergent, located at right angles to each other, 3.0-3.8 (3.46) μm in size; polar filaments making 4-5 coils while inside the capsule, 13.7-18.9 (15.65) μm when extended; sporoplasm hyaline, homogenous, ‘comma’ shaped.

Host : Liza macrolepis; site of infection : intestine.

Distribution : India : Andhra Pradesh (Visakhapatnam harbour, Visakhapatnam, Visakhapatnam district).

Family AUERBACHIDAE Evadakimova, 1973

Diagnosis : As in the key.

Genus Auerbachia Meglitsch, 1968

Diagnosis : As in the key to the family (same as for family).

341. Auerbachia chorinemusi Padma Dorothy, Kalavati and Vaidehi, 1998
(Figs. 627-629)

Material examined: Sev. exs., Bay of Bengal, off Visakhapatnam, Visakhapatnam district, August, 1991, K. Padma Dorothy.

Diagnosis: Spores club-shaped, anterior end broadly oval, posterior end narrow gently curved into a short, blunt caudal prolongation. 15.48-18.0 (16.2) μm x 6.0-9.46 (7.19) μm; valves unequal, smooth, thin also covering the caudal prolongation; polar capsule single, elongated, median and oblique in position; 7.74-9.46 (8.64) μm x 3.44-5.16 (3.82) μm; capsular foramina subterminal; polar filament showed 2 or 3 longitudinal coils while inside the capsule; sporoplasm binucleate, homogeneous, filling the entire spore cavity including caudal prolongation; polar filament long, flat ribbon-like with a globular tip.

Host: Chorinenus sp.; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Bay of Bengal, off Visakhapatnam, Visakhapatnam district).

Suborder PLATYSPORINA Kudo, 1919, emend
Family MYXOBOLIDAE Thelohan, 1892

Diagnosis: Spore flattened parallel to the straight sutural line forming an elevated ridge may be drawn out into long projections; one of the polar capsules may be smaller; most species having an ‘iodinophilous vacuole’; as a rule forming large histozoic trophozoites (cysts) with numerous spores.

Remarks: Landsberg and Lom (1991), reduced the genus Myxosoma Thelohan 1892 and synonymised it with genus Myxobolus Butschli, 1882. Accordingly they suppressed the family Myxosomatidae.

Key to the genera

1. Spores without any caudal appendage or caudal projection .. 3
2. Spores with caudal appendage or caudal projection ... 4

3.1 Spores ellipsoid, oval or rounded in valvular view and biconvex in sutural view; shell valves smooth; sutural line straight; two mostly pyriform polar capsules; sometimes one missing; sporoplasm binucleate often with iodinophilous vacuole; histozoic; trophozoite large, polysporous with pansporoblast formation Genus Myxobolus

3.2 Spores pyriform, pear-shaped or ellipsoid in valvular view, pear-shaped or pyriform in sutural view; shell valves smooth; single pyriform, pear-shaped, subspherical polar capsule; binucleate sporoplasm mostly with spherical polysaccharide inclusion; trophozoites large, polysporous with pansporoblast formation .. Genus Thelohanellus
4. Spores rounded, ellipsoid or spindle-shaped in valvular view, biconvex in sutural view; both the valves continuing as caudal projections, which sometimes opposed; shell valves smooth; 2 elongated polar capsules; sporoplasm binucleate with spherical polysaccharide inclusion; histozoic; trophozoites large, polysporous with pansporoblast formation

...Genus *Henneguya*

5. Spores with single or bifurcated caudal appendage ... 6

6.1 Spore with single caudal appendage, not a continuation of shell valves; caudal appendage adherent to spore; polar capsule 2, pyriform; histozoic Genus *Unicauda*

6.2 Spores flattened, pyriform, caudal appendage independent, bifurcated and fitted to the posterior end of the spore; single, elongated polar capsule; sporoplasm binucleate with spherical polysaccharidal inclusion; trophozoites large, polysporous; histozoic

.. Genus *Phlogospora*

Genus Myxobolus Butschli, 1882

Diagnosis: As in the key.

Key to the Species

1. Polar capsules equal .. 3
2. Polar capsules unequal .. 8
3.1 Spore pyriform ... 4
3.2 Spore oval or oblong ... 5
3.3 Spore spherical or subspherical .. 6
3.4 Spore pear-shaped .. 7
4.1 Spores pyriform; anterior end broad, posterior narrow, bluntly curved, 9-10 μm x 8.0-8.5 μm; polar capsules 2, circular with a distinct neck *M. (=Gyrospora) crucifila*
4.2 Spores pyriform, 9.3-11.5 (10.1) μm x 5.0-8.0 (5.9) μm; shell valves equal with 4-6 ridges at the posterior end; polar capsules 2, equal, pyriform, subterminal; no iodinophilous vacuole .. *M. hyderbadense*
5.1 Spores oval with compressed sides, 8.6-10.7 (9.8) μm x 6.4-7.9 (7.1) μm; polar capsules 2, equal, flask-shaped with tilted neck; iodinophilous vacuole large, oval or spherical .. *M. ampullaceus*
5.2 Spores oval with prominent knobs at the anterior end. 6.3-7.9 (7.2) μm x 4.3-6.4 (5.4) μm; polar capsules 2, equal, oval with prominent neck M. potaili

5.3 Spores oval, 12.5-13.5 (12.8) μm x 8.6-9.5 (9.0) μm; polar capsules 2, pear-shaped, equal, subterminal; no iodinophilous vacuole M. bengalensis

5.4 Spores elongated, oval, anterior end pointed, characteristically angular in sutural view, 8.6-10.3 (9.55) μm x 6.9-8.6 (7.83) μm; polar capsules 2, equal, drop-shaped; intercapsular appendix subterminal, triangular; no iodinophilous vacuole M. anili

5.5 Spores oval with round ends in valvular view, lenticula with 2 knob-like processes in sutural view, 10.6-13.5 (11.5) μm x 9.6-11.2 μm; shell valves striated; polar capsules 2, equal, subterminal, pyriform M. spinocurvatura

5.6 Spores oval or spherical, 5.2-6.9 (6.28) μm x 4.3-6.9 (5.65) μm; shell valves equal with 5 diagonal striations; polar capsules 2, pyriform, equal; no iodinophilous vacuole M. macrolepi

5.7 Spores broadly oval, enveloped in a thin indistinct mucus envelop with 5-6 bluntly pointed posterior processes, 6.9-8.6 (7.74) μm x 5.6-6.5 (6.02) μm; polar capsules 2, oval or pyriform... .. Myxobolus sp.

6.1 Spores spherical or slightly oval with rounded ends, 9.3-10.7 (10.0) μm x 8.6-10.0 (9.4) μm; shell valves asymmetrical with 2 striations; polar capsules 2, elongated, subterminal; intercapsular ridge prominent; iodinophilous vacuole oval, large M. psiloshynchi

6.2 Spores spherical, 8-11.0 (9.0) μm in diameter; shell walls with wavy striations; polar capsules oval, equal; 2 iodinophilous vacuoles on either side of bowl-shaped sporoplasm .. M. bivacuolatus

6.3 Spores spherical or slightly oval with outer mucus membrane and 2 equatorial protuberances, 4.8-5.2 (5.1) μm in diameter; polar capsules equal, pyriform, terminal; no iodinophilous vacuole M. mugicephalus

6.4 Spores spherical or oval, 9.8-10.2 (10.1) μm x 12.0-13.5 (13.0) μm; sutural ridge extending before the valves like a knob; polar capsules 2, oval, equal, 5.0-6.0 (5.6) μm x 2.5 μm; iodinophilous vacuole large M. tripatthii

6.5 Spores subspherical, 11.3-12.4 μm x 10.3 μm, polar capsule pyriform, 6.18 μm x 3.09 μm, with their ends drawn into a short narrow tube, single iodinophilous vacuole.... .. M. clarii

6.6 Spores spherical, 6.0-7.3 (6.74) μm in diameter; polar capsules 2, equal, pyriform... .. M. sphaeralis

7.1 Spores pear-shaped, 4.6-5.2 (4.9) μm x 9.0-9.5 (9.3) μm; outer mucus envelop forming 2 prominent lateral lappets; polar capsules 2, equal, parallel, pear-shaped with long neck .. M. lizae
8.1 Spore pyriform ... 9
8.2 Spore oval or oblong .. 10
8.3 Spore pear-shaped .. 11
9.1 Spores pyriform or ovoid; anterior end narrow, pointed; posterior end rounded; polar capsules 2 or 3, unequal, pyriform; no iodinophilous vacuole M. indiae
9.2 Spores pyriform or ellipsoid; anterior end narrow; posterior end rounded with 3-6 parietal folds; 11.1-15.7 (13.5) \(\mu m \times 5.7-8.6 \) (6.4) \(\mu m \); polar capsules 2, unequal, pyriform; no iodinophilous vacuole .. M. andhrae
9.3 Spores pyriform; anterior end narrow, bent to one side; 12.4-15.0 (13.5) \(\mu m \times 7.1-10.0 \) (8.6) \(\mu m \); 8-10 parietal folds; polar capsules 2, unequal, pyriform with prominent neck; iodinophilous vacuole, large, central .. M. osmaniae
10.1 Spores oval; anterior end narrow, blunt; posterior end rounded; 11.4-12.9 (6) \(\mu m \times 8.6-10.0 \) \(\mu m \); polar capsules large, oval, unequal with ducts M. seshadrii
10.2 Spores oblong or oval with rounded ends, 8.0-11.4 (9.6) \(\mu m \times 6.4-7.9 \) (7.0) \(\mu m \); polar capsules 2, unequal, elongated, pyriform, subterminal. Iodinophilous vacuole oval, large in the posterior region .. M. pinnaurati
10.3 Spores elongated 14.5-18.0 (17.2) \(\mu m \times 6.0-6.5 \) (6.3) \(\mu m \); polar capsules 2, elongated, pear-shaped, unequal; no iodinophilous vacuole .. M. channi
10.4 Spores oval, enclosed in a thick mucus coat, 6.0-7.6 (7.2) \(\mu m \times 5.16-5.84 \) (5.6) \(\mu m \); polar capsules unequal, pyriform; intercapsular appendix present; no iodinophilous vacuole .. M. episquammalis
10.5 Spores oval with broad posterior and truncated anterior ends, 7.1-9.6 (8.4) \(\mu m \times 5.0-6.4 \) (6.0) \(\mu m \); polar capsules unequal, pyriform, one very small M. koli
11.1 Spores pear-shaped with truncated anterior end; 11.2-12.4 (11.8) \(\mu m \times 6.8-7.2 \) (7.0) \(\mu m \); polar capsules 2, unequal, dissimilar, small capsule rudimentary, terminal ... M. esomi

(Figs. 630-632)

Diagnosis: Trophozoites whitish, small; spores oval with slightly compressed sides; anterior end narrower than the posterior; 8.6-10.7 (9.8) \(\mu m \times 6.4-7.9 \) (7.1) \(\mu m \) in size; spore valves thin, symmetrical and uniformly thick with markings on posterior margin; polar capsules 2, equal, flask-shaped with tilted neck region, 5-6.4 (5.8) \(\mu m \times 2.5-2.9 \) (2.8) \(\mu m \) in size, subterminal, intercapsular ridge absent; polar filaments unequal, forming 5-6 tight coils while inside the capsule; sporoplasm granular, homogenous occupying the place behind the polar capsule; iodinophilous vacuole large, oval or spherical.
Host: *Barbus kolus*; site of infection: dorsal and ventral fins.

Distribution: India: Andhra Pradesh (Local market in Hyderabad city, Hyderabad district).

Landsberg and Lom 1991
(Figs. 633-635)

Diagnosis: Trophozoites about 1.0 mm in diameter; pansporoblast disporous; spores pyriform or ellipsoidal, 12.1-15.7 (13.5) μm x 5.7-8.6 (6.4) μm in size, anterior end narrow, blunt, posterior end rounded with 3–6 parietal folds and sometimes drawn out into an appendage; spore valves equal with 4–6 ridges at the posterior end; sutural ridge broad at the posterior region and narrowing down anteriorly; sutural line median and straight; polar capsules 2, unequal, pyriform, 8.6–10.0 (9.0) μm x 1.4–2.1 (1.7) μm and 7.1–9.3 (8.3) μm x 1.4–2.1 (1.7) μm in size, subterminal and one of the capsules often curved; polar filaments equal, forming 9 coils within the capsule; sporoplasm granular, homogenous, extending into intercapsular space up to anterior pole; iodinophilous vacuole absent.

Host: *Channa (= Ophicephalus) punctatus*; site of infection: surface wall of the intestine.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).

(Figs. 636-638)

Diagnosis: Trophozoites oval, cream coloured, 560-615 μm x 206-288 μm; spores elongated, oval; anterior end slightly pointed, characteristically angular in sutural view, 8.6-10.3 (9.55) μm x 6.9-8.6 (7.83) μm; sutural ridge broad thick, slightly curved and band like; polar capsules 2, equal, drop-shaped, convergent, 2.58-3.44 (3.33) μm x 1.7-2.6 (2.52) μm in size; intracapsular appendix subterminal, triangular; polar filaments forming 4-5 coils while inside the capsule, 18.1-29.2 (23.24) μm when extended; sporoplasm semilunar; iodinophilous vacuole absent.

Host: *Liza macrolepis*; site of infection: intestinal villi.

Distribution: India: Andhra Pradesh (Bheemunipatnam, Visakhapatnam, Visakhapatnam district) and West Bengal.

Remarks: Padma Dorothy and Kalavati (1992) reported this species from this state.
345. *Myxobolus bengalensis* Chakravarty and Basu, 1948
(Figs. 639-641)

Material examined: Sev. exs., Chilakaluri peta, Guntur district, August–September 1986, D. Lakshminarayana.

Diagnosis: Trophozoites small, spherical, 160-170 μm; pansporoblast disporous; spores slightly oval, 8.0-9.6 (8.52) μm x 4.9-6.0 (5.51) μm; shell valves smooth; sutural ridge prominent; polar capsules equal, 4.5-6.0 (5.28) μm x 12.5-3.2 (3.0) μm; polar filaments forming 3-4 coils while inside the capsule; polar filaments long, 50-80 (75.0) μm in length; sporoplasm binucleate, homogenous, crescent-shaped.

Host: *Catla catla*; site of infection: gills and branchiae.

Distribution: India: Andhra Pradesh (Tanks near Chilakaluripeta, Guntur district) and West Bengal.

Remarks: Lakshminarayana (1988) recorded this species from this state.

(Figs. 642-645)

Diagnosis: Cysts amber coloured, transluscent, oval, 4.0-6.0 μm x 2.0-3.0 μm; spores spherical, 8.0-11.0 (9.0) μm in diameter; valves with wavy parallel striations, symmetrical, double walled, inner thick and outer thin; sutural ridge wavy with 3 parietal folds seen on either side; polar capsules oval, equal, 3.0-4.5 (4.2) μm x 2.6-4.0 (3.0) μm; opening independently; polar filament making 6-7 coils while inside the capsule; polar filament 18-24 (22.5) μm; 2 iodonphilous vacuoles, 1.8-2.0 μm; in diameter seen on either side of sporoplasm; sporoplasm bowl-shaped, homogenous.

Host: *Clarias batrachas*; site of infection: intestinal wall.

Distribution: India: Andhra Pradesh (Eluru, West Godavari district).

Landsberg and Lom, 1991
(Figs. 646-648)

Material examined: Sev. exs., Srngavarapukota, Elamanchili, Visakhapatnam, Visakhapatnam district, February–April, 1979, C. Kalavati.

Diagnosis: Trophozoites spherical or oval. 0.8-1.2 mm in size; spores elongated, oval; anterior end bluntly pointed, posterior rounded. 14.5-18.0 (17.2) μm x 6.0-6.5 (6.3) μm; valves smooth, equal; sutural ridge prominent, median; polar capsules 2, elongate, pear-shaped, unequal. 9.0-10.8 (10.2) μm x 2.8-3.2 (3.0) μm and 7.2-8.8 (7.5) μm x 2.8-3.2 (3.0) μm in size; polar filament in large capsule, thin, making 8 coils while inside the capsule, 20-28 (26.5) μm; sporoplasm triangular, binucleate, below the capsules; iodonophilous vacuole not seen.

Host: Channa punctata; site of infection: fins, body muscles, kidney and liver.

Distribution: India: Andhra Pradesh (Srngavarapukota, Elamanchili, Visakhapatnam, Visakhapatnam district).

348. Myxobolus clarii Chakravarty, 1943
(Figs. 649-651)

Diagnosis: Spores subspherical in front view, lenticular in lateral view, measuring 11.3-12.4 μm x 10.3 μm; shell comparatively thick with equal valves; sutural ridge distinct; polar capsules pyriform with their ends drawn into a short narrow tube, 6.18 μm x 3.09 μm; polar filament 50 μm long; iodonophilous vacuole single, spherical, 3 μm in diameter; cyst broadly oval, opaque, white, 780-755 μm x 604-877 μm in dimension.

Host: Clarias batrachus; site of infection: viscera (as cyst).

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Lalitha Kumari (1969) reported the occurrence of this species as cyst on viscera in 37 out of 56 specimens of Clarias batrachus examined from the local markets of Hyderabad city without any other details.

(Figs. 652-653)

Diagnosis: Spore pyriform, anterior end broad, posterior end narrow, bluntly curved, 9-10 μm x 8-8.5 μm; valves thick, symmetrical, single valve; no sutural line seen; polar capsules 2, circular with a distinct neck, convergent; a thread like structure connecting 2 polar capsules; polar filament thick, terminating into a fine undulating process, when extended cross each and measuring 42-43 μm; sporoplasm hyaline, filling the entire spore cavity.
Host: *Labeo fimbriatus*; site of infection: gills.

Distribution: India: Andhra Pradesh (Fisheries Dept. sales depot, Hyderabad city, Hyderabad district).

350. *Myxobolus episquammalis* Egusa, Maeno and Sorimachi, 1990 (Figs. 654-656)

Material examined: Sev. exs., Visakhapatnam harbour, Visakhapatnam, Visakhapatnam district, February to December 1987, I. Anuradha.

Diagnosis: Trophozoite flat, oval or irregularly outlined cyst; spores oval in front view, enclosed in a thick mucus coat, 6.0-7.6 (7.2) μm x 5.16-5.84 (5.6) μm; valves thin, smooth; sutural line thin, straight; polar capsules unequal, one narrow and the other broad, pyriform, convergent, terminal; inter-capsular appendix present; 3.2-3.6 (3.45) μm x 2.0-2.8 (2.6) μm and 3.2-3.6 (3.45) μm x 1.4-1.6 (1.5) μm; polar filaments making 4-6 coils while inside the capsule; sporoplasm semicircular, hyaline; iodinophilous vacuole absent.

Hosts: Mugil cephalus, Liza macrolepis; site of infection: gills, visceral peritoneum, and intestine.

Distribution: India: Andhra Pradesh (Coastal waters of Visakhapatnam and Bheemunipatnam, Visakhapatnam district; Kakinada, East Godavari district); Orissa. Elsewhere: Gokasho Bay, Japan.

Remarks: Egusa *et al.* (1990) reported this species from the scales of *Mugil cephalus* in the coastal waters of Japan. A comparison of spore morphometrics showed that *M. ganapatii* of Anuradha (1990, unpublished) is similar to *M. episquammalis*. Hence it is proposed to synonymize *M. ganapatii* with *M. episquammalis*.

351. *Myxobolus esomi* (Kalavati and Narasimhamurthi, 1984)

Landsberg and Lom, 1991
(Syn. *Rudicapsula esomi*)
(Figs. 657-659)

Diagnosis: Trophozoites in the form of multilobulated tumors, 2.0–3.0 mm in size; spore pear-shaped with truncated anterior end; posterior end rounded; 11.2–12.4 (11.8) \(\mu m \times 6.8-7.2 (7.0) \mu m \); valves smooth, refractile, double layered, inner thick and outer thin; sutural line not seen; polar capsules unequal and dissimilar; large capsule pyriform, subterminal; 4.8-5.2 (5.0) \(\mu m \times 3.0-3.2 (3.16) \mu m \); polar filament making 9-10 coils while inside the capsule, 48-56 (52.5) \(\mu m \); smaller polar capsule rudimentary, terminal, 1.6-2.0 \(\mu m \times 1.0 \mu m \), nonfunctional; no polar filament seen; a small deeply stained rod-like structure seen inside; sporoplasm semilunar occupying the entire extracapsular space; iodinophilous vacuole 3–4 \(\mu m \) in diameter.

Host: *Esomus sp*; site of infection: caudal fin.

Distribution: India: Andhra Pradesh (Kondakarla Lake, Visakhapatnam district).

Diagnosis: Spores pyriform, 9.3-11.5 (10.1) \(\mu m \times 5.0-8.0 (5.9) \mu m \) in size, anterior end narrow, pointed, posterior end rounded; spore valves equal with 4-6 ridges at the posterior end; sutural ridge broad with a clear median sutural line; polar capsules 2, equal, pyriform, 5.0-7.3 (5.8) \(\mu m \times 1.4-3.0 (2.2) \mu m \), subterminal with small intercapsular space; polar filaments equal, forming 8-9 coils within the capsule, 69 \(\mu m \) when extended; sporoplasm granular, homogenous and small; iodinophilous vacuole absent.

Host: *Barbus pinnaurus*; site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).

Diagnosis: Trophozoites 1.0–2.0 mm in diameter; pansporoblasts disporous; spores pyriform or ovoid, 12.4–15.0 (13.7) \(\mu m \times 6.4-8.6 (7.3) \mu m \) in size, anterior end narrow pointed, posterior end rounded; sutural ridge median, visible to the middle of the spore; polar capsules
2–3 in number, unequal, pyriform, 5.7–7.1 (5.9) μm x 1.4–2.5 (2.1) μm and 5.0-6.4 (5.2) μm x 1.4–2.5 (2.5) μm, opening independently; polar filaments unequal, forming 8–10 coils within the capsule, 71.5-107.0 (87.0) μm when extended; sporoplasm clear, homogenous filling the entire spore cavity extending into intracapsular space; iodinophilous vacuole absent.

Host: *Barbus sarana*; site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district and Warangal, Warangal district).

(Figs. 667-669)

Diagnosis: Pansporoblasts disporous; spores oval with broad posterior and truncated anterior ends; 7.1–9.6 (8.4) μm x 5.0–6.4 (6.0) μm in size; spore valves thin, transparent and uniformly thick with 6–8 parietal markings on posterior margin; sutural ridge not prominent; sutural line fine, slightly curved; polar capsules 2, unequal, one very small, pyriform, 3.9–4.6 (4.3) μm x 2.1–3.1 (2.8) μm and 1.4–2.1 (2.0) μm x 0.7–1.4 (1.2) μm in size; polar filaments remarkably unequal, 42–70.5 (51.3) μm and 6–13.5 (8.9) μm in size, forming 5-6 tight coils while inside the capsule; sporoplasm granular, homogenous occupying the place behind the polar capsule; iodinophilous vacuole large, oval or spherical.

Host: *Barbus kolus*; site of infection: dorsal and ventral fins.

Distribution: India: Andhra Pradesh (Local market in Hyderabad city, Hyderabad district).

(Figs. 670-672)

Material examined: Sev. exs., Bheemunipatnam, Visakhapatnam district, October-November, 1977, Kakinada, East Godavari district; July 1987, K. Padma Dorothy.

Diagnosis: Trophozoites opaque, white, spherical, 1.5-3.0 mm, attached to the outer wall of the intestine; spores pear-shaped in valvular view; 4.6-5.2 (4.9) μm x 9.0-9.5 (9.3) μm; outer mucus envelop forming 2 prominent lateral lappets on either side; valves smooth, equal; sutural line faint; polar capsules 2, equal, parallel to each other, pear-shaped with long neck, 3.0-4.6 (3.2) μm x 1.8-3.6 (3.2) μm in size; polar filament forming 5-7 coils while inside the capsule and 50-60 (56.5) μm in length when extended; sporoplasm dumb-bell shaped; iodinophilous vacuole not seen.
Host: *Liza macrolepis*; site of infection: intestinal wall.

Distribution: India: Andhra Pradesh (Bheemunipatnam and Visakhapatnam, Visakhapatnam district, Kakinada, East Godavari district).

356. *Myxobolus macrolepi* Padma Dorothy and Kalavati, 1992
(Figs. 673-675)

Diagnosis: Trophozoites opaque, white, spherical 188-200 μm; pansporoblast disporous; spores oval or spherical, 5.2-6.9 (6.28) μm x 4.3-6.9 (5.26) μm; sutural line bent; shell valves equal, symmetrical, 5 widely spaced diagonal striations extending between lateral walls; polar capsules 2, equal, pyriform, convergent, 1.72-3.44 (2.78) μm x 1.72-2.58 (2.0) μm; polar filaments forming 3-4 coils while inside the capsule; polar filaments unequal, thin, 14.4-17.6 (15.62) μm and 8.0-11.2 (10.34) μm when fully extended; sporoplasm oval in the posterior part of the spore; iodinophilous vacuole absent.

Host: *Liza macrolepis*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Bheemunipatnam, Visakhapatnam district).

357. *Myxobolus mahendrare* Sarkar, 1986
(Figs. 676-678)

Diagnosis: Trophozoites 2.0-3.0 mm in size; spores cylindrobiconical, 9.8-12.0 (11.3) μm x 8.0-10.2 (9.2) μm in size; shell valves smooth, refractile, double layered; sutural line slightly curved; polar capsules unequal and dissimilar; large capsule pyriform, subterminal, 5.0-6.0 (5.28) μm x 2.0-2.4 (2.08) μm; polar filament forming 6-7 coils while inside the capsule, 33.0-43.0 (37.7) μm in size; smaller polar capsule terminal, 3.0-3.4 μm x 0.9-1.0 μm; polar filament making 4-5 coils while inside the capsule; polar filament small deeply stained, 7.0-11.0 μm; sporoplasm semilunar, occupying the entire extracapsular spore cavity; iodinophilous vacuole spherical, 1.0-1.6 μm.

Host: *Catla catla*; site of infection: gill rachii.
Distribution: India: Andhra Pradesh (Vogaruvagu, Chilakaluripet, Guntur district) and West Bengal.

Remarks: Lakshminarayana (1988) recorded this species from this state.

Landsberg and Lom, 1991
(Figs. 679-681)

Material examined: Sev. exs., Visakhapatnam, Visakhapatnam district, October to December 1977, C. Kalavati.

Diagnosis: Trophozoites opaque, white, spherical, 0.5-1 mm in diameter; pansporoblast disporous; spores spherical or slightly oval with outer mucus membrane having two protruberances in equatorial axis. 4.8-5.2 (5.1) μm in diameter; valves smooth, equal; sutural line thick, straight; polar capsule 2, pyriform, equal, terminal, 1.6-2.0 (1.8) μm x 1.0-1.2 (1.1) μm; polar filament 22-28 (26) μm, forming 5-6 loose coils while inside the capsule; sporoplasm homogeneous, bean-shaped, below the capsule; iodonophilous vacuole not seen.

Host: Mugil cephalus; site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district) Chilka Lake, Orissa.

(Figs. 682-684)

Diagnosis: Trophozoites spherical, about 2.0 mm, attached to intestinal wall; spore oval, longer than wide. 12.5-13.5 (12.8) μm x 8.6-9.5 (9.0) μm; valves thin, equal, symmetrical; sutural line fine; sutural ridge narrow; polar capsules 2, equal, sub-terminal, pear-shaped, 2.9-3.6 (3.2) μm x 1.6-1.8 (1.7) μm; polar filament 30-45 (42.5) μm in length, making 4-5 coils while inside the capsule; iodonophilous vacuole absent.

Host: Mugil waigensis; site of infection: intestine.
Distribution: India: Andhra Pradesh (Fish market at Bheemunipatnam and Visakhapatnam, Visakhapatnam district).

Remarks: Narasimhamurti (1969) described *Myxosoma intestinalis*. The species name was preoccupied by *Myxobolus intestinalis* Kudo, 1929. Landsberg and Lom (1991) while synonymising the genus *Myxosoma* and *Myxobolus* renamed it as *Myxobolus narasii* (an abbreviated form of Narasimhamurti, the author of *Myxosoma intestinalis*).

360. *Myxobolus osmaniae* Lalitha Kumari, 1969
(Figs. 685-687)

Diagnosis: Trophozoites 1-1.5 mm in diameter; spores pyriform, anterior end narrow, bent to one side; posterior end broad and rounded; 12.4-15.0 (13.5) μm x 7.1-10.0 (8.6) μm in size; spore valves uniformly thick with 8-10 parietal folds on posterior margin; sutural line median, faint; polar capsules 2, unequal, pyriform with prominent neck, 5.0-7.1 (5.6) μm x 2.0-3.9 (3.2) μm and 2.1-3.6 (2.6) μm x 1.4-2.9 (2.5) μm in size; intercapsular ridge absent; polar filaments unequal, 109-134 (126.0) μm and 18-39 (25.6) μm in size, forming 5-6 tight coils while inside the capsule; sporoplasm granular, homogenous, occupying the entire extra capsular spore cavity; iodinophilous vacuole large and centrally placed.

Host: *Barbus punjaubensis*; site of infection: liver and intestine.

Distribution: India: Andhra Pradesh (Local market in Hyderabad city, Hyderabad district).

361. *Myxobolus pinnaurati* Lalitha Kumari, 1969
(Figs. 688-690)

Diagnosis: Spores oblong or oval with rounded ends, 8.0–11.4 (9.6) μm x 6.5-7.9 (7.0) μm in size; spore valves symmetrical, uniform, equal; sutural ridge median, straight with 2 or more parallel ridges on either side; polar capsules 2, unequal, elongated, pyriform, subterminal, 3.6-6.4 (4.4) μm x 1.1-2.1 (1.9) μm and 2.9-5.0 (3.1) μm x 1.1-2.1 (1.6) μm in size; polar filaments unequal, cross each other when extended, measuring 35.0-46.5 (41.6) μm and 21.5-26.0 (23.2) μm; no intercapsular ridge; sporoplasm finely granular, homogenous and occupying the entire spore cavity; iodinophilous vacuole oval, large located in the posterior region.

Host: *Barbus pinnauratus*; site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Lake near Hyderabad city, Hyderabad district).
(Figs. 691-693)

Diagnosis: Spores oval in valvular view with prominent knobs at the anterior end; pyriform in sutural view; posterior end broad and rounded; 6.3-7.9 (7.2) μm x 4.3-6.4 (5.4) μm in size; spore valves equal, symmetrical, with markings on posterior margin; sutural ridge not seen; polar capsules 2, equal and oval with prominent ducts, 2.9-3.6 (3.3) μm x 1.4-2.1 (2.0) μm in size; a small clear intercapsular ridge present; polar filaments 9.0-15.5 μm long, forming 3 fine loose coils while inside the capsule; sporoplasm granular, homogenous, occupying the entire extracapsular spore cavity; iodinophilous vacuole large and in the posterior region of the spore

Host: *Labeo potaili*; site of infection: gill content.

Distribution: India: Andhra Pradesh (Local market in Hyderabad city, Hyderabad district).

(Figs. 694-696)

Diagnosis: Trophozoites small, round, 0.5-1.0 mm in diameter; pansporoblasts disporous; spores spherical or slightly oval with rounded ends, 9.3-10.7 (10.0) μm x 8.6-10.0 (9.4) μm in size, small valves asymmetrical, with two striations one on either side of the sutural line and 3-4 parietal folds at the posterior end; sutural line slightly shifted; polar capsules 2, unequal, elongated, pyriform with short neck, 4.3-5.7 (4.8) μm x 2.9-3.9 (3.2) μm and 2.9-4.3 (3.5) μm x 2.1-3.0 (2.5) μm in size; subterminal; intercapsular ridge prominent; polar filaments unequal, forming 6-7 tight coils while inside the capsule, 98-141 (119.8) μm and 31-68.5 (56.0) μm long when extended; sporoplasm finely granular, homogenous, occupying the entire spore cavity; iodinophilous vacuole oval, large, either central or shifted to one side.

Host: *Psilorhynchus balitora*; site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Lake near Hyderabad city, Hyderabad district).

(Figs. 693-695)

Diagnosis: Spores oval with narrow blunt anterior end and rounded posterior end, 11.4-12.9(12.21) μm x 8.6-10.0(9.04) μm; valves thin in the anterior half, thick posteriorly; polar capsules large, ovoid, slightly unequal with small ducts; large capsule 5.7 μm x 2.9-4.3 (3.66) μm; small capsule 4.3-5.0(4.9) μm x 2.5-3.6 (2.99) μm; intercapsular ridge prominent; polar
filaments unequal, whip-like, cross each other at the base when extended; a small constriction at the junction of the capsule; sporoplasm homogenous, granular, occupying the entire extracapsular space.

Host: *Labeo fimbriatus*; site of infection: gills.

Distribution: India: Andhra Pradesh (Tungabadhra river, Kurnool, Kurnool district).

365. *Myxobolus sphaeralis* Padma Dorothy and Kalavati, 1992
(Figs. 700-702)

Material examined: Sev. exs., Visakhapatnam harbour, Visakhapatnam, Visakhapatnam district, October to December 1987, K. Padma Dorothy.

Diagnosis: Trophozoites oval, opaque white, 96-215 \(\mu m \) x 80-165 \(\mu m \); spores spherical, 6.0-7.3 (6.74) \(\mu m \) in diameter; sutural line straight, distinct; polar capsules 2, equal, pyriform, convergent, 3.4-3.9 (3.75) \(\mu m \) x 2.2-3.4 (2.6) \(\mu m \); polar filaments forming 4-5 coils while inside the capsule, 19.2-27.2 (21.76) \(\mu m \) when extended; sporoplasm hyaline, cup-shaped with 2 small depressions below the capsules; iodinophilous vacuole absent.

Host: *Liza macrolepis*; site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district).

(Figs. 703-705)

Material examined: Sev. exs., Visakhapatnam harbour, Visakhapatnam, Visakhapatnam district, October to December 1987, I. Anuradha.

Diagnosis: Pansporoblast disporous; spores oval with rounded ends in valvular view, lenticular with two "knob-like" extensions on either side in sutural view, 10.6-13.6 (11.5) \(\mu m \) x 9.6-11.2 (10.5) \(\mu m \); shell valves striated; sutural line distinct, narrow, straight or slightly wavy, extending beyond the spore body, like two small kinds at both ends; polar capsules 2, equal, pyriform, subterminal, convergent, 2.58-4.8 (3.8) \(\mu m \) x 1.72-3.2 (3.6) \(\mu m \); polar filament forming 4-6 longitudinal coils while inside the capsule, 25.8-30.0 (28.0) \(\mu m \) when extended; sporoplasm cup-shaped occupying the entire extracapsular area; no iodinophilous vacuole.

Host: *Mugil cephalus*; site of infection: branchial cartilage.
Distribution: India: Andhra Pradesh (Gosthani Estuary, Bheemunipatnam Visakhapatnam, Visakhapatnam district). Elsewhere: Bay of Mie prefecture, Japan.

367. Myxobolus tripathii Kalavati, Sandeep and Narasimhamurti, 1981
(Figs. 706-708)

Material examined: Sev. exs., Visakhapatnam, Visakhapatnam district, 25.x.1979; sev. exs., Akiveedu, West Godavari district, B. V. Sandeep.

Diagnosis: Trophozoites opaque, white, 0.5-1.0 mm in diameter; spores spherical or oval, 9.8-10.2 (10.1) μm x 12.0-13.5 (13.0) μm; valves smooth, equal, symmetrical; sutural ridge prominent extending beyond the valve periphery like a knob; polar capsules 2, oval, equal 5.0-6.0 (5.5) μm x 2.5 μm, opening independently; a distinct deeply stained, cushion-like mass at the opening of the polar capsules; polar filaments forming 8 coils while inside the capsule, 45-50 (47.6) μm in length; sporoplasm homogenous, extending like a rim around the large oval iodinophilous vacuole.

Host: Clarias sp.; site of infection: wall of the gut and visceral organs.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district, Akiveedu, West Godavari district).

368. Myxobolus sp.
(Figs. 709-711)

Material examined: Sev. exs., Visakhapatnam harbour, Visakhapatnam, Visakhapatnam district, October to December, 1987, K. Padma Dorothy.

Diagnosis: Spores broadly oval, enveloped in a thin indistinct mucus sheath forming 5-6 bluntly pointed posterior processes; two peripheral processes thicker than the central ones, 6.9-8.6 (7.74) μm x 5.6-6.5 (6.02) μm; valves thick, smooth; sutural line broad, straight; polar capsules 2, oval or pyriform, equal, convergent, 2.6-3.5 (3.32) μm x 1.7-2.6 (2.06) μm; polar filaments forming 5-6 coils while inside the capsule, 25.6-28.8 (26.4) μm when extended; sporoplasm homogenous, granular and occupied the posterior part of the spore.

Host: Liza macrolepis, Mugil cephalus; site of infection: intestine.

Distribution: India: Andhra Pradesh (Visakhapatnam harbour, Visakhapatnam district).
Remarks: This taxon seems to be new species but, it could not be named since additional information concerning the nature of trophozoite and its development were not available (Padma Dorothy and Kalavati, 1992).

Genus *Henneguya* Thelohan, 1892

Diagnosis: As in the key.

Remarks: The species, *Henneguya jubili* is not included in the key since its description or diagnosis is not available.

Key to the species

1. Polar capsules equal .. 3
2. Polar capsules unequal .. 4

3.1 Spores ovoid, 9.29–9.99 µm x 4.0 –4.78 µm; caudal appendages straight; polar capsules pyriform with duct. ... *H. ganapatiae*

3.2 Spores oval, compressed along the sutural line, 14.6–16.5 µm x 2.3–4.0 µm; polar capsules pyriform; caudal appendage ‘U’ shaped *H. waltairensis*

4.1 Spores ellipsoid or lanceolate, 11.5–13.0 µm x 4.5–5.0 µm; polar capsules elongate, unequal, one pyriform, other with long duct opening like a golf stick

4.2 Spores elongate oval, 11.0–13.6 µm x 3.9–5.7 µm; polar capsules unequal, pyriform, terminal; large capsule curved. .. *H. singhi*

4.3 Spores elongated and oval, 9.24–12.32 µm x 4.62–5.39 µm, polar capsules pyriform, unequal, converging anteriorly and each opening to the exterior separately by means of a duct .. *H. qadrii*

369. *Henneguya ganapatiae* Qadri, 1970

(Figs. 712-713)

Diagnosis: Spores ovoid with rounded, narrow anterior extremity and posterior end drawn out into caudal appendages; spore body 9.28-9.99 (9.72) µm x 4.0-4.78 (4.5) µm in size; caudal appendages 22-25 (22.25) µm; valves smooth, thin symmetrical; polar capsules 2, equal, elongated, pyriform with a duct, 3.21-2.57 (3.32) µm x 1.4-1.78 (1.64) µm; sporoplasm homogenous, occupying the entire extracapsular spore cavity.

Host: *Notopterus notopterus*; site of infection: gill contents.

Distribution: India: Andhra Pradesh (Lake near Hyderabad city, Hyderabad district).
370. *Henneguya jubili* Qadri, 1969

Diagnosis: Not available.

Host: *Notopterus notopterus*; site of infection: gills.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Qadri (1969) reported this species in the abstract book "Progress in Protozoology." As such this may be a *nomen nudum*.

371. *Henneguya notopteriae* Qadri, 1965

(Figs. 714-715)

Diagnosis: Spores elongated, ellipsoidal or lanceolate with long divided caudal processes; anterior end fusiform, pointed; posterior end flattened and rounded; 11.5-13.0 \(\mu m \times 4.5-5.0 \mu m \); caudal appendage 40.5-42.0 \(\mu m \); sutural ridge fine; polar capsules elongate, unequal; one capsule pyriform, other with long duct appearing like a golf stick; 3.5-4.5 \(\mu m \times 1.0-1.25 \mu m \) and 5.0-5.5 \(\mu m \times 1.0-1.5 \mu m \) in size respectively; sporoplasm homogenous; iodinophilous vacuole round, located in the posterior half of the spore.

Host: *Notopterus notopterus*; site of infection: gills.

Distribution: India: Andhra Pradesh (Local fish market, Hyderabad city, Hyderabad district).

372. *Henneguya qadrii* Lalitha Kumari, 1965

Diagnosis: Spores elongated and oval, measuring 9.24-12.32 (11.00) \(\mu m \times 4.62-5.39 \) (4.62) \(\mu m \); spore wall uniformly thick; spore widest at the middle, anterior end narrow and rounded, posterior end tapering and extending into caudal appendage of 5.39-9.24 (7.28) \(\mu m \) in length, bifurcated into two filaments; two polar capsules pyriform and unequal, 5.39-8.08 (6.17) \(\mu m \) and 4.62-6.16 (5.60) \(\mu m \), converging anteriorly and each opening to the exterior separately by means of a duct; polar filaments unequal, averaging 45.40 \(\mu m \) and 34.50 \(\mu m \), with nine coils inside the polar capsule; sporoplasm granular, restricted posterior to polar capsule; capsulogenous nucleus not prominent; two sporoplasmic nuclei large and round and situated above the large iodinophilous vacuole; sometimes two valvular or parietal nuclei present at the posterior side of spore; sutural ridge broad with very prominent sutural lines.

Host: *Ophicephalus gachua*; site of infection: cyst on viscera.

Distribution: India: Andhra Pradesh (Hyderabad).
Remarks: Lalitha Kumari (1969) reported this species in 10 out of 20 specimens of *Ophicephalus gachua* from cyst on viscera.

373. *Henneguya singhi* Lalitha Kumari, 1969
(Figs. 716-717)

Diagnosis: Spore body elongate, oval with narrow anterior end; caudal appendage bifurcated into two processes at a distance from the posterior end; 11.1–13.6 (12.3) μm x 3.9–5.7 (4.4) μm in size; caudal appendage 30.0–48.0 (39.0) μm; spore valves thin, smooth and uniform; sutural ridge not seen; polar capsules 2, unequal, pyriform, 4.8–6.4 (5.7) μm x 0.8–1.4 (1.1) μm and 3.5–5.5 (4.1) μm x 1.4–2.0 (1.6) μm, terminal and large, capsule often curved; polar filaments unequal, forming 4–5 coils within the capsule; 26.0–38.5 (33.5) μm and 7.0–16.5 (10.1) μm long when fully extended; sporoplasm finely granular and homogenous; iodinophilous vacuole small.

Host: *Notopterus osmanii*; site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).

374. *Henneguya waltairensis* Narasimhamurti and Kalavati, 1975
(Figs. 718-719)

Material examined: Sev. exs., Fish markets of Anakapalle, Visakhapatnam and Vizianagaram, Jan-Feb 1974 and July 1978 to June 1979, C. Kalavati.

Diagnosis: Trophozoites transluscent, 50–120 μm in size, variable in shape; spore oval compressed along the sutural line; spore valves prolonged as 2 characteristic ‘U’ shaped processes; spore body 14.6–16.5 (15.53) μm x 3.2–4.0 (3.82) μm; caudal appendage 40.0–50.0 (45.5) μm; polar capsules 2, equal, pyriform, 10.0–12.0 (11.4) μm x 1.6–2.5 (1.82) μm, one on either side of the sutural line and opening independently; polar filament forming 6–7 coils when inside the capsule; polar filaments thin, 15–20 (18.48) μm; sporoplasm hyaline; iodinophilous vacuole seen in fresh material.

Host: *Channa (Ophicephalus) punctatus*; site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Anakapalli and Visakhapatnam, Visakhapatnam district; Vizianagaram, Vizianagaram district).

Remarks: Narasimhamurti and Kalavati (1984) observed seasonality of infection with this parasite, which was recorded as maximum in winter (22.4%) and minimum in summer months. Subsequently, Kalavati and Narasimhamurti (1985) studied the histopathological changes in the gills of *Channa (Ophicephalus) punctatus* infected with this parasite and
observed hypertrophy of the host tissue, vacuolization of the cell cytoplasm in early infection while degenerative changes associated with accumulation of macrophages and haemorrhage of capillaries was evident at the later stages.

Genus *Thelohaenellus* Kudo, 1933

Diagnosis: As in the key.

Key to the Species

1. Spores elongate, pyriform, 11.2-14.85 \(\mu m\) x 4.5-5.5 \(\mu m\); polar capsule pyriform, large, adherent to lateral valves ... *T. andhrae*

2. Spores pyriform, 11.4-13.6 (12.3) \(\mu m\) x 4.3-7.9 (6.2) \(\mu m\); polar capsule large, pyriform, oblique and shifted to a side ... *T. batae*

3. Spores egg-shaped; anterior end bluntly pointed, 11.0–12 \(\mu m\) x 6.0–7.5 \(\mu m\); polar capsule flask-shaped with distinct neck ... *T. boggoti*

4. Spores egg-shaped or pyriform. Anterior end flat, 9.3-10.3 (9.8) \(\mu m\) x 4.6-6.0 (5.5) \(\mu m\); polar capsule oval or elongated with small neck ... *T. chelai*

5. Spores pyriform, 10.7-15.0 (12.4) \(\mu m\) x 4.3—7.1 (5.4) \(\mu m\); polar capsule pyriform, terminal ... *T. chrysopomati*

6. Spores elongated, oval, 12.1-16.0 (13.0) \(\mu m\) x 9.9-9.5 (8.2) \(\mu m\); sutural ridge prominent, curved, shifted to a side; polar capsule broad, oval with distinct neck *T. potali*

7. Spores large, pyriform in valvular and arched in sutural view, one side flat, other curved, 14.3-17.1 (14.7) \(\mu m\) x 5.0-6.0 (5.4) \(\mu m\); polar capsules large, pear-shaped with a constriction in the middle region ... *T. qadrii*

8. Spores narrow, elongate, oval or pear-shaped; 11.42-12.85 (12.53) \(\mu m\) x 6.42-7.14 (6.91) \(\mu m\); sutural ridge slightly curved; polar capsule elongated, oval *T. shortii*

375. *Thelohaenellus andhrae* Qadri, 1962

(Figs. 720-722)

Diagnosis: Spore elongated pyriform; anterior end tapering, extremely blunt; posterior end wide, round, 11.2-14.5 \(\mu m\) x 4.5-5.5 \(\mu m\); valves thin, smooth with parietal folds at the posterior end; sutural ridge or line not seen; polar capsule 1, pyriform, large, adherent to lateral valves till 3/4 th length, 6.0-8.0 \(\mu m\) x 2.0-2.5 \(\mu m\); polar filament making 10-11 coils while inside the capsule; sporoplasm granular forming a mass in the posterior part of the spore; polysaccarahide inclusion spherical.
Host: *Labeo fimbriatus*; site of infection: gills.

Distribution: India: Andhra Pradesh (Fisheries Dept. sales depot, Hyderabad city, Hyderabad district).

Remarks: Lalitha Kumari (1969) reported this species in 4 out of 7 specimens of *Labeo fimbriatus* from this state.

376. *Thelohaenellus batae* Lalitha Kumari, 1969
(Figs. 723-725)

Diagnosis: Spores pyriform, anterior end narrow, posterior end rounded, 11.4–13.6 (12.3) μm x 4.3–7.9 (6.2) μm in size; spore valves thin, smooth and symmetrical; sutural ridge not seen; polar capsule 1, large, pyriform, oblique, shifted to a side, 6.4–8.6 (7.7) μm x 2.9–3.6 (3.0) μm, terminal; polar filament long, whip-like, 168–185 (178.3) μm; sporoplasm finely granular and homogenous occupying the entire extracapsular space; iodinophilous vacuole large, located posteriorly.

Host: *Labeo bata*; site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Hyderabad city, lake near Hyderabad, Hyderabad district).

(Figs. 726-728)

Diagnosis: Spore egg-shaped; anterior end bluntly pointed; posterior end round; 11.0–12.0 μm x 6.0–7.5 μm; valves thick, smooth; sutural line curved and wavy in appearance; polar capsule 1, flask-shaped with distinct neck, 5.5–7.0 μm x 3.6–4.0 μm; polar filament making 10-11 coils while inside the capsule; sporoplasm finely granular; iodinophilous vacuole small and variable in position.

Host: *Labeo bogguti*; site of infection: gills.

Distribution: India: Andhra Pradesh (Fish market, Hyderabad city, Hyderabad district).

Remarks: Lalitha Kumari (1969) reported this species in gills of 3 out of 23 specimens of *Labeo bogguti* from this state.

(Figs. 729-730)

Diagnosis: Spores egg-shaped or pyriform; anterior end narrow, flat at the tip; posterior end rounded, 9.3–10.3 (9.8) μm x 4.6–6.0 (5.5) μm in size; spore valves thin, uniform, unequal, with 8–10 striations running parallel to sutural line and converging near the ends; sutural ridge and sutural line clear, shifted to a side; polar capsule 1, oval or elongated, terminal with small neck, 4.0–5.7 μm x 2.5–3.0 (2.8) μm; polar filament 40.0–45.0 (43.0) μm long; sporoplasm finely granular and homogenous, occupying the space between the capsules; polysaccharide inclusion large, located centrally.

Host: Chela bacaila; site of infection: gall bladder.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).

379. Thelohaenellus chrysopomati Lalitha Kumari, 1969
(Figs. 731-733)

Diagnosis: Spores pyriform; anterior end narrow, posterior end rounded, 10.7–15.0 (12.4) μm x 4.3–7.1 (5.4) μm in size; spore valves thick, uniform with 4–6 parietal folds in the posterior region; sutural ridge prominent and extending beyond the valvular periphery; polar capsule 1, pyriform, terminal without a neck, 5.7–9.0 (6.5) μm x 2.1–3.8 (2.7) μm in size; polar filament forming 9–10 spring-like coils while inside the capsule; polar filament whip-like, 79-102 (104.1) μm long when fully extended; sporoplasm finely granular and homogenous; iodinophilous vacuole present.

Host: Barbus chrysoponza; site of infection: gill contents.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).

380. Thelohaenellus potaili Lalitha Kumari, 1969
(Figs. 734-736)

Diagnosis: Trophozoites creamy white, 1–1.5 mm in diameter; pansporoblasts mono- or disporous; spores elongate, oval in valvular view; ellipsoidal in sutural view; anterior end narrow, flat at the tip; posterior end rounded; 12.1-16.0 (13.0) μm x 7.9-9.5 (8.2) μm in size; spore valves thick, uniform with 4–5 parietal folds at the posterior region; sutural ridge prominent slightly curved and shifted to a side; sutural line clear; polar capsule 1, broad, oval, terminal with distinct neck, 5.0–8.0 (5.9) μm x 3.6–5.7 (4.3) μm; polar filament 60–71 (65.7) μm long; sporoplasm finely granular and homogenous occupying the entire extracapsular space; iodinophilous vacuole large.

Host: Labeo potail; site of infection: fins.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).
381. *Thelohaenellus qadrii* Lalitha Kumari, 1969
(Figs. 737-739)

Diagnosis: Spores large, pyriform in valvular and arched in sutural view; anterior end narrow, posterior end rounded; one side flat and the other curved; 14.3–17.1 (14.7) μm x 5.0–6.0 (5.4) μm in size; spore valves thin, uniform, smooth, slightly asymmetrical; sutural line shifted to a side; polar capsule 1, large, pear-shaped, terminal with broad rounded posterior region and a constriction in the middle region, 7.5–8.6 (8.2) μm x 2.9–3.9 (3.8) μm; polar filament whip-like, 115–204.5 (184.1) μm long forming 13–18 coils while inside the capsule; sporoplasm finely granular and homogenous, occupying the entire extracapsular space; iodonilphous vacuole large, located centrally.

Host: *Labeo potail*; site of infection: gill filaments.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).

382. *Thelohaenellus shortii* Qadri, 1967
(Figs. 740-742)

Diagnosis: Trophozoites small; pansporoblast mono- or disporous; spores narrow, elongate, oval, pyriform or pear-shaped, tapering anteriorly, broad in the middle and rounded posteriorly; 11.42-12.85 (12.53) μm x 6.42-7.14 (6.91) μm; valve uniform, smooth; sutural ridge wide slightly curved; polar capsule elongated oval; without duct; 6.42-7.95 (7.07) μm x 3.5-4.28 (4.2) μm; polar filaments making 3-4 fine loose coils while inside the capsule and 38.42-47.48 (42.95) μm, wavy and thick when extruded; sporoplasm homogeneous, granular, occupying the space behind the polar capsule; polysaccharide inclusion small, posterior.

Host: *Labeo fimbriatus*; site of infection: fins.

Distribution: India: Andhra Pradesh (Hyderabad city, Hyderabad district).

Genus: *Unicauda* Davis, 1944

Diagnosis: As in the key.

(Figs. 743-745)

Material examined: 6 exs., Anantagiri, Viskhapatnam district, July 1978, C. Kalavati.
Diagnosis: Pansporoblast disporoblastic; spore oval or pyriform with a single undivided caudal appendage; 38.4-47.3 (42.5) \(\mu m \) x 4.0-5.4 (4.9) \(\mu m \); anterior end of caudal appendage broad and concave with which the posterior part of the spore body fitting into; spore valves smooth, sutural line fine; polar capsules 2, pyriform, equal, terminal, opening independently on either side of sutural line, 5.0-6.4 (5.9) \(\mu m \) x 1.0-1.6 (1.2) \(\mu m \); polar filament making 4-6 coils while inside the capsule, 25.4-30.4 (28.2) \(\mu m \) when extended; sporoplasm occupying the entire extracapsular spore cavity; iodinophilous vacuole small and spherical.

Host: *Channa (Ophicephalus) gachua*; site of infection: gills.

Distribution: India: Andhra Pradesh (Ananthgiri, Visakhapatnam district).

Genus: *Phlogospora* Qadri, 1962

Diagnosis: As in the key.

(Figs. 746-747)

Diagnosis: Spore bunsen-flame like, anterior end pointed and posterior end enveloped by a thin membrane; valve thin, smooth and single; posterior portion with a tail-like bifurcated appendage; anterior end broad with cup-like depression into which the spore body fitting; spore body 14-18.0 \(\mu m \) x 3.5-5.0 \(\mu m \); caudal appendage 21-24.0 \(\mu m \); no sutural line; polar capsule 1, bottle-shaped, terminal; 7.0-9.0 \(\mu m \) x 1.7-2.5 \(\mu m \); polar filament making 10-11 coils while inside the capsule, 65.0-70.0 \(\mu m \) when extruded enveloped in a sheath; sporoplasm dense, granular, not extending into caudal fold; iodinophilous vacuole spherical or oval near the posterior end.

Host: *Mystus bleekeri*; site of infection: gills.

Distribution: India: Andhra Pradesh (Hyderabad city fish market, Hyderabad district).

Order: MULTIVALVULIDA Schulman, 1959

Family: KUDOIDAE Meglitsch, 1960

Diagnosis: Spores with four shell valves each containing one polar capsule; single genus.

Genus: *Kudoa* Meglitsch, 1947

Diagnosis: Spores stellate or quadrate in apical view; sutural line indistinct; polar capsules pyriform; two uninucleate sporoplasts one enveloping the other; histozoic in marine fishes.
Key to the Species

1. Spores quadrate in polar view, enclosed in mucus envelop, triangular in valvular view; 8.0-11.0 (9.0) μm x 8.0-11.0 (9.0) μm x 8.0-9.5 (9.0) μm; polar capsules equal, pyriform ... K. atropi

2. Spores quadrate in polar view and triangular in valvular view; 9.0-10.2 (9.4) μm x 9.5-10.5 (9.8) μm x 9.5-10.5 (9.8) μm; polar capsules club-shaped K. sphyraeni

3. Spores quadrate in polar view, club-shaped in valvular view; 8-11.0 (9.0) μm x 8.0-12.0 (9.0) μm; polar capsules club-shaped, equal .. K. tetraspora

4. Spores quadrate in polar view, club-shaped with deep notches in valvular view; 5.2-6.6 (5.6) μm x 4.3-5.6 (4.7) μm x 5.0-5.4 (5.3) μm; polar capsules pyriform, unequal; shell valves asymmetrical ... K. valamugili

385. Kudoa atropi Sandeep, Kalavati and Narasimhamurti, 1986 (Figs. 748-751)

Material examined : Sev. exs., catches at the Fishing harbour, Visakhapatnam, Visakhapatnam district, September 1984, B. V. Sandeep.

Diagnosis : Trophozoites opaque white, 0.5-1.0 mm in diameter; pansporoblast disporous; spores enclosed in a mucus envelop, quadrate in polar view, with deep notches extending ¼ the length of the sutural line; ends rounded, triangular with rounded corners and bluntly pointed anterior end in valvular view; 8.0–11.0 (10.0) μm x 8.0–11.0 (10.0) μm x 8.0–9.5 (9.0) μm; shell valves smooth, equal; sutural line faint; polar capsules 4, terminal, equal, pyriform, 3.0–3.6 (3.3) μm x 1.6–1.8 (1.7) μm; polar filament making 6-7 coils while inside the capsule; two uninucleate hyaline sporoplasms, one enclosing the other; sometimes appearing as oval binucleate body.

Host : Atropus atropus; site of infection : gill filaments.

Distribution : India : Andhra Pradesh (Catches at the Fishing harbour, Visakhapatnam, Visakhapatnam district).

386. Kudoa sphyraeni Narasimhamurti and Kalavati, 1979 (Figs. 752-754)

Diagnosis : Trophozoites small, spherical, opaque white, pedunculate 0.5-2.0 mm in size; spore quadrate in polar view, triangular in valvular view, broader than long 9.0-10.2 (9.4) μm x 9.5-10.5 (9.8) μm x 9.5-10.5 (10.8) μm; valves thin, smooth, transparent; sutural line very
faint; polar capsules 4, club-shaped, equal, 3.0-4.2 (3.6) μm x 1.0-1.6 (1.42) μm; polar filament forming 7 coils while inside the capsule, 20-28.0 (26.8) μm when fully extended. 2 filaments straight and 2 coiled; sporoplasm bean-shaped.

Hosts: Sphyraena jello; site of infection: muscles.

Distribution: India: Andhra Pradesh (Bheeminipatnam and Visakhapatnam fish-landing centres, Visakhapatnam district).

387. *Kudoa tetraspera* Kalavati and Narasimhamurti, 1979
(Figs. 755-757)

Material examined: Fish market, Visakhapatnam, Visakhapatnam district, August, 1976, C. Kalavati.

Diagnosis: Trophozoites translucent, white, oval or spherical, 0.3-1.5 mm in size; pansporoblast di- or tetrasperous; spores quadrate in polar view, club-shaped with deep notches in valvular view, triangular with rounded corners and bluntly pointed anterior end in lateral view; 8.0-11.0 (9.0) μm x 8.0-12.0 (9.0) μm; shell valves delicate, smooth, equal; sutural line faint; polar capsules 4, subterminal, equal, club-shaped, 3.4-4.0 (3.8) μm x 1.5-1.8 (1.68) μm; polar filament making 3-4 coils while inside the capsule; polar filaments 10.0-12.0 μm and varying in thickness when extruded; two uninucleate sporoplasms located in juxtaposition, oval in shape.

Host: Mugil cephalus; site of infection: brain and optic lobes.

Distribution: India: Andhra Pradesh (Fish market, Visakhapatnam, Visakhapatnam district).

388. *Kudoa valamugili* Kalavati and Anuradha, 1993
(Figs. 758-761)

Material examined: Sev. exs., Visakhapatnam harbour, Visakhapatnam district, July–October 1987, I. Anuradha.

Diagnosis: Trophozoites opaque, white, spherical, 0.45-0.65 mm enclosed in a thin connective tissue layer; pansporoblast disporous; spores quadrate, club-shaped with deep notches in valvular view, triangular with broad base and pointed anterior end in lateral view; 5.2-6.6 (5.6) μm x 4.3-5.6 (4.7) μm x 5.0-5.4 (5.3) μm; valves thick, smooth, unequal; one valve large with rounded ends; sutural line faint and indistinct; polar capsules 4, subterminal, pyriform, unequal, large capsules, in large valves, 3.0-3.8 (3.2) μm x 1.6-2.0 (1.8) μm; polar filament making 3-4 coils while inside the capsule. 5.0-8.0 μm long; smaller capsules, in small valves, 2.0-3.2 (2.4) μm x 1.2-1.6 (1.4) μm; two uninucleate sporoplasms, one enveloping the other, in larger valve.

Host: Valamugil cunnessius; site of infection: muscles of the intestine.

Distribution: India: Andhra Pradesh (Visakhapatnam harbour, Visakhapatnam district).
Class ACTINOSPOREA
Subclass ACTINOMYXEA
Order ACTINOMYXIDA

Diagnosis: Polycellular spores with more than one sporoplasm.

Family ACTINOMYXIDAE Janiszewska, 1957

Diagnosis: Spore with 3 distinct processes in the epispore formed by exospore, spores single or connected with nets.

Genus Triactinomyxon Stolc, 1899

Diagnosis: Spore anchor-shaped with long narrow protrusions.

389. Triactinomyxon naidanum Naidu, 1956
(Fig. 762)

Material examined: 6 cysts, K.V. Naidu, Cuddapah, Cuddapah district.

Diagnosis: Cysts spherical, in the intestinal wall; spores with 3 transparent valves fused distally to form a hallow, vertical central axis that separate proximally, 3 polar capsules apical, 12 uninucleate sporoplasms.

Host: Nais communis punjabensis (Oligochaeta, Annelida); site of infection: posterior part of the gut.

Distribution: India: Andhra Pradesh, Cuddapah (Cuddapah district).

390. Triactinomyxon sp.
(Figs. 763-764)

Material examined: 6 cysts, K.V. Naidu, July-October 1957, Cuddapah, Cuddapah district.

Diagnosis: Spore colour less transparent, rocket-shaped, central axis vertical, barrel-shaped, 15 μm, 3 polar capsules apical, 3 similar, flap-like vertical valves located equidistantly forming triradiate base, 60-65 μm, 8 sporoplasms.

Host: Pristina longiseta (Oligochaeta, Annelida); site of infection: gut wall.

Distribution: India: Andhra Pradesh, Cuddapah (Cuddapah district).
Phylum CILIOPHORA
Class KINETOFRAgmINOPHOREA
Order TRICHOSTOMATIDA
Family BALATIDIIDAE

Diagnosis: Vestibulum anteriorly located, cytostome located at the base of the vestibulum, somatic ciliation uniform, parasitic in invertebrate and vertebrate hosts.

Genus Balantidium Claparede and Lachmann, 1858

Diagnosis: Body oval, ellipsoid to subcylindrical, uniformly ciliated, cytostome located at the base of an anteriorly situated vestibulum, cytopharynx not well developed, contractile vacuole and cytopyge terminal; parasitic in the gut of both vertebrates and invertebrates.

Remarks: In all, 9 species of Balantidium have been reported from Andhra Pradesh, all of which have been recovered from vertebrate hosts.

Key to the species

1. Commensal in the gut of amphibians ... 2
 - Commensal in the gut of mammals ... 6

2. Vestibulum reaching the middle of the body; body oval, macronucleus kidney-shaped
 .. B. duodeni
 - Vestibulum not reaching the middle of the body .. 3

3. Vestibulum slit-like .. 4
 - Vestibulum funnel-shaped or triangular ... 5

4. Body egg-shaped, macronucleus kidney-shaped, contractile vacuole usually one, sometimes two in number .. B. helenaee
 - Body cylindrical, macronucleus oval, contractile vacuoles 2 to 3 in number
 .. B. elongatum

5. Body elongate, anterior end broad, macronuclei two in number, spherical or oval and equal in size, contractile vacuoles two .. B. rhacophori
 - Body flask-shaped, anterior end narrow, posterior end broad and rounded, macronucleus one, oval, contractile vacoule one B. wallairensis

6.1 Larger in dimenッション, 95-154 μm x 50-100 μm, anterior end rounded, tapering posteriorly
to a blunt point, greatest width at anterior part of the body, macronucleus elliptical, located at the anterior region of the body ... \textit{B. indicum}

6.2 Comparatively small in dimension, 59-84 μm x 27-48 μm, anterior end of the body rounded, greatest width of the body near posterior third, macronucleus oval, located near the anterior region of the body, commensal in the gut of goat \textit{B. caprae}

5.3 Small in dimension, 43.0-97.9 μm x 36.8-77 μm, both ends blunt, posterior end broader than the anterior, macronucleus oval or rod-like with both ends rounded, generally located near the posterior third of the body; commensal in the gut of the Bonnet Monkey \textit{B. osmaniae}

6.4 Body dimension highly variable, 30-200 μm x 20-70 μm, anterior end somewhat narrowed and pointed, greatest width of the body near the middle, macronucleus sausage or bean-shaped, lying transversely at the middle of the body .. \textit{B. coli}

391. \textit{Balantidium caprae} Abraham, 1962
(Fig. 765)

\textit{Diagnosis}: Body more or less oval, anterior end of the body rounded, its greatest width near posterior third from where the body tapering to a blunt end; its length 69.6 (59-84) μm, breadth 34.6 (27-48) μm; macronucleus oval with pointed anterior end and blunt posterior end, located at anterior region of the body; a single contractile vacoule present adjacent to cytostome, commensal in the gut of goat.

\textit{Host}: \textit{Capra hircus}; site of infection: stomach.

\textit{Distribution}: Andhra Pradesh (Hyderabad district).

\textit{Remarks}: Abraham (1962) described this species from the stomach contents of goats, \textit{Capra hircus} from Andhra Pradesh.

392. \textit{Balantidium coli} (Malmsten, 1857)
(Fig. 766)

\textit{Diagnosis}: Body egg-shaped, measuring 30-200 μm x 20-70 μm, with posterior end slightly broader and anterior end somewhat narrowed and pointed; cilia arranged in longitudinal rows with slightly spiral course; peristome ventral, at the anterior end, somewhat obliquely placed, with adoral zone of cilia passing through the subterminal cytostome into the short cytopharynx; cytopyge near the posterior end; many food vacuoles containing starch grains, cell fragments,
bacteria, erythrocytes, etc.; macronucleus sausage or bean-shaped, lying transversely at the middle of the body, with a small micrionucleus close to it; contractile vacuoles two, one at the posterior and the other near the middle of the body; cyst spherical to ovoid, 40-60 \(\mu m \) in length.

Host: *Bubalus bubalis*; site of infection: colon.

Distribution: India: Andhra Pradesh (Cuddapah district), West Bengal.

Elsewhere: a cosmopolitan species of worldwide distribution.

Remarks: Rao and Anjanyulu (1974) reported this species as an outbreak of balantidiosis in all the 19 buffaloes of a herd in Cuddapah Taluk belonging to three farmers of the same family with the history of diarrhoea and impaired digestion on 15th May, 1974. However, this species is extremely common in swine. It is pathogenic in man and other primates causing diarrhoea or balantidial dysentery in man (Levine, 1967). Khan and Rao (1981) found balantidiul infection in primates maintained at Zoological Park, Hyderabad. Dr. Md. Hafeez (personal communication, 6.11.2002) informed that Ravi Kumar (1994) observed *B. coli* in 200 animals (primates) in Andhra Pradesh.

393. *Balantidium duodeni* Stein, 1867

1867. *Balantidium duodeni* Stein, *Der organismum der Infusionsthiere, etc.*, p. 325.

Material examined: Sev. exs., Yizianagaram, Vizianagaram district.

Diagnosis: Body oval or slightly bean-shaped, 60-80 \(\mu m \) x 35-68 \(\mu m \) in dimension; vestibulum narrow, cleft-like and extending up to the middle of the body; macronucleus oval or kidney-shaped, measuring 10-16 \(\mu m \) x 5-10 \(\mu m \); micronucleus small and spherical located close to the macronucleus; cytopyge small cleft-like; contractile vacoule single.

Host: *Rana tigrina*; site of infection: duodenum, small intestine and rectum.

Distribution: India: Andhra Pradesh (Vizianagaram district).

Elsewhere: Pakistan and Sri Lanka.

Remarks: Kalavati *et al.* (1991) reported this species from the above locality.

394. *Balantidium elongatum* Stein, 1867

Material examined: Sev. exs., Nellore, Nellore district.

Diagnosis: Body elongated, anterior end bluntly rounded and posterior end pointed, dimensions 8-120 \(\mu m \) x 25-56 \(\mu m \); vestibulum more or less triangular, extending about one-third the length of the body; macronucleus oval, measuring 10-15 \(\mu m \) x 8-12 \(\mu m \), situated generally in the posterior half of the body; micronucleus adjacent to macronucleus; contractile vacuoles 2-3 in number.
Host: *Rana breviceps*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Nellore district).

Elsewhere: Pakistan.

Remarks: Bhatia (1936) recorded this species from the intestine of *Rana tigrina* in Lahore, Pakistan. Subsequently, Kalavati *et al.* (1991) recovered this species from *Rana breviceps* in Andhra Pradesh.

395. *Balantidium helenae* Bezzenberger, 1904

Material examined: Sev. exs., Visakhapatnam, Visakhapatnam district.

Diagnosis: Body oval, both the ends broadly rounded, 110-140 µm x 60-70 µm in dimension; vestibulum broad, extending about one-fifth the length of the body; macronucleus kidney-shaped, measuring 18-20 µm x 10-16 µm; micronucleus lying in the notch of macronucleus; contractile vacuole single or variable in number irregularly distributed in the body.

Host: *Rana limnocharis*; site of infection: colon.

Other hosts: *Rana cyanophlyctis, Rana hexadactyla, Rana limnocharis* and *Rana tigrina*; site of infection: intestine and rectum.

Distribution: India: Andhra Pradesh (Visakhapatnam district), Goa and West Bengal.

Elsewhere: Pakistan, Sri Lanka.

Remarks: Bezzenberger (1904) described this species from the rectum of *Rana tigrina*. The type locality of this species was mentioned as Asia (without citing exact locality). Kalavati *et al.* (1991) reported this species from *Rana limnocharis* from Andhra Pradesh.

396. *Balantidium indicum* Abraham, 1962

(Fig. 767)

Diagnosis: Body elongate oval, anterior end rounded, tapering posteriorly to a slight blunt point, greatest width at anterior region of the body, dimensions 129.5 (95-154) µm x 78.7 (50-100) µm; vestibulum extending one-sixth the length of the body; macronucleus elliptical with either one or both ends pointed and located at the anterior region of the body, measuring 48.6 (30-65) µm x 19.7 (11-24) µm, micronucleus usually lying in the anterior region of the macronucleus; contractile vacoule single.

Host: *Bos indicus*; site of infection; stomach.

Distribution: India: Andhra Pradesh (Hyderabad district).
Remarks: Abraham (1962) described this species from the stomach contents of Bos indicus from Andhra Pradesh. This is the only report of this species.

397. Balantidium osmaniae Qadri and Navarathman, 1966
(Figs. 768-769)

Diagnosis: Body generally oval and vesicular, sometimes round, (43.0-97.9) 81.4 μm x (36.8-77.0) 57.2 μm; both ends blunt, posterior end broader than the anterior end; cytostome situated at the anterior end of the body with a wide cytostomal groove; cytopharynx tube-like, 32 μm x 10 μm, but bulged in the middle and continued as a narrow pipette; cytopyge small tube-like, situated laterally, at the posterior end of the body; macronucleus oval or rod-like with both ends rounded, (18.9-33.5) 25.3 μm x (6.7-21.0) 12.7 μm, usually transversely placed, generally situated at the posterior third of the body, sometimes in the centre and rarely at the anterior third, micronucleus very small and compact; body wall thin, covered with longitudinal rows of cilia, equal in length except the longer cilia of cytostomal region; contractile vacuoles two in number, one located at each end of the body.

Host: Indian Bonnet Monkey, Macaca radiata; site of infection: intestine (faeces).

Distribution: India: Andhra Pradesh (exact locality not mentioned).

(Fig. 770)

Material examined: Sev. exs., Araku Valley, Visakhapatnam district.

Diagnosis: Body elongated with broad anterior and narrow posterior ends, dimension 150-300 μm x 30-70 μm; vestibulum funnel-shaped, appearing as a depression in fresh preparations and opening into a small tubular cytopharynx through a narrow cytostome; macronucleus spherical or oval, rarely one and more often two of equal diameter, located in the anterior half of the body and measuring 10-15 μm x 10-12 μm; micronucleus not seen; contractile vacuoles two, one each lying in anterior and posterior halves of the body.

Host: Rhacophorus maculatus; site of infection: colon and rectum.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

(Fig. 771)

Material examined: Sev. exs., Vishakhapatnam, Visakhapatnam district.

Diagnosis: Body typically flask-shaped, anterior end narrow and pointed, posterior end broad and rounded, dimensions 110-140 μm x 90-105 μm; vestibulum broad, triangular with slight curvature; cytopharynx tubular, extending up to one-third length of the body; macronucleus oval, measuring 25-35 μm x 15-20 μm; micronucleus spherical lying in close proximity to macronucleus; contractile vacuole single.

Host: Rana cyanophlycitis; site of infection: rectum.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Order RHYNCHODIDA
Family ANCISTROCOMIDAE

Diagnosis: Somatic ciliature present but concentrated over anterior half of the body; body shape ovoid to pyriform with sucking tube sometimes clearly protruding from anterior end, parasitic in both freshwater and marine invertebrates.

Key to the genera
1. Number of kineties more than 10 and unequal in length .. 2
 - Number of kineties 8-10, equal in length, body elongated, banana-shaped, with flat thigmotactic area ... Enethecoma

2. Body pear-shaped, elongated, with moderately flattened thigmotactic area, thigmotactic ciliature comprising of two complexes, on the right side two arc-like bent present, kineties 12-13, unequal in length .. Raabella
 - Body cylindrical, kineties 19-23, unequal in length ... Holocoma

Genus Enethecoma Jarocki, 1935

Diagnosis: As in the key to the genus.

Key to the species
1. Body elongated, symmetrical, banana-shaped, 27-49 μm x 9-19 μm; ventral ciliary kineties 8 in number; macronucleus sausage-shaped, 9-19 μm x 2-28 μm E. dissimilis
 - Body elongated, symmetrical, laterally curved, 60-85 μm x 12-30 μm; 8-10 ciliary rows at the base of suctorial tentacle; macronucleus oval, 10.5-12.2 μm x 4.0-5.7 μm
.. E. melanoidii

Diagnosis: Body elongated, symmetrical, banana-shaped, anterior end tapering sharply, curved in an arc when viewed laterally while posterior end rounded, dimensions 37.6 (27-49) \(\mu m \) x 13.5 (9-19) \(\mu m \), anterior end provided with a suctorial tentacle with an internal tubular canal; ciliary system disposed on flat area occupying anterior two-third of the ventral surface; kineties 8 in number, equal in length; macronucleus typically sausage-shaped, situated in the middle and placed obliquely to longitudinal axis of the body, measuring 9-19 \(\mu m \) x 2-28 \(\mu m \); contractile vacuole single and lying in the middle slightly towards left side of the body.

Host: Freshwater snail, *Viviparus dissimilis*; site of infection: mantle cavity.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: This species was described by Mahmood and Khan (1980). It was collected from the mantle cavity of snails, *Viviparus dissimilis* from the freshwater ponds and lakes of Hyderabad, Andhra Pradesh.

(Figs. 772-773)

Material examined: Sev. exs., Visakhapatnam, Visakhapatnam district, August-November 1984, B. Ramakumari.

Diagnosis: Body elongated, symmetrical, laterally curved, posterior end curved, 60-85 \(\mu m \) x 12-30 \(\mu m \); pellicle thin, smooth, suctorial tentacle small, 35-55 \(\mu m \) anterior, continuing into a dorsally directed internal tubular canal taking a sharp bend ventrally and running obliquely towards the right side of the body, 8-10 ciliary rows arising at the base of the suctorial tentacle and extending up to the middle of the body; macronucleus oval centrally placed, 10.5-12.2 \(\mu m \) x 4.0-5.7 \(\mu m \), micronucleus small spherical adherent to macronucleus.

Host: *Melanoides tuberculatus*; site of infection: mantle cavity and gills.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district).

Genus *Holocoma* Chatton and Lwoff, 1950

Diagnosis: Cylindrical; ventral surface convex; tentacle at anterior end; 19-23 ciliary rows; 6-10 median rows long; on the gills of molluscs.
402. **Holocoma singhii** Kalavati, Ramakumari and Narasimhamurti
(Fig. 774)

Material examined: Sev. exs., Visakhapatnam, Visakhapatnam district, August-November 1984, B. Ramakumari.

Diagnosis: Body oval, ends rounded, 28-42 μm x 20-30 μm, pellicle thin, smooth, a small hyaline knob seen at the anterior end leading into a small internal tubular canal; macronucleus 'U'-shaped with two broad arms, 17.0-23.0 μm x 4.0-5.0 μm, somatic ciliation restricted to anteroventral thigmotactic field, kineties 19-23, cytoplasm hyaline without any inclusions, 2 or 3 contractile vacuoles.

Host: *Melanoides tuberculatus*; site of infection: intestine.

Distribution: India: Andhra Pradesh (Visakhapatnam, Visakhapatnam district).

Genus Raabella Chatton and Lwoff

Diagnosis: As in the key to the genus.

403. **Raabella helensis** Chatton and Lwoff, 1950

Diagnosis: Body pyriform, pointed anteriorly and rounded posteriorly, dimensions 25.5-35.7 μm x 13.6-18.7 μm; anterior end with suctorial tentacles; macronucleus ovoid or spherical, situated near the centre, measuring 6.8-11.05 μm x 5.1-7.65 μm; micronucleus spherical, located anterior to macronucleus; contractile vacoule single lying close to macronucleus; thigmotactic zone formed of three ciliary rows, central complex of 5 kineties running meridionally, left complex of 5-6 kineties and right system with two long, arcly buckled, parallelly running kineties.

Other hosts: *Mytilus edulis, M. galloprovineialis* and *M. minimus*.

Distribution: India: Andhra Pradesh (Kakinda Bay, East Godavari district) and West Bengal.

Elsewhere: Colyna.

Remarks: Jamadar and Choudhury (1988) recorded this species from the marine bivalve *Modiolus striatulus* collected from Kakinada Bay of Andhra Pradesh.
Family PARAISOTRICHIDAE

Diagnosis: Cytostome at or near apical pole, body ovoid to pyriform; uniform somatic ciliation, often plus anterior tuft of longer cilia; concrement vacuoles present; common endocommensals in horses, but also in capybaras, guinea pigs and elephants.

Genus Paraisotricha Fiorentini, 1890

Diagnosis: Uniformly ciliated in more or less spiral longitudinal rows; longer cilia at anterior end; cytostome near anterior tip; contractile vacuole posterior; in the caecum and colon of horse.

404. *Paraisotricha equi* Abraham, 1961

Diagnosis: Body elongated-oval, (43-71) 55 μm x (28.5-43.5) 33.5 μm, body ratio 1.6, greatest width a little above the middle; body covered by a tough membrane, the pellicle, two layered in appearance; body ciliation uniform, excepting a tuft of longer and larger number of cilia at the anterior extremity; cytostome conspicuous, 27 μm in average length, extending from one-half to two-thirds the body-length, well ciliated, opening into a long tubular oesophagus, lips widely separated in some and one showing a heavier ciliation than the other; peristome situated in a slight depression on one side of the body, leading into a curved cytostome; a large concretion vacuole containing eight refractive granules, six large and two small; contractile vacuole single and small; cytopyge V-shaped; ciliary striations varying from eight to ten in number.

Host: Horse, Equus caballus; site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).

Family FOETTINGERIIDAE

Remarks: Apostomatid ciliates, commonly marine, occasionally freshwater, usually in crustacean and other invertebrate hosts belonging to the suborder Apostomatina.

Icertae Sedis

Genus Koifoidella Cepede, 1910

Remarks: Corliss (1979) placed this genus as *incertae sedis* to the family Foettingeriidae.
405. *Koifoidea aplocheilusi* Rao, 1979

Diagnosis: Not available.

Host: Fish, *Aplocheilus melastigma*; site of infection: gills.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Remarks: Rao (1979) reported this species in the Proceedings of the Indian Science Congress Association as abstract. So, the species is treated as *nomen nudum*.

Order SUCTORIDA
Family CYATHODINIIDAE

Diagnosis: Body ovoid, stalkless, adult stage fleeting, typically producing two ciliated buds simultaneously, endocommensals in digestive tracts of domestic and wild guinea pigs.

Genus *Cyathodinum* da Cunha, 1914

Diagnosis: As in the diagnosis to the family.

(Fig. 775)

Diagnosis: Body ovoid, rarely with nipple-like tip, dimensions 55 µm x 20 µm; pseudostome with two conspicuous lips, left one overlapping the right, extending from anterior part to half or more than half of the body-length; cytostome present at the terminal end of pseudostome; cilia restricted to anterior part only and arranged in 3-4 rows; macronucleus oval, its location variable; micronucleus spherical and lying close to macronucleus.

Host: Laboratory bred *Cavia cutleri*; site of infection: gut.

Distribution: India: Andhra Pradesh (Hyderabad district).

Remarks: Bhaskar Rao and Bhaskar Rao (1969) described this species from the laboratory bred guinea pigs in Hyderabad, Andhra Pradesh.

Class OLIGOHYMENOPHOREA
Order SCUTICOCILIATIDA
Family ANCISTRIDAE

Diagnosis: Body occasionally elongate, not laterally flattened, anterior thigmotactic ciliature present but not any thigmotactic sucker, buccal ciliature conspicuous, winding in arc of >360° around antapical pole in some species.
Key to the genera

1. General ciliature dense and abundant, number of kineties 40 or above 2
 General ciliature not so dense, number of kineties 20-35 ... 3

2. Body oval, slightly flattened, number of kineties 40-60; two adoral kineties running from apical suture nearly till the posterior pole, forming a large loop at the end

 - Body oval, strongly flattened, ciliature dense, number of kineties about 65 in number, two adoral kineties starting from about one-third the body-length from the apical pole forming a small arc near the hind part of the body Protophrya

3. Body elongated, slightly flattened, with cone-shaped prolongation at posterior end, number of kineties about 26 in number, starting from about one-third of the body length from the apical end, two adoral kineties forming a big loop near the hind part of the body Fenchelia

Genus Ancistrum Maupas, 1883

Diagnosis: As in the key.

407. Ancistrum ganapatii Kalavati, Ramakumari and Narasimhamurti
(Figs. 776-778)

Material examined: Sev. exs., Tadepallegudem and Tanuku West Godavari district, January 1985, B. Ramakumari.

Diagnosis: Body oval or pear-shaped, dorsoventrally compressed with slightly flattened right side, 20.0-40.0 µm x 16.0-21.0 µm, pellicle thick, peristomial groove 15.0-25.0 µm, starting at the extreme right side in the anterior region extending posteriorly, widening and terminating near the cytostome; macronucleus horse-shoe shaped with two equal arms, 14.0 x 5.0 µm, micronucleus 1.0-2.0 µm, spherical, kineties starting at the anterior end near a small suture extending to the posterior end close to the pellicle; fibrillar network seen on the left margin; thigmotactic zone with long cilia; a tuft of cilia at the posterior end arising from a depression in the right margin, cytoplasm granular, contractile vacuole single.

Host: Pila globosa; site of infection: intestine.

Distribution: India: Andhra Pradesh (Tadepallegudem and Tanuku, West Godavari district).
Genus *Fenchelia* Raabe, 1970

Diagnosis: As in the key.

Key to the species

1. Body ovoid or pear-shaped with a short distinct prolongation on posterior body pole, 39.1-51.0 μm x 22.1-37.4 μm in dimensions ... *F. sagarica*

 - Body ovoid with a conspicuous cone-shaped prolongation on the posterior body pole, 25.5-40.8 μm x 13.6-30.6 μm in dimensions .. *E. kapili*

408. *Fenchelia kapili* Jamadar and Choudhury, 1988
 (Figs. 779-780)

Diagnosis: Body ovoid, dimensions 25.5-40.8 μm x 13.6-30.6 μm, dorso-ventrally flattened with a cone-shaped prolongation at the posterior end; kineties 20-25 in number; anterior thigmotactic cilia longer; peristome starting behind the anterior one-third of the body; undulating number forming a big loop posteriorly; macronucleus ovoid or oblong, measuring 8.5-15.3 μm x 5.1-10.2 μm; micronucleus spherical, lying anterior to macronucleus; contractile vacuole single, large, located posteriorly near cytostome.

Host: *Cerithidea obtusa*; site of infection: ctenidium and mantle cavity.

Distribution: India: Andhra Pradesh (Kakinada Bay, East Godavari district) and West Bengal.

Remarks: Jamadar and Choudhury (1988) described this species from Andhra Pradesh from the host as mentioned above.

 (Fig. 781)

Diagnosis: Body dorso-ventrally flattened, 39.1-51.0 μm x 22.1-37.4 μm, ovoid or pear-shaped with a small protrusion at the posterior end; kineties 30-32 in number; peristome starting considerably posteriorly from the anterior pole of the body; macronucleus variable in shape, 8.5-17.0 μm x 6.8-17.0 μm, located at the anterior half of the body; micronucleus spherical or oval, shadowed by macronucleus and not readily visible; contractile vacuole single, large and located posteriorly.

Host: *Cerithidea obtusa*; site of infection: mantle cavity.
Distribution: India: Andhra Pradesh (Kakinada Bay, East Godavari district) and West Bengal.

Remarks: This species was recorded by Jamadar and Choudhury (1988) from Andhra Pradesh from the host as mentioned above.

Genus *Protophrya* Kofoid, 1903

Diagnosis: As in the key to the genus.

(Figs. 782-785)

Diagnosis: Body pyriform, laterally flattened, 59.5-89.9 μm x 35.7-59.5 μm; kineties 60-77 in number, peristome naked and narrow starting from the mid-region of the body; cytostome situated close to posterior end; undulating membrane formed of adoral cilia and a long caudal cilium of 11.9-17.0 μm in length; macronucleus oval or round, located at the anterior part of the body; micronucleus spherical, lying above the macronucleus; contractile vacuole single, located adjacent to the cytostome.

Hosts: *Littorina melanostoma* and *Littorina scabra scabra*; site of infection: mantle cavity and buccal mass.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam district), Goa and West Bengal.

Remarks: Jamadar and Choudhury (1988) described this species from Andhra Pradesh from the marine snails *Littorina (Littorinopsis) scabra scabra* as mentioned above.

Order ASTOMATIDA

Family HOPLITOPHRYIDAE

Diagnosis: Body elongate, cylindrical, tapered posteriorly, cytoplasm thickened at apical end with insertion of some cytoskeletal fibres, commensal on freshwater oligochaetes.

Genus *Radiophryoides* Lom, 1956

Diagnosis: As for the family.
Key to the species

1. Body spindle-shaped, dimensions 160-180 μm x 70-78 μm, 28-30 longitudinal ciliary rows covering the body surface, separated satellite 70-75 μm x 30-40 μm *R. puytoraci*
 - Body shape more or less as above, dimensions 80-105 μm x 30-35 μm, 35-40 longitudinal ciliary rows covering the body surface, separated satellite 30-33 μm x 25 μm *R. visakhapatnamensis*

Diagnosis: Body spindle-shaped with either end bluntly pointed, dimensions 160-170 μm x 70-78 μm; 28-30 longitudinal ciliary rows covering the body surface, cytostome and contractile vacuole absent; macronucleus straight, rod-shaped, axially placed and extending from end to end, micronucleus minute lying close to macronucleus at about the middle of the body, separated satellite 70-75 μm x 30-40 μm.

Host: Oligochaete, *Aeolosoma travancorense*; site of infection: gut.

Distribution: India: Andhra Pradesh (Cuddapah district) and Kerala.

Diagnosis: Body colourless and transparent, dimensions 80-105 μm x 30-35 μm, anterior half of the body slightly broader; body covered with 35-40 longitudinal ciliary rows; cytostome and contractile vacuole absent; macronucleus straight, rod-shaped, placed longitudinally, extending almost from anterior to posterior end; shape and location of micronucleus similar to those of the preceding species; separated satellite 30-33 μm x 25 μm.

Host: *Aeolosoma hyalinum*; site of infection: gut.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Order PERITRICHIDA
Family TRICHODINIDAE

Diagnosis: Mobile, body cylindrical, adoral spiral ranging from the turn of 180° to two or three nearly full circles, always with wide radius.

Genus *Trichodina* Ehrenberg, 1838

Diagnosis: Body barrel-shaped with well developed adhesive basal disc, a skeletal ring with radially arranged denticles composed of distally projecting blades and medially extending spines; adoral ciliary row spiralling one to three times; commensal or parasite of aquatic animals.

Key to the species

1. Adoral zone with an angle of 360°-420°, performing one complete turn, skeletal ring with 28-42 denticles, macronucleus bean-shaped, contractile vacuole single, velum incipient .. *T. cyanophlycti*

 – Adoral zone with an angle of 390°-450°, performing one and a half turn, skeletal ring with 48-52 denticles, macronucleus bent with one short and one long arm, contractile vacuole absent, velum distinct with marginal cilia *T. waltairensis*

 (Fig. 786)

Material examined: Sev. exs., Eluru, West Godavari district.

Diagnosis: Body oval or rectangular, measuring 60-186 μm x 28-128 μm; adoral zone with an angle of 360°-420°, performing one complete turn at anterior end of the body, parallel to adhesive disc; skeletal ring with 20-42 denticles; macronucleus bean-shaped, measuring 35-48 μm x 15-20 μm, velum incipient, contractile vacuole single.

Host: *Rana cyanophlyctis*; site of infection: rectum.

Distribution: India: Andhra Pradesh (West Godavari district).

 (Fig. 787)

Material examined: Sev. exs., Vizianagaram, Vizianagaram district.

Diagnosis: Body cylindrical, measuring 90-150 μm x 40-45 μm; adoral zone with an angle of 390°-450°, performing one and a half turns at the anterior end of the body; skeletal ring with 48-52 denticles, macronucleus bent with one short and one long arm, measuring 40-50 μm x 4-5 μm; velum distinct with marginal cilia, contractile vacuole absent.

Hosts: *Rana breviceps* and *Rana cyanophlyctis*; site of infection: urinary bladder.

Distribution: India: Andhra Pradesh (Vizianagaram district).
Class POLYHYMENOPHOREA
Order HETEROTRICHIDA

Key to the families

1. Body plump-ovoid to ellipsoidal, occasionally tailed, sucker typically present on concave side of the body, uniquely reinforced with polysaccharide skeletal elements SICUOPHORIDAE

2. Body ovoid to slightly reniform, plump, sucker on ventral side lacking NYCTOTHERIDAE

Family NYCTOTHERIDAE

Diagnosis: As in the key.

Key to the genera

1. Body, ovoid, pyriform or reniform, left margin convex, right margin more or less flat, micronucleus always below macronucleus, commensal of anurans Nyctotheroides

2. Body generally less flat, micronucleus most often located above macronucleus, commensal of both invertebrates and vertebrates .. Nyctotherus

Genus Nyctotherus Leidy, 1849

Diagnosis: As in the key to the genera.

Diagnosis: Body oval, 44.5-64.0 (51.08) µm x 24.5-53.0 (37.12) µm, with blunt anterior end and almost rounded posterior end; peristomal groove situated at one side of the anterior end, becoming wider towards the cytostome; cytopharynx extended obliquely up to the posterior part of the body and curved posteriorly; cytoproct situated at the posterior end, from it a short canal leading into contractile vacuole; macronucleus usually oval or spindle-like, surrounded by a membrane and extending laterally towards the periphery of the body wall as a karyophore; micronucleus small, situated just below the macronucleus; body covered with cilia running obliquely from anterior to the posterior end; with a crescent-shaped flap-like organelle 25-50 µm in length, extending from 1/3 of the anterior end to the cytoproct, consisting of a number of small platelets ranging from 10.5-20.5 µm in width, bearing cilia of variable length.

Host: Corydia petiveriana (Insecta: Blattidae); site of infection: intestine.

Distribution: India: Andhra Pradesh (Hyderabad district).
Genus *Nyctotheroides* Grasse, 1928

Diagnosis: As in the key to the genera.

Key to the species

1. Body reniform in shape ... 2
 - Body oval or pyramidal in shape .. 4

2. Cytopharynx shorter than transverse diameter of the body ... 3
 - Cytopharynx nearly equal to the transverse diameter of the body and extending
 obliquely backwards beyond the middle of the body, macronucleus large ovoid...........
 ... *N. reniformis*

3. Body large, 80-120 μm x 50-85 μm in dimensions, macronucleus kidney-shaped
 ... *N. cordiformis*
 - Body small, 50-68 μm x 30-35 μm in dimension, macronucleus sausage-shaped
 ... *N. hexadactylus*

4. Body pyramidal, anterior end pointed, posterior end broadly rounded, 50-65 μm x 40-
 45 μm in dimensions, macronucleus triangular, buccal apparatus 'S'-shaped
 ... *N. bhatiae*
 - Body oval, large, above 80 μm in length, buccal apparatus of different shape...........
 ... 5

5. Macronucleus cylindrical; body oval, 100-200 μm x 65-90 μm in dimensions..........
 ... *N. waltairensis*
 - Macronucleus triangular or conical ... 6

6. Macronucleus triangular, body oval, 80-90 μm x 40-50 μm in dimensions, infundibulum
 narrow, J-shaped, cytopharynx narrow, hyaline ... *N. rhacophori*
 - Macronucleus conical, body broadly oval, flat with rounded ends, 90-100 μm x 60-80
 μm in dimensions, infundibulum narrow, cytopharynx making two spiral coils in the
 middle of the body ... *N. foliatus*

(Fig. 788)

No. 141 : p. 53.

Material examined: Sev. exs., Visakhapatnam, Visakhapatnam district.
Diagnosis: Body usually pyramidal or conical, anterior end pointed, posterior end broadly rounded, 50-60 µm x 40-45 µm in dimensions; buccal apparatus forming a characteristic S-shaped structure; peristome starting from the middle of anterior apex and joining infundibulum; distal end of infundibulum globular; macronucleus triangular, lying almost adherent to infundibulum, cytopyge absent.

Host: *Rana limnocharis*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

417. *Nyctotheroides cordiformis* (Ehrenberg, 1838)

Material examined: Sev. exs., Vizianagaram, Vizianagaram district.

Diagnosis: Body reniform, 80-120 µm x 50-85 µm in dimensions; peristome short, cytopharynx reaching beyond the middle of the body and broadly curved, macronucleus kidney-shaped, micronucleus located below macronucleus and centrally attached to it; contractile vacuole single, postero-terminal with anal aperture close to it.

Host: *Rana cyanophlyctis*, *Bufo melanostictus* and *Rana tigrina*; site of infection: intestine and rectum.

Distribution: India: Andhra Pradesh (Vizianagaram district), Goa, Meghalaya, Karnataka, Rajasthan, Tripura and West Bengal.

Remarks: Kalavati et al. (1991) reported this species from Andhra Pradesh from the host *Rana cyanophlyctis*.

(Fig. 789)

Material examined: Sev. exs., Visakhapatnam, Visakhapatnam district.

Diagnosis: Body broadly oval, flat with rounded ends, 90-100 µm x 60-80 µm in dimensions, peristome originating well beyond anterior apex, running parallel to ventral body surface to meet narrow infundibulum; cytopharynx making two spiral coils in the middle of the body, macronucleus conical, micronucleus small, oval, adherent to macronucleus; cytopyge opening into a big contractile vacuole.
Host: *Rana breviceps*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

419. *Nyctotheroides hexadactyli* Kalavati, Narasimhamurti and Usharani, 1991 (Fig. 790)

Material examined: Sev. exs., Vizianagaram, Vizianagram district.

Diagnosis: Body reniform, 50-68 μm x 30-35 μm in dimensions; peristome small, infundibulum 'C'-shaped; macronucleus sausage-shaped, following the course of infundibulum; cytopyge cleft-like, contractile vacuole absent.

Host: *Rana hexadactyla*; site of infection: colon and rectum.

Distribution: India: Andhra Pradesh (Vizianagaram district).

420. *Nyctotheroides reniformis* (Bhatia and Gulati, 1927)

Material examined: Sev. exs., Repalle, Guntur district.

Diagnosis: Body reniform, 80-100 μm x 40-60 μm in dimensions, peristome starting at anterior apex and extending up to the middle of the body; infundibulum oblique and curved; macronucleus large and ovoidal, micronucleus small and spherical and close to its pointed end.

Hosts: *Rana hexadactyla, Bufo macrotis*; site of infection: rectum.

Remarks: Bhatia and Gulati (1927) described this species under the name *Nyctotherus reniformis* and recovered this species from the host *Bufo macrotis* collected from Sialkot in the then Punjab which is now in Pakistan. After a long gap, Kalavati *et al.* (1991) recorded this species from Andhra Pradesh from the host *Rana hexadactyla*.

421. *Nyctotheroides rhacophori* Kalavati, Narasimhamurti and Usharani, 1991 (Fig. 791)

Material examined: Sev. exs., Aruku Valley, Visakhapatnam district.

Diagnosis: Body oval, anterior end pointed and posterior end rounded, 80-90 μm x 40-
50 μm in dimensions; peristome starting below anterior apex, infundibulum narrow and J-shaped, cytopharynx narrow; macronucleus triangular, situated above infundibulum; micronucleus embedded in macronucleus; cytopyge present and opening into the contractile vacuole.

Host: Rhacophorus maculatus; site of infection: colon.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

422. Nyctotheroides waltairensis Usharani and Narasimhamurti, 1981
(Fig. 792)

Diagnosis: Body oval, 100-200 μm x 65-90 μm, with bluntly rounded anterior end and rounded posterior end; body cilia arranged in fine parallel rows, gradually converging at the poles; adoral zone of membranes running halfway through the length of the body after originating at the anterior end and continued into the buccal overture at an angle of about 95°; cytostome 8 μm in length, leading into a curved peristome; peristome 24 μm long, running dorsally till the middle of the body, then bending posteroventrally and finally ending about 20-22 μm from the posterior end; cytoplasm clearly distinguishable into outer clear ectoplasm and inner granular endoplasm; macronucleus cylindrical, 50 μm long, located at the anterior part of the body and following the curvature of the buccal overture; micronucleus distinct, closely adherent to the macronucleus at the posterior surface near the peristome; cytopyge situated posteriorly like an invaginated tube; contractile vacuole spherical, 16 μm in diameter, at the posterior end close to cytopyge.

Host: Bufo melanostrictus; site of infection: rectum.

Distribution: India: Andhra Pradesh (Waltair, Visakhapatnam district).

Remarks: It needs mention here that the present species, Nyctotheroides waltairensis was described inadvertently under the title "Nyctotherus waltairensis" (vide. Usharani and Narasimhamurti, 1981).

Family SICUOPHORIDAE

Distribution: As in the key.

Key to the genera

1. Adhesive organellae occupying anterior region of ventral surface, reinforced with armature; ventral surface depressed to form a cup-like sucker anteriorly

... Prosicuophora
Adhesive organellae not restricted to anterior region of ventral surface as above..... 2
2. Adhesive organellae occupying entire ventral surface, with characteristic terminal
enlargements for marginal plaques, skeletal elements well developed
----------------------------------- \textit{Metasicuophora}

Adhesive organellae on concave side reinforced with polysaccharide skeletal elements
----------------------------------- \textit{Sicuophora}

\textbf{Genus \textit{Metasicuophora} Alberet, 1973}

\textit{Diagnosis} : As in the key to the genera.

\textbf{Key to the species}

1. Body small, 75-95 \(\mu m \times 45-65 \mu m \) in dimension, peristome short, infundibulum with two
spires, macronucleus club-shaped

\textit{M. cyanophlycti}

\begin{itemize}
 \item Body large, 125-168 \(\mu m \times 100-125 \mu m \) in dimension, peristome long, infundibulum with
one spire, macronucleus trapezium-shaped
\end{itemize}

\textit{M. melanosticti}

423. \textit{Metasicuophora cyanophlycti} Kalavati,
Narasimhamurti and Usharani, 1991
(Fig. 793)

Paper No. 141} : p. 38.

\textit{Material examined} : Sev. exs., Repalle, Guntur district.

\textit{Diagnosis} : Body small, oval, flattened, 75-95 \(\mu m \times 45-65 \mu m \) in dimensions; peristome
long, infundibulum forming two spires in equatorial region in posterior half of the body
leading to non-ciliated cytopharynx, macronucleus club-shaped, measuring 15-30 \(\mu m \times 10-20 \mu m \) and
placed above infundibulum; micronucleus small, spherical, situated near macronucleus.

\textit{Host} : \textit{Rana cyanophlyctis}; site of infection : colon.

\textit{Distribution} : India : Andhra Pradesh (Guntur district).

424. \textit{Metasicuophora melanosticti} Kalavati,
Narasimhamurti and Usharani, 1991
(Fig. 794)

Material examined: Sev. exs., Machilipatnam, Krishna district.

Diagnosis: Body more or less oval, flat, measuring 125-168 μm x 100-125 μm; peristome long, extending towards median line; infundibulum forming a single spire; macronucleus trapezium-shaped, measuring 35-42 μm x 20-30 μm with drawn out corners, micronucleus not observed.

Host: Bufo melanostictus; site of infection: intestine and colon.

Distribution: India: Andhra Pradesh (Krishna district).

Genus *Prosicuophora* de Puytorac and Oktem, 1967

Diagnosis: As in the key to the genera.

Key to the species

1. Body oval, peristome oblique, infundibulum with single spire, macronucleus bifurcated

 *P. andhrae*

 – Body pear-shaped, peristome straight, infundibulum with single spire, macronucleus 'V'-shaped ... *P. hexadactyli*

(Fig. 795)

Material examined: Sev. exs., Visakhapatnam, Visakhapatnam district.

Diagnosis: Oval, anterior end pointed, posterior end rounded, 280-350 μm x 180-300 μm in dimensions; peristome oblique, originating from anterior region and joining funnel-shaped infundibulum in the middle region of the body, infundibulum with single spire; macronucleus with two bifurcating arms, measuring 40-50 μm x 20-30 μm; micronucleus small, spherical and adherent to upper surface of macronucleus; cytopyge cleft-like near posterior end; adhesive organellae egg-shaped, located in the lower surface of anterior end appearing depressed with raised margins.

Host: Rana cyanophlyctis; site of infection: rectum.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

(Fig. 796)

Material examined: Sev. exs., Visakhapatnam and Chirala, Visakhapatnam district.

Diagnosis: Body egg-shaped with narrow pointed end, dimensions 300-380 μm x 180-250 μm; peristome originating from the anterior region and adherent to the margin of adhesive organellae, joining funnel-shaped infundibulum in the middle region of the body; infundibulum with two spires; macronucleus 'V'-shaped, measuring 40-60 μm x 35-50 μm with two equal arms; adhesive organelle pear-shaped with central cup-like depression and raised margins located adjacent to peristome; cytopyge cleft-like as in the preceding species.

Host: Rana hexadactyla; site of infection: rectum.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

Genus Sicuophora de Puytorac and Grain, 1969

Diagnosis: As in the key to the genus.

Key to the species

1. Infundibulum with one or two full spiral turns ... 2
 - Infundibulum without such turn .. 6
2. Infundibulum forming one full spire, adhesive organelle partly covering the lower surface of the body, macronucleus club-shaped .. S. limnochari
3. Adhesive organelle covering entire lower surface .. 4
 - Adhesive organelle partly covering the lower surface ... 5
4. Body oval or kidney-shaped, infundibulum with two and a half spiral turns, macronucleus of diverse shape—oval, cone-shaped or even pentagonal S. macropharyngea
 - Body oval, anterior end bluntly pointed and posterior end rounded, infundibulum with two widely-spaced spires, macronucleus triangular with drawn out corners
 S. puytoraci
5. Body flat oval, adhesive organelle broad and located at anterior half, macronucleus bifurcated with two arms ... S. ranae
 - Body oval, dorso-ventrally flattened, apex rounded, adhesive organelle extending posteriorly beyond infundibulum, macronucleus triangular drawn out as a branch on ventral side .. S. waltairensis
6. Body broadly oval, anterior end slightly pointed, posterior end broadly round, adhesive
organelle large, occupying most of concave surface, infundibulum forming a small arc in middle region of the body, macronucleus bifurcated at the tip S. fragilis

- Body flat oval, posterior end pointed, adhessive organelle oval, lying in concave surface in the posterior half of the body, infundibulum funnel-shaped, making a prominent 'C'-shaped curve in the middle of the body, macronucleus irregular, sometimes with drawn out ends ... S. levinei

(Fig. 797)

Material examined : Sev. exs., Nellore, Nellore district.

Diagnosis : Body broadly oval, anterior end slightly pointed and posterior end broadly rounded, 180-220 \(\mu \text{m} \) x 132-144 \(\mu \text{m} \) in dimension, infundibulum forming a small arc in the middle region of the body without forming any full spiral turn; adhessive organelle large, occupying most of concave surface, macronucleus large, bifurcated at the tip and measuring 50-80 \(\mu \text{m} \) in length, cytopygeal tube long with a bulbous tip.

Host : *Rana cyanophlyctis*, *Rana hexadactyla*; site of infection : colon.

Distribution : India : Andhra Pradesh (Nellore district).

(Fig. 798)

Material examined : Sev. exs., Visakhapatnam, Visakhapatnam district.

Diagnosis : Body flat, posterior end pointed, 90-108 \(\mu \text{m} \) x 64-78 \(\mu \text{m} \) in size, infundibulum funnel-shaped, making a prominent 'C'-shaped curve in the middle of the body, adhessive organ oval, lying in posterior half of the body; macronucleus irregular, sometimes with drawn out ends, measuring 18-26 \(\mu \text{m} \) x 12-20 \(\mu \text{m} \), cytopyge and cytopygeal tube incipient, faintly seen at posterior end.

Host : *Rana cyanophlyctis*; site of infection : rectum.

Distribution : India : Andhra Pradesh (Visakhapatnam district).

(Fig. 799)

Material examined: Sev. exs., Vizianagaram, Vizianagaram district.

Diagnosis: Body flat, oval, both the ends rounded, 290-310 μm x 170-200 μm in dimensions; infundibulum originating in the middle region of the body, running obliquely downwards to the right, forming a single spire; adhessive organelle large, partly covering the ventral surface of the body; macronucleus club-shaped, measuring 55-68.μm x 40-45 μm; cytopygeal tube with a vacuole at distal end.

Host: Rana limnocharis, Rana cyanophlyctis; site of infection: rectum.

Distribution: India: Andhra Pradesh (Vizianagaram district).

430. Sicutophora macropharyngea (Bezzenberger, 1904)

Material examined: Sev. exs., Visakhapatnam, Visakhapatnam district.

Diagnosis: Body oval, anterior part of the the distinctly thicker than the anterior part, 225 μm x 134 μm in dimension; infundibulum forming a coil in two to two and a half spiral turns; adhessive organelle extending over entire body surface with distinct fibrillar structures, macronucleus of diverse shape (oval, cone-shaped or pentagonal), cytopygeal canal narrow and cleft-like.

Host: Rana cyanophlyctis, Rana breviceps; site of infection: colon.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

431. Sicutophora puytoraci Kalavati, Narasimhamurti and Usharani, 1991

(Fig. 800)

Material examined: Sev. exs., Machilipatnam, Krishna district.

Diagnosis: Oval, anterior end bluntly pointed, posterior end rounded, 180-250 μm x 124-160 μm in dimension; infundibulum with two widely spaced spiral turns; macronucleus triangular with drawn out corners, measuring 36-50 μm in length; cytopygeal tube running obliquely opening into a vacuole near infundibular spiral.

Host: Rana breviceps; site of infection: rectum.

Distribution: India: Andhra Pradesh (Krishna district).
(Fig. 801)

Material examined: Sev. exs., Eluru, West Godavari district.

Diagnosis: Body flat, oval, 130-184 μm x 112-136 μm in dimensions; infundibulum with two close spiral turns; adhessive organelle broadly oval, flat, occupying anterior half of the body; macronucleus bifurcated with two arms; cytopygeal tube extending as a fine capillary into contractile vacuole.

Host: *Rana limnocharis, Rana hexadactyla, Rana cyanophlyctis*; site of infection: rectum.

Distribution: India: Andhra Pradesh (West Godavari district).

(Fig. 802)

Material examined: Sev. exs., Waltair, Visakhapatnam district.

Diagnosis: Body oval, dorso-ventrally flattened; 250-290 μm x 140-175 μm in dimensions; peristome long, extending up to anterior apex; infundibulum making two spiral turns; adhessive organelle extending posteriorly below infundibulum; macronucleus triangular, drawn out as a branch on ventral side, measuring 32-64 μm; cytopygeal canal with a bulbous base.

Host: *Rana cyanophlyctis, Rana breviceps* and *Rana limnocharis*; site of infection: rectum.

Distribution: India: Andhra Pradesh (Visakhapatnam district).

GENERAL REMARKS ON DISTRIBUTION

Distribution of parasitic protozoa in India has intrigued protozoologists since Lewis (1870) first observed the cyst of *Entamoeba coli* from the faecal sample of man while working on cholera evacuation programme in Calcutta. Interest on protozoan parasites, however, has been heightened following Ross's (1898) discovery of the exflagellation of a *Plasmodium* sp. in Secunderabad, Andhra Pradesh heralding in the study of parasites and diseases of domestic and wild animals.

Though the distribution of parasites is associated with the distribution of hosts and even though the host may be infected far away from the site of actual collection of hosts it is worthwhile to depict district-wise distribution of parasitic species recorded so far from the country. The species-wise distribution at the district level has already been shown under their
respective systematic account of the parasitic species. The district-wise species richness of these parasitic protozoa is presented below, mentioning only the serial number of the species as specified in the parasite-host list of this paper to avoid repetition of species names.

3. Chittoor district: SA : 76, 153 = 2; AP : 221, 224, 248-250, 265 = 6; Total = 8.

17. Prakasam district: SA : 76, 153 = 2; AP : 248-250; Total = 5.

District-wise distribution

The district-wise distribution of protozoan parasites from Andhra Pradesh in number of species is presented in Table 3 and in 5 maps (Figs. 803-807), and a graph (Fig. 809) as well as in percentage (Figs. 808, 810). It is to be mentioned that 4 out of 23 districts have been presently surveyed for coccidian parasites. Infections with protozoan parasites were, however, recorded from all the districts as some of human inhabiting malarial and intestinal parasites are known to be common in occurrence throughout the state. Of the 23 districts, Visakhapatnam represents the maximum number of species of protozoan parasites comprising of 160 species embracing 6 phyla followed by Hyderabad (153 species belonging to 4 phyla). The remaining districts represent less than 50 protozoan species (often less than 10 species) of 2-4 phyla indicating under exploration of these areas/districts.

Group-wise distribution

Phyla-wise distribution of protozoan parasites in each district of Andhra Pradesh in terms of number of species is presented in Table 3. It clearly reveals the representation of two phyla viz., Sarcomastigophora and Apicomplexa in all districts. This is primarily due to infection of two human intestinal parasites (Entamoeba histolytica and Giardia intestinalis) and three malarial parasites (Plasmodium falciparum, P. malariae and P. vivax). Like-wise, the group-wise distribution of protozoan species, genera and families belonging to higher taxa (phyla and subphyla) as well as the number of species of hosts are depicted in Table 4, while the host group-wise distribution of host species infected with protozoan parasites along with districts is presented in Table 5.

Table 4 includes 433 species of protozoan parasites belonging to 128 genera and 74 families under 25 orders, 12 classes and 6 phyla occurring in a total of 208 species of both vertebrate and invertebrate hosts from this state. It is worth mentioning that Andhra Pradesh
Fig. 803. Map showing district-wise distribution of Sarcomastigophoran parasites (Figure indicates the number of species occurring in the district).
Fig. 804. Map showing district-wise distribution of Apicomplexan parasites (Figure indicates the number of species occurring in the district).
Fig. 805. Map showing district-wise distribution of Microsporan (M) and Ascetosporan (A) parasites (Figure indicates the number of species occurring in the district).
Fig. 806. Map showing district-wise distribution of Myxozoan parasites (Figure indicates the number of species occurring in the district).
Fig. 807. Map showing district-wise distribution of Ciliophoran parasites (Figure indicates the number of species occurring in the district).
DISTRIBUTION OF PARASITIC PROTOZOA FAMILY, GENERA, SPECIES AND HOST SPECIES UNDER SIX DIFFERENT PHYLAE FROM ANDHRA PRADESH

Family
- Sarcomastigophora: 15%
- Microspora: 16%
- Myxozoa: 19%
- Apicomplexa: 33%
- Ascetospora: 21%

Genera
- Sarcomastigophora: 13%
- Microspora: 2%
- Myxozoa: 12%
- Apicomplexa: 35%
- Ascetospora: 33%

Species
- Sarcomastigophora: 10%
- Microspora: 8%
- Myxozoa: 28%
- Apicomplexa: 36%
- Ascetospora: 17%

Host species
- Sarcomastigophora: 9%
- Microspora: 11%
- Myxozoa: 33%
- Apicomplexa: 29%
- Ascetospora: 17%

Fig. 808
GROUP-WISE DISTRIBUTION OF HOST SPECIES HARBOURING PARASITIC PROTOZOA FROM ANDHRA PRADESH

Fig. 809

COMPARATIVE DISTRIBUTION OF FAMILY (F), GENERA (G) AND SPECIES (S) AS WELL AS HOST SPECIES (H) OF PROTOZOAN PARASITE RECORDED FROM ANDHRA PRADESH (A) AND WEST BENGAL (W)

Fig. 810
is the only state in India, which represents 6 parasitic protozoan phyla including the phylum Ascetospora. Out of these six phyla the highest representation of 156 species belong to the phylum Sarcomastigophora, followed by Apicomplexa (122 species) and Myxozoa (76 species).

So far, 68 species of invertebrates and 140 species of vertebrates (see host parasite list) comprising of 5 phyla and 12 classes or groups (Table 5) are found to harbour 433 species of protozoan parasites from this state. From Table 5 it is evident that more than 50 fish species have been found to harbour protozoan parasites, followed by insects (35 species), birds (34 species) and mammals (28 species) indicating poor exploration of hosts for protozoan parasites.

Table 3. District-wise distribution of parasitic protozoan species (in number) under to different phyla

<table>
<thead>
<tr>
<th>Districts</th>
<th>Sarcomastigophora</th>
<th>Apicomplexa</th>
<th>Microspora</th>
<th>Asceto-spora</th>
<th>Myxozoa</th>
<th>Cilio-phora</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adilabad</td>
<td>2</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Anantapur</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Chittoor</td>
<td>2</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Cuddapah</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>East Godavari</td>
<td>4</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Guntur</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Hyderabad</td>
<td>96</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>32</td>
<td>6</td>
<td>153</td>
</tr>
<tr>
<td>Karimnagar</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Khammnam</td>
<td>2</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>Krishna</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Kurnool</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Mahbubnagar</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Medak</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Nalgonda</td>
<td>2</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Nellore</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Nizamabad</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Prakasam</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Rangareddy</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Srikakulam</td>
<td>6</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Visakhapatnam</td>
<td>24</td>
<td>53</td>
<td>29</td>
<td>3</td>
<td>34</td>
<td>17</td>
<td>160</td>
</tr>
<tr>
<td>Vizianagaram</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Warangal</td>
<td>10</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>West Godavari</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>23</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 4. Group-wise details of parasitic protozoa (in number) from Andhra Pradesh and number of host species

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of parasitic protozoan taxa</th>
<th>Number of host species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Family</td>
<td>Genera</td>
</tr>
<tr>
<td>Phylum Sarcomastigophora</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Subphylum Mastigophora</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>Subphylum Opalinata</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Subphylum Sarcodina</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Phylum Apicomplexa</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Phylum Microspora</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Phylum Ascetospora</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Phylum Myxozoa</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>Phylum Ciliophora</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>128</td>
</tr>
</tbody>
</table>

Note: * Total number of host species indicates less than actual total since several hosts harbour parasites of different groups.

Table 5. Group-wise distribution of host species and their parasitic protozoan species (in number) from Andhra Pradesh

<table>
<thead>
<tr>
<th>Host group</th>
<th>Host species</th>
<th>Parasite species</th>
<th>Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trematoda</td>
<td>1</td>
<td>2</td>
<td>1 (Visakhapatnam)</td>
</tr>
<tr>
<td>Mollusca</td>
<td>7</td>
<td>10</td>
<td>4 (East Godavari, Hyderabad, Visakhapatnam and Warangal)</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>7</td>
<td>7</td>
<td>2 (Cuddapah and Visakhapatnam)</td>
</tr>
<tr>
<td>Polychaeta</td>
<td>1</td>
<td>1</td>
<td>1 (Visakhapatnam)</td>
</tr>
<tr>
<td>Crustacea</td>
<td>8</td>
<td>11</td>
<td>2 (East Godavari and Visakhapatnam)</td>
</tr>
<tr>
<td>Insecta</td>
<td>35</td>
<td>58</td>
<td>6 (East Godavari, Guntur, Hyderabad, Krishna, Visakhapatnam and Vizianagaram)</td>
</tr>
<tr>
<td>Myriapoda</td>
<td>9</td>
<td>15</td>
<td>1 (Visakhapatnam)</td>
</tr>
<tr>
<td>Pisces</td>
<td>51</td>
<td>104</td>
<td>10 (East Godavari, Guntur, Hyderabad, Krishna, Kurnool, Srikakulam, Visakhapatnam, Vizianagaram, Warangal and West Godavari)</td>
</tr>
<tr>
<td>Amphibia</td>
<td>8</td>
<td>31</td>
<td>7 (Guntur, Krishna, Medak, Nellore, Visakhapatnam, Vizianagaram and West Godavari)</td>
</tr>
<tr>
<td>Reptilia</td>
<td>19</td>
<td>55</td>
<td>5 (Hyderabad, Krishna, Srikakulam, Visakhapatnam and Warangal)</td>
</tr>
<tr>
<td>Aves</td>
<td>34</td>
<td>52</td>
<td>7 (Adilabad, Chittoor, Hyderabad, Khammam, Nalgonda, Visakhapatnam and Warangal)</td>
</tr>
<tr>
<td>Mammalia</td>
<td>28</td>
<td>96</td>
<td>All districts</td>
</tr>
<tr>
<td>Total</td>
<td>208</td>
<td>433</td>
<td>All districts</td>
</tr>
</tbody>
</table>
Table 6. Comparative distribution of parasitic protozoa from Andhra Pradesh/West Bengal

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of parasitic protozoan taxa</th>
<th>Number of host species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Family</td>
<td>Genera</td>
</tr>
<tr>
<td>Phylum Sarcomastigophora</td>
<td>14/14</td>
<td>28/23</td>
</tr>
<tr>
<td>Subphylum Mastigophora</td>
<td>11/12</td>
<td>24/17</td>
</tr>
<tr>
<td>Subphylum Opalinata</td>
<td>1/1</td>
<td>1/3</td>
</tr>
<tr>
<td>Subphylum Sarcodina</td>
<td>2/1</td>
<td>3/3</td>
</tr>
<tr>
<td>Phylum Apicomplexa</td>
<td>25/30</td>
<td>45/74</td>
</tr>
<tr>
<td>Phylum Microspora</td>
<td>12/2</td>
<td>15/2</td>
</tr>
<tr>
<td>Phylum Ascetospora</td>
<td>2/0</td>
<td>2/0</td>
</tr>
<tr>
<td>Phylum Myxozoa</td>
<td>11/4</td>
<td>21/13</td>
</tr>
<tr>
<td>Phylum Ciliophora</td>
<td>10/13</td>
<td>17/19</td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>128/131</td>
</tr>
</tbody>
</table>

A comparative account of the distribution of protozoan parasites of Andhra Pradesh and West Bengal (Table 6) also indicates less exploration of hosts in Andhra Pradesh (208 species) than in West Bengal (351 species). Table 6 suggests that greater efforts were made in investigating intestinal flagellates (Subphylum Mastigophora) from Andhra Pradesh (151 species) than West Bengal (65 species).

In overall, 208 species of invertebrate and vertebrate hosts belonging to 5 phyla and 12 classes harbour 433 species of protozoan parasite, indicating on an average more than 2 protozoan parasites per host from this state. Out of these, 101 species are recorded as host for single protozoan parasite, while the rest 107 species are with two or more parasites and only two species viz., a fish, *Liza macrolepis* and a frog *Rana cyanophlyctis* harbour more than 10 protozoan parasites, indicating uneven emphasis/specialization in investigating animal parasites like other parts/states of the country.

SUMMARY

1. A systematic account of 433 species of parasitic protozoa belonging to 128 genera and 74 families under 25 orders, 12 classes and 6 phyla occurring in a total of 208 species of vertebrate and invertebrate hosts from Andhra Pradesh is given in this State Fauna Series.

2. Of these, 156 species belong to the phylum Sarcomastigophora, 122 species comprising of the phylum Apicomplexa and 33 species, 3 species, 76 and 43 species belonging to the phyla Microspora, Ascetospora, Myxozoa and Ciliophora respectively.
3. Among 122 species of the phylum Apicomplexa, five species of gregarines viz., *Anisolobus triboli* n. sp. from *Tribolium ferruginum*, *Retractocephalus coryrae* n. sp. from *Corcyra cephalanaica*, *Cystocephalus gonocephali* n. sp. from *Gonocephalus arenarium*, *Xiphocephalus rhytinotus* n. sp. from *Rhytinota* sp. and *Harendraia murtii* n. sp. from *Gallerucida bicolor* are new to science.

4. Besides, one species of gregarine, *Chakravartiella krishnamurthyi* Sailaja, 1995 is redescribed with illustration; there are 2 new host-parasite records of gregarines and 9 first records of coccidian parasites from this state.

5. A systematic list of parasitic protozoa along with their host and locality is incorporated.

6. Similarly, a host-parasite list along with references is also communicated for ready reference to the parasites.

7. The district-wise and host-group-wise distributions of parasitic protozoa from Andhra Pradesh are discussed.

8. A comparative distribution of parasitic protozoa from Andhra Pradesh and West Bengal is also provided.

9. In the introductory part, the present state of transition in classification of parasitic protozoa has been briefly reviewed.

10. The study reveals that Andhra Pradesh represents maximum number of Protozoan phyla (six) amongst Indian states.

Postscript: While checking the proof it has been found that the blood film No. 37133 of *Haemoproteus thereicercydis* de Mello, 1935 from *Megalaima zeylanica* was collected by H. E. McClure from Andhra Pradesh (exact locality not known) on 13 April 1971 and deposited at the International Reference Centre for Avian Haemotozoa (IRCAH), Canada, presently located at the Queensland Museum, Australia. This blood film was designated as neotype of *H. thereicercydis* by Bennett and Nandi (1981). Thus, the total number of parasitic protozoan from Andhra Pradesh becomes 434 species (not 433 species as stated above).

ACKNOWLEDGEMENT

We are thankful to Dr. J. R. B. Alfred, Director, Zoological Survey of India, Kolkata, as well as authorities of Andhra University for facilities provided for this work. We are indebted to several institutes and individuals for consultation of library and sending reprints / xerox copies of papers on parasitic protozoa of Andhra Pradesh. The institutes and organizations visited for library work / supplied information are School of Tropical Medicine, Kolkata; All India Institute of Hygiene and Public Health, Kolkata; Bengal Veterinary College, Kolkata; Central Library, Andhra Pradesh Agricultural University, Hyderabad; Osmania University Library, Hyderabad; Andhra University, Visakhapatnam; National Institute of Cholera and Enteric Diseases, Kolkata and the Zoological Society, Kolkata. The senior author wishes to record his deep sense of gratitude to the following University Professors and researchers who have immensely helped in getting reprints / xerox copies of papers / information in connection with the present work.

1. Prof. A. B. Kulkarni, Professor & Head, Department of Zoology, Marathwada University, Aurangabad–431 004, for sending large number of reprints / xerox copies of Prof. R. Krishnamurthy that infuse hope to undertake this study. As such, this paper is dedicated in honour of him.

2. Prof. Graziella Mento, Instituto di Parassitologia, Policlinico Universitario–Torre Biologica–98124, Messina, Italia, for sending xerox copies of several papers.

3. Prof. D. P. Haldar, Department of Zoology, Kalyani University, Kalyani–741 235, West Bengal, for allowing me to consult his collection of reprints.

4. Prof. Dr. Md. Hafeez, Professor & Head, Department of Parasitology, College of Veterinary Sciences, Tirupati–517 502, Andhra Pradesh.

5. Dr. M. Masood Hussain, Department of Zoology, P. G. College of Science, Osmania University, Saifabad, Hyderabad–500 004.

6. Dr. C. Sampurnannad, Veterinary Biologicals and Research Institute, Shantinagar, Hyderabad–500 028.

7. Prof. K. P. Janardanan, Department of Zoology, University of Calicut, Kerala–673 635.

9. Dr. Sumit Nandi, Department of Surgery, Bengal Veterinary College, Belgachia, Kolkata.

Thanks are also due to Sri N. C. Sarkar, Sri S. K. Das, Ms. Mousumi Roy, Sri R. Saktivel and Sri Haradhan Das of this department (ZSI) and to Mr. B. V. V. N. Rao and Mr. N Satish, Department of Zoology, Andhra University, Visakhapatnam for various help in library work, typing, and preparing the manuscript.
REFERENCES
(All references concerning parasitic protozoa fauna of Andhra Pradesh are cited here as bibliography)

Bhatia, B. L. and Gulati, A. N. 1927. On some parasitic ciliates from Indian frogs, toads, earthworms and cockroaches. *Arch. Protistenk.*, **57** : 85-120.

Bishop, A. 1931. A description of *Embadomonas* n. spp. from *Blatta orientalis, Rana temporaria, Bufo vulgaris, Salamandra maculosa*; with note upon the 'cyst' of *Trichomonas batrachorum*. *Parasitol.*, **23** : 286-300.

Burry-Caines, J. R. and Bennett, G. F. 1992. The Haemoproteidae (Apicomplexa:

Ganapati, P. N., Narasimhamurti, C. C. and Shanthankumari, K. 1964. A new haplosporidian...

INTRODUCTION

The present paper is based on freeliving and symbiotic protozoan species which were collected by the scientists of the Zoological Survey of India (ZSI) from Andhra Pradesh in recent years. As per annual programme of work of ZSI, 9 coastal districts of the state, namely, Srikakulam, Vizianagram, Vishakhapatnam, East Godavari, West Godavari, Krishna, Guntur, Prakasam and Nellore were surveyed for the collection of Protozoa during the first phase. A total of 54 species comprising of 33 species of freeliving protozoa and 21 species of symbiotic flagellates of wood-eating termites were collected from those districts. A manuscript dealing with taxonomic account and district-wise distribution of those species was also submitted for publication. Subsequently, during the second phase ZSI scientists collected 29 species of freeliving protozoa from 8 noncoastal districts of the state. These districts are: Warangal, Nizamabad, Rangareddi, Nalgonda, Karimnagar, Adilabad, Medak and Khammam.

Since taxonomic account of the earlier collections was submitted for publication under the title coastal districts of Andhra Pradesh, taxonomic diversity of the present protozoa collections have been appended in the present State Fauna Series under the subhead non-coastal districts. This will project a holistic picture of all the freeliving and symbiotic protozoan species recently collected by ZSI from the state, without least alteration of the first part of the manuscript.

In this connection it is needed to mention here that all these freeliving protozoa belong to testacid rhizopods under the classes Lobosea and Filosea. On the other hand, symbiotic protozoa were collected from the gut of two species of termite hosts, namely, Cryptotermes dudleyi and Coptotermes heimi, belonging to the families Kalotermitidae and Rhinotermidae respectively.

Perusal of available literature reveals that no symbiotic protozoa has been reported so far from Andhra Pradesh. On the other hand, 27 species of testacid rhizopods (freeliving protozoa)
were reported by Naidu (1966) from this state. Out of these, only one species, *Arcella conica* was collected from the coastal district of Andhra Pradesh. The remaining 26 species were recorded from two non-coastal districts of the state, namely, Cuddapah and Chittor as shown in Table 1. Amongst these 18 species (marked by asterisks (*) in Table 1 are not collected or reported so far from the coastal districts of the state. Therefore, those species are not taxonomically dealt with in this paper.

MATERIAL AND METHODS

Freeliving protozoa were collected from freshwater ponds, puddles and water bodies as well as from mosses grown on soil, rocks and trees of different localities in nine districts mentioned earlier. Freshwater samples were collected along with little algal mass, water weeds, bottom ooze and flocculent matter arising out of washing of aquatic vegetation of the sampling sites. Samples were kept in wide mouthed glass jars. These jars were brought to the laboratory, kept for few days with their lids open for considerable increase in protozoan population. The samples were then thoroughly examined under the light microscope from time to time.

For preparing permanent slides of testacid rhizopods empty tests were isolated from the bottom ooze of the samples. Testacids were also collected by squeezing different parts of aquatic vegetation including their roots and submerged portion of leaves. The testacids were placed in microslides, air dried after two or three washings in absolute alcohol and then mounted in DPX.

For collecting moss inhabiting protozoa moss samples were brought to the laboratory. A portion of each sample was kept in petri dish and sprinkled regularly with sufficient distilled water. After one or two days aqueous drops drawn from the moss by micropipette were kept on microslides and examined thoroughly under the light microscope. Any testacid observed in those drops were fixed and mounted in the same manner as stated earlier for freshwater testacids. For more details Das *et al.* (1993, 1995) and, Chattopadhyay and Das (2003) may be consulted.

For the collection of flagellate symbiotes of termites, the entire gut of the worker caste of termites was removed and gut contents were emptied on clean slides, containing a drop of 0.5 per cent saline. For studying the internal structures of termite flagellates under *in situ* condition 67 per cent Locke's solution was used in which these protozoans remain active in living condition for a longer period with their natural shape and size. For preparing permanent slides these flagellates were fixed in Schaudinn's fluid, stained with Heidenhain's iron haematoxylin and mounted in DPX.
A. TESTACIDS AND SYMBIOTIC FLAGELLATES OF COASTAL DISTRICTS

As mentioned earlier, 54 species of testacid rhizopods and symbiotic flagellates have been collected from 9 coastal districts of Andhra Pradesh. A systematic list of these species are presented below to reveal their taxonomic diversity.

SYSTEMATIC LIST OF TESTACIDS AND SYMBIOTIC PROTOZOA
HITHERTO KNOWN FROM COASTAL DISTRICTS OF ANDHRA PRADESH
(Classification after Levine et. al., 1980)

A. Freeliving Protozoa

Phylum SARCOMASTIGOPHORA

Subphylum SARCODINA
Class LOBOSEA
Order ARCELLINIDA
Family ARCELLIDAE
Genus Arcella Ehrenberg

1. Arcella conica (Playfair)
2. Arcella discoides Ehrenberg
3. Arcella vulgaris Ehrenberg

Family CENTROPYXIDAE
Genus Centropyxis Stein

4. Centropyxis aculeata (Ehrenberg)
5. Centropyxis aerophila Deflandre
6. Centropyxis aerophila var. sphagnicola Deflandre
7. Centropyxis constricta (Ehrenberg)
8. Centropyxis ecornis (Ehrenberg)
9. Centropyxis minuta Deflandre
10. Centropyxis orbicularis Deflandre
11. Centropyxis platystoma (Penard)
12. Centropyxis spinosa (Cash and Hopkinson)
Genus Cyclopyxis (Deflandre)

13. Cyclopyxis arcelloides (Penard)
Genus Plagiopyxis Penard

14. Plagiopyxis callida Penard
15. Plagiopyxis minuta Bonnet
Family DIFFLUGIIDAE
Genus Difflugia Leclerc

16. Difflugia acuminata Ehrenberg
17. Difflugia corona Wallich
18. Difflugia lithophila (Penard)
19. Difflugia lobostoma Leidy
20. Difflugia pyriformis Perty

Family NEBELIDAE
Genus Heliopera Leidy

21. Heliopera sphagni (Leidy)

Family ?
Genus Phryganella Penard

22. Phryganella acropodia (Hertwig and Lesser)

Class FILOSEA
Order GROMIIDA
Family EUGLYPHIDAE
Genus Assulina Ehrenberg

23. Assulina seminulum (Ehrenberg)
Genus Corythion Taranek

24. Corythion dubium Taranek
Genus Euglypha Dujardin

25. Euglypha acanthophora (Ehrenberg)
26. Euglypha ciliata (Ehrenberg)
27. Euglypha laevis (Ehrenberg)
28. Euglypha rotunda Wailes and Penard
29. Euglypha tuberculata Dujardin
Genus Tracheleuglypha Deflandre

30. Tracheleuglypha dentata (Vejdowsky)
Genus Trinema Dujardin

31. Trinema complanatum Penard
32. Trinema enchelys (Ehrenberg)
33. Trinema lineare Penard
B. Symbiotic Protozoa

<table>
<thead>
<tr>
<th>Phylum</th>
<th>SARCOMASTIGOPHORA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subphylum</td>
<td>MASTIGOPHOREA</td>
</tr>
<tr>
<td>Class</td>
<td>MASTIGOPHORA</td>
</tr>
<tr>
<td>Order</td>
<td>OXYMONADIDA</td>
</tr>
<tr>
<td>Family</td>
<td>OXYMONADIDAE</td>
</tr>
<tr>
<td>Genus</td>
<td>Oxymonas Janicki</td>
</tr>
</tbody>
</table>

Symbiotes

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Oxymonas bosei Das</td>
<td>Cryptotermes dudleyi</td>
</tr>
<tr>
<td>35</td>
<td>Oxymonas grandis Cleveland</td>
<td>Cryptotermes dudleyi</td>
</tr>
<tr>
<td></td>
<td>Order</td>
<td>TRICOMONADIDAE</td>
</tr>
<tr>
<td></td>
<td>Family</td>
<td>DEVESCOVINIDAE</td>
</tr>
<tr>
<td></td>
<td>Genus</td>
<td>Devescovina Foa</td>
</tr>
<tr>
<td>36</td>
<td>Devescovina glabra Grassi</td>
<td>Cryptotermes dudleyi</td>
</tr>
<tr>
<td>37</td>
<td>Devescovina lemniscata Kirby</td>
<td>Cryptotermes dudleyi</td>
</tr>
<tr>
<td></td>
<td>Genus</td>
<td>Foina Janicki</td>
</tr>
<tr>
<td>38</td>
<td>Foina reflexa Janicki</td>
<td>Cryptotermes dudleyi</td>
</tr>
<tr>
<td>39</td>
<td>Foina solita Kirby</td>
<td>Cryptotermes dudleyi</td>
</tr>
<tr>
<td></td>
<td>Family</td>
<td>CALONYMPHIDAE</td>
</tr>
<tr>
<td></td>
<td>Genus</td>
<td>Stephanonympha Janicki</td>
</tr>
<tr>
<td>40</td>
<td>Stephanonympha minuta Das and Choudhury</td>
<td>Cryptotermes dudleyi</td>
</tr>
<tr>
<td>41</td>
<td>Stephanonympha pyriformis Das and Choudhury</td>
<td>Cryptotermes dudleyi</td>
</tr>
<tr>
<td>42</td>
<td>Stephanonympha sylvestri Janicki</td>
<td>Cryptotermes dudleyi</td>
</tr>
<tr>
<td></td>
<td>Order</td>
<td>HYPERMASTIGIDA</td>
</tr>
<tr>
<td></td>
<td>Family</td>
<td>HOLOMASTIGOTIDAE</td>
</tr>
<tr>
<td></td>
<td>Genus</td>
<td>Holomastigotoides Grassi and Foa</td>
</tr>
<tr>
<td>43</td>
<td>Holomastigotoides bengalensis Chakraborty and Banerjee</td>
<td>Coptotermes heimi</td>
</tr>
<tr>
<td>44</td>
<td>Holomastigotoides campanula (De Mello)</td>
<td>Coptotermes heimi</td>
</tr>
<tr>
<td>45</td>
<td>Holomastigotoides emersoni Das</td>
<td>Coptotermes heimi</td>
</tr>
<tr>
<td>46</td>
<td>Holomastigotoides magnus Uttangi</td>
<td>Coptotermes heimi</td>
</tr>
<tr>
<td>47</td>
<td>Holomastigotoides ovalis Uttangi</td>
<td>Coptotermes heimi</td>
</tr>
<tr>
<td>48</td>
<td>Holomastigotoides rayi Karandikar and Vittal</td>
<td>Coptotermes heimi</td>
</tr>
<tr>
<td>49</td>
<td>Holomastigotoides reniformis de Mello</td>
<td>Coptotermes heimi</td>
</tr>
<tr>
<td>50</td>
<td>Holomastigotoides spheroidalis de Mello</td>
<td>Coptotermes heimi</td>
</tr>
</tbody>
</table>
Family SPIROTRICHONYMPHIDAE
Genus Spirotrichonympha Grassi and Foa

51. Spirotrichonympha froilanoi Karandikar and Vittal

Family EUCOMONYMPHIDAE
Genus Pseudotrichonympha Grassi and Foa

52. Pseudotrichonympha cardiformis Karandikar and Vittal

53. Pseudotrichonympha indica Chakraborty and Banerjee

54. Pseudotrichonympha subapicalis Karandikar and Vittal

SYSTEMATIC ACCOUNT

A. Freeliving Protozoa

Phylum SARCOMASTIGOPHORA
Class LOBOSEA
Order ARCELLINIDA

Key to the families

1. Test membranous and rigid, having a distinct oral aperture
 Family ARCELLINIDAE
 – Test with minerals and organic particles and with a oral aperture 2
2. Test with plates or scales, secreted by cytoplasm sometimes with foreign particles ...
 ... Family NEBELIDAE
 – Test with foreign particles and without any plate or scale as above 3
3. Symmetry of test dorso-ventral, oral aperture at one side of test (eccentric) or ventral
 ... Family CENTROPYXIDAE
 – Test having axial symmetry, oral aperture at extremity of the test (terminal)

Family ARCELLIDAE
Genus Arcella Ehrenberg

Diagnosis: Test membranous, rigid with hexagonal markings, brown or yellow in colour, encrusted with chitinous particles; aperture central, circular and inverted like a funnel.
Key to the species

1. Test hemispherical, evenly convex, height of the dome about half of its diameter.....
 .. A. vulgaris
 – Test spherical or pyramidal.. 2

2. Test spherical, circular in front view, height of dome about one-third to one-fourth of
 its diameter ... A. discoides
 – Test pyramidal, sometimes angular in front view, with holes of 4-8 faces ...A. conica

1. Arcella conica (Playfair)

1918. Arcella costata var. conica Playfair, Proc Linn. Soc. New South Wales, p. 34.

Material examined : 5 exs.

Diagnosis : Test pyramidal, sometimes angular in front view, with holes of 4-8 faces; mouth circular, proportionately small and without buccal tube.

Distribution : India : Andhra Pradesh and West Bengal, amongst bottom ooze.

Remarks : Naidu (1966) was the first to report this species from India, that too, from "a rain water puddle at Machavaram in Vijyawada" in Krishna district, Andhra Pradesh. During the present investigation this species was collected by ZSI Scientists from freshwater tanks of Krishna district.

2. Arcella discoides Ehrenberg

Material examined : 12 exs.

Diagnosis : Test smooth, flattened, plano-convex in lateral view and circular in front view; height of dome about one-third to one-fourth of the diameter of the test; aperture large and circular.

Distribution : India : Andhra Pradesh (present record), Arunachal Pradesh, Manipur, Meghalaya, Mizoram, Nagaland, Himachal Pradesh, Sikkim, Tripura, Uttarakhand and West Bengal; in freshwater ponds and tanks in bottom ooze, also in moss.

Remarks : This species is reported for the first time from Andhra Pradesh. It has been collected from the bottom ooze of freshwater bodies and also from wet mosses of Srikakulam, Krishna, Vishakhapatnam Vizianagram and West Godavari districts of this state during the present investigation.
3. **Arcella vulgaris** Ehrenberg

Material examined: 15 exs.

Diagnosis: Test hemispherical, evenly convex, height of the dome about half of its diameter; surface with large 'areoles'; mouth circular and central and, often without buccal tube.

Distribution: India: Andhra Pradesh (present record), Arunachal Pradesh, Himachal Pradesh, Manipur, Nagaland, Sikkim and West Bengal; in freshwater amongst bottom ooze and submerged vegetation; also in moss.

Remarks: This species has been collected from the bottom ooze of freshwater bodies and from wet mosses of East Godavari, Guntur, Nellore, Srikakulam and Vishakhapatnam districts of Andhra Pradesh during the present investigation. It constitutes first record for this state.

Family CENTROPYXIDAE

Genus *Centropyxis* Stein

Diagnosis: Test dorso-ventrally flattened, spheroidal at posterior portion and tapering towards apertural region; oral aperture eccentric and ventral, typically invaginated without a raised rim.

Key to the species

1. Test beset with spines ... 2
 - Test without any spine ... 3

2. Test furnished with a few divergent spines arranged in a single row, usually resembling scrap, oral aperture circular or oval .. C. *aculeata*
 - Test beset with variable number of spines frequently curved and distributed irregularly on dorsal side, aperture lobate or circular with irregular border C. *spinosa*

3. Test prolonged at anterior end resembling a flat lens covering the mouth, a constriction present between oral part and post-oral part of the test C. *platystoma*
 - Test not prolonged as above, constriction between oral and post-oral part of the test lacking ... 4
4. Test circular or nearly circular in ventral view ... 5
 - Test more or less ovoidal, elliptical and discoidal in ventral view 6

5. Test small, usually below 50 μm in diameter, encrusted with siliceous particles, oral
 aperture circular ... C. minuta
 - Test comparatively large, usually above 70 μm in diameter, encrusted with large stony
 particles on its dorsal border, oral aperture nearly semi-circular C. orbicularis

6. Posterior part of the test strongly arched, in ventral view flanks of the post-oral part of
 the test convex, one or a few stony particles often attached to its posterior border ...
 ... C. constricta
 - Posterior part of the test slightly arched, post-oral part of the test not so convex in
 ventral view as above, also no stony particles as above attached to posterior border
 ... 7

7. Test small (usually 50-80 μm), fundus spheroidal with dorsal face strongly flattened
 towards oral aperture, aperture semi-circular or elliptical 8
 - Test comparatively large, usually above 100 μm, discoidal, largely elliptical, usually
 irregular in outline, oral aperture circular or round ... C. ecornis

8. Test ovoid in ventral view, aperture semi-circular .. C. aerophila
 - Test hemispherical or elliptical in ventral view, oral aperture formed of two convex arcs
 ... C. aerophila var. sphagnicola

4. Centropyxis aculeata (Ehrenberg)

Material examined: 7 exs.

Diagnosis: Test compressed, cap-shaped, fundus of test obtusely rounded and furnished
with a few (usually 4-6) divergent spines at the border, arranged in a single and somewhat
regular row; spines usually resembling scrap; test brownish, frequently encrusted with quartz
crystals and sometimes with admixture of diatoms and sand particles.

Distribution: India: Andhra Pradesh, Arunachal Pradesh, Himachal Pradesh Manipur,
Meghalaya, Mizoram, Nagaland, Orissa, Rajasthan, Sikkim, Tripura and West Bengal; in
freshwater bodies amongst vegetation, also in moss.

Remarks: Naidu (1966) reported this species from Chittoor district (non-coastal district)
of Andhra Pradesh and collected the same from an "old well near the college in Chittoor
town." During the present studies C. aculeata was collected from freshwater tanks and wet
mosses of East Godavari, Guntur, Krishna, Nellore, Prakasam, Srikakulam and Vishakhapatnam
districts of this state.
5. **Centropyxis aerophila** Deflandre

Material examined: 10 exs.

Diagnosis: Test small, usually 60-70 μm in length, 'panse' spheroidal in dorsal view and strongly flattened towards oral aperture; in ventral view test oval, 'panse' circular or slightly elliptical converging towards aperture; aperture mostly semicircular, and frequently straight at margin of 'panse'; in lateral view 'panse' much bulged, abruptly sloping near aperture; apertural part of the test very much transparent; test chitinous, finely punctate and rough, bearing foreign particles, and frequently vegetable fragments and, transparent crystals.

Distribution: India: Andhra Pradesh (present report), Arunachal Pradesh, Assam, Himachal Pradesh, Jammu & Kashmir, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Tripura, Uttaranchal and West Bengal; common in moss and *Sphagnum*.

Remarks: This species is reported for the first time from Andhra Pradesh. During the present investigation it has been collected from ground and rock mosses of East Godavari, Guntur, Krishna, Nellore, Prakasam, Srikakulam and West Godavari districts of the state.

6. **Centropyxis aerophila** var. *sphagnicola* Deflandre

Material examined: 7 exs.

Diagnosis: Test more or less hemispherical or slightly elliptical in ventral view; oral aperture subterminal, transverse oval and invaginated, its contour formed by two convex arcs; dorsal region rough and apertural region smooth.

Distribution: India: Andhra Pradesh (present record), and Sikkim; in moss.

Remarks: *Centropyxis aerophila* var. *sphagnicola* is also reported for the first time from Andhra Pradesh and collected from the ground moss of Vizianagram district only. In India this ecological variety of *C. aerophila* has so far been reported from moss biotope of Sikkim by Das *et al.* (2000) and Uttaranchal (Chattopadhyay and Das, 2003).

7. **Centropyxis constricta** (Ehrenberg)

Material examined: 10 exs.

Diagnosis: Test elliptical or ovoidal in ventral view, oral aperture always invaginated very
strongly towards posterior part; aperture at the border of the test accentrie, largely elliptical or nearly circular; test covered with closely set sand grains, giving a grey colour to it.

Distribution: India : Andhra Pradesh (present record), Assam, Himachal Pradesh Meghalaya, Mizoram, Sikkim and Tripura, Uttaranchal and West Bengal in moss.

Remarks: This species constitutes first record for Andhra Pradesh. It has been collected from soil and rock mosses of Nellore, Prakasam, Srikakulam, Vishakhapatnam and West Godavari districts of the state.

8. *Centropyxis ecornis* (Ehrenberg)

Material examined: 15 exs.

Diagnosis: Test comparatively large, sometimes more than 200 μm in length in aquatic habitats and usually about 100 μm in dry moss; discoidal or largely elliptical in shape, most irregular in outline, without any spine and covered with quartz sand grains; aperture usually circular, sometimes irregularly lobed, not much eccentric.

Distribution: India : Andhra Pradesh (present record), Arunachal Pradesh, Himachal Pradesh, Manipur, Mizoram, Meghalaya, Nagaland, Sikkim, Uttaranchal and West Bengal; in freshwater and moss.

Remarks: This species has been collected from freshwater and mosses of East Godavari, Guntur, Krishna, Nellore, Vishakhapatnam and West Godavari districts of Andhra Pradesh and reported for the first time from the state.

9. *Centropyxis minuta* Deflandre

Material examined: 10 exs.

Diagnosis: Test small, usually less than 50 μm in diameter, circular in ventral view and subspherical in lateral view; oral aperture eccentric and circular.

Distribution: India : Andhra Pradesh (present record), Arunachal Pradesh, Assam, Himachal Pradesh, Jammu & Kashmir, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Sikkim, Tripura, Uttaranchal and West Bengal; in moss.

Remarks: This species is reported for the first time from Andhra Pradesh and collected from soil and rock moss of East Godavari, Krishna, Prakasam and Vishakhapatnam districts of the state.
10. *Centropyxis orbicularis* Deflandre

Material examined: 4 exs.

Diagnosis: Test brownish, almost circular in ventral view, ventral surface flat; in lateral view test semicircular, displaying considerable invagination towards the oral aperture; oral aperture nearly semicircular, plagiostomic, test encrusted with large stony particles on its dorsal border.

Distribution: India: Andhra Pradesh; in freshwater and in moss.

Remarks: This species has so far been reported once from India, that too, from an "old well near the college in Chittoor town" (Chittor district) in Andhra Pradesh by Naidu (1966). During the present investigation this species has been collected only from East Godavari district of the state in soil moss. Besides Andhra Pradesh this species has been recorded from Uttaranchal only (Chattopadhyay and Das, 2003) within Indian limit.

11. *Centropyxis platystoma* (Penard)

Material examined: 18 exs.

Diagnosis: Test elongated, elliptical in ventral view, prolonged to the anterior end resembling a flat lens covering oral aperture; a constriction most often visible between 'sleeve' of the test and oral aperture; in lateral view posterior part of the test strongly convex and anterior part more or less flat; oral aperture circular or semicircular; test chitinous covered with siliceous and quartz particles and, occasionally small pebbles.

Distribution: India: Andhra Pradesh, Arunachal Pradesh, Himachal Pradesh Manipur, Meghalaya, Nagaland, Sikkim and Tripura; in moss.

Remarks: Naidu (1966) was the first to report this species from Andhra Pradesh. He collected it from an old well of Chittoor district of the state. During the present investigation this species has been collected from soil and rock mosses of Guntur, Nellore, Prakasam, Vishakhapatnam, Vizianagram and West Godavari districts of Andhra Pradesh.

12. *Centropyxis spinosa* (Cash & Hopkinson)

Material examined: 12 exs.

Diagnosis: Test more or less circular and considerably flat, oral aperture eccentric and circular with irregular border, test furnished with 6-8 spines frequently curved and distributed irregularly on dorsal side, test chitinous with few quartz crystals or diatom fistules.

Distribution: India: Andhra Pradesh (present record), Arunachal Pradesh, Himachal Pradesh, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Uttarakhand, and West Bengal; in freshwater bottom ooze and in wet moss.

Remarks: This species constitutes first record for Andhra Pradesh. It has been collected from freshwater tanks and wet mosses of Nellore, Srikakulam, Vishakhapatnam, Vizianagram and West Godavari districts of the state.

Genus Cyclopyxis (Deflandre)

Diagnosis: Test regularly arched, oral aperture centrally located.

13. Cyclopyxis arcelloides (Penard)

Material examined: 30 exs.

Diagnosis: Test circular in ventral view and hemispherical in lateral view, brown, chitinous, covered with small flat siliceous scale like structures; oral aperture centrally located, circular in shape, faintly invaginated, about half the diameter of that of width.

Distribution: India: Andhra Pradesh (present record), Arunachal Pradesh, Assam, Himachal Pradesh, Manipur, Meghalaya, Mizoram, Sikkim, Tripura, Uttarakhand, and West Bengal; in freshwater and in moss.

Remarks: This species is reported for the first time from Andhra Pradesh. It is found to be very common amongst soil mosses of the state and has been collected from eight of its coastal districts (out of nine), viz, East Godavari, Guntur, Krishna, Nellore, Prakasam, Srikakulam, Vizianagram and West Godavari.

Genus Plagiopyxis Penard

Diagnosis: Test hemispherical in dorsal view and ovoid in side view, oral aperture linear, lunate, superior lip without pores.
Key to the species

1. Test small, below 50 μm in diameter, clear and transparent, aperture short
 ... P. minuta

 Test large, 90-100 μm in diameter, circular or largely oval in ventral view and hemispherical in lateral view
 ... P. callida

14. Plagiopyxis callida Penard

 Material examined : 12 exs.

 Diagnosis : Test gray, yellow or brown in colour, circular or largely oval in ventral view and hemispherical in lateral view, diameter 90-100 μm, inferior lip dipping far into interior of the test and lips overlapping to such extent that aperture very difficult to observe.

 Distribution : India : Andhra Pradesh (present record), Arunachal Pradesh, Himachal Pradesh, Manipur, Mizoram, Sikkim and West Bengal; in soil and moss.

 Remarks : This species is reported for the first time from Andhra Pradesh and collected from soil moss of East Godavari, Prakasam, Vishakhapatnam and West Godavari districts of the state during the recent surveys.

15. Plagiopyxis minuta Bonnet

 Material examined : 10 exs.

 Diagnosis : Test clear and transparent, circular in dorsal view and semi-elliptical in lateral view, diameter of the present material 40-45 μm, inferior lip shorter in length, projecting inside the test as an elongation of the ventral side; test covered with relatively large siliceous plates especially on ventral side.

 Distribution : India : Andhra Pradesh (present record), Arunachal Pradesh, Himachal Pradesh, Manipur and Sikkim in soil and moss.

 Remarks : This species was collected from soil mosses of Nellore and Srikakulam districts of Andhra Pradesh during the present investigation. It constitutes first record for this state.

Family DIFFLUGIIDAE

Genus Difflugia Leclerc

Diagnosis: Test with axial symmetry, its shape varying from globular to elongate, pyriform or acuminate, aperture at the extremity of the test.

Key to the species

1. Test without collar ... 2
 - Test with collar .. 3
2. Oral aperture circular without any lobe or crenulation, test sphereical to subglobose ... D. lithophila
 - Oral aperture crenulated, crenulations 10-12 in number .. D. corona
3. Test terminated by a pointed extention of the base, usually straight D. acuminata
 - Test not terminated by any pointed or horn-like extension .. 4
4. Test ovoid, oral aperture quadri-lobed in the form of a cross, but very often tri-lobed ... D. lobostoma
 - Test typically pyriform, oral aperture circular and without any lobe D. pyriformis

16. Difflugia acuminata Ehrenberg

Material examined: 12 exs.

Diagnosis: Test cylindrical without any collar and with a pointed 'horn'-like extension at the base; 'horn' straight and differentiated from the base; quartz crystals of test big, some of them projecting out of the margin of the test giving irregular appearance of test margins.

Distribution: Andhra Pradesh, Meghalaya, Manipur, Tripura and West Bengal; in bottom ooze of freshwater ponds and lakes.

Remarks: Naidu (1966) reported this species from a well near a college in Chittoor town (Chittoor district) in Andhra Pradesh. During the present investigation *D. acuminata* was collected from four coastal districts of the state, namely, East Godavari, Guntur, Srikakulam and Vishakhapatnam.

17. Difflugia corona Wallich

Material examined: 20 exs.

Diagnosis: Test more or less spherical, slightly narrow near oral aperture but widened at the base with 5-10 spines; surfaces of test spines smooth formed of quartz crystals, oral
aperture wide, about half the diameter of the test, crenulated; crenulations varying from 8 to 12, sometimes more.

Distribution: India: Andhra Pradesh (present record), Manipur, Tripura and West Bengal; in freshwater ponds and lakes amongst vegetation and bottom ooze.

Remarks: This species constitutes first record for Andhra Pradesh. It has been collected from five coastal districts of the state during the present investigation, namely, Krishna, Prakasam, Nellore, Vishakhapatnam and Vizianagram.

18. *Difflugia lithophila* (Penard)

Material examined: 8 exs.

Diagnosis: Test ovoid-globular or sub-globose drawn out to the aperture in the form of a short collar, aperture circular without any lobe or crenulation, test covered with well arranged stony particles.

Distribution: India: Andhra Pradesh (present report), Arunachal Pradesh, Meghalaya, Manipur, Nagaland, Tripura and West Bengal; in freshwater ponds and lakes amongst bottom ooze.

Remarks: This species was collected from freshwater tanks of three coastal districts of Andhra Pradesh during the present investigation, namely, East Godavari, Guntur and Srikakulam. It constitutes first report for the state.

19. *Difflugia lobostoma* Leidy

Material examined: 15 exs.

Diagnosis: Test ovoidal, oral aperture usually quadrilobed in the form of a cross and sometimes trilobed, not enclosed by collar, test covered with angular quartz particles.

Distribution: India: Andhra Pradesh (present record), Arunachal Pradesh, Himachal Pradesh, Meghalaya, Manipur, Nagaland, Rajasthan, Tripura and West Bengal; in freshwater ponds and lakes amongst vegetation and bottom ooze.

Remarks: This species is also reported for the first time from Andhra Pradesh. It was collected from freshwater ponds and lakes of Krishna, Prakasam, Vishakhapatnam and West Godavari districts of Andhra Pradesh during the present investigation.
20. *Difflugia pyriformis* Perty

Material examined: 8 exs.

Diagnosis: Test pyriform or flask-shaped, small angular quartz crystals and mud particles encrusted on the chitinous membrane of the test; oral aperture circular.

Distribution: India: Andhra Pradesh (present report), Meghalaya, Manipur, Rajasthan, Sikkim and West Bengal; in freshwater tanks and lakes amongst bottom ooze.

Remarks: During the present investigation this species was collected from freshwater ponds of four coastal districts of Andhra Pradesh, namely, East Godavari, Nellore, Vizianagram and West Godavari. This species is reported for the first time from the state.

Family NEBELIDAE

Genus *Heliopera* Leidy

Diagnosis: Test variously coloured with a little foreign material at the fundus, an elliptic notch visible near oral aperture in narrow lateral view.

21. *Heleopera sphagni* Leidy

Material examined: 5 exs.

Diagnosis: Test broadly ovoid, regular in outline, compressed; chitinous membrane yellowish or brownish; test covered with irregular transparent siliceous plates, fundus sometimes with little foreign material, zoochlorellae present in protoplasm.

Distribution: India: Andhra Pradesh (present record), and in Sikkim; in *Sphagnum* and moss adjacent to water bodies.

Remarks: This species constitutes first report from Andhra Pradesh and was collected from wet moss of two coastal districts of the state during the present investigation, namely, Nellore and Prakasam. In India *H. sphagni* has so far been reported only from Sikkim from moss biotope by Penard (1907) and subsequently by Das *et al.* (2000) and also from Uttaranchal and West Bengal by Chattopadhyay and Das (2003).
Family?

Genus *Phryganella* Penard

Diagnosis: Test hemispherical, spheroidal and ovoid, with sand grains, minute diatom shells or other foreign elements, aperture terminal, pseudopods sharply pointed and radiating.

Remarks: This genus has been placed under the suborder Reticulolobosa by Deflandre (1959) mainly based on shape and nature of pseudopodia without assigning any family for it. This classification is followed in the present work.

22. *Phryganella acropodia* (Hertwig and Lesser)

Material examined: 12 exs.

Diagnosis: Test hemispherical and subhemispherical in lateral view and circular in apertural view, yellowish or brownish, covered with amorphous scales, and also with sand grains; oral aperture large without any invagination, sometimes bordered with large grains.

Distribution: India: Andhra Pradesh (present record), Arunachal Pradesh, Manipur, Sikkim and West Bengal; in moss and also in bottom ooze of freshwater tanks.

Remarks: This species was collected from moss biotops of three coastal districts of Andhra Pradesh during the present investigation, namely, Guntur, Prakasam and Vishakhapatnam. It also constitutes first record for the state. In India this species has generally been collected from mosses (Penard, 1907, Das *et al.*, 2000 and Chattopadhyay and Das 2003). It has also been collected from freshwater tanks of West Bengal (Das *et al.*, 1993).

Class FILOSEA

Order GROMIIIDA

Family EUGLYPHIDAE

Diagnosis: Test composed of siliceous scales or platelets cemented together, body hyaline, pseudopodia filiform, often branching, sometimes anastomosing.

Key to the genera

1. Aperture terminal .. 2
 - Aperture subterminal .. 4
2. Test hyaline, aperture not bordered by any membrane .. 3
 - Test colourless or brown, aperture bordered by an irregularly denticulated membrane
 .. Genus Assulina

3. Test with distinct hyaline collar, denticulate or lacinate, aperture bordered by a dentate
 neck without scale ... Genus Tracheleuglypha
 - Test without any collar, aperture bordered by regularly arranged serrated or denticulated
 scale ... Genus Euglypha

4. Test ovoid formed of circular imbricated siliceous scales, aperture circular, oblique, invaginated
 ... Genus Trinema
 - Test ovoid or circular, formed of non-imbricated oval plates, aperture subcircular or
 oval, oblique ... Genus Corythion

Genus Assulina Ehrenberg

Diagnosis: Test brown or colourless, ovoid, glabrous, compressed, composed of elliptical, imbricated, siliceous scales arranged more or less regularly in diagonal rows; aperture oval, terminal, truncate or with short neck, bordered by a thin chitinous finely dentate membrane.

23. Assulina semilunum (Ehrenberg)

Material examined: Sev. exs.

Diagnosis: Test usually yellowish to dark brown, occasionally colourless, pyriform or ovoid in broad view, compressed, composed of imbricated, oval or elliptical siliceous scales; aperture terminal, oval, surrounded by a thin chitinous membrane with irregularly dentate or undentate margin.

Distribution: India: Andhra Pradesh (present record), Assam, Manipur, Nagaland, Sikkim and West Bengal; in Sphagnum and wet moss.

Remarks: This species constitutes first record for Andhra Pradesh. It was collected from wet soil and rock mosses of two coastal districts of the state, namely, Nellore and Prakasam.

Genus Corythion Taranek

Diagnosis: Test small, ovoid or subcircular, hyaline, compressed, formed of non-imbricated oval siliceous plates; aperture subterminal, ventral or oblique, circular or oval.

24. Corythion dubium Taranek

Material examined: 7 exs.

Diagnosis: Test ovoid, compressed unsymmetrically, aperture circular or oval, ventral, subterminal and oblique.

Distribution: India: Andhra Pradesh, Arunachal Pradesh, Assam, Himachal Pradesh, Manipur, Nagaland, Sikkim, Tripura and West Bengal; in moss.

Remarks: Naidu (1966) was the first to report this species from Andhra Pradesh from Chittoor district. During the present investigation it was collected from ground moss of three coastal districts of the state, namely, East Godavari, Nellore and Vishakhapatnam.

Genus Euglypha Dujardin

Diagnosis: Test hyaline, ovoid or elongated, circular or elliptical in transverse section, formed of circular or oval or scutiform siliceous plates, arranged regularly in alternate longitudinal rows, imbricated, aperture terminal, bordered by serrated or dentate scales.

Key to the species

1. Test furnished with cilia or spines ... 2
 - Test without any spine .. 3

2. Test furnished with fine needle like cilia, produced from the margins or distributed over the surface of the test, aperture bordered by 8-14 platelets with 3-5 denticulations in each ... E. ciliata
 - Some platelets of the posterior half of the test and at the base of fundus prolonged into spines, aperture bordered by one or occasionally two rows of serrated platelets E. acanthophora

3. Aperture bordered with one or two rows of finely serrated platelets, test platelets oval, rarely circular ... E. tuberculata
- Aperture not bordered with serrated platelets... 4

4. Apertural platelets terminated with a semicircular projection *E. rotunda*
- Apertural platelets pointed and always shiny at their margin *E. laevis*

25. *Euglypha acanthophora* (Ehrenberg)

Material examined : 10 exs.

Diagnosis : Test ovoidal, oral aperture bordered with one or occasionally two rows of finely dentate platelets; test platelets elliptical, some platelets at base of the test and posterior half prolonged into spines.

Distribution : India: Andhra Pradesh, Manipur, Meghalaya, Mizoram, Nagaland and West Bengal; in freshwater tanks amongst vegetation and bottom ooze, also in submerged and wet moss.

Remarks : Naidu (1966) reported this species from Chittoor district of Andhra Pradesh. During the present investigation it was collected from three coastal districts, namely, Krishna, Vizianagram and West Godavari from freshwater tanks and wet mosses.

26. *Euglypha ciliata* (Ehrenberg)

Material examined : 20 exs.

Diagnosis : Test oviform, compressed, furnished with short needle like cilia, emerging from margin or distributed over the entire surface of the test; aperture oval, bordered by scales having 3 or 5 serrations in each.

Distribution : India: Andhra Pradesh (present record), Arunachal Pradesh, Assam, Jammu & Kashmir, Mizoram, Sikkim, Tripura and West Bengal; in moss.

Remarks : This species is reported for the first time from Andhra Pradesh. It was collected from ground and rock mosses of four coastal districts of the state, namely, East Godavari, Guntur, Nellore and Prakasam.

27. *Euglypha laevis* (Ehrenberg)

Material examined: Sev. exs.

Diagnosis: Test oviform, glabrous, oral aperture elliptical to subcircular, bordered by a single row of apertural platelets, pointed terminally, shiny at their margin and leaving a wider gap in between their terminal ends, test platelets oval and slightly imbricated, often displaying a scalliform pattern.

Distribution: India: Andhra Pradesh, Himachal Pradesh, Meghalaya, Tripura, Uttarakhand and West Bengal; in freshwater and in moss.

Remarks: Naidu (1966) was the first to record this species from Andhra Pradesh. He collected the species from freshwater bodies of Chittoor district of the state. During the present investigation it was collected from seven coastal districts of Andhra Pradesh, namely, East Godavari, Krishna, Prakasam, Srikakulam, Vishakhapatnam, Vizianagaram and West Godavari from ground moss.

28. Euglypha rotunda Wailes and Penard

Material examined: Sev. exs.

Diagnosis: Test oval and without any spine, width of test about half of its length; aperture circular bordered by 8 scales, possessing one denticular projection; test platelets oval, about twice as long as broad, slightly imbricated; imbrication of test platelets displaying a hexagonal and rectangular pattern on the surface.

Distribution: India: Andhra Pradesh (present record), Arunachal Pradesh, Himachal Pradesh, Jammu & Kashmir, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Tripura, Uttarakhand and West Bengal; in moss.

Remarks: This species constitutes first record for Andhra Pradesh. It was collected from four coastal districts of the state, namely, Guntur, Nellore, Srikakulam and Vishakhapatnam from ground and rock mosses.

29. Euglypha tuberculata Dujardin

Material examined: 18 exs.

Diagnosis: Test elongate oviform, glabrous and not compressed, aperture circular bordered
by one or two rows of 8-12 finely serrated platelets, test platelets round or oval, imbricated, presenting a regular hexagonal design.

Distribution: India: Andhra Pradesh, (present record), Arunachal Pradesh, Assam, Himachal Pradesh, Jammu & Kashmir, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Tripura, Uttaranchal and West Bengal; in freshwater amongst vegetation and in bottom ooze; also in submerged and wet moss.

Remarks: This species is reported for the first time from Andhra Pradesh. It was collected from Guntur, Nellore, Prakasam, Srikakulam and Vizianagram districts of this state.

Genus Tracheleuglypha Deflandre

Diagnosis: As in the key to this genus

30. *Tracheleuglypha dentata* (Vejdowsky)

Material examined: Sev. exs.

Diagnosis: Test oval or pyriform, test platelets elliptical, imbricating, often presenting a hexagonal design; aperture bordered by transparent chitinious dentate membrane drawn out into finger-like processes.

Distribution: India: Andhra Pradesh, Arunachal Pradesh, Himachal Pradesh Manipur, Mizoram, Nagaland, Sikkim, Tripura, Uttaranchal and West Bengal; in moss and freshwater amongst vegetation.

Remarks: Naidu (1966) was the first to report this species from freshwater bodies of Chittoor district, Andhra Pradesh. During the present investigation this species was collected from five coastal districts of the state, namely, East Godavari, Krishna, Nellore, Prakasam and Vishakhapatnam.

Genus Trinema Durjardin

Diagnosis: Test small, hyaline, unsymmetrical, oviform or elongate, compressed anteriorly, covered with circular siliceous platelets; oral aperture circular, oblique or invaginated.
Key to the species

1. Test having nearly equal width in broad view with semicircular ends, in narrow side view test tapering sharply towards aperture and covered with well marked circular platelets .. \(T. \) complanatum
 - Test ovoid to elongate .. 2

2. Test ovoid both in broad and narrow views and covered with easily distinguishable circular platelets .. \(T. \) enchelys
 - Test elongate, small, usually homogeneous in appearance .. \(T. \) lineare

31. \textit{Trinema complanatum} Penard

\textit{Material examined} : 12 exs.

\textit{Diagnosis} : Test small, hyaline having nearly equal width in broad view and tapering sharply towards the aperture in narrow side view; test formed of circular, imbricated silicious platelets; aperture circular, oblique, invaginated.

\textit{Distribution} : India : Andhra Pradesh, (present record), Arunachal Pradesh, Himachal Pradesh, Mizoram Sikkim, Uttaranchal and West Bengal; in moss.

\textit{Remarks} : This species constitutes first record from Andhra Pradesh. It was collected from mosses of East Godavari and Vishakhapatnam districts of the state.

32. \textit{Trinema enchelys} (Ehrenberg)

\textit{Material examined} : Sev. exs.

\textit{Diagnosis} : Test hyaline, ovoid, compressed anteriorly, covered with siliceous circular platelets, aperture circular, subterminal, oblique, invaginated, surrounded by very minute platelets.

\textit{Distribution} : Andhra Pradesh, Arunachal Pradesh, Himachal Pradesh, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Tripura, Uttaranchal and West Bengal; in moss, \textit{Sphagnum} and freshwater amongst vegetation.

\textit{Remarks} : Naidu (1966) reported this species from freshwater habitats of Chittoor district of Andhra Pradesh. During the present investigation it was collected from all the nine coastal districts of the state, namely, East Godavari, Guntur, Krishna, Nellore, Prakasam, Srikakulam, Vishakhapatnam, Vizianagram and West Godavari.
33. *Trinema lineare* Penard

Material examined: Sev. exs.

Diagnosis: Test small, hyaline, elongate, smooth, composed of small circular platelets distinguishable near the edges where they may appear as minute undulations; aperture circular, oblique, invaginated.

Distribution: India: Andhra Pradesh (present record), Arunachal Pradesh, Assam, Himachal Pradesh, Sikkim, Manipur, Meghalaya, Mizoram, Nagaland, Tripura and West Bengal; in freshwater amongst vegetation and in bottom ooze; also in moss.

Remarks: This species has been reported for the first time from Andhra Pradesh. It was also collected from moss of all the nine coastal districts of the state as mentioned in preceding species.

B. Symbiotic Protozoa

Phylum SARCOMASTIGOPHORA
Class ZOOMASTIGOPHOREA
Order OXYMONADIDA
Family OXYMONODIDAE

Diagnosis: Blepharoplast two in number and located near anterior extremity of axostyle, flagella two pairs, one pair arising from each blepharoplast, flagellar cord not spiral as above.

Genus *Oxymonas* Janicki

Diagnosis: Attached phase with a conspicuous rostellum, anterior end of which forming a tubular or flattened outgrowth for attachment with host's intestine, axostyle conspicuous resembling a slender stiletto, a pennant or a broad scimitar; recurvent portion of axostyle often extending backward from the holdfast into the body; predominantly uninucleate.

Key to the species

1. Axostyle slender resembling a stiletto, nucleus with a karyosome *O. bosei*
 – Axostyle broad resembling a scimitar, nucleus without any karyosome *O. grandis*

34. *Oxymonas bosei* Das

Material examined: 2 exs.

Diagnosis: Body broadly ovoidal, dimensions 204.6 (172-236.2) µm × 38.2 (31-48.6) µm; rostellum conspicuous, axostyle stiletto-shaped extending little below the nucleus; nucleus elliptical, karyosome large, ovoidal, almost centrally located, surrounded by a distinct halo.

Host: Cryptotermes dudleyi; location: gut.

Distribution: India: Andhra Pradesh, (present record), Bihar, Nagaland and West Bengal.

Remarks: This species constitutes first record from Andhra Pradesh. It has been collected from Srikakulam district.

35. Oxymonas grandis Cleveland

Material examined: 2 exs.

Diagnosis: Body ellipsoid, often irregular, dimensions 158.3 (78.7-266.2) µm × 30.7 (18.7-45) µm; rostellum conspicuous; axostyle resembling a scimitar in shape; recurvant portion of axostyle also conspicuous, nucleus ovoid, karyosome absent.

Host: Cryptotermes dudleyi; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Nagaland and West Bengal.

Remarks: This species is reported for the first time from Andhra Pradesh from Srikakulam district.

Order TRICHOSTOMONADIDA

Key to the families

1. Nucleus single, mastigont also single with 3 anterior flagella and a stout trailing flagellum generally adherent in part to body surface, cresta present ...Family DEVESCOVINIDAE
 - Nucleus multiple, four flagella attached to each mastigont, trailing flagellum and cresta absent ...Family CALONYMPHIDAE

Family DEVESCOVINIDAE

Key to the genera

1. Trailing flagellum 1 to 1.5 times the length of the body, parabasal body spiraling around axostyle or posterior part of the nucleus 1/2 turn to 5 turns Genus Devescovina
Trailing flagellum exceeding twice the length of the body, parabasal body not coiled around axostyle. Genus Foaina

Genus Devescovina Foa

Diagnosis : As in the key to the genera.

Key to the species

1. Trailing flagellum cord shaped (posteromedial edge of cresta longer than anteromedial)
 ... D. glabra

– Trailing flagellum ribbon-shaped (with broad proximal and pointed distal ends).......
 ... D. lemniscata

36. Devescovina glabra Grassi

Material examined : Sev. exs.

Diagnosis : Body elongated with pointed posterior end, 34-44.2 μm × 10.2-15.3 μm in dimensions, trailing flagellum cord-shaped, cresta varying from 5.7-6.2 μm. posteromedial edge of cresta longer than anteromedial edge; parabasal body usually turning 1-5 times around axostyle, straight or little curved with stout anterior and filamentous posterior ends.

Host : Cryptotermes dudleyi; location : gut.

Distribution : India : Andhra Pradesh (present record), Bihar, Nagaland, Tripura and West Bengal.

Remarks : This species is reported for the first time from Andhra Pradesh. It has been collected from Srikakulam, Vizianagram and Nellore districts.

37. Devescovina lemniscata Kirby

Material examined : Sev. exs.

Diagnosis : Body more or less pyriform with bluntly pointed posterior end, 51-71.4 μm × 11.9-22.1 μm; in dimensions; trailing flagellum resembling a broad ribbon in its middle part; cresta measuring 11-12.7 μm with broad proximal and pointed distal ends, number of parabasal turns varying from 1-4; axostyle bent or sinuous in posterior portion of the body.
Host: Cryptotermes dudleyi; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Nagaland, Tripura and West Bengal.

Remarks: This species is reported for the first time from Andhra Pradesh and collected from Srikakulam and Vizianagram districts.

Genus *Foaina* Janicki

Diagnosis: As in the key to the genera.

Key to the species

1. Parabasal body 'U' shaped bend, axostyle stout projecting out from posterior part of the body .. *F. reflexa*

 - Parabasal body without such band, axostyle stout projecting out from posterior part of the body .. *F. solita*

38. *Foaina reflexa* Kirby

Material examined: 4 exs.

Diagnosis: Body ovoidal, 25.5-42.5 μm × 15.5-28 μm in dimensions, anterior flagella three in number and equal to the length of the body, trailing flagellum resembling a stout cord, but occasionally band-shaped exceeding twice the body length; cresta long but narrow; part of the parabasal body near blepharoplast showing a 'U' shaped band; axostyle stout, projecting out of posterior part of the body to a short distance.

Host: Cryptotermes dudleyi; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Nagaland, Tripura and West Bengal.

Remarks: This species is recorded for the first time from Andhra Pradesh. It has been collected from Vizianagram and Nellore districts.

39. *Foaina solita* Kirby

Material examined: 2 exs.
Diagnosis: Small, dimensions 7.6-17 \(\mu m \times 3.2 -9.2 \mu m \), anterior flagella slender, three in number and longer than the body length, trailing flagellum resembling a stout cord with a length 2-5 times the length of the body; parabasal body short and restricted to dorsal side of nucleus; axostyle moderately stout with or without enlarged cusp and projecting out from posterior part of the body.

Host: *Cryptotermes dudleyi*; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Nagaland, Tripura and West Bengal.

Remarks: This species is reported for the first time from Andhra Pradesh and collected from Vishakhapatnam district.

Genus *Stephanonympha* Janicki

Diagnosis: Oval but plastic, numerous nuclei spirally arranged in the anterior half; karyomastigont present; axial filament forming a bundle.

Key to the species

1. Nuclei arranged in a single spiral series .. *S. minuta*
 - Nuclei arranged in more than one spiral series .. 2

2. Nuclei arranged 2-3 spiral series .. *S. silvestrii*
 - Nuclei arranged in 8-9 spiral series .. *S. pyriformis*

40. *Stephanonympha minuta* Das and Choudhury

Material examined: 4 exs.

Diagnosis: Body oval with broad anterior and bluntly pointed posterior ends, 28-36 \(\mu m \times 20-29.7 \mu m \) in dimensions; nuclei oval, 6-10 in number and set closely to form a single spiral series near the anterior end of the body.

Host: *Cryptotermes dudleyi*; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Nagaland and West Bengal.

Remarks: This species is reported for the first time from Andhra Pradesh. It has been collected from Vishakhapatnam and Nellore districts.
41. *Stephanonympha pyriformis* Das and Choudhury

Material examined: 2 exs.

Diagnosis: Body shape pyriform with bluntly pointed posterior end, 70.2-86.7 μm × 38-47.5 μm in dimensions, nuclei ovoid or slightly elongated, numerous and embedded in series of 8-9 concentric spirals occupying almost one third portion of anterior end of the body; axial bundle running through the middle of the body and reaching almost its posterior extremity.

Host: *Cryptotermes dudleyi*; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Nagaland, Tripura and West Bengal.

Remarks: This species is reported for the first time from Andhra Pradesh from Vizianagram district.

42. *Stephanonympha silvestrii* Janicki

Material examined: 9 exs.

Diagnosis: Oval or rounded, 45-56.2 μm × 31.5-41.2 μm in dimensions; nuclei fusiform containing distinct chromatin granules and embedded closely in 2 or 3 spiral series occupying anterior portion of the body; axial bundle extending in the same fashion as in the preceding species.

Host: *Cryptotermes dudleyi*; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Nagaland, Tripura and West Bengal.

Remarks: This species is reported for the first time from Andhra Pradesh and collected from Vizianagram and Srikakulam districts.

Order HYPERMASTIGIDA

Key to the families

1. Flagella arranged in spiral rows .. 2
 - Flagella not arranged in spiral rows, entire body covered with flagella leaving a very small posterior region .. Family EUCOMONYMPHIDAE

2. Spiral rows of flagella 12-40, a mass of dense cytoplasm usually surrounding ovoid nucleus near anterior end of the body Family HOLOMASTIGOTIDAE
Spiral rows of flagella few, arising from a common point near anterior end of the body, nucleus anchored to rostrum by a nuclear sleeve ...
... Family SPIROTRICHONYMYPIDAE

Family HOLOMASTIGOTIDAE

Genus *Holomastigotoides* Grassi and Foa

Diagnosis: As in the key to the genera.

Key to the species

1. Prenuclear zone present .. 2
 - Prenuclear absent .. 7

2. Posterior portion of the body glabrous .. 3
 - Posterior portion of the body not glabrous ... 4

3. Posterior one fifth of the body without any flagella ...
 - A small portion of the body without any flagella and longer flagella occupying
 posteriormost portion of the body ... 5

4. Flagella of uniform size, body exactly spherical in shape ..
 - Flagella of posterior portion of the body much longer .. 5

5. Longer flagella occupying the posterior fifth of the body ..
 - Longer flagella occupying only the posterior extremity of the body 6

6. Body elliptical or club-shaped with considerable elevation at anterior end forming a
 nipple like structure, axostyle indistinct ..
 - Body reniform, axostyle short but distinct ... 6

7. Body resembling a bell jar without any apical knob, axostyle short *H. campanula*
 - Body oval, axostyle lacking ...

43. *Holomastigotoides bengalensis* Chakravarty and Banerjee

Material examined: 8 exs.

Diagnosis: Body more or less oval, occasionally elliptical, anterior end bluntly pointed
resembling a nipple and posterior end rounded, 67.3-105.2 \(\mu m \times 41.2-70.5 \mu m \) in dimensions; flagella of two types, shorter one covering a major portion of the body in dexiotropic manner, leaving a small glabrous portion; this portion without having any flagella; longer flagella occupying posteriormost portion of the body, axostyle well developed extending almost up to posterior extremity of the body; prenuclear zone conical and densely granulated.

Host: *Coptotermes heimii*; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Nagaland, Tripura, Uttar Pradesh and West Bengal.

Remarks: This species constitutes new record for Andhra Pradesh. It has been collected from Vishakhapatnam, East Godavari, West Godavari and Prakasam districts.

44. *Holomastigotoides campanula* (de Mello)

Material examined: 8 exs.

Diagnosis: Body resembling exactly a bell-jar without apical knob; 42.5-69.1 \(\mu m \times 56.1-73.3 \mu m \) in dimensions; flagella of two types, shorter ones arranged all over the body in dexiotropic rows and longer ones restricted to posterior extremity of the body; axostyle short but distinct, prenuclear zone absent.

Host: *Coptotermes heimii*; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Diu, Karnataka, Nagaland, Sikkim, Tripura and West Bengal.

Remarks: This species has been collected from three coastal districts of this state, namely, Srikakulam, Vishakhapatnam and Guntur. It constitutes first report from Andhra Pradesh.

45. *Holomastigotoides emersoni* Das

Material examined: 4 exs.

Diagnosis: Body elliptical or club-shaped, measuring 93.4 (96.5-110.4) \(\mu m \times 38.2 (28.9-47.6) \mu m \) in dimension; maximum being near posterior half of the body; anterior end of the body considerably elevated forming a nipple like structure and posterior end broadly round; flagella of two types, shorter ones covering major portion of the body dexiotropically and longer ones restricted only to posterior extremity; axostyle indistinct, dense and homogeneous prenuclear zone present.
Host: *Coptotermes heimi*; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Nagaland and West Bengal.

Remarks: This species is reported for the first time from Andhra Pradesh and collected from Vishakhapatnam, West Godavari and Krishna districts.

46. *Holomastigotoides magnus* Uttangi

1962. *Holomastigotoides magnus* Uttangi, *J. Karnatak Univ.*, 7, p. 188.

Material examined: 2 exs.

Diagnosis: Body comparatively large and ovoidal, both anterior and posterior ends broadly round, 100.3-170 μm × 74.8-102 μm in dimension; flagella of one type covering major portion of the body dexiotropically leaving a posterior glabrous region, measuring about one-fifth of the body length; axostyle fibrous and moderately developed reaching beyond the middle of the body; prenuclear zone clearly visible in stained preparation.

Host: *Coptotermes heimi*; location: gut.

Distribution: India: Andhra Pradesh (present record), Nagaland, Sikkim, Tripura and West Bengal.

Remarks: This species is reported for the first time from Andhra Pradesh and collected from Vishakhapatnam district.

47. *Holomastigotoides ovalis* Uttangi

Material examined: 5 exs.

Diagnosis: Body oval, anterior end narrowly and posterior end broadly rounded, 105 μm × 68 μm in dimension; flagella longer, arranged in dexiotropic rows, covering whole of the body excepting posterior glabrous portion which bear short "steriocilia", nucleus oval, located at anterior pole of the body; prenuclear zone and axostyle absent.

Host: *Coptotermes heimi*; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Nagaland, Karnataka and Tripura.

Remarks: This species is reported for the first time from Andhra Pradesh. It has been collected from Vishakhapatnam, Krishna and Prakasam districts.

48. *Holomastigotoides rayi* Karandikar and Vittal

Material examined: 4 exs.

Diagnosis: Body oval, sometimes with apical pit; 88.4-125.8 μm × 61.2-70.5 μm in dimension; flagella of two types, first type covering the body dexiotropically while the second type, sometimes longer, sometimes of almost equal length setting irregularly around one-fifth of the posterior region of the body; axostyle faintly visible, prenuclear zone distinct in stained preparation.

Host: Coptotermes heimi; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Karnataka, Nagaland, Sikkim, Tripura and West Bengal.

Remarks: This species is reported for the first time from Andhra Pradesh and collected from East Godavari, Vishakhapatnam and Guntur districts.

49. Holomastigotoides reniformis de Mello

Material examined: 2 exs.

Diagnosis: Body reniform; 50-125.5 μm × 20.5-45.2 μm in dimension; flagella of one type covering whole of body dexiotropically; axostyle short and reaching slightly below nucleus; prenuclear zone distinct and granular; endoplasm containing ingested wood particles.

Host: Coptotermes heimi; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Goa, Nagaland, Sikkim and Tripura.

Remarks: This species constitutes first record for Andhra Pradesh. It has been collected from Vizianagram district.

50. Holomastigotoides spheroidalis de Mello

Material examined: Seve exs.

Diagnosis: Body spherical, 67.5-86.2 μm in diameter; flagella of one type, covering entire body dexiotropically; nucleus circular and located very near a point at anterior end from which flagellar bands seem to diverge out; axostyle well developed, prenuclear zone distinct.

Host: Coptotermes heimi; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Daman, Karnataka, Nagaland, Sikkim, Tripura, Uttar Pradesh and West Bengal.
Remarks: This species has been collected from Vishakapatnam and Guntur districts. It is reported for the first time from Andhra Pradesh.

Family SPIROTRICHONYMPHIDAE

Genus Spirotrichonympha Grassi and Foa

Diagnosis: Body elongate, pyriform, flagella deeply embedded in cytoplasm in anterior region arising from flagellar bands, mass of dense cytoplasm conical and its base indistinct.

51. Spirotrichonympha froilanoi Karandikar & Vittal

Material examined: Sev. exs.

Diagnosis: Body cone-shaped, anterior portion narrowed to a blunt end, posterior extremity broadest 20.4-42.5 μm × 11.9-27.2 μm in dimensions; nucleus round and located near anterior third of the body; four flagellar bands originating from the centro-blepharoplast, covered by apical operculum; conspicuously long flagella spreading out from posterior surface in a brush-like manner; axostyle distinct and cord-like in postnuclear region extending obliquely towards posterior extremity and occasionally protruding out of the body.

Host: Coptotermes heimi; location: gut.

Distribution: India: Andhra Pradesh (present record), Bihar, Karnataka, Nagaland, Sikkim, Tripura, Uttar Pradesh and West Bengal.

Remarks: This species is reported for the first time from India. It has been collected from Vishakapatnam, East Godavari, Guntur and Prakasam districts.

Family EUCOMONYMPHIDAE

Genus Pseudotrichonympha Grassi and Foa

Diagnosis: Anterior portion consisting of apical cap and campanula; campanular surface covered with three types of flagella, first type shortest and immobile, strictly confined to rostral tube, second type longest and arranged below first type in a thick circular band, third type arranged in longitudinal rows in pleiotropic manner covering rest of the body excepting short glabrous end.
Key to the species

1. Campanula anterior and medially placed ... 2
 - Campanula disposed obliquely one side of the median axis and distinctly subapical
 .. P. subapicalis

2. Body heart-shaped containing sphaerita-like microorganisms P. cardiformis
 - Body elongated and truncated at both ends (nucleus with scattered chromatin granules)
 .. P. indica

52. Pseudotrichonympha cardiformis Karandikar & Vittal

Material examined : 2 exs.

Diagnosis : Body typically heart-shaped, anterior part consisting of bell-like campanula
demarcated by a faintly stained circlet-like line from the rest of the body; dimensions 105-
181.2 μm × 82.2-130.3 μm, campanula placed mid-apically at anterior end of the body;
nucleus spherical and located generally above the middle region of the body, endoplasm with
sphaerita-like microorganisms.

Host : Coptotermes heimi; location : gut.

Distribution : India : Andhra Pradesh (present record), Karnataka, Nagaland, Sikkim,
Tripura, Uttar Pradesh and West Bengal.

Remarks : This species is recorded for the first time from Andhra Pradesh and collected
from Vizianagram district.

53. Pseudotrichonympha indica Chakravarty and Banerjee

Material examined : 7 exs.

Diagnosis : Body much elongated with its broadest part being almost near the middle;
165-221.2 μm × 22.5-52.5 μm in dimensions; campanular region very short in comparison
to body length; campanula located mid-apically at anterior end; nucleus more or less round
located near middle of body (rarely near posterior region) containing scattered chromatin
granules.

Host : Coptotermes heimi; location : gut.

Distribution : India : Andhra Pradesh (present record), Bihar, Nagaland, Sikkim, Tripura,
Uttar Pradesh and West Bengal.
Remarks: This species constitutes first record from Nagaland. It has been collected from Vishakhapatnam, East Godavari and Krishna districts.

54. *Pseudotrichonympha subapicalis* Karandikar & Vittal

Material examined: Sev. exs.

Diagnosis: Body generally rounded, swollen anteriorly and narrowed posteriorly to a blunt end; 172.5-205 μm x 82.5-90 μm in dimensions; campanula disposed obliquely one side of the median axis and distinctly subapical; nucleus spherical, located at the anterior region of the body (occasionally in the middle).

Host: *Coptotermes heimi*; location: gut.

Distribution: India: Andhra Pradesh (present record), Karnataka, Nagaland, Sikkim, Tripura, and West Bengal.

Remarks: This species has been collected from five coastal districts of Andhra Pradesh, namely, Vishakhapatnam, East Godavari, West Godavari, Krishna and Prakasam. It is reported for the first time from the state.

B. TESTACIDS OF NONCOASTAL DISTRICTS

In recent years ZSI Scientists collected 29 species of testacids from eight noncoastal districts of Andhra Pradesh as mentioned earlier. Moreover, Naidu (1966) reported the occurrence of 26 species of testacids from the two noncoastal districts of the state, namely, Cuddapah and Chittoor (Table 1) which were not surveyed by ZSI for freeliving protozoa. A systematic list of all these species and their district-wise distribution is presented in Table 3 to enlighten their taxonomic diversity and extent of distribution in different districts of the state. However, taxonomic account of the species collected by ZSI from noncoastal districts is not dealt with as done for the species of coastal districts to avoid repetition.

GENERAL REMARKS ON TAXONOMIC DIVERSITY AND DISTRIBUTION

Analysis of Table 1 and 2 reveals that 58 species of testacid rhizopods have been collected so far from Andhra Pradesh. These tables also show that seven species of testacids collected from the coastal districts of Andhra Pradesh, namely, *Arcella conica*, *Centropyxis minuta*, *Plagiopyxis minuta*, *Diffugia corona*, *Diffugia pyriformis*, *Assulina semilunum* and *Trinema complanatum* and, one ecological variety, *Centropyxis aerophila* var. sphagnicola have not been found so far from the noncoastal districts. On the other hand, 22 species of testacids found in noncoastal districts are yet to be recorded from the coastal districts. These species are: *Arcella gibbosa*, *Arcella hemispherica*, *Arcella papyracea*, *Arcella rotunda*, *Lesquereusia*
minor, Lesquereusia modesta, Lesquereusia spiralis, Diplochlamys timida, Centropyxis cassis, Cyclopyxis eurystoma, Plagiopyxis declivis, Diffugia amphora, Diffugia carinata, Diffugia difficilis, Diffugia globulosa, Diffugia gramen, Diffugia kabylica, Diffugia leidy, Diffugia oblonga, Diffugia penardi, Diffugia tuberculata and Nebela collaris.

Amongst freeliving protozoa only testacid rhizopods were collected from these districts during the recent surveys leaving aside other rhizopods and diversified groups of flagellates and ciliates. So far as symbiotic protozoa are concerned, only two species of termite hosts, *Cryptotermes dudleyi* and *Coptotermes heimi* were examined from the coastal districts only and 21 species of symbiotic flagellates have been recovered from those hosts. No symbiotic protozoa were collected from noncoastal districts. Therefore, it is quite evident that large number of protozoan species are yet to be collected from the study area for properly assessing the taxonomic diversity and richness of freeliving and symbiotic protozoa of the state.

SUMMARY

A total of 79 species of freeliving and symbiotic protozoa from 9 coastal and 10 noncoastal have been dealt with in this paper. Freeliving protozoa include 58 species of testacid rhizopods belonging to 2 classes 2 orders, 7 families and 15 genera. From coastal districts 33 species and noncoastal districts 47 species of testacids have been recorded.

Symbiotic flagellates were collected from the gut of two species of wood-eating termites, namely, *Cryptotermes dudleyi* and *Coptotermes heimi*. These flagellates comprise of 21 species collected from the coastal districts only belonging to 3 orders, 6 families and 7 genera. All the symbiotic flagellates constitute first record for Andhra Pradesh.

ACKNOWLEDGEMENT

The authors are grateful to Dr. J.R.B. Alfred, Director, Zoological Survey of India for extending necessary facilities for this work.

REFERENCES

Table 1: List of testacid species reported by Naidu (1966) from Andhra Pradesh
(*species not reported from coastal districts; hence, their taxonomic account not dealt with in this paper)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the species</th>
<th>Collecting district</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Arcella conica (Playfair)</td>
<td>Krishna (coastal district)</td>
</tr>
<tr>
<td>2.</td>
<td>*Arcella gibbosa Penard</td>
<td>Chittoor</td>
</tr>
<tr>
<td>3.</td>
<td>*Arcella hemispherica Perty</td>
<td>Cuddapah</td>
</tr>
<tr>
<td>4.</td>
<td>*Arcella papyracea Playfair</td>
<td>Chittoor</td>
</tr>
<tr>
<td>5.</td>
<td>*Arcella rotunda Playfair</td>
<td>Chittoor</td>
</tr>
<tr>
<td>6.</td>
<td>Centropyxis aculeata (Ehrenberg)</td>
<td>Chittoor</td>
</tr>
<tr>
<td>7.</td>
<td>*Centropyxis cassis (Wallich)</td>
<td>Chittoor</td>
</tr>
<tr>
<td>8.</td>
<td>Centropyxis orbicularis Defflandre</td>
<td>Chittoor</td>
</tr>
<tr>
<td>9.</td>
<td>Centropyxis platystoma (Penard)</td>
<td>Chittoor</td>
</tr>
<tr>
<td>10.</td>
<td>Diffugia acuminata Ehrenberg</td>
<td>Chittoor</td>
</tr>
<tr>
<td>11.</td>
<td>*Diffugia amphora Leidy</td>
<td>Chittoor</td>
</tr>
<tr>
<td>12.</td>
<td>*Diffugia carinata Van Oye</td>
<td>Chittoor</td>
</tr>
<tr>
<td>13.</td>
<td>*Diffugia difficilis Thomas</td>
<td>Chittoor</td>
</tr>
<tr>
<td>14.</td>
<td>*Diffugia globulosa Dujardin</td>
<td>Chittoor</td>
</tr>
<tr>
<td>15.</td>
<td>*Diffugia gramine Penard</td>
<td>Chittoor</td>
</tr>
<tr>
<td>16.</td>
<td>*Diffugia kabylica Gauthier-Lievre & Thomas</td>
<td>Chittoor</td>
</tr>
<tr>
<td>17.</td>
<td>*Diffugia leidyi Wailes</td>
<td>Chittoor</td>
</tr>
<tr>
<td>18.</td>
<td>*Diffugia oblonga Ehrenberg</td>
<td>Chittoor</td>
</tr>
<tr>
<td>19.</td>
<td>*Diffugia penardi (Penard)</td>
<td>Chittoor</td>
</tr>
<tr>
<td>20.</td>
<td>*Lesquereusia minor Walton</td>
<td>Chittoor</td>
</tr>
<tr>
<td>21.</td>
<td>*Lesquereusia spiralis (Ehrenberg)</td>
<td>Chittoor</td>
</tr>
<tr>
<td>22.</td>
<td>*Nebela collaris (Ehrenberg)</td>
<td>Chittoor</td>
</tr>
<tr>
<td>23.</td>
<td>Corythion dubium Taranek</td>
<td>Chittoor</td>
</tr>
<tr>
<td>24.</td>
<td>Euglypha acanthophora (Ehrenberg)</td>
<td>Chittoor</td>
</tr>
<tr>
<td>25.</td>
<td>Euglypha laevis (Ehrenberg)</td>
<td>Chittoor</td>
</tr>
<tr>
<td>26.</td>
<td>Tracheleuglypha dentata (Vejdovsky)</td>
<td>Chittoor</td>
</tr>
<tr>
<td>27.</td>
<td>Trinema enchelys (Ehrenberg)</td>
<td>Chittoor</td>
</tr>
</tbody>
</table>
Table 2: District-wise distribution of Protozoan species in coastal districts of Andhra Pradesh.
(Sri : Srikakulam; Vizi : Vizianagram; Vish. : Vishakhapatnam; Egod : East Godavari; Wgod : West Godavari; Kri : Krishna; Gun : Guntur; Prak : Prakasam; Nell : Nellore)

<table>
<thead>
<tr>
<th>Species</th>
<th>Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sri</td>
</tr>
<tr>
<td>A. Freeliving Protozoa</td>
<td></td>
</tr>
<tr>
<td>1. Arcella conica</td>
<td>+</td>
</tr>
<tr>
<td>2. Arcella discoides</td>
<td>+</td>
</tr>
<tr>
<td>3. Arcella vulgaris</td>
<td>+</td>
</tr>
<tr>
<td>4. Centropyxis aculeata</td>
<td>+</td>
</tr>
<tr>
<td>5. Centropyxis aerophila</td>
<td>+</td>
</tr>
<tr>
<td>6. Centropyxis aerophila var. sphagnicola</td>
<td>+</td>
</tr>
<tr>
<td>7. Centropyxis constricta</td>
<td>+</td>
</tr>
<tr>
<td>8. Centropyxis ecornis</td>
<td>+</td>
</tr>
<tr>
<td>9. Centropyxis minuta</td>
<td>+</td>
</tr>
<tr>
<td>10. Centropyxis orbicularis</td>
<td>+</td>
</tr>
<tr>
<td>11. Centropyxis platystoma</td>
<td>+</td>
</tr>
<tr>
<td>12. Centropyxis spinosa</td>
<td>+</td>
</tr>
<tr>
<td>13. Cyclopyxis arcelloides</td>
<td>+</td>
</tr>
<tr>
<td>14. Plagiopyxis callida</td>
<td>+</td>
</tr>
<tr>
<td>15. Plagiopyxis minuta</td>
<td>+</td>
</tr>
<tr>
<td>16. Diffugia acuminata</td>
<td>+</td>
</tr>
<tr>
<td>17. Diffugia corona</td>
<td>+</td>
</tr>
<tr>
<td>18. Diffugia lithophila</td>
<td>+</td>
</tr>
<tr>
<td>19. Diffugia lobostoma</td>
<td>+</td>
</tr>
<tr>
<td>20. Diffugia pyriformis</td>
<td>+</td>
</tr>
<tr>
<td>21. Heleopera sphagni</td>
<td>+</td>
</tr>
<tr>
<td>22. Phryganella acropodia</td>
<td>+</td>
</tr>
<tr>
<td>23. Assulina semilunum</td>
<td>+</td>
</tr>
<tr>
<td>24. Corythion dubium</td>
<td>+</td>
</tr>
<tr>
<td>25. Euglypha acanthophora</td>
<td>+</td>
</tr>
<tr>
<td>26. Euglypha ciliata</td>
<td>+</td>
</tr>
<tr>
<td>27. Euglypha laevis</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 2. Contd.

<table>
<thead>
<tr>
<th>Species</th>
<th>Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sri</td>
</tr>
<tr>
<td>28. Euglypha rotunda</td>
<td>+</td>
</tr>
<tr>
<td>29. Euglypha tuberculata</td>
<td>+</td>
</tr>
<tr>
<td>30. Tracheleuglypha dentata</td>
<td></td>
</tr>
<tr>
<td>31. Trinema complanatum</td>
<td></td>
</tr>
<tr>
<td>32. Trinema enchelys</td>
<td>+</td>
</tr>
<tr>
<td>33. Trinema lineare</td>
<td>+</td>
</tr>
<tr>
<td>B. Symbiotic Protozoa</td>
<td></td>
</tr>
<tr>
<td>34. Oxymonas bosei</td>
<td>+</td>
</tr>
<tr>
<td>35. Oxymonas grandis</td>
<td>+</td>
</tr>
<tr>
<td>36. Devescovina glabra</td>
<td>+</td>
</tr>
<tr>
<td>37. Devescovina lemniscata</td>
<td>+</td>
</tr>
<tr>
<td>38. Foaina reflexa</td>
<td>+</td>
</tr>
<tr>
<td>39. Foaina solita</td>
<td></td>
</tr>
<tr>
<td>40. Stephanonympha minuta</td>
<td></td>
</tr>
<tr>
<td>41. Stephanonympha pyriformis</td>
<td></td>
</tr>
<tr>
<td>42. Stephanonympha sylvestri</td>
<td>+</td>
</tr>
<tr>
<td>43. Holomastigotoides bengalensis</td>
<td></td>
</tr>
<tr>
<td>44. Holomastigotoides campanula</td>
<td></td>
</tr>
<tr>
<td>45. Holomastigotoides emersoni</td>
<td></td>
</tr>
<tr>
<td>46. Holomastigotoides magnus</td>
<td>+</td>
</tr>
<tr>
<td>47. Holomastigotoides ovalis</td>
<td>+</td>
</tr>
<tr>
<td>48. Holomastigotoides rayi</td>
<td>+</td>
</tr>
<tr>
<td>49. Holomastigotoides reniformis</td>
<td></td>
</tr>
<tr>
<td>50. Holomastigotoides spheroidalis</td>
<td></td>
</tr>
<tr>
<td>51. Spirotrichonympha froilanoi</td>
<td></td>
</tr>
<tr>
<td>52. Pseudotrichonympha cardiformis</td>
<td></td>
</tr>
<tr>
<td>53. Pseudotrichonympha indica</td>
<td></td>
</tr>
<tr>
<td>54. Pseudotrichonympha subupicalis</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Systematic list of testacid rhizopods and their distribution in noncoastal districts.

(War: Warangal; Niz: Nizamabad; Ran: Rangareddi; Nal: Nalgonda; Kar: Karimnagar; Adi: Adilabad; Med: Medak; Kha: Khammam; Cud: Cuddapah; Chi: Chittoor; *: recorded by Naidu (1966); **: not collected by ZSI)

<table>
<thead>
<tr>
<th>Species</th>
<th>War</th>
<th>Niz</th>
<th>Ran</th>
<th>Nal</th>
<th>Kar</th>
<th>Adi</th>
<th>Med</th>
<th>Kha</th>
<th>*Cud</th>
<th>*Chi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum SARCOMASTIGOPHORA</td>
<td></td>
</tr>
<tr>
<td>Subphylum SARCODINA</td>
<td></td>
</tr>
<tr>
<td>Class LOBOSEA</td>
<td></td>
</tr>
<tr>
<td>Order ARCELLINIDA</td>
<td></td>
</tr>
<tr>
<td>Family ARCELLINIDAE</td>
<td></td>
</tr>
<tr>
<td>1. Arcella discoides</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Arcella gibbosa</td>
<td></td>
</tr>
<tr>
<td>3. Arcella hemispherica</td>
<td></td>
</tr>
<tr>
<td>4. Arcella papyracea</td>
<td></td>
</tr>
<tr>
<td>5. Arcella rotunda</td>
<td></td>
</tr>
<tr>
<td>6. Arcella vulgaris</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Lesquerellia minor</td>
<td></td>
</tr>
<tr>
<td>8. Lesquerellia modesta</td>
<td></td>
</tr>
<tr>
<td>**9. Lesquerellia spiralis</td>
<td></td>
</tr>
<tr>
<td>Family MICROCORYCYIDAE</td>
<td></td>
</tr>
<tr>
<td>10. Diplochlamys timida</td>
<td></td>
</tr>
<tr>
<td>Family CENTROPYXIDAE</td>
<td></td>
</tr>
<tr>
<td>11. Centropyx aculeata</td>
<td></td>
</tr>
<tr>
<td>12. Centropyx aerophilia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**13. Centropyx cassis</td>
<td></td>
</tr>
<tr>
<td>14. Centropyx constricta</td>
<td></td>
</tr>
<tr>
<td>15. Centropyx ecornis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**16. Centropyx orbicularis</td>
<td></td>
</tr>
<tr>
<td>**17. Centropyx platystoma</td>
<td></td>
</tr>
<tr>
<td>18. Centropyx spinosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Cyclopyxis arcelloides</td>
<td></td>
</tr>
<tr>
<td>20. Cyclopyxis eurystoma</td>
<td></td>
</tr>
<tr>
<td>21. Plagipyx callida</td>
<td></td>
</tr>
<tr>
<td>22. Plagipyx declivis</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Contd.

<table>
<thead>
<tr>
<th>Species</th>
<th>War</th>
<th>Niz</th>
<th>Ran</th>
<th>Nal</th>
<th>Kar</th>
<th>Adi</th>
<th>Med</th>
<th>Kha</th>
<th>*Cud</th>
<th>*Chi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family DIFFLUGIIDAE</td>
<td></td>
</tr>
<tr>
<td>23. Diffugia acuminata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**24. Diffugia amphora</td>
<td></td>
</tr>
<tr>
<td>**25. Diffugia carinata</td>
<td></td>
</tr>
<tr>
<td>**26. Diffugia difficilis</td>
<td></td>
</tr>
<tr>
<td>**27. Diffugia globulosa</td>
<td></td>
</tr>
<tr>
<td>**28. Diffugia gramen</td>
<td></td>
</tr>
<tr>
<td>**29. Diffugia kablyica</td>
<td></td>
</tr>
<tr>
<td>**30. Diffugia leidy</td>
<td></td>
</tr>
<tr>
<td>31. Diffugia lithophila</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Diffugia lobostoma</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. Diffugia oblonga</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**34. Diffugia penardi</td>
<td></td>
</tr>
<tr>
<td>35. Diffugia tuberculata</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family NEBULIDAE</td>
<td></td>
</tr>
<tr>
<td>36. Heleopera sphagni</td>
<td></td>
</tr>
<tr>
<td>**37. Nebula collaris</td>
<td></td>
</tr>
<tr>
<td>Family ?</td>
<td></td>
</tr>
<tr>
<td>38. Phryganella acropodia</td>
<td></td>
</tr>
<tr>
<td>Class LOBOSEA</td>
<td></td>
</tr>
<tr>
<td>Order TESTACEAFILOSA</td>
<td></td>
</tr>
<tr>
<td>Family EUGLYPHIDAE</td>
<td></td>
</tr>
<tr>
<td>39. Corythion dubium</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40. Euglypha acanthophora</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41. Euglypha ciliata</td>
<td></td>
</tr>
<tr>
<td>42. Euglypha laevis</td>
<td></td>
</tr>
<tr>
<td>43. Euglypha rotunda</td>
<td></td>
</tr>
<tr>
<td>44. Euglypha tuberculata</td>
<td></td>
</tr>
<tr>
<td>45. Tracheleuglypha dentata</td>
<td></td>
</tr>
<tr>
<td>46. Trinema enchelys</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47. Trinema lineare</td>
<td></td>
</tr>
</tbody>
</table>